Release Notes for Cisco Catalyst 9500 Series Switches, Cisco IOS XE Amsterdam 17.1.x
Introduction
Cisco Catalyst 9500 Series Switches and Cisco Catalyst 9500 Series Switches - High Performance are leading, fixed, core and aggregation enterprise switching platforms and have been purpose-built to address emerging trends in security, IoT, mobility, and cloud.
These switches deliver complete convergence in terms of ASIC architecture with Unified Access Data Plane (UADP) 2.0 on Cisco Catalyst 9500 Series Switches and UADP 3.0 on Cisco Catalyst 9500 Series Switches - High Performance. The platform runs an open Cisco IOS XE that supports model-driven programmability. This series forms the foundational building block for Software-Defined Access (SD-Access), which is Cisco’s lead enterprise architecture.
Note |
With the introduction of the High Performance models in the series, there may be differences in the supported and unsupported features, limitations, and caveats that apply to the Cisco Catalyst 9500 Series Switches and Cisco Catalyst 9500 Series Switches - High Performance models. Throughout this release notes document, any such differences are expressly called out. If they are not, the information applies to all the models in the series. |
Whats New in Cisco IOS XE Amsterdam 17.1.1
Hardware Features in Cisco IOS XE Amsterdam 17.1.1
-
Hardware Features Introduced on Cisco Catalyst 9500 Series Switches
-
Hardware Features Introduced on Cisco Catalyst 9500 Series Switches - High Performance
Feature Name |
Description and Documentation Link |
---|---|
Direct-Attach Cables for Cisco QSA Module CVR-QSFP-SFP10G |
Supported cable product numbers:
For information about these cables, see Cisco 10GBASE SFP+ Modules Data Sheet. For information about device compatibility, see the Transceiver Module Group (TMG) Compatibility Matrix. |
Feature Name |
Description and Documentation Link |
---|---|
Direct-Attach Cables for Cisco QSFP to SFP or SFP+ Adapter (QSA) Module CVR-QSFP-SFP10G |
For information about these cables, see Cisco 10GBASE SFP+ Modules Data Sheet. For information about device compatibility, see the Transceiver Module Group (TMG) Compatibility Matrix. |
Software Features in Cisco IOS XE Amsterdam 17.1.1
-
Software Features Introduced on Cisco Catalyst 9500 Series Switches
-
Software Features Introduced on Cisco Catalyst 9500 Series Switches-High Performance
Software Features Introduced on All Models
Feature Name |
Description, Documentation Link, and License Level Information |
---|---|
ERSPAN IPv6 |
Introduces IPv6 support for Encapsulated Remote Switched Port Analyzer (ERSPAN). ERSPAN enables you to monitor traffic on ports or VLANs, and send the monitored traffic to destination ports.
See Network Management → Configuring ERSPAN.
(DNA Advantage) |
Flash MIB instance retrieval count limit increase |
The limitation of Flash MIB listing 100 files per partition per device has been removed. Flash MIB can now fetch all the files from the flash file system.
See Network Management → Configuring Simple Network Management Protocol.
(Network Essentials and Network Advantage) |
IGMP (IPv4) : VPLS Layer 2 Snooping |
Introduces support for Internet Group Management Protocol (IGMP) snooping on a Virtual Private LAN Service (VPLS) configured network.
See Multiprotocol Label Switching → Configuring Virtual Private LAN Service (VPLS) and VPLS BGP-Based Autodiscovery.
(Network Advantage) |
Ingress and Egress Flexible Netflow on MPLS |
Allows capture of IP flow information for packets undergoing Multiprotocol Label Switching (MPLS) label imposition when entering an MPLS network. These packets arrive on a device as IP packets and are transmitted as MPLS packets. Enable the feature by configuring an ingress flow monitor for IPv4 and IPv6 traffic at the customer edge (CE) facing side of the provider edge (PE) node.
See Network Management → Configuring Flexible NetFlow.
(DNA Essentials and DNA Advantage) |
MACsec over Ethernet over MPLS (EoMPLS) |
In VLAN mode, the switch (PE device) can now process packets in which the 802.1Q tag is not encrypted by the CE device.
See Multiprotocol Label Switching → Configuring Ethernet-over-MPLS and Pseudowire Redundancy.
(Network Advantage) |
Multicast VPN Extranet Support |
Enables service providers to distribute IP multicast content originating from one enterprise site to other enterprise sites.
See IP Multicast Routing → Configuring Multicast VPN Extranet Support.
(Network Advantage) |
MPLS VPN InterAS Option A |
MPLS VPN InterAS options provide multiple ways of interconnecting VPNs between different MPLS VPN service providers. With one of the options configured, a customer’s site can exist on several carrier networks (autonomous systems) and still have seamless VPN connectivity. Of the available InterAS options, MPLS VPN InterAS Option A is the simplest to configure. This option provides back-to-back virtual routing and forwarding (VRF) connectivity (MPLS VPN providers exchange routes across VRF interfaces).
See Multiprotocol Label Switching → Configuring MPLS VPN InterAS Options.
(Network Advantage) |
Neighbor Discovery (ND) Inspection Feature Deprecation |
The IPv6 ND Inspection feature is deprecated. The Switch Integrated Security Features based (SISF-based) device tracking feature replaces it and offers the same capabilities.
See Security → Configuring IPv6 First Hop Security.
(Network Essentials and Network Advantage) |
Programmability
|
The following programmability features are introduced in this release:
See Programmability.
(Network Essentials and Network Advantage) |
VPLS Flow-Aware Transport Pseudowire Support |
Provides the capability to identify individual flows within a pseudowire (PW) and provides devices the ability to use these flows to load-balance traffic.
See Multiprotocol Label Switching → Configuring Virtual Private LAN Service (VPLS) and VPLS BGP-Based Autodiscovery.
(Network Advantage) |
VPLS Protocol-Mode CLI Support |
Introduces support for VPLS and VPLS BGP-based Autodiscovery configurations using protocol-CLI mode.
See Multiprotocol Label Switching → Configuring Virtual Private LAN Service (VPLS) and VPLS BGP-Based Autodiscovery.
(Network Advantage) |
New on the Web UI |
|
|
Use the WebUI for:
|
Software Features Introduced on Cisco Catalyst 9500 Series Switches
Feature Name |
Description, Documentation Link, and License Level Information |
---|---|
BIOS Protection : Capsule Upgrade |
Enables upgrade of golden ROMMON using the upgrade rom-monitor capsule golden switch command in privileged EXEC mode.
See System Management → BIOS Protection.
(Network Essentials and Network Advantage) |
IGMP Proxy for multiple upstream interfaces |
Enables you to send Protocol Independent Multicast (PIM) joins to multiple upstream devices.
See IP Multicast Routing → Configuring IGMP Proxy.
(Network Advantage) |
Opening or Closing SNMP UDP Ports |
A security enhancement that enables you to access the Simple Network Management Protocol (SNMP) UDP ports only after one of the requisite commands is configured. This design change secures and opens the ports only when required and prevents a device from listening to a port unnecessarily.
See Network Management → Configuring Simple Network Management Protocol.
(Network Essentials and Network Advantage) |
Per-Port MTU Configuration |
Introduces support for port level and port channel level maximum transmission unit (MTU) configuration. With Per-Port MTU configuration, you can configure different MTU values for different interfaces as well as for different port channel interfaces.
See Interface and Hardware Components → Configuring Per-Port MTU.
(Network Essentials and Network Advantage) |
Software Features Introduced on Cisco Catalyst 9500 Series Switches-High Performance
Feature Name |
Description, Documentation Link, and License Level Information |
---|---|
Bluetooth Dongle |
Introduces support for external USB Bluetooth dongles. The connected dongle acts as a Bluetooth host and serves as a management port connection on the device.
See Interface and Hardware Components → Configuring an External USB Bluetooth Dongle.
(Network Essentials and Network Advantage) |
Generic Routing Encapsulation (GRE) IPv6 Tunnels |
Enables delivery of packets from other protocols through an IPv6 network and allows the routing of IPv6 packets between private networks across public networks with globally routed IPv6 addresses.
See IP Addressing Services → Configuring GRE IPv6 Tunnels.
(Network Essentials and Network Advantage) |
Important Notes
-
Cisco StackWise Virtual - Supported and Unsupported Features
-
Unsupported Features—Cisco Catalyst 9500 Series Switches - High Performance
-
Default Interface Behaviour on Cisco Catalyst 9500 Series Switches - High Performance Only
Cisco StackWise Virtual - Supported and Unsupported Features
When you enable Cisco StackWise Virtual on the device
-
Layer 2, Layer 3, Security, Quality of Service, Multicast, Application, Monitoring and Management, Multiprotocol Label Switching, High Availability, BGP EVPN VXLAN, Remote Switched Port Analyzer, and Sofware Defined Access are supported.
Contact the Cisco Technical Support Centre for the specific list of features that are supported under each one of these technologies.
-
Resilient Ethernet Protocol is not supported.
Unsupported Features—All Models
-
IPsec VPN
-
Performance Monitoring (PerfMon)
-
Virtual Routing and Forwarding (VRF)-Aware web authentication
Unsupported Features—Cisco Catalyst 9500 Series Switches
-
Border Gateway Protocol (BGP) Additional Paths
-
Cisco TrustSec Network Device Admission Control (NDAC) on Uplinks
-
Flexible NetFlow—NetFlow v5 Export Protocol, 4-byte (32-bit) AS Number Support, TrustSec NetFlow IPv4 Security Group Access Control List (SGACL) Deny and Drop Export
-
Lawful Intercept (LI)
-
PIM Bidirectional Forwarding Detection (PIM BFD), PIM Snooping.
-
Quality of Service—Classification (Layer 3 Packet Length, Time-to-Live (TTL)), per queue policer support, sharped profile enablement for egress per port queues, L2 Miss, Ingress Packet FIFO (IPF)
-
Unicast over Point to Multipoint (P2MP) Generic Routing Encapsulation (GRE), Multicast over P2MP GRE.
-
VLAN Translation—One-to-One Mapping
Unsupported Features—Cisco Catalyst 9500 Series Switches - High Performance
-
Cisco Application Visibility and Control (AVC)
-
Flexlink+
-
VLAN Load Balancing for FlexLink+
-
Preemption for VLAN Load Balancing
-
FlexLink+ Dummy Multicast Packets
-
Next Generation Network-Based Application Recognition (NBAR) and Next Generation NBAR (NBAR2)
-
MPLS Label Distribution Protocol (MPLS LDP) VRF-Aware Static Labels
-
QoS Options on GRE Tunnel Interfaces
Complete List of Supported Features
For the complete list of features supported on a platform, see the Cisco Feature Navigator at https://www.cisco.com/go/cfn.
When you search for the list of supported features by platform, select
-
CAT9500—to see all the features supported on the C9500-12Q, C9500-16X, C9500-24Q, C9500-40X models
-
CAT9500 HIGH PERFORMANCE (32C; 32QC; 48Y4C; 24Y4C)—to see all the features supported on the C9500-24Y4C, C9500-32C, C9500-32QC, and C9500-48Y4C models
Default Behaviour—All Models
Beginning from Cisco IOS XE Gibraltar 16.12.5 and later, do not fragment bit (DF bit) in the IP packet is always set to 0 for all outgoing RADIUS packets (packets that originate from the device towards the RADIUS server).
Default Interface Behaviour on Cisco Catalyst 9500 Series Switches - High Performance Only
Starting with Cisco IOS XE Gibraltar 16.11.1, the default interface for all High Performance models in the series changes from Layer 3 to Layer 2. Use the no switchport command to change the Layer 2 interface into Layer 3 mode.
The startup configuration has explicit configuration of the switchport command for Layer 2 interfaces and the no switchport command for Layer 3 interfaces to address this change in behaviour and to support seamless migration.
Supported Hardware
Cisco Catalyst 9500 Series Switches—Model Numbers
The following table lists the supported hardware models and the default license levels they are delivered with. For more information about the available license levels, see section License Levels.
Base PIDs are the model numbers of the switch.
Bundled PIDs indicate the orderable part numbers for base PIDs that are bundled with a particular network module. Entering the show version , show module , or show inventory commands on such a switch (bundled PID), displays its base PID.
Switch Model |
Default License Level1 |
Description |
---|---|---|
Base PIDs |
||
C9500-12Q-E |
Network Essentials |
12 40-Gigabit Ethernet QSFP+ ports and two power supply slots |
C9500-12Q-A |
Network Advantage |
|
C9500-16X-E |
Network Essentials |
16 1/10-Gigabit Ethernet SFP/SFP+ ports and two power supply slots |
C9500-16X-A |
Network Advantage |
|
C9500-24Q-E |
Network Essentials |
24-Port 40-Gigabit Ethernet QSFP+ ports and two power supply slots |
C9500-24Q-A |
Network Advantage |
|
C9500-40X-E |
Network Essentials |
40 1/10-Gigabit Ethernet SFP/SFP+ ports and two power supply slots |
C9500-40X-A |
Network Advantage |
|
Bundled PIDs |
||
C9500-16X-2Q-E |
Network Essentials |
16 10-Gigabit Ethernet SFP+ port switch and a 2-Port 40-Gigabit Ethernet (QSFP) network module on uplink ports |
C9500-16X-2Q-A |
Network Advantage |
|
C9500-24X-E |
Network Essentials |
16 10-Gigabit Ethernet SFP+ port switch and an 8-Port 10-Gigabit Ethernet (SFP) network module on uplink ports |
C9500-24X-A |
Network Advantage |
|
C9500-40X-2Q-E |
Network Essentials |
40 10-Gigabit Ethernet SFP+ port switch and a 2-Port 40-Gigabit Ethernet (QSFP) network module on uplink ports |
C9500-40X-2Q-A |
Network Advantage |
|
C9500-48X-E |
Network Essentials |
40 10-Gigabit Ethernet SFP+ port switch and an 8-Port 10-Gigabit Ethernet (SFP) network module on uplink ports |
C9500-48X-A |
Network Advantage |
Switch Model |
Default License Level2 |
Description |
---|---|---|
C9500-24Y4C-E |
Network Essentials |
24 SFP28 ports that support 1/10/25-GigabitEthernet connectivity, four QSFP uplink ports that support 100/40-GigabitEthernet connectivity; two power supply slots. |
C9500-24Y4C-A |
Network Advantage |
|
C9500-32C-E |
Network Essentials |
32 QSFP28 ports that support 40/100 GigabitEthernet connectivity; two power supply slots. |
C9500-32C-A |
Network Advantage |
|
C9500-32QC-E |
Network Essentials |
32 QSFP28 ports, where you can have 24 ports that support 40-GigabitEthernet connectivity and 4 ports that support 100-GigabitEthernet connectivity, OR 32 ports that support 40-GigabitEthernet connectivity, OR 16 ports that support 100-GigabitEthernet connectivity; two power supply slots. |
C9500-32QC-A |
Network Advantage |
|
C9500-48Y4C-E |
Network Essentials |
48 SFP28 ports that support 1/10/25-GigabitEthernet connectivity; four QSFP uplink ports that supports up to 100/40-GigabitEthernet connectivity; two power supply slots. |
C9500-48Y4C-A |
Network Advantage |
Network Modules
The following table lists optional network modules for uplink ports available with some configurations .
Network Module |
Description |
---|---|
C9500-NM-8X |
Cisco Catalyst 9500 Series Network Module 8-port 1/10 Gigabit Ethernet with SFP/SFP+ Note the supported switch models (Base PIDs):
|
C9500-NM-2Q |
Cisco Catalyst 9500 Series Network Module 2-port 40 Gigabit Ethernet with QSFP+ Note the supported switch models (Base PIDs):
|
Optics Modules
Cisco Catalyst Series Switches support a wide range of optics and the list of supported optics is updated on a regular basis. Use the Transceiver Module Group (TMG) Compatibility Matrix tool, or consult the tables at this URL for the latest transceiver module compatibility information: https://www.cisco.com/en/US/products/hw/modules/ps5455/products_device_support_tables_list.html
Compatibility Matrix
The following table provides software compatibility information between Cisco Catalyst 9500 Series Switches, Cisco Identity Services Engine, Cisco Access Control Server, and Cisco Prime Infrastructure.
Catalyst 9500, 9500-High Performance and 9500X |
Cisco Identity Services Engine |
Cisco Access Control Server |
Cisco Prime Infrastructure |
---|---|---|---|
Amsterdam 17.1.1 |
2.7 |
- |
PI 3.6 + PI 3.6 latest maintenance release + PI 3.6 latest device pack See Cisco Prime Infrastructure 3.6 → Downloads. |
Gibraltar 16.12.8 |
2.6 |
- |
PI 3.9 + PI 3.9 latest maintenance release + PI 3.9 latest device pack See Cisco Prime Infrastructure 3.9 → Downloads. |
Gibraltar 16.12.7 |
2.6 |
- |
PI 3.9 + PI 3.9 latest maintenance release + PI 3.9 latest device pack See Cisco Prime Infrastructure 3.9 → Downloads. |
Gibraltar 16.12.6 |
2.6 |
- |
PI 3.9 + PI 3.9 latest maintenance release + PI 3.9 latest device pack See Cisco Prime Infrastructure 3.9 → Downloads. |
Gibraltar 16.12.5b |
2.6 |
- |
PI 3.9 + PI 3.9 latest maintenance release + PI 3.9 latest device pack See Cisco Prime Infrastructure 3.9 → Downloads. |
Gibraltar 16.12.5 |
2.6 |
- |
PI 3.9 + PI 3.9 latest maintenance release + PI 3.9 latest device pack See Cisco Prime Infrastructure 3.9 → Downloads. |
Gibraltar 16.12.4 |
2.6 |
- |
PI 3.8 + PI 3.8 latest maintenance release + PI 3.8 latest device pack See Cisco Prime Infrastructure 3.8 → Downloads. |
Gibraltar 16.12.3a |
2.6 |
- |
PI 3.5 + PI 3.5 latest maintenance release + PI 3.5 latest device pack See Cisco Prime Infrastructure 3.5 → Downloads. |
Gibraltar 16.12.3 |
2.6 |
- |
PI 3.5 + PI 3.5 latest maintenance release + PI 3.5 latest device pack See Cisco Prime Infrastructure 3.5 → Downloads. |
Gibraltar 16.12.2 |
2.6 |
- |
PI 3.5 + PI 3.5 latest maintenance release + PI 3.5 latest device pack See Cisco Prime Infrastructure 3.5 → Downloads. |
Gibraltar 16.12.1 |
2.6 |
- |
PI 3.5 + PI 3.5 latest maintenance release + PI 3.5 latest device pack See Cisco Prime Infrastructure 3.5 → Downloads. |
Gibraltar 16.11.1 |
2.6 2.4 Patch 5 |
5.4 5.5 |
PI 3.4 + PI 3.4 latest maintenance release + PI 3.4 latest device pack See Cisco Prime Infrastructure 3.4 → Downloads. |
Gibraltar 16.10.1 |
2.3 Patch 1 2.4 Patch 1 |
5.4 5.5 |
PI 3.4 + PI 3.4 latest maintenance release + PI 3.4 latest device pack See Cisco Prime Infrastructure 3.4→ Downloads. |
Fuji 16.9.8 |
2.5 2.1 |
5.4 5.5 |
PI 3.9 + PI 3.9 latest maintenance release + PI 3.9 latest device pack See Cisco Prime Infrastructure 3.9 → Downloads. |
Fuji 16.9.7 |
2.5 2.1 |
5.4 5.5 |
PI 3.9 + PI 3.9 latest maintenance release + PI 3.9 latest device pack See Cisco Prime Infrastructure 3.9 → Downloads. |
Fuji 16.9.6 |
2.3 Patch 1 2.4 Patch 1 |
5.4 5.5 |
PI 3.4 + PI 3.4 latest maintenance release + PI 3.4 latest device pack See Cisco Prime Infrastructure 3.4→ Downloads. |
Fuji 16.9.5 |
2.3 Patch 1 2.4 Patch 1 |
5.4 5.5 |
PI 3.4 + PI 3.4 latest maintenance release + PI 3.4 latest device pack See Cisco Prime Infrastructure 3.4→ Downloads. |
Fuji 16.9.4 |
2.3 Patch 1 2.4 Patch 1 |
5.4 5.5 |
PI 3.4 + PI 3.4 latest maintenance release + PI 3.4 latest device pack See Cisco Prime Infrastructure 3.4→ Downloads. |
Fuji 16.9.3 |
2.3 Patch 1 2.4 Patch 1 |
5.4 5.5 |
PI 3.4 + PI 3.4 latest maintenance release + PI 3.4 latest device pack See Cisco Prime Infrastructure 3.4→ Downloads. |
Fuji 16.9.2 |
2.3 Patch 1 2.4 Patch 1 |
5.4 5.5 |
PI 3.4 + PI 3.4 latest maintenance release + PI 3.4 latest device pack See Cisco Prime Infrastructure 3.4→ Downloads. |
Fuji 16.9.1 |
2.3 Patch 1 2.4 Patch 1 |
5.4 5.5 |
PI 3.4 + PI 3.4 latest device pack See Cisco Prime Infrastructure 3.4→ Downloads. |
Fuji 16.8.1a |
2.3 Patch 1 2.4 |
5.4 5.5 |
PI 3.3 + PI 3.3 latest maintenance release + PI 3.3 latest device pack See Cisco Prime Infrastructure 3.3→ Downloads. |
Everest 16.6.4a |
2.2 2.3 |
5.4 5.5 |
PI 3.1.6 + Device Pack 13 See Cisco Prime Infrastructure 3.1 → Downloads. |
Everest 16.6.4 |
2.2 2.3 |
5.4 5.5 |
PI 3.1.6 + Device Pack 13 See Cisco Prime Infrastructure 3.1 → Downloads. |
Everest 16.6.3 |
2.2 2.3 |
5.4 5.5 |
PI 3.1.6 + Device Pack 13 See Cisco Prime Infrastructure 3.1 → Downloads |
Everest 16.6.2 |
2.2 2.3 |
5.4 5.5 |
PI 3.1.6 + Device Pack 13 See Cisco Prime Infrastructure 3.1 → Downloads |
Everest 16.6.1 |
2.2 |
5.4 5.5 |
PI 3.1.6 + Device Pack 13 See Cisco Prime Infrastructure 3.1 → Downloads |
Everest 16.5.1a |
2.1 Patch 3 |
5.4 5.5 |
- |
Web UI System Requirements
The following subsections list the hardware and software required to access the Web UI:
Minimum Hardware Requirements
Processor Speed |
DRAM |
Number of Colors |
Resolution |
Font Size |
---|---|---|---|---|
233 MHz minimum3 |
512 MB4 |
256 |
1280 x 800 or higher |
Small |
Software Requirements
Operating Systems
-
Windows 10 or later
-
Mac OS X 10.9.5 or later
Browsers
-
Google Chrome—Version 59 or later (On Windows and Mac)
-
Microsoft Edge
-
Mozilla Firefox—Version 54 or later (On Windows and Mac)
-
Safari—Version 10 or later (On Mac)
ROMMON Versions
ROMMON, also known as the boot loader, is firmware that runs when the device is powered up or reset. It initializes the processor hardware and boots the operating system software (Cisco IOS XE software image). The ROMMON is stored on the following Serial Peripheral Interface (SPI) flash devices on your switch:
-
Primary: The ROMMON stored here is the one the system boots every time the device is powered-on or reset.
-
Golden: The ROMMON stored here is a backup copy. If the one in the primary is corrupted, the system automatically boots the ROMMON in the golden SPI flash device.
ROMMON upgrades may be required to resolve firmware defects, or to support new features, but there may not be new versions with every release.
The following table provides ROMMON version information for the Cisco Catalyst 9500 Series Switches. For ROMMON version information of Cisco IOS XE 16.x.x releases, refer to the corresponding Cisco IOS XE 16.x.x release notes of the respective platform.
Release |
ROMMON Version (C9500-12Q, C9500-24Q, C9500-16X, C9500-40X) |
ROMMON Version (C9500-32C, C9500-32QC, C9500-24Y4C, C9500-48Y4C) |
ROMMON Version (C9500X) |
---|---|---|---|
Amsterdam 17.1.1 |
17.1.1r [FC1] |
17.1.1[FC1] |
- |
Upgrading the Switch Software
This section covers the various aspects of upgrading or downgrading the device software.
Note |
You cannot use the Web UI to install, upgrade, or downgrade device software. |
Finding the Software Version
The package files for the Cisco IOS XE software are stored on the system board flash device (flash:).
You can use the show version privileged EXEC command to see the software version that is running on your switch.
Note |
Although the show version output always shows the software image running on the switch, the model name shown at the end of this display is the factory configuration and does not change if you upgrade the software license. |
You can also use the dir filesystem: privileged EXEC command to see the directory names of other software images that you might have stored in flash memory.
Software Images
Release |
Image Type |
File Name |
---|---|---|
Cisco IOS XE Amsterdam 17.1.1 |
CAT9K_IOSXE |
cat9k_iosxe.17.01.01.SPA.bin |
No Payload Encryption (NPE) |
cat9k_iosxe_npe.17.01.01.SPA.bin |
Upgrading the ROMMON
To know the ROMMON or bootloader version that applies to every major and maintenance release, see ROMMON Versions.
You can upgrade the ROMMON before, or, after upgrading the software version. If a new ROMMON version is available for the software version you are upgrading to, proceed as follows:
-
Upgrading the ROMMON in the primary SPI flash device
On the C9500-12Q, C9500-16X, C9500-24Q, C9500-40X models of the series, you must manually upgrade the ROMMON in the primary SPI flash device, if a new version is applicable, and the release you are upgrading from is Cisco IOS XE Gibraltar 16.12.1 or a later release. (So if you upgrade from Cisco IOS XE Gibraltar 16.11.1 for example, a manual upgrade does not apply; the ROMMON is automatically updated, if applicable). Enter the upgrade rom-monitor capsule primary switch command in privileged EXEC mode.
On the C9500-24Y4C, C9500-32C, C9500-32QC, and C9500-48Y4C models of the series, this ROMMON is upgraded automatically. When you upgrade from an existing release on your switch to a later or newer release for the first time, and there is a new ROMMON version in the new release, the system automatically upgrades the ROMMON in the primary SPI flash device, based on the hardware version of the switch when you boot up your switch with the new image for the first time.
-
Upgrading the ROMMON in the golden SPI flash device
You must manually upgrade this ROMMON. The manual upgrade applies to all models in the series. Enter the upgrade rom-monitor capsule golden switch command in privileged EXEC mode.
Note |
In case of a Cisco StackWise Virtual setup, upgrade the active and standby switch. |
After the ROMMON is upgraded, it will take effect on the next reload. If you go back to an older release after this, the ROMMON is not downgraded. The updated ROMMON supports all previous releases.
Field-Programmable Gate Array Version Upgrade
A field-programmable gate array (FPGA) is a type of programmable memory device that exists on Cisco switches. They are re-configurable logic circuits that enable the creation of specific and dedicated functions.
There is no FPGA upgrade in Cisco IOS XE Amsterdam 17.1.1. To check the current FPGA version, enter the version -v command in ROMMON mode.
Note |
|
Software Installation Commands
Summary of Software Installation Commands Supported starting from Cisco IOS XE Everest 16.6.2 and later releases |
|
---|---|
To install and activate the specified file, and to commit changes to be persistent across reloads:
To separately install, activate, commit, cancel, or remove the installation file: |
|
add file tftp: filename |
Copies the install file package from a remote location to the device and performs a compatibility check for the platform and image versions. |
activate [ auto-abort-timer] |
Activates the file, and reloads the device. The auto-abort-timer keyword automatically rolls back image activation. |
commit |
Makes changes persistent over reloads. |
rollback to committed |
Rolls back the update to the last committed version. |
abort |
Cancels file activation, and rolls back to the version that was running before the current installation procedure started. |
remove |
Deletes all unused and inactive software installation files. |
Note |
The request platform software commands are deprecated starting from Cisco IOS XE Gibraltar 16.10.1. The commands are visible on the CLI in this release and you can configure them, but we recommend that you use the install commands to upgrade or downgrade. |
Summary of request platform software Commands
|
|||
---|---|---|---|
|
|||
clean |
Cleans unnecessary package files from media |
||
copy |
Copies package to media |
||
describe |
Describes package content |
||
expand |
Expands all-in-one package to media |
||
install |
Installs the package |
||
uninstall |
Uninstalls the package |
||
verify |
Verifies In Service Software Upgrade (ISSU) software package compatibility |
Upgrading in Install Mode
Follow these instructions to upgrade from one release to another, in install mode. To perform a software image upgrade, you must be booted into IOS through boot flash:packages.conf .
Before you begin
Note that you can use this procedure for the following upgrade scenarios:
When upgrading from ... |
Use these commands... |
To upgrade to... |
---|---|---|
Cisco IOS XE Everest 16.5.1a or Cisco IOS XE Everest 16.6.1 |
Only request platform software commands |
Cisco IOS XE Amsterdam 17.1.1 |
Cisco IOS XE Everest 16.6.2 and later |
Either install commands or request platform software commands |
The sample output in this section displays upgrade from
-
Cisco IOS XE Everest 16.5.1a to Cisco IOS XE Amsterdam 17.1.1 using request platform software commands.
-
Cisco IOS XE Gibraltar 16.12.1 to Cisco IOS XE Amsterdam 17.1.1 using install commands.
Procedure
Step 1 |
Clean Up Ensure that you have at least 1GB of space in flash to expand a new image. Clean up old installation files in case of insufficient space.
The following sample output displays the cleaning up of unused files, by using the request platform software package clean command for upgrade scenario Cisco IOS XE Everest 16.5.1a to Cisco IOS XE Amsterdam 17.1.1.
The following sample output displays the cleaning up of unused files, by using the install remove inactive command, for upgrade scenario Cisco IOS XE Gibraltar 16.12.1 to Cisco IOS XE Amsterdam 17.1.1:
|
||||
Step 2 |
Copy new image to flash |
||||
Step 3 |
Set boot variable |
||||
Step 4 |
Software install image to flash
You can point to the source image on your TFTP server or in flash if you have it copied to flash. We recommend copying the
image to a TFTP server or the flash drive of the active switch. If you point to an image on the flash or USB drive of a member
switch (instead of the active), you must specify the exact flash or USB drive - otherwise installation fails. For example,
if the image is on the flash drive of member switch 3 (flash-3): The following sample output displays installation of the Cisco IOS XE Amsterdam 17.1.1 software image to flash, by using the request platform software package install command, for upgrade scenario Cisco IOS XE Everest 16.5.1a to Cisco IOS XE Amsterdam 17.1.1.
The following sample output displays installation of the Cisco IOS XE Amsterdam 17.1.1 software image to flash, by using the install add file activate commit command, for upgrade scenario Cisco IOS XE Gibraltar 16.12.1 to Cisco IOS XE Amsterdam 17.1.1:
|
||||
Step 5 |
dir flash: After the software has been successfully installed, use this command to verify that the flash partition has ten new The following is sample output of the dir flash: command for upgrade scenario Cisco IOS XE Everest 16.5.1a to Cisco IOS XE Amsterdam 17.1.1:
The following is sample output of the dir flash: command for the Cisco IOS XE Gibraltar 16.12.1 to Cisco IOS XE Amsterdam 17.1.1 upgrade scenario:
The following sample output displays the .conf files in the flash partition; note the two .conf files:
|
||||
Step 6 |
Upgrade the ROMMON
Use this command to upgrade the ROMMON version. On the C9500-12Q, C9500-16X, C9500-24Q, C9500-40X models, configure both commands. For more information about this, see Upgrading the ROMMON in this document. After you enter the command, confirm upgrade at the system prompt.
|
||||
Step 7 |
Reload |
Downgrading in Install Mode
Follow these instructions to downgrade from one release to another, in install mode. To perform a software image downgrade, you must be booted into IOS through boot flash:packages.conf .
Before you begin
Note that you can use this procedure for the following downgrade scenarios:
When downgrading from ... |
Use these commands... |
To downgrade to... |
---|---|---|
Cisco IOS XE Amsterdam 17.1.1 |
|
Cisco IOS XE Gibraltar 16.12.x or earlier releases |
On Cisco Catalyst 9500 Series Switches - High Performance, install commands
Procedure
Step 1 |
Clean Up Ensure that you have at least 1GB of space in flash to expand a new image. Clean up old installation files in case of insufficient space.
The following sample output displays the cleaning up of Cisco IOS XE Amsterdam 17.1.1 files using the install remove inactive command:
|
||
Step 2 |
Copy new image to flash |
||
Step 3 |
Downgrade software image
The following example displays the installation of the Cisco IOS XE Gibraltar 16.12.1 software image to flash, by using the install add file activate commit command.
|
||
Step 4 |
Reload |
Licensing
This section provides information about the licensing packages for features available on Cisco Catalyst 9000 Series Switches.
License Levels
The software features available on Cisco Catalyst 9500 Series Switches and Cisco Catalyst 9500 Series Switches - High Performance fall under these base or add-on license levels.
Base Licenses
-
Network Essentials
-
Network Advantage—Includes features available with the Network Essentials license and more.
Add-On Licenses
Add-On Licenses require a Network Essentials or Network Advantage as a pre-requisite. The features available with add-on license levels provide Cisco innovations on the switch, as well as on the Cisco Digital Network Architecture Center (Cisco DNA Center).
-
DNA Essentials
-
DNA Advantage— Includes features available with the DNA Essentials license and more.
To find information about platform support and to know which license levels a feature is available with, use Cisco Feature Navigator. To access Cisco Feature Navigator, go to https://cfnng.cisco.com. An account on cisco.com is not required.
License Types
The following license types are available:
-
Permanent—for a license level, and without an expiration date.
-
Term—for a license level, and for a three, five, or seven year period.
-
Evaluation—a license that is not registered.
License Levels - Usage Guidelines
-
Base licenses (Network Essentials and Network-Advantage) are ordered and fulfilled only with a permanent license type.
-
Add-on licenses (DNA Essentials and DNA Advantage) are ordered and fulfilled only with a term license type.
-
An add-on license level is included when you choose a network license level. If you use DNA features, renew the license before term expiry, to continue using it, or deactivate the add-on license and then reload the switch to continue operating with the base license capabilities.
-
When ordering an add-on license with a base license, note the combinations that are permitted and those that are not permitted:
Table 5. Permitted Combinations DNA Essentials
DNA Advantage
Network Essentials
Yes
No
Network Advantage
Yes5
Yes
5 You will be able to purchase this combination only at the time of the DNA license renewal and not when you purchase DNA-Essentials the first time. -
Evaluation licenses cannot be ordered. They are not tracked via Cisco Smart Software Manager and expire after a 90-day period. Evaluation licenses can be used only once on the switch and cannot be regenerated. Warning system messages about an evaluation license expiry are generated only 275 days after expiration and every week thereafter. An expired evaluation license cannot be reactivated after reload. This applies only to Smart Licensing. The notion of evaluation licenses does not apply to Smart Licensing Using Policy.
Cisco Smart Licensing
Cisco Smart Licensing is a flexible licensing model that provides you with an easier, faster, and more consistent way to purchase and manage software across the Cisco portfolio and across your organization. And it’s secure – you control what users can access. With Smart Licensing you get:
-
Easy Activation: Smart Licensing establishes a pool of software licenses that can be used across the entire organization—no more PAKs (Product Activation Keys).
-
Unified Management: My Cisco Entitlements (MCE) provides a complete view into all of your Cisco products and services in an easy-to-use portal, so you always know what you have and what you are using.
-
License Flexibility: Your software is not node-locked to your hardware, so you can easily use and transfer licenses as needed.
To use Smart Licensing, you must first set up a Smart Account on Cisco Software Central (http://software.cisco.com).
Important |
Cisco Smart Licensing is the default and the only available method to manage licenses. |
For a more detailed overview on Cisco Licensing, go to cisco.com/go/licensingguide.
Deploying Smart Licensing
The following provides a process overview of a day 0 to day N deployment directly initiated from a device that is running Cisco IOS XE Fuji 16.9.1 or later releases. Links to the configuration guide provide detailed information to help you complete each one of the smaller tasks.
Procedure
Step 1 |
Begin by establishing a connection from your network to Cisco Smart Software Manager on cisco.com. In the software configuration guide of the required release, see System Management → Configuring Smart Licensing → Connecting to CSSM |
Step 2 |
Create and activate your Smart Account, or login if you already have one. To create and activate Smart Account, go to Cisco Software Central → Create Smart Accounts. Only authorized users can activate the Smart Account. |
Step 3 |
Complete the Cisco Smart Software Manager set up. |
With this,
-
The device is now in an authorized state and ready to use.
-
The licenses that you have purchased are displayed in your Smart Account.
Using Smart Licensing on an Out-of-the-Box Device
Starting from Cisco IOS XE Fuji 16.9.1, if an out-of-the-box device has the software version factory-provisioned, all licenses on such a device remain in evaluation mode until registered in Cisco Smart Software Manager.
In the software configuration guide of the required release, see System Management → Configuring Smart Licensing → Registering the Device in CSSM
How Upgrading or Downgrading Software Affects Smart Licensing
Starting from Cisco IOS XE Fuji 16.9.1, Smart Licensing is the default and only license management solution; all licenses are managed as Smart Licenses.
Important |
Starting from Cisco IOS XE Fuji 16.9.1, the Right-To-Use (RTU) licensing mode is deprecated, and the associated license right-to-use command is no longer available on the CLI. |
Note how upgrading to a release that supports Smart Licensing or moving to a release that does not support Smart Licensing affects licenses on a device:
-
When you upgrade from an earlier release to one that supports Smart Licensing—all existing licenses remain in evaluation mode until registered in Cisco Smart Software Manager. After registration, they are made available in your Smart Account.
In the software configuration guide of the required release, see System Management → Configuring Smart Licensing → Registering the Device in CSSM
-
When you downgrade to a release where Smart Licensing is not supported—all smart licenses on the device are converted to traditional licenses and all smart licensing information on the device is removed.
Scaling Guidelines
For information about feature scaling guidelines, see the Cisco Catalyst 9500 Series Switches datasheet at:
Limitations and Restrictions
With Cisco Catalyst 9500 Series Switches and Cisco Catalyst 9500 Series Switches - High Performance—If a feature is not supported on a switch model, you do not have to factor in any limitations or restrictons that may be listed here. If limitations or restrictions are listed for a feature that is supported, check if model numbers are specified, to know if they apply. If model numbers are not specified, the limitations or restrictons apply to all models in the series.
-
Auto negotiation
Auto negotiation (the speed auto command) and half duplex (the duplex half command) are not supported on GLC-T or GLC-TE transceivers for 10 Mbps and 100 Mbps speeds. This applies only to the C9500-48Y4C and C9500-24Y4C models of the series.
We recommend not changing Forward Error Correction (FEC) when auto negotiation is ON. This is applicable to 100G/40G/25G CU cables on the C9500-32C, C9500-32QC, C9500-24Y4C and C9500-48Y4C models of the series.
-
Control Plane Policing (CoPP)—The show run command does not display information about classes configured under
system-cpp policy
, when they are left at default values. Use the show policy-map system-cpp-policy or the show policy-map control-plane commands in privileged EXEC mode instead. -
Cisco StackWise Virtual
-
On Cisco Catalyst 9500 Series Switches, when Cisco StackWise Virtual is configured, breakout ports using 4X10G breakout cables, or the Cisco QSFP to SFP or SFP+ Adapter (QSA) module can only be used as data ports; they cannot be used to configure StackWise Virtual links (SVLs) or dual-active detective (DAD) links.
-
On Cisco Catalyst 9500 Series Switches - High Performance,
-
When Cisco StackWise Virtual is configured, breakout ports using 4X25G or 4X10G breakout cables can only be used as data ports; they cannot be used to configure SVLs or DAD links.
-
When Cisco StackWise Virtual is configured, Cisco QSA module with 10G SFP modules can be used as data ports and to configure SVLs or DAD links.
-
When Cisco StackWise Virtual is configured, Cisco QSA module with 1G SFP modules can be used as data ports and to configure DAD links; they cannot be used to configure SVLs since SVLs are not supported on 1G interfaces.
-
-
-
Cisco TrustSec restrictions—Cisco TrustSec can be configured only on physical interfaces, not on logical interfaces.
-
Flexible NetFlow limitations
-
You cannot configure NetFlow export using the Ethernet Management port (GigabitEthernet0/0).
-
You can not configure a flow monitor on logical interfaces, such as layer 2 port-channels, loopback, tunnels.
-
You can not configure multiple flow monitors of same type (ipv4, ipv6 or datalink) on the same interface for same direction.
-
-
Hardware limitations:
-
Use the MODE button to switch-off the beacon LED.
-
All port LED behavior is undefined until interfaces are fully initialized.
-
1G with Cisco QSA Module (CVR-QSFP-SFP10G) is not supported on the uplink ports of the C9500-24Y4C and C9500-48Y4C models.
-
The following limitations apply to Cisco QSA Module (CVR-QSFP-SFP10G) when Cisco 1000Base-T Copper SFP (GLC-T) or Cisco 1G Fiber SFP Module for Multimode Fiber are plugged into the QSA module:
-
1G Fiber modules over QSA do not support autonegotiation. Auto-negotiation should be disabled on the far-end devices.
-
Although visible in the CLI, the command [no] speed nonegotiate is not supported with 1G Fiber modules over QSA.
-
Only GLC-T over QSA supports auto-negotiation.
-
GLC-T supports only port speed of 1000 Mb/s over QSA. Port speeds of 10/100-Mb/s are not supported due to hardware limitation.
-
-
When you use Cisco QSFP-4SFP10G-CUxM Direct-Attach Copper Cables, autonegotiation is enabled by default. If the other end of the line does not support autonegotation, the link does not come up.
-
Autonegotiation is not supported on HundredGigabitEthernet1/0/49 to HundredGigabitEthernet1/0/52 uplink ports of the C9500-48Y4C models, and HundredGigabitEthernet1/0/25 to HundredGigabitEthernet1/0/28 uplink ports of the C9500-24Y4C models. Disable autonegotiation on the peer device if you are using QSFP-H40G-CUxx and QSFP-H40G-ACUxx cables.
-
For QSFP-H100G-CUxx cables, the C9500-48Y4C and C9500-24Y4C models support the cables only if both sides of the connection are either C9500-48Y4C or C9500-24Y4C.
-
-
Interoperability limitations—When you use Cisco QSFP-4SFP10G-CUxM Direct-Attach Copper Cables, if one end of the 40G link is a Catalyst 9400 Series Switch and the other end is a Catalyst 9500 Series Switch, the link does not come up, or comes up on one side and stays down on the other. To avoid this interoperability issue between devices, apply the the speed nonegotiate command on the Catalyst 9500 Series Switch interface. This command disables autonegotiation and brings the link up. To restore autonegotiation, use the no speed nonegotiation command.
-
In-Service Software Upgrade (ISSU)
-
In-Service Software Upgrade (ISSU)—On Cisco Catalyst 9500 Series Switches (C9500-12Q, C9500-16X, C9500-24Q, C9500-40X), ISSU from Cisco IOS XE Fuji 16.9.x to Cisco IOS XE Gibraltar 16.10.x or to Cisco IOS XE Gibraltar 16.11.x is not supported.
-
On Cisco Catalyst 9500 Series Switches - High Performance (C9500-24Y4C, C9500-32C, C9500-32QC, and C9500-48Y4C), ISSU with Cisco StackWise Virtual is supported only starting from Cisco IOS XE Gibraltar 16.12.1. Therefore, ISSU upgrades can be performed only starting from this release to a later release.
-
While ISSU allows you to perform upgrades with zero downtime, we recommend you to do so during a maintenance window only.
-
If a new feature introduced in a software release requires a change in configuration, the feature should not be enabled during ISSU.
-
If a feature is not available in the downgraded version of a software image, the feature should be disabled before initiating ISSU.
-
-
QoS restrictions
-
When configuring QoS queuing policy, the sum of the queuing buffer should not exceed 100%.
-
For QoS policies, only switched virtual interfaces (SVI) are supported for logical interfaces.
-
QoS policies are not supported for port-channel interfaces, tunnel interfaces, and other logical interfaces.
-
-
Secure Shell (SSH)
-
Use SSH Version 2. SSH Version 1 is not supported.
-
When the device is running SCP and SSH cryptographic operations, expect high CPU until the SCP read process is completed. SCP supports file transfers between hosts on a network and uses SSH for the transfer.
Since SCP and SSH operations are currently not supported on the hardware crypto engine, running encryption and decryption process in software causes high CPU. The SCP and SSH processes can show as much as 40 or 50 percent CPU usage, but they do not cause the device to shutdown.
-
-
TACACS legacy command: Do not configure the legacy tacacs-server host command; this command is deprecated. If the software version running on your device is Cisco IOS XE Gibraltar 16.12.2 or a later release, using the legacy command can cause authentication failures. Use the tacacs server command in global configuration mode.
-
USB Authentication—When you connect a Cisco USB drive to the switch, the switch tries to authenticate the drive against an existing encrypted preshared key. Since the USB drive does not send a key for authentication, the following message is displayed on the console when you enter password encryption aes command:
Device(config)# password encryption aes Master key change notification called without new or old key
-
VLAN Restriction—It is advisable to have well-defined segregation while defining data and voice domain during switch configuration and to maintain a data VLAN different from voice VLAN across the switch stack. If the same VLAN is configured for data and voice domains on an interface, the resulting high CPU utilization might affect the device.
-
Wired Application Visibility and Control limitations:
-
NBAR2 (QoS and Protocol-discovery) configuration is allowed only on wired physical ports. It is not supported on virtual interfaces, for example, VLAN, port channel nor other logical interfaces.
-
NBAR2 based match criteria ‘match protocol’ is allowed only with marking or policing actions. NBAR2 match criteria will not be allowed in a policy that has queuing features configured.
-
‘Match Protocol’: up to 256 concurrent different protocols in all policies.
-
NBAR2 and Legacy NetFlow cannot be configured together at the same time on the same interface. However, NBAR2 and wired AVC Flexible NetFlow can be configured together on the same interface.
-
Only IPv4 unicast (TCP/UDP) is supported.
-
AVC is not supported on management port (Gig 0/0)
-
NBAR2 attachment should be done only on physical access ports. Uplink can be attached as long as it is a single uplink and is not part of a port channel.
-
Performance—Each switch member is able to handle 500 connections per second (CPS) at less than 50% CPU utilization. Above this rate, AVC service is not guaranteed.
-
Scale—Able to handle up to 5000 bi-directional flows per 24 access ports and 10000 bi-directional flows per 48 access ports.
-
-
YANG data modeling limitation—A maximum of 20 simultaneous NETCONF sessions are supported.
-
Embedded Event Manager—Identity event detector is not supported on Embedded Event Manager.
-
The File System Check (fsck) utility is not supported in install mode.
Caveats
Caveats describe unexpected behavior in Cisco IOS-XE releases. Caveats listed as open in a prior release are carried forward to the next release as either open or resolved.
Cisco Bug Search Tool
The Cisco Bug Search Tool (BST) allows partners and customers to search for software bugs based on product, release, and keyword, and aggregates key data such as bug details, product, and version. The BST is designed to improve the effectiveness in network risk management and device troubleshooting. The tool has a provision to filter bugs based on credentials to provide external and internal bug views for the search input.
To view the details of a caveat, click on the identifier.
Open Caveats in Cisco IOS XE Amsterdam 17.1.x
Identifier |
Applicable models |
Description |
---|---|---|
All models |
Private-vlan mapping XXX configuration under SVI is lost from run config after switch reload |
|
All models |
Cat9300 crash on running show platform software fed switch 1 fss abstraction |
|
All models |
9500 incorrectly set more-fragment flag for double fragmentation |
|
All models |
EPC with packet-len opt breaks CPU in-band path for bigger frames |
|
All models |
STP BPDUs not being sent from FED to IOSd |
|
All models |
After valid ip conflict, SVI admin down responds to GARP |
|
All models |
SPANed multicast packet reduced TTL |
|
All models |
802.1x-MultiAuth/MultiDomain: C9K - Traffic drop in egress direction for Data-Vlan on a Auth port |
|
Catalyst 9500 High Performance |
Link flap causes negotiation fail of flowcontrol |
|
Catalyst 9500 High Performance |
C9500-24Q QSFP interfaces on standby switch of stackwise virtual pair may remain down/down |
Resolved Caveats in Cisco IOS XE Amsterdam 17.1.1
Identifier |
Applicable Models |
Description |
---|---|---|
All models |
Enabling SPAN source of VLAN 1 affects LACP operations |
|
All models |
ERSPAN destination does not work or forward traffic |
|
All models |
Cat9500 || v169_3_hemit_es_throttle ES image || EGR_INVALID_REWRITE counter increasing in mVPN setup |
|
All models |
cat9k // evpn/vxlan // dhcp relay not working over l3vni |
|
All models |
Failed to get Board ID shown if stack member boots up |
|
All models |
SYS-2-BADSHARE: Bad refcount in datagram_done - messages seen during system churn |
|
All models |
Mac address not being learnt when "auth port-control auto" command is present |
|
All models |
Cat3k/Cat9k can't forwarding traffic follow the rule of EIGRP unequal cost load-balancing |
|
All models |
Multicast stream flickers on igmp join/leave |
|
All models |
system crash on execute "fed TCAM utilization" |
|
All models |
ports remain down/down object-manager (fed-ots-mo thread is stuck) |
|
Catalyst 9500 |
NAT translation entry not cleared after fin-rst time-out |
|
Catalyst 9500 |
C9400/16.11.1 - Diagnostic test of TestPortTxMonitoring is failing for DAD links |
|
Catalyst 9500 |
16.12.1 - Seeing 100% CPU with FED on 9500 SVL setup |
|
Catalyst 9500 High Performance |
Cat9500HP has same mac-address on mgmt port and first asic port after reload |
|
Catalyst 9500 High Performance |
C9500 High Performance - Port LED status not displayed correctly |
|
Catalyst 9500 High Performance |
Standby switch crashed on collecting temperature sensor information in obfl |
|
Catalyst 9500 High Performance |
C9600/9400/9500H/9300 etc crashes due to CMCC heartbeat failures |
|
Catalyst 9500 High Performace |
Breakout multiple interfaces via SNMP walk |
Troubleshooting
For the most up-to-date, detailed troubleshooting information, see the Cisco TAC website at this URL:
https://www.cisco.com/en/US/support/index.html
Go to Product Support and select your product from the list or enter the name of your product. Look under Troubleshoot and Alerts, to find information for the problem that you are experiencing.
Related Documentation
Information about Cisco IOS XE at this URL: https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-xe/index.html
All support documentation for Cisco Catalyst 9500 Series Switches is at this URL: https://www.cisco.com/c/en/us/support/switches/catalyst-9500-series-switches/tsd-products-support-series-home.html
Cisco Validated Designs documents at this URL: https://www.cisco.com/go/designzone
To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: https://cfnng.cisco.com/mibs
Communications, Services, and Additional Information
-
To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.
-
To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.
-
To submit a service request, visit Cisco Support.
-
To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit Cisco Marketplace.
-
To obtain general networking, training, and certification titles, visit Cisco Press.
-
To find warranty information for a specific product or product family, access Cisco Warranty Finder.
Cisco Bug Search Tool
Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system that maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. BST provides you with detailed defect information about your products and software.