
Examples

This chapter contains the following sections:

• Managing Firmware, page 1

• Managing Platform Tasks, page 13

• Managing Server Tasks, page 17

• Managing Users and Groups, page 51

Managing Firmware

Overview
The examples in this category consist of various firmware management tasks on Cisco IMC Supervisor. These
include firmware image management in network locations, downloading them from cisco.com and also
triggering a firmware upgrade operation on servers.

Creating a Firmware Network Image
Objective

Create a firmware image in a network location.

Prerequisites

The HUU Image must be available in a network location - NFS/CIFS/HTTP.

REST URL
/cloupia/api-v2/CreateNetworkImage

Cisco IMC Supervisor REST API Cookbook, Release 2.0
1

Components

The parameters of the NETWORK_IMAGE_CREATE API are:

• String profileName—The unique name of the profile.

• String platform—The name of the platform.

• String networkServerType—Network File System (NFS), Common Internet File System (CIFS)
or HTTP/S server types.

• String locationLink—A valid HTTP/HTTPS URL link for the image location.

• String networkPath—The network path.

• String sharePath—The network share path.

• String remoteFileName—A remote filename.

• String nwPathUserName—Optional. The network path user name.

• String nwPathPassword—Optional. The network path password.

• String mountOptions—Optional. The valid mount options.

Sample Input XML
<cuicOperationRequest>
<operationType>NETWORK_IMAGE_CREATE</operationType>
<payload>
<![CDATA[
<CreateNetworkImage>
<profileName></profileName>

<platform></platform>

<networkServerType>NFS</networkServerType>

<!-- Set this value only when networkServerType equals to HTTP -->
<locationLink></locationLink>

<!-- Set this value only when networkServerType not equals to HTTP -->
<networkPath></networkPath>

<!-- Set this value only when networkServerType not equals to HTTP -->
<sharePath></sharePath>

<!-- Set this value only when networkServerType not equals to HTTP -->
<remoteFileName></remoteFileName>

<nwPathUserName></nwPathUserName>

<nwPathPassword></nwPathPassword>

<!-- Set this value only when networkServerType equals to CIFS -->
<mountOptions></mountOptions>

</CreateNetworkImage>

]]>
</payload>
</cuicOperationRequest>

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
2

Examples
Creating a Firmware Network Image

Implementation

Profile Name is mandatory andmust be unique. Platform, Server Type (NFS/CIFS/HTTP) is mandatory.
Remote IP, Remote Share, Remote Filename are mandatory in case of NFS/CIFS. The HTTP Location
must be reachable from the system.

See Also

Updating Firmware Network Image, on page 3

Deleting Firmware Image Profile, on page 8

Updating Firmware Network Image
Objective

Update a firmware image in a network location.

Prerequisites

The HUU Image must be available in a network location - NFS/CIFS/HTTP.

REST URL
/cloupia/api-v2/UpdateNetworkImage

Components

The parameters of the NETWORK_IMAGE_UPDATE API are:

• String imageId—The unique ID of the image.

• boolean platform—The platform that manages a server.

• String networkServerType—Network File System (NFS), Common Internet File System (CIFS)
or HTTP/S server types.

• String locationLink—A valid HTTP/HTTPS URL link for the image location.

• String networkPath—The network path.

• String sharePath—The network share path.

• String remoteFileName—A remote filename.

• String nwPathUserName—Optional. The network path user name.

• String nwPathPasswprd—Optional. The network path password.

• String mountOptions—Optional. The valid mount options.

Cisco IMC Supervisor REST API Cookbook, Release 2.0
3

Examples
Updating Firmware Network Image

Sample Input XML
<cuicOperationRequest>
<operationType>NETWORK_IMAGE_UPDATE</operationType>
<payload>
<![CDATA[
<UpdateNetworkImage>
<imageId></imageId>

<platform></platform>

<networkServerType>NFS</networkServerType>

<!-- Set this value only when networkServerType equals to HTTP -->
<locationLink></locationLink>

<!-- Set this value only when networkServerType not equals to HTTP -->
<networkPath></networkPath>

<!-- Set this value only when networkServerType not equals to HTTP -->
<sharePath></sharePath>

<!-- Set this value only when networkServerType not equals to HTTP -->
<remoteFileName></remoteFileName>

<nwPathUserName></nwPathUserName>

<nwPathPassword></nwPathPassword>

<!-- Set this value only when networkServerType equals to CIFS -->
<mountOptions></mountOptions>

</UpdateNetworkImage>

]]>
</payload>
</cuicOperationRequest>

Implementation

Profile Name cannot be modified. Platform, Server Type (NFS/CIFS/HTTP) are mandatory. Remote
IP, Remote Share, Remote Filename are mandatory in case of NFS/CIFS. The HTTP Location must
be reachable from the system.

See Also

Creating a Firmware Network Image, on page 1

Deleting Firmware Image Profile, on page 8

Finding Firmware Image
Objective

Find a firmware image on cisco.com.

Prerequisites

The user must have a valid set of credentials to login to cisco.com and have access privileges for HUU
ISO images.

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
4

Examples
Finding Firmware Image

REST URL
/cloupia/api-v2/FindFirmwareImage

Components

The parameters of the LOCAL_IMAGE_FIND API are:

• String platform—The name of the platform.

• String username—ISO share login user name.

• String password—ISO share login password.

• boolean enableProxy—Optional. Enable proxy configuration.

• String host—The host name for the proxy configuration.

• String port—Port for the proxy configuration.

• boolean enableProxyAuth—Optional. Enable proxy authentication.

• String proxyAuthUserName—Proxy username for the proxy authentication.

• String proxyAuthPassword—Password for the proxy username.

Sample Input XML
<cuicOperationRequest>
<operationType>LOCAL_IMAGE_FIND</operationType>
<payload>
<![CDATA[
<FindFirmwareImage>
<platform></platform>

<username></username>

<password></password>

<enableProxy>false</enableProxy>

<!-- Set this value only when enableProxy equals to true -->
<host></host>

<!-- Set this value only when enableProxy equals to true -->
<port>0</port>

<!-- Set this value only when enableProxy equals to true -->
<enableProxyAuth>false</enableProxyAuth>

<!-- Set this value only when enableProxyAuth equals to true -->
<proxyAuthUserName></proxyAuthUserName>

<!-- Set this value only when enableProxyAuth equals to true -->
<proxyAuthPassword></proxyAuthPassword>

</FindFirmwareImage>

]]>
</payload>
</cuicOperationRequest>

Cisco IMC Supervisor REST API Cookbook, Release 2.0
5

Examples
Finding Firmware Image

Implementation

Username/Password for cisco.com and platform are mandatory. The platform of a server that is already
added into the system.

See Also

Creating a Firmware Local Image, on page 6

Creating a Firmware Local Image
Objective

Create a firmware image in a local location inside the appliance.

Prerequisites

The user must have a valid set of credentials to login to cisco.com and have access privileges for HUU
ISO images. The HUU Image must be downloadable from cisco.com, and must be found using the
FindFirmwareImage API.

REST URL
/cloupia/api-v2/CreateLocalImage

Components

The parameters of the LOCAL_IMAGE_CREATE API are:

• String profileName—The unique name of the profile.

• String platform—The name of the platform.

• String username—ISO share login user name.

• String password—ISO share login password.

• String availableImage—The available .iso image.

• boolean enableProxy—Optional. Enable proxy configuration.

• String host—The host name for the proxy configuration.

• String port—Port for the proxy configuration.

• boolean enableProxyAuth—Optional. Enable proxy authentication.

• String proxyAuthUserName—Proxy username for the proxy authentication.

• String proxyAuthPassword—Password for the proxy username.

• boolean acceptLicense—Accept license agreement.

• boolean downloadNow—download the .iso image immediately after adding a profile.

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
6

Examples
Creating a Firmware Local Image

Sample Input XML
<cuicOperationRequest>
<operationType>LOCAL_IMAGE_CREATE</operationType>
<payload>
<![CDATA[
<CreateLocalImage>
<profileName></profileName>

<platform></platform>

<username></username>

<password></password>

<availableImage></availableImage>

<enableProxy>false</enableProxy>

<!-- Set this value only when enableProxy equals to true -->
<host></host>

<!-- Set this value only when enableProxy equals to true -->
<port>0</port>

<!-- Set this value only when enableProxy equals to true -->
<enableProxyAuth>false</enableProxyAuth>

<!-- Set this value only when enableProxyAuth equals to true -->
<proxyAuthUserName></proxyAuthUserName>

<!-- Set this value only when enableProxyAuth equals to true -->
<proxyAuthPassword></proxyAuthPassword>

<acceptLicense>false</acceptLicense>

<downloadNow>false</downloadNow>

</CreateLocalImage>

]]>
</payload>
</cuicOperationRequest>

Implementation

Profile Name is mandatory, must be unique. Username/Password for cisco.com and Platform are
mandatory. The Platform must be that of a server already added into the system.

See Also

Finding Firmware Image, on page 4

Downloading Firmware Local Image
Objective

Download an image from cisco.com for an already configured firmware image profile, into a local
location inside the appliance.

Cisco IMC Supervisor REST API Cookbook, Release 2.0
7

Examples
Downloading Firmware Local Image

Prerequisites

The firmware image profile must be already configured.

REST URL
/cloupia/api-v2/DownloadLocalImage

Components

The parameter of the LOCAL_IMAGE_DOWNLOAD API is:

• String profileName—The unique name of the profile.

Sample Input XML
<cuicOperationRequest>
<operationType>LOCAL_IMAGE_DOWNLOAD</operationType>
<payload>
<![CDATA[
<DownloadLocalImage>
<profileName></profileName>

</DownloadLocalImage>

]]>
</payload>
</cuicOperationRequest>

Implementation

Profile Name is mandatory, must be a valid existing profile for a Local Image. The image should not
be already downloading.

See Also

Creating a Firmware Local Image, on page 6

Deleting Firmware Image Profile, on page 8

Deleting Firmware Image Profile
Objective

Delete one or more existing firmware image profiles.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCFirmwareUpgradeConfig

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
8

Examples
Deleting Firmware Image Profile

Components

The parameters of the FIRMWARE_IMAGE_DELETE API are:

• String profileId—The unique ID of the profile.

Sample Input XML
<cuicOperationRequest>
<operationType>FIRMWARE_IMAGE_DELETE</operationType>
<payload>
<![CDATA[
<DeleteFirmwareImage>
<profileId></profileId>

</DeleteFirmwareImage>

]]>
</payload>
</cuicOperationRequest>

Implementation

Profile name is mandatory and must be unique. IP address search criteria is mandatory, but CSV File
option is not supported through API.

See Also

Creating a Firmware Local Image, on page 6

Creating a Firmware Network Image, on page 1

Updating Firmware Network Image, on page 3

Running Firmware Upgrade
Objective

Run a firmware upgrade on one or more servers using an already configured firmware image profile.

Prerequisites

The firmware image profile must be already configured and must contain a valid HUU ISO Image.

REST URL
/cloupia/api-v2/UpgradeFirmWareConfig

Cisco IMC Supervisor REST API Cookbook, Release 2.0
9

Examples
Running Firmware Upgrade

Components

The parameters of the RUN_FIRMWARE_UPGRADE API are:

• String profileName—The unique name of the profile.

• String servers—Servers whose platform matches the one configured in the selected profile.

• boolean enableSchedule—Enable a schedule

• String associatedScheduleName—Name of the associate schedule.

Sample Input XML
<cuicOperationRequest>
<operationType>RUN_FIRMWARE_UPGRADE</operationType>
<payload>
<![CDATA[
<UpgradeFirmWareConfig>
<profileName></profileName>

<servers></servers>

<enableSchedule>false</enableSchedule>

<!-- Set this value only when enableSchedule not equals to false -->
<associatedScheduleName></associatedScheduleName>

</UpgradeFirmWareConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Profile name is mandatory, must be a valid existing profile. For a local profile, the image should not
be already downloading. The serverIdKey must consist of a comma-separated list of Id's. Each Id is of
the format: {AccountName};{ServerIPAddress}. In case of schedule option, a valid schedule name
must be provided.

See Also

Reading Firmware Upgrade Status by Profile Name, on page 12

Reading Firmware Upgrade Status by IP Address, on page 13

Reading Firmware Image by a Profile Name
Objective

Get Firmware Image By Profile Name

Prerequisites

None

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
10

Examples
Reading Firmware Image by a Profile Name

REST URL
/cloupia/api-v2/CIMCFirmwareUpgradeConfig/{CIMCFirmwareUpgradeConfigId}

Implementation

This task allows the user to query the firmware image details based on the profile name The
CIMCFirmwareUpgradeConfigId argument must be a valid profile name. If no argument is specified,
all firmware images configured in the system will be returned.

See Also

Reading Firmware Image by Platform, on page 11

Reading Firmware Image by Type, on page 11

Reading Firmware Image by Type
Objective

Get firmware image by type.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCFirmwareImageByType/{CIMCFirmwareImageByTypeId}

Implementation

This task allows the user to query the firmware image details based on the type of location - NETWORK
or LOCAL. The CIMCFirmwareImageByTypeId argument must be one of these values - NETWORK
or LOCAL. If no argument is specified, all firmware images configured in the system will be returned.

See Also

Reading Firmware Image by Platform, on page 11

Reading Firmware Image by a Profile Name, on page 10

Reading Firmware Image by Platform
Objective

Get firmware image by platform.

Prerequisites

None

Cisco IMC Supervisor REST API Cookbook, Release 2.0
11

Examples
Reading Firmware Image by Type

REST URL
/cloupia/api-v2/CIMCFirmwareImageByPlatform/{CIMCFirmwareImageByPlatformId}

Implementation

This task allows the user to query the firmware image details based on the platform. The
CIMCFirmwareImageByPlatformId argumentmust be a valid platform name. If no argument is specified,
all firmware images configured in the system will be returned.

See Also

Reading Firmware Image by a Profile Name, on page 10

Reading Firmware Image by Type, on page 11

Reading Download Status by Profile Name
Objective

Image download status by profile name.

Prerequisites

None

REST URL
/cloupia/api-v2/LocalImageDownloadStatusByProfileName/{LocalImageDownloadStatusByProfileNameId

Implementation

This task allows the user to query the download status of a local firmware image based on the profile
name The LocalImageDownloadStatusByProfileNameId argument must be a valid profile name. If no
argument is specified, an empty set of results will be returned.

See Also

Downloading Firmware Local Image, on page 7

Reading Firmware Upgrade Status by Profile Name
Objective

Firmware upgrade status by profile name.

Prerequisites

None

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
12

Examples
Reading Download Status by Profile Name

REST URL
/cloupia/api-v2/CIMCFirmwareUpgradeStatusbyProfileName/{CIMCFirmwareUpgradeStatusbyProfileNameId}

Implementation

This task allows the user to query the firmware upgrade status of one or more servers based on the
profile name of the image. The CIMCFirmwareUpgradeStatusbyProfileNameId argument must be a
valid profile name. If no argument is specified, all firmware upgrade operations' status will be returned.

See Also

Running Firmware Upgrade, on page 9

Reading Firmware Upgrade Status by IP Address, on page 13

Reading Firmware Upgrade Status by IP Address
Objective

Firmware upgrade status by server IP address.

Prerequisites

None

REST URL
>/cloupia/api-v2/CIMCFirmwareUpgradeStatusbyServerIP/{CIMCFirmwareUpgradeStatusbyServerIPId}

Implementation

This task allows the user to query the firmware upgrade status of one or more servers based on the
profile name of the image. The CIMCFirmwareUpgradeStatusbyProfileNameId argument must be a
valid profile name. If no argument is specified, all firmware upgrade operations' status will be returned.
The dots in the IP address need to be substituted with an underscore.

See Also

Running Firmware Upgrade, on page 9

Reading Firmware Upgrade Status by Profile Name, on page 12

Managing Platform Tasks

Overview
The examples in this category consists of managing email alert rules on Cisco IMC Supervisor.

Cisco IMC Supervisor REST API Cookbook, Release 2.0
13

Examples
Reading Firmware Upgrade Status by IP Address

Creating an Email Alert Rule
Objective

Create an email alert rule for notification of faults.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCEmailAlertRuleConfig

Components

The parameters of the EMAIL_ALERT_RULE_CREATE API are:

• String name—The name for the email alert.

• String alertLevel—The alert level.

• String serverGroups—Optional. The server groups to which email alerts are sent.

• String emailAddress—The email address of the intended recipients of the email alert.

• String severity—Fault severity levels for which email alerts will be sent.

• Boolean enabled—Optional. Enable email alerts to the configured email address.

Sample Input XML
<cuicOperationRequest>
<operationType>EMAIL_ALERT_RULE_CREATE</operationType>
<payload>
<![CDATA[
<CIMCEmailAlertRuleConfig>
<name></name>

<alertLevel>SYSTEM</alertLevel>

<!-- Set this value only when alertLevel not equals to SYSTEM -->
<serverGroups></serverGroups>

<emailAddress></emailAddress>

<severity>critical</severity>

<enabled>false</enabled>

</CIMCEmailAlertRuleConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Rule name is mandatory and must be unique. Email addresses are mandatory.

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
14

Examples
Creating an Email Alert Rule

See Also

Reading an Email Alert Rule

Updating an Email Alert Rule

Deleting Email Alert Rules

Reading an Email Alert Rule
Objective

Get details of email alert rules.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCEmailAlertRuleConfig/{CIMCEmailAlertRuleConfigId}

Implementation

The Id argument must be a valid Rule name. If no argument is specified, all email alert rules configured
in the system will be returned.

See Also

Creating an Email Alert Rule

Updating an Email Alert Rule

Deleting Email Alert Rules

Updating an Email Alert Rule
Objective

Update an existing email alert rule.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCEmailAlertRuleConfig

Cisco IMC Supervisor REST API Cookbook, Release 2.0
15

Examples
Reading an Email Alert Rule

Components

The parameters of the EMAIL_ALERT_RULE_UPDATE API are:

• String emailAlertRule—The email alert rule.

• String alertLevel—The alert level.

• String serverGroups—Optional. The server groups to which email alerts are sent.

• String emailAddress—The email used to notify the group owner about the status of service requests
and request approvals if necessary.

• String severity—Fault severity levels for which email alerts will be sent.

• Boolean enabled—Optional. Enable email alerts to the configured email address.

Sample Input XML
<cuicOperationRequest>
<operationType>EMAIL_ALERT_RULE_UPDATE</operationType>
<payload>
<![CDATA[
<ModifyEmailAlertRuleConfig>
<emailAlertRule></emailAlertRule>

<alertLevel>SYSTEM</alertLevel>

<!-- Set this value only when alertLevel not equals to SYSTEM -->
<serverGroups></serverGroups>

<emailAddress></emailAddress>

<severity></severity>

<enabled>false</enabled>

</ModifyEmailAlertRuleConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Rule name cannot be modified.

See Also

Reading an Email Alert Rule

Creating an Email Alert Rule

Deleting Email Alert Rules

Deleting Email Alert Rules
Objective

Delete one or more existing Email Alert Rules.

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
16

Examples
Deleting Email Alert Rules

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCEmailAlertRuleConfig

Components

String emailAlertRule—The email alert rule.

Sample Input XML
<cuicOperationRequest>
<operationType>EMAIL_ALERT_RULE_DELETE</operationType>
<payload>
<![CDATA[
<DeleteEmailAlertRuleConfig>
<emailAlertRule></emailAlertRule>

</DeleteEmailAlertRuleConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Comma separated list of rule names, all of which must be of valid existing rules.

See Also

Reading an Email Alert Rule

Creating an Email Alert Rule

Updating an Email Alert Rule

Managing Server Tasks

Overview
The examples in this category consist of various server management tasks, such as discovery of servers through
IP addresses, importing of discovered servers, power actions on servers and various methods to query server
data, inventory data, and fault data.

Creating a Rack Group
Objective

Create a rack group to group servers logically in Cisco IMC Supervisor.

Cisco IMC Supervisor REST API Cookbook, Release 2.0
17

Examples
Managing Server Tasks

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCRackGroup

Components

The parameters of the RACK_GROUP_CREATE API are:

• String groupName—The name of the group or the customer organization.

• String groupDescription—Optional. The description of the group or the customer organization,
if required.

Sample Input XML
<cuicOperationRequest>
<operationType>RACK_GROUP_CREATE</operationType>
<payload>
<![CDATA[
<CIMCRackGroup>
<groupName></groupName>

<description></description>

</CIMCRackGroup>

]]>
</payload>
</cuicOperationRequest>

Implementation

Group Name is mandatory and must be unique.

See Also

Reading All Rack Groups, on page 18

Updating a Rack Group, on page 19

Deleting a Rack Group, on page 20

Reading All Rack Groups
Objective

Get rack group details.

Prerequisites

None

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
18

Examples
Reading All Rack Groups

REST URL
/cloupia/api-v2/CIMCRackGroup/{CIMCRackGroupId}

Components

None

Sample Input XML
<cuicOperationResponse><cuicOperationStatus>0</cuicOperationStatus>
<response><CIMCRackGroup><actionId>0</actionId><configEntryId>0</configEntryId>
<defaultGroup>true</defaultGroup><description>Default provided rack group
</description><groupName>Default Group</groupName></CIMCRackGroup><CIMCRackGroup>
<actionId>0</actionId><configEntryId>0</configEntryId><defaultGroup>false
</defaultGroup><description>Test55</description><groupName>Test66</groupName>
</CIMCRackGroup><CIMCRackGroup><actionId>0</actionId><configEntryId>0
</configEntryId><defaultGroup>false</defaultGroup><description>apitest
</description><groupName>apitest-ren</groupName></CIMCRackGroup><CIMCRackGroup>
<actionId>0</actionId><configEntryId>0</configEntryId><defaultGroup>false
</defaultGroup><description></description><groupName>Test3-SumanthRen</groupName>
</CIMCRackGroup></response></cuicOperationResponse>

Implementation

The Id argument must be a valid Rack Group name. If no argument is specified, all Rack Groups
configured in the system will be returned.

See Also

Creating a Rack Group, on page 17

Updating a Rack Group, on page 19

Deleting a Rack Group, on page 20

Updating a Rack Group
Objective

Update an existing Rack Group.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCRackGroup

Cisco IMC Supervisor REST API Cookbook, Release 2.0
19

Examples
Updating a Rack Group

Components

The parameters of the RACK_GROUP_UPDATE API are:

• String groupName—The name of the group or the customer organization.

• String groupDescription—Optional. The description of the group or the customer organization,
if required.

Sample Input XML
<cuicOperationRequest>
<operationType>RACK_GROUP_UPDATE</operationType>
<payload>
<![CDATA[
<ModifyRackGroup>
<groupID></groupID>

<groupName></groupName>

<description></description>

</ModifyRackGroup>

]]>
</payload>
</cuicOperationRequest>

Implementation

Group name is mandatory and must be unique.

See Also

Creating a Rack Group, on page 17

Reading All Rack Groups, on page 18

Deleting a Rack Group, on page 20

Deleting a Rack Group
Objective

Delete one or more existing rack groups.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCRackGroup

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
20

Examples
Deleting a Rack Group

Components

The parameters of the RACK_GROUP_DELETE API are:

• String groupName—The name of the group or the customer organization.

• String groupDescription—Optional. The description of the group or the customer organization,
if required.

Sample Input XML
<cuicOperationRequest>
<operationType>RACK_GROUP_DELETE</operationType>
<payload>
<![CDATA[
<DeleteRackGroup>
<groupID></groupID>

<forceDelete>false</forceDelete>

</DeleteRackGroup>

]]>
</payload>
</cuicOperationRequest>

Implementation

Comma separated list of group names, all of which must be of valid existing rack groups.

See Also

Creating a Rack Group, on page 17

Reading All Rack Groups, on page 18

Updating a Rack Group, on page 19

Creating a Discovery Profile
Objective

Create a discovery profile to use for discovering servers based on IP address and importing them.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCDeviceDiscoveryConfig

Cisco IMC Supervisor REST API Cookbook, Release 2.0
21

Examples
Creating a Discovery Profile

Components

The parameters of the DISCOVERY_PROFILE_CREATE API are:

• String profileName—The name of the profile.

• boolean isRange—Optional. The range

• String option—The option.

• String ipList—List of IP addresses.

• String startRange—Valid beginning IP address.

• String endRange—Valid last IP address.

• String networkAddress—The network IP address.

• String subnetMask—The range of subnet mask.

• String csvFile—Search by csv file.

• boolean credentialPolicy—Optional. Create a credential policy.

• String policy—Optional. The policy name.

• String username—The server login name.

• String password—The server login password.

• String protocol—Optional. HTTP or HTTPS protocol.

• int port—The port number.

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
22

Examples
Creating a Discovery Profile

Sample Input XML
<cuicOperationRequest>
<operationType>DISCOVERY_PROFILE_CREATE</operationType>
<payload>
<![CDATA[
<CIMCDeviceDiscoveryConfig>
<profileName></profileName>

<option>IP</option>

<!-- Set this value only when option equals to IPLIST -->
<ipList></ipList>

<!-- Set this value only when option equals to IP -->
<startRange></startRange>

<!-- Set this value only when option equals to IP -->
<endRange></endRange>

<!-- Set this value only when option equals to SUBNET -->
<networkAddress></networkAddress>

<!-- Set this value only when option equals to SUBNET -->
<subnetMask></subnetMask>

<!-- Set this value only when option equals to CSV -->
<csvFile></csvFile>

<credentialPolicy>false</credentialPolicy>

<!-- Set this value only when credentialPolicy not equals to false -->
<policy></policy>

<!-- Set this value only when credentialPolicy not equals to true -->
<username></username>

<!-- Set this value only when credentialPolicy not equals to true -->
<password></password>

<!-- Set this value only when credentialPolicy not equals to true -->
<protocol>https</protocol>

<!-- Set this value only when credentialPolicy not equals to true -->
<port>443</port>

</CIMCDeviceDiscoveryConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Profile Name is mandatory, must be unique. IP Address Search Criteria is mandatory, but CSV File
option is not supported via API.

See Also

Updating a Discovery Profile, on page 24

Deleting a Discovery Profile, on page 27

Cisco IMC Supervisor REST API Cookbook, Release 2.0
23

Examples
Creating a Discovery Profile

Reading a Discovery Profile
Objective

Get discovery profiles details.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCDeviceDiscoveryConfig/{CIMCDeviceDiscoveryConfigId}

Implementation

The Id argument must be a valid profile name. If no argument is specified, all discovery profiles
configured in the system will be returned.

See Also

Creating a Discovery Profile, on page 21

Updating a Discovery Profile, on page 24

Deleting a Discovery Profile, on page 27

Updating a Discovery Profile
Objective

Update an existing discovery profile.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCDeviceDiscoveryConfig

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
24

Examples
Reading a Discovery Profile

Components

The parameters of the DISCOVERY_PROFILE_UPDATE API are:

• String profileName—The unique name of the profile.

• String option—The option.

• String ipList—List of IP addresses.

• String startRange—Valid beginning IP address.

• String endRange—Valid last IP address.

• String networkAddress—The network IP address.

• String subnetMask—The range of subnet mask.

• String csvFile—Search by csv file.

• boolean credentialPolicy—Optional. Create a credential policy.

• boolean policy—Optional. The policy name.

• String username—The server login name.

• String password—The server login password.

• String protocol—Optional. HTTP or HTTPS protocol.

• int port—The port number.

Cisco IMC Supervisor REST API Cookbook, Release 2.0
25

Examples
Updating a Discovery Profile

Sample Input XML
<cuicOperationRequest>
<operationType>DISCOVERY_PROFILE_UPDATE</operationType>
<payload>
<![CDATA[
<ModifyCIMCDeviceDiscoveryProfile>
<profileName></profileName>

<option>IP</option>

<!-- Set this value only when option equals to IPLIST -->
<ipList></ipList>

<!-- Set this value only when option equals to IP -->
<startRange></startRange>

<!-- Set this value only when option equals to IP -->
<endRange></endRange>

<!-- Set this value only when option equals to SUBNET -->
<networkAddress></networkAddress>

<!-- Set this value only when option equals to SUBNET -->
<subnetMask></subnetMask>

<!-- Set this value only when option equals to CSV -->
<csvFile></csvFile>

<credentialPolicy>false</credentialPolicy>

<!-- Set this value only when credentialPolicy not equals to false -->
<policy></policy>

<!-- Set this value only when credentialPolicy not equals to true -->
<username></username>

<!-- Set this value only when credentialPolicy not equals to true -->
<password></password>

<!-- Set this value only when credentialPolicy not equals to true -->
<protocol>https</protocol>

<!-- Set this value only when credentialPolicy not equals to true -->
<port>443</port>

</ModifyCIMCDeviceDiscoveryProfile>

]]>
</payload>
</cuicOperationRequest>

Implementation

Profile Name cannot be modified.

See Also

Creating a Discovery Profile, on page 21

Deleting a Discovery Profile, on page 27

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
26

Examples
Updating a Discovery Profile

Deleting a Discovery Profile
Objective

Delete one or more existing discovery profiles.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCDeviceDiscoveryConfig

Components

The parameters of the DISCOVERY_PROFILE_DELETE API are:

• String profileName—Optional. The name of the profile.

Sample Input XML
<cuicOperationRequest>
<operationType>DISCOVERY_PROFILE_DELETE</operationType>
<payload>
<![CDATA[
<DeleteCIMCDeviceDiscoveryProfile>
<profileName></profileName>

</DeleteCIMCDeviceDiscoveryProfile>

]]>
</payload>
</cuicOperationRequest>

Implementation

Comma separated list of profile names, all of which must be of valid existing profiles.

See Also

Creating a Discovery Profile, on page 21

Updating a Discovery Profile, on page 24

Reading a Discovery Profile, on page 24

Running Server Discovery
Objective

Run a Discovery operation to discovery servers based on IP addresses, using one or more configured
Discovery Profiles.

Cisco IMC Supervisor REST API Cookbook, Release 2.0
27

Examples
Deleting a Discovery Profile

Prerequisites

Discovery Profile must be configured.

REST URL
/cloupia/api-v2/CIMCAutoDiscoveryConfig

Components

The parameters of the RUN_SERVER_DISCOVERY API are:

• String profileNames—The name of the profile.

• boolean enableSchedule—Enable a schedule.

• String associatedScheduleName—Name of the associate schedule.

Sample Input XML
<cuicOperationRequest>
<operationType>RUN_SERVER_DISCOVERY</operationType>
<payload>
<![CDATA[
<CIMCAutoDiscoveryConfig>
<profileNames></profileNames>

<enableSchedule>false</enableSchedule>

<!-- Set this value only when enableSchedule not equals to false -->
<associatedScheduleName></associatedScheduleName>

</CIMCAutoDiscoveryConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Comma-separated list of valid profile names. In case of schedule option, a valid schedule name must
be provided.

See Also

Importing Discovered Devices, on page 29

Reading Discovered Devices
Objective

Get discovered device details.

Prerequisites

One or more servers must have been discovered using a discovery profile

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
28

Examples
Reading Discovered Devices

REST URL
/cloupia/api-v2/CIMCDiscoveredDevice/{CIMCDiscoveredDeviceId}/State/{StateId}

Implementation

The CIMCDiscoveredDeviceId argument must be a valid profile name, and must be mandatorily
specified. The StateId argument must be one of {All, Imported, NotImported}.

Importing Discovered Devices
Objective

Import one or more discovered devices.

Prerequisites

One or more servers must have been discovered using a Discovery Profile.

REST URL
/cloupia/api-v2/ImportRackServersConfig

Components

The parameters of the IMPORT_SERVER API are:

• String devices—The discovered devices.

• String userPrefix—Optional. The prefix for the user.

• String description—Optional. Description for the user.

• String contact—Optional. Contact details of the user.

• String location—Optional. Address of the user.

• String rackGroup—Create rack group.

Cisco IMC Supervisor REST API Cookbook, Release 2.0
29

Examples
Importing Discovered Devices

Sample Input XML
<cuicOperationRequest>
<operationType>IMPORT_SERVER</operationType>
<payload>
<![CDATA[
<ImportRackServersConfig>
<devices></devices>

<userPrefix></userPrefix>

<description></description>

<contact></contact>

<location></location>

<rackGroup>Default Group</rackGroup>

</ImportRackServersConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Comma-separated list of one or more valid server IP addresses, which have been discovered. Group
name of an existing rack group.

See Also

Running Server Discovery, on page 27

Hard Reset Server
Objective

Hard reset one or more servers.

Prerequisites

One or more Servers must be configured as Rack Accounts.

REST URL
/cloupia/api-v2/HardResetAction

Components

The parameters of the HARD_RESET_SERVER API are:

• String serverIdKey—The server Id key.

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
30

Examples
Hard Reset Server

Sample Input XML
<cuicOperationRequest>
<operationType>HARD_RESET_SERVER</operationType>
<payload>
<![CDATA[
<HardResetServer>
<serverIdKey></serverIdKey>

</HardResetServer>

]]>
</payload>
</cuicOperationRequest>

Implementation

The serverIdKey must consist of a comma-separated list of Id's. Each Id is of the format:
{AccountName};{ServerIPAddress }

See Also

Power Cycle Server, on page 31

Power On Server, on page 33

Power Off Server, on page 32

Shutdown Server, on page 34

Set Label on Server, on page 35

Toggle Locator LED on Server, on page 36

Power Cycle Server
Objective

Power cycle one or more servers.

Prerequisites

One or more servers must be configured as rack accounts.

REST URL
/cloupia/api-v2/PowerCycleAction

Components

The parameters of the POWER_CYCLE_SERVER API are:

• String serverIdKey—The server Id key.

Cisco IMC Supervisor REST API Cookbook, Release 2.0
31

Examples
Power Cycle Server

Sample Input XML
<cuicOperationRequest>
<operationType>POWER_CYCLE_SERVER</operationType>
<payload>
<![CDATA[
<PowerCycleServer>
<serverIdKey></serverIdKey>

</PowerCycleServer>

]]>
</payload>
</cuicOperationRequest>

Implementation

The serverIdKey must consist of a comma-separated list of Id's. Each Id is of the format:
{AccountName};{ServerIPAddress }

See Also

Hard Reset Server, on page 30

Power On Server, on page 33

Power Off Server, on page 32

Shutdown Server, on page 34

Set Label on Server, on page 35

Toggle Locator LED on Server, on page 36

Power Off Server
Objective

Power Off one or more Servers.

Prerequisites

One or more Servers must be configured as Rack Accounts

REST URL
/cloupia/api-v2/PowerOffAction

Components

The parameters of the POWER_OFF_SERVER API are:

• String serverIdKey—The server Id key.

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
32

Examples
Power Off Server

Sample Input XML
<cuicOperationRequest>
<operationType>POWER_OFF_SERVER</operationType>
<payload>
<![CDATA[
<PowerOffServer>
<serverIdKey></serverIdKey>

</PowerOffServer>

]]>
</payload>
</cuicOperationRequest>

Implementation

The serverIdKey must consist of a comma-separated list of Id's. Each Id is of the format:
{AccountName};{ServerIPAddress

See Also

Hard Reset Server, on page 30

Power Cycle Server, on page 31

Power On Server, on page 33

Shutdown Server, on page 34

Set Label on Server, on page 35

Toggle Locator LED on Server, on page 36

Power On Server
Objective

Power On server.

Context

Power On one or more servers.

Prerequisites

One or more servers must be configured as rack accounts.

REST URL
/cloupia/api-v2/PowerOnAction

Components

The parameters of the POWER_ON_SERVER API are:

• String serverIdKey—The server Id key.

Cisco IMC Supervisor REST API Cookbook, Release 2.0
33

Examples
Power On Server

Sample Input XML
<cuicOperationRequest>
<operationType>POWER_ON_SERVER</operationType>
<payload>
<![CDATA[
<PowerOnServer>
<serverIdKey></serverIdKey>

</PowerOnServer>

]]>
</payload>
</cuicOperationRequest>

Implementation

The serverIdKey must consist of a comma-separated list of Id's. Each Id is of the format:
{AccountName};{ServerIPAddress}.

See Also

Hard Reset Server, on page 30

Power Cycle Server, on page 31

Power Off Server, on page 32

Shutdown Server, on page 34

Set Label on Server, on page 35

Toggle Locator LED on Server, on page 36

Shutdown Server
Objective

Shut down one or more servers.

Prerequisites

One or more Servers must be configured as Rack Accounts.

REST URL
/cloupia/api-v2/ShutDownAction

Components

The parameters of the SHUT_DOWN_SERVER API are:

• String serverIdKey—The server Id key.

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
34

Examples
Shutdown Server

Sample Input XML
<cuicOperationRequest>
<operationType>SHUT_DOWN_SERVER</operationType>
<payload>
<![CDATA[
<ShutDownServer>
<serverIdKey></serverIdKey>

</ShutDownServer>

]]>
</payload>
</cuicOperationRequest>

Implementation

The serverIdKey must consist of a comma-separated list of Id's. Each Id is of the format:
{AccountName};{ServerIPAddress}.

See Also

Power Cycle Server, on page 31

Power On Server, on page 33

Power Off Server, on page 32

Hard Reset Server, on page 30

Set Label on Server, on page 35

Toggle Locator LED on Server, on page 36

Set Label on Server
Objective

Set label for one or more servers.

Prerequisites

One or more Servers must be configured as Rack Accounts.

REST URL
/cloupia/api-v2/SetLabelAction

Components

The parameters of the SET_LABEL API are:

• String serverIdKey—The server Id key.

• String setLabel—The label name.

Cisco IMC Supervisor REST API Cookbook, Release 2.0
35

Examples
Set Label on Server

Sample Input XML
<cuicOperationRequest>
<operationType>SET_LABEL</operationType>
<payload>
<![CDATA[
<SetLabelServer>
<serverIdKey></serverIdKey>

<setLabel></setLabel>

</SetLabelServer>

]]>
</payload>
</cuicOperationRequest>

Implementation

The serverIdKey must consist of a comma-separated list of Id's. Each Id is of the format:
{AccountName};{ServerIPAddress}.

See Also

Power Cycle Server, on page 31

Power On Server, on page 33

Power Off Server, on page 32

Shutdown Server, on page 34

Hard Reset Server, on page 30

Toggle Locator LED on Server, on page 36

Toggle Locator LED on Server
Objective

Toggle Locator LED one or more Servers.

Prerequisites

One or more Servers must be configured as Rack Accounts.

REST URL
/cloupia/api-v2/LocatorLedAction

Components

The parameters of the LOCATOR_LED API are:

• String serverIdKey—The server Id key.

• String locatorLed—The locator LED.

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
36

Examples
Toggle Locator LED on Server

Sample Input XML
<cuicOperationRequest>
<operationType>LOCATOR_LED</operationType>
<payload>
<![CDATA[
<LocatorLedServer>
<serverIdKey></serverIdKey>

<locatorLed>ON</locatorLed>

</LocatorLedServer>

]]>
</payload>
</cuicOperationRequest>

Implementation

The serverIdKey must consist of a comma-separated list of Id's. Each Id is of the format:
{AccountName};{ServerIPAddress}.

See Also

Power Cycle Server, on page 31

Power On Server, on page 33

Power Off Server, on page 32

Shutdown Server, on page 34

Set Label on Server, on page 35

Hard Reset Server, on page 30

Reading Servers by Tag Name
Objective

Get servers which are tagged with a specific name.

Prerequisites

One or more servers must be configured as Rack Accounts and be tagged.

REST URL
/cloupia/api-v2/ServersByTagName/{ServersByTagNameId}

Implementation

The ServersByTagValueId argument must be a valid tag value defined in the Tag Library.

Cisco IMC Supervisor REST API Cookbook, Release 2.0
37

Examples
Reading Servers by Tag Name

See Also

Reading Servers by Account Name, on page 45

Reading Servers by Rack Group, on page 47

Reading Servers by Serial Number, on page 46

Reading Servers by Server IP, on page 46

Reading Servers by Tag Value, on page 38

Reading Servers by UUID, on page 45

Reading Servers by Product ID, on page 44

Reading Servers by Tag Value
Objective

Get Servers which are tagged with a specific value.

Prerequisites

One or more servers must be configured as Rack Accounts and be tagged.

REST URL
/cloupia/api-v2/ServersByTagValue/{ServersByTagValueId}

Implementation

The ServersByTagValueId argument must be a valid tag value defined in the Tag Library.

See Also

Reading Servers by Tag Name, on page 37

Reading Servers by Account Name, on page 45

Reading Servers by Rack Group, on page 47

Reading Servers by Serial Number, on page 46

Reading Servers by Server IP, on page 46

Reading Servers by UUID, on page 45

Reading Servers by Product ID, on page 44

Reading Server Faults by DN
Objective

Get Server Faults by affected DN.

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
38

Examples
Reading Servers by Tag Value

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCFaultsByDN/{CIMCFaultsByDNId}

Implementation

The CIMCFaultsByDNId argument must be a valid DN value. The RNs in the DN must be separated
by an underscore instead of a forward slash.

See Also

Reading Server Faults by Account Name, on page 40

Reading Server Faults by Fault Code, on page 41

Reading Server Faults by IP Address, on page 39

Reading Server Faults by Severity, on page 40

Reading Server Faults by IP Address
Objective

Get Faults of a specific server by its IP address.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCFaultsByServerIP/{CIMCFaultsByServerIPId}

Implementation

The CIMCFaultsByServerIPId argument must be a valid IP Address. The dots in the IP address need
to be substituted with an underscore.

See Also

Reading Server Faults by DN, on page 38

Reading Server Faults by Fault Code, on page 41

Reading Server Faults by Account Name, on page 40

Reading Server Faults by Severity, on page 40

Cisco IMC Supervisor REST API Cookbook, Release 2.0
39

Examples
Reading Server Faults by IP Address

Reading Server Faults by Account Name
Objective

Get Faults of a specific server by its Account Name.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCFaultsByAccountName/{CIMCFaultsByAccountNameId}

Implementation

The CIMCFaultsByAccountNameId argument must be a valid Account Name of a server beingmanaged
by IMCS.

See Also

Reading Server Faults by DN, on page 38

Reading Server Faults by Fault Code, on page 41

Reading Server Faults by IP Address, on page 39

Reading Server Faults by Severity, on page 40

Reading Server Faults by Severity
Objective

Get Server Faults by Severity level.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCFaultsBySeverity/{CIMCFaultsBySeverityId}

Implementation

The CIMCFaultsBySeverityId argument must be a valid Severity Level.

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
40

Examples
Reading Server Faults by Account Name

See Also

Reading Server Faults by DN, on page 38

Reading Server Faults by Fault Code, on page 41

Reading Server Faults by IP Address, on page 39

Reading Server Faults by Account Name, on page 40

Reading Server Faults by Fault Code
Objective

Get Server Faults by Fault Code.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCFaultsByCode/{CIMCFaultsByCodeId}

Implementation

The CIMCFaultsByCodeId argument must be a valid Fault Code.

See Also

Reading Server Faults by DN, on page 38

Reading Server Faults by Account Name, on page 40

Reading Server Faults by IP Address, on page 39

Reading Server Faults by Severity, on page 40

Reading Server Faults History by DN
Objective

Get Server Faults by affected DN.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCFaultsHistoryByDN/{CIMCFaultsHistoryByDNId}

Cisco IMC Supervisor REST API Cookbook, Release 2.0
41

Examples
Reading Server Faults by Fault Code

Implementation

The CIMCFaultsHistoryByDNId argument must be a valid DN value. The RNs in the DN must be
separated by an underscore instead of a forward slash.

See Also

Reading Server Faults History by Fault Code, on page 43

Reading Server Faults History by IP Address, on page 42

Reading Server Faults History by Severity, on page 43

Reading Server Faults History by Account Name, on page 42

Reading Server Faults History by IP Address
Objective

Get Faults History of a specific server by its IP address.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCFaultsHistoryByServerIP/{CIMCFaultsHistoryByServerIPId}

Implementation

The CIMCFaultsHistoryByServerIPId argument must be a valid IP address of a server being managed
by IMCS. The dots in the IP address need to be substituted with an underscore.

See Also

Reading Server Faults History by Fault Code, on page 43

Reading Server Faults History by DN, on page 41

Reading Server Faults History by Severity, on page 43

Reading Server Faults History by Account Name, on page 42

Reading Server Faults History by Account Name
Objective

Get Faults History of a specific server by its Account Name.

Prerequisites

None

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
42

Examples
Reading Server Faults History by IP Address

REST URL
/cloupia/api-v2/CIMCFaultsHistoryByAccountName/{CIMCFaultsHistoryByAccountNameId}

Implementation

The CIMCFaultsHistoryByAccountNameId argument must be a valid Account Name of a server being
managed by Cisco IMC Supervisor.

See Also

Reading Server Faults History by Fault Code, on page 43

Reading Server Faults History by DN, on page 41

Reading Server Faults History by Severity, on page 43

Reading Server Faults History by IP Address, on page 42

Reading Server Faults History by Severity
Objective

Get Server Faults History by Severity level.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCFaultsHistoryBySeverity/{CIMCFaultsHistoryBySeverityId}

Implementation

The CIMCFaultsHistoryBySeverityId argument must be a valid Severity Level.

See Also

Reading Server Faults History by Fault Code, on page 43

Reading Server Faults History by DN, on page 41

Reading Server Faults History by Account Name, on page 42

Reading Server Faults History by IP Address, on page 42

Reading Server Faults History by Fault Code
Objective

Get Server Faults History by Fault Code.

Cisco IMC Supervisor REST API Cookbook, Release 2.0
43

Examples
Reading Server Faults History by Severity

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCFaultsHistoryByCode/{CIMCFaultsHistoryByCodeId}

Implementation

The CIMCFaultsHistoryByCodeId argument must be a valid Fault Code.

See Also

Reading Server Faults History by Severity, on page 43

Reading Server Faults History by DN, on page 41

Reading Server Faults History by Account Name, on page 42

Reading Server Faults History by IP Address, on page 42

Reading Servers by Product ID
Objective

Get Server By Product ID.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCServerByProductID/{CIMCServerByProductIDId}

Implementation

The CIMCServerByProductIDId argument must be a valid Product ID of a server being managed by
Cisco IMC Supervisor.

See Also

Reading Servers by Tag Name, on page 37

Reading Servers by Account Name, on page 45

Reading Servers by Rack Group, on page 47

Reading Servers by Serial Number, on page 46

Reading Servers by Server IP, on page 46

Reading Servers by UUID, on page 45

Reading Servers by Tag Value, on page 38

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
44

Examples
Reading Servers by Product ID

Reading Servers by Account Name
Objective

Get Servers By Account Name

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCServerByAccountName/{CIMCServerByAccountNameId}

Implementation

The CIMCServerByAccountNameId argumentmust be a valid Account Name of a server beingmanaged
by Cisco IMC Supervisor.

See Also

Reading Servers by Tag Name, on page 37

Reading Servers by Tag Value, on page 38

Reading Servers by Rack Group, on page 47

Reading Servers by Serial Number, on page 46

Reading Servers by Server IP, on page 46

Reading Servers by UUID, on page 45

Reading Servers by Product ID, on page 44

Reading Servers by UUID
Objective

Get Server By UUID

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCServerByUUID/{CIMCServerByUUIDId}

Implementation

The CIMCServerByUUIDId argument must be a valid UUID of a server being managed by Cisco IMC
Supervisor.

Cisco IMC Supervisor REST API Cookbook, Release 2.0
45

Examples
Reading Servers by Account Name

See Also

Reading Servers by Tag Name, on page 37

Reading Servers by Tag Value, on page 38

Reading Servers by Account Name, on page 45

Reading Servers by Rack Group, on page 47

Reading Servers by Serial Number, on page 46

Reading Servers by Server IP, on page 46

Reading Servers by Product ID, on page 44

Reading Servers by Server IP
Objective

Get Server By IP Address.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCServerByServerIP/{CIMCServerByServerIPId}

Implementation

The CIMCServerByServerIPId argument must be a valid IP address of a server being managed by
Cisco IMC Supervisor. The dots in the IP address need to be substituted with an underscore.

See Also

Reading Servers by Tag Name, on page 37

Reading Servers by Account Name, on page 45

Reading Servers by Rack Group, on page 47

Reading Servers by Serial Number, on page 46

Reading Servers by Server IP, on page 46

Reading Servers by UUID, on page 45

Reading Servers by Product ID, on page 44

Reading Servers by Serial Number
Objective

Get Server By Serial Number.

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
46

Examples
Reading Servers by Server IP

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCServerBySerialNum/{CIMCServerBySerialNumId}

Implementation

The CIMCServerBySerialNumId argument must be a valid serial number of a server being managed
by Cisco IMC Supervisor.

See Also

Reading Servers by Tag Name, on page 37

Reading Servers by Tag Value, on page 38

Reading Servers by Account Name, on page 45

Reading Servers by Rack Group, on page 47

Reading Servers by Server IP, on page 46

Reading Servers by Product ID, on page 44

Reading Servers by UUID, on page 45

Reading Servers by Rack Group
Objective

Get Server By Rack Group.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCServerByRackGroup/{CIMCServerByRackGroupId}

Implementation

The CIMCServerByRackGroupId argument must be a valid Rack Group existing in Cisco IMC
Supervisor.

Cisco IMC Supervisor REST API Cookbook, Release 2.0
47

Examples
Reading Servers by Rack Group

See Also

Reading Servers by Tag Name, on page 37

Reading Servers by Tag Value, on page 38

Reading Servers by Account Name, on page 45

Reading Servers by Server IP, on page 46

Reading Servers by Serial Number, on page 46

Reading Servers by Product ID, on page 44

Reading Servers by UUID, on page 45

Reading Server Inventory by Account Name
Objective

Get Server Inventory By Account Name.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCServerInventoryByAccountName/{CIMCServerInventoryByAccountNameId}

Implementation

The CIMCServerInventoryByAccountNameId argument must be a valid Account Name of a server
being managed by Cisco IMC Supervisor.

See Also

Reading Server Inventory by Server IP, on page 48

Reading Server Inventory by Server IP
Objective

Get server inventory by IP address.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCServerInventoryByServerIP/{CIMCServerInventoryByServerIPId}

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
48

Examples
Reading Server Inventory by Account Name

Implementation

The CIMCServerInventoryByServerIPId argument must be a valid IP address of a server beingmanaged
by Cisco IMC Supervisor. The dots in the IP address need to be substituted with an underscore.

See Also

Reading Server Inventory by Account Name, on page 48

Reading Server Utilization by Account Name
Objective

Get Server Utilization By Account Name

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCServerUtilizationByAccountName/{CIMCServerUtilizationByAccountNameId}

Implementation

The CIMCServerUtilizationByAccountNameId argument must be a valid Account Name of a server
being managed by Cisco IMC Supervisor.

See Also

Reading Server Utilization by Server IP, on page 49

Reading Server Utilization by Server IP
Objective

Get Server Utilization By IP Address.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCServerUtilizationByServerIP/{CIMCServerUtilizationByServerIPId}

Implementation

The CIMCServerUtilizationByServerIPId argumentmust be a valid IP address of a server beingmanaged
by Cisco IMC Supervisor. The dots in the IP address need to be substituted with an underscore.

Cisco IMC Supervisor REST API Cookbook, Release 2.0
49

Examples
Reading Server Utilization by Account Name

See Also

Reading Server Utilization by Account Name, on page 49

Reading Server Utilization History by Account Name
Objective

Get Server Utilization History By Account Name.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCServerUtilizationHistoryByAccountName/{CIMCServerUtilizationHistoryByAccountNameId}

Implementation

The CIMCServerUtilizationHistoryByAccountNameId argument must be a valid Account Name of a
server being managed by Cisco IMC Supervisor.

See Also

Reading Server Utilization History by Server IP, on page 50

Reading Server Utilization History by Server IP
Objective

Get Server Utilization History By IP Address.

Prerequisites

None

REST URL
/cloupia/api-v2/CIMCServerUtilizationHistoryByServerIP/{CIMCServerUtilizationHistoryByServerIPId}

Implementation

The CIMCServerUtilizationHistoryByServerIPId argument must be a valid IP address of a server being
managed by Cisco IMC Supervisor. The dots in the IP address need to be substituted with an underscore.

See Also

Reading Server Utilization History by Account Name, on page 50

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
50

Examples
Reading Server Utilization History by Account Name

Managing Users and Groups

Overview
The examples in this category consists of managing users and user groups to access Cisco IMC Supervisor.

Creating a User Group
Objective

Create a group of users in Cisco IMC Supervisor. This task allows a user to create a new group, which
denotes a related set of users.

Prerequisites

None

REST URL
/cloupia/api-v2/group

Components

The parameters of the CREATE API are:

• String groupName—The name of the group or the customer organization.

• String groupDescription—Optional. The description of the group or the customer organization,
if required.

• String parentGroup—Optional. The name of the parent group.

• String groupCode—Optional. A shorter name or code name for the group.

• String groupContact—The contact name for the group.

• String firstName—Optional. The first name of the group owner.

• String lastName—Optional. The last name of the group owner.

• String phone—Optional. The phone number of the group owner.

• String address—Optional. The address of the group owner.

• String groupSharePolicyId—Optional. The ID of group share policy for the users in this group.

• Boolean allowPrivateUsers—Optional. The option that allows creating users with exclusive access
to their resources.

Cisco IMC Supervisor REST API Cookbook, Release 2.0
51

Examples
Managing Users and Groups

Sample Input XML
<AddGroupConfig>
<groupName></groupName>

<groupDescription></groupDescription>

<parentGroup></parentGroup>

<groupCode></groupCode>

<groupContact></groupContact>

<firstName></firstName>

<lastName></lastName>

<phone></phone>

<address></address>

<groupSharePolicyId>0</groupSharePolicyId>

<allowPrivateUsers>false</allowPrivateUsers>

</AddGroupConfig>

Implementation

The user group name is mandatory and must be unique. Contact Email is mandatory.

See Also

Updating a User Group , on page 52

Deleting a User Group, on page 54

Enabling All Users in a Group, on page 55

Disabling All Users in a Group, on page 56

Updating a User Group
Objective

This task allows a user to update an existing group, which denotes a related set of users.

Prerequisites

None

REST URL
/cloupia/api-v2/group

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
52

Examples
Updating a User Group

Components

The parameters of the UPDATE API are:

• String groupId—The id of the group or the customer organization.

• String groupDescription—Optional. The description of the group or the customer organization,
if required.

• String parentGroup—Optional. The name of the parent group.

• String groupCode—Optional. A shorter name or code name for the group.

• String costCenter—Optional. The cost centr for the group.

• String groupContact—The contact name for the group.

• String firstName—Optional. The first name of the group owner.

• String lastName—Optional. The last name of the group owner.

• String phone—Optional. The phone number of the group owner.

• String address—Optional. The address of the group owner.

• String groupSharePolicyId—Optional. The ID of group share policy for the users in this group.

• Boolean allowPrivateUsers—Optional. The option that allows creating users with exclusive access
to their resources.

Sample Input XML
<cuicOperationRequest>
<payload>
<![CDATA[
<ModifyGroupConfig>
<groupId></groupId>

<groupDescription></groupDescription>

<parentGroup></parentGroup>

<groupCode></groupCode>

<costCenter></costCenter>

<groupContact></groupContact>

<firstName></firstName>

<lastName></lastName>

<phone></phone>

<address></address>

<groupSharePolicyId>0</groupSharePolicyId>

<allowPrivateUsers>false</allowPrivateUsers>

</ModifyGroupConfig>

]]>
</payload>
</cuicOperationRequest>

Cisco IMC Supervisor REST API Cookbook, Release 2.0
53

Examples
Updating a User Group

Implementation

Name cannot be modified. The groupId tag is mandatory and must include the numeric ID of a valid
existing group. Contact Email is mandatory.

See Also

Creating a User Group, on page 51

Deleting a User Group, on page 54

Enabling All Users in a Group, on page 55

Disabling All Users in a Group, on page 56

Deleting a User Group
Objective

This task allows a user to delete an existing group, which denotes a related set of users.

Prerequisites

None

REST URL
/cloupia/api-v2/group

Components

The parameters of the DELETE_USER API are:

String groupName—The name of the group or the customer organization.

Sample Input XML
<cuicOperationRequest>
<operationType>DELETE_GROUP</operationType>
<payload>
<![CDATA[
<DeleteGroupConfig>
<groupID></groupID>
</DeleteGroupConfig>
]]>
</payload>
</cuicOperationRequest>

Implementation

The groupId tag is mandatory and must include the numeric ID of a valid existing group.

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
54

Examples
Deleting a User Group

See Also

Creating a User Group, on page 51

Updating a User Group , on page 52

Enabling All Users in a Group, on page 55

Disabling All Users in a Group, on page 56

Enabling All Users in a Group
Objective

This task allows a user to enable all users which are assigned to a group.

Prerequisites

None

REST URL
/cloupia/api-v2/group

Components

The parameter of the ENABLE_ALL_USERS_IN_GROUP API is:

String groupName—The name of the group or the customer organization.

Sample Input XML
<cuicOperationRequest>
<operationType>ENABLE_ALL_USERS_IN_GROUP</operationType>
<payload>
<![CDATA[
<EnableAllUsersInGroupConfig>
<groupID></groupID>

</EnableAllUsersInGroupConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

The groupId tag is mandatory and must include the numeric ID of a valid existing group.

See Also

Creating a User Group, on page 51

Updating a User Group , on page 52

Deleting a User Group, on page 54

Disabling All Users in a Group, on page 56

Cisco IMC Supervisor REST API Cookbook, Release 2.0
55

Examples
Enabling All Users in a Group

Disabling All Users in a Group
Objective

This task allows a user to disable all users which are assigned to a Group.

Prerequisites

None

REST URL
/cloupia/api-v2/group

Components

The parameter of the DISABLE_ALL_USERS_IN_GROUP API is:

String groupName—The name of the group or the customer organization.

Sample Input XML
<cuicOperationRequest>
<operationType>DISABLE_ALL_USERS_IN_GROUP</operationType>
<payload>
<![CDATA[
<DisableAllUsersInGroupConfig>
<groupID></groupID>

</DisableAllUsersInGroupConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

The groupId tag is mandatory and must include the numeric ID of a valid existing group.

See Also

Creating a User Group, on page 51

Deleting a User Group, on page 54

Updating a User Group , on page 52

Enabling All Users in a Group, on page 55

Creating a User
Objective

This task allows the user to create a new user.

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
56

Examples
Disabling All Users in a Group

Prerequisites

None

REST URL
/cloupia/api-v2/user

Components

The parameters of the CREATE API are:

• String userType—The type of user.

• String userGroup—Optional. The group of the user.

• String mspOrganization—Optional. MSP organization user.

• String loginName—The login name for the user.

• String password—The password for the user.

• String confirmPassword—Repeat the password from the previous field.

• String userContactEmail—The email address.

• String firstName—Optional. The first name of the group owner.

• String lastName—Optional. The last name of the group owner.

• String phone—Optional. The phone number of the group owner.

• String address—Optional. The address of the group owner.

Cisco IMC Supervisor REST API Cookbook, Release 2.0
57

Examples
Creating a User

Sample Input XML
<cuicOperationRequest>
<payload>
<![CDATA[
<AddUserConfig>
<userType>GroupAdmin</userType>

<!-- Accepts value from the list: userGroupByType-->
<userGroup>1</userGroup>

<mspOrganization></mspOrganization>

<loginName></loginName>

<!-- Accepts value from the list: password-->
<password></password>

<!-- Accepts value from the list: password-->
<confirmPassword></confirmPassword>

<userContactEmail></userContactEmail>

<firstName></firstName>

<lastName></lastName>

<phone></phone>

<address></address>

</AddUserConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Login Name is mandatory and must be unique. Password and Confirm Password are mandatory and
the values must match. User Contact Email is mandatory. User Type is mandatory and must be an
existing valid User Role. User Group Id is required only if the User Type is set to 'Group Admin', and
it must denote the numeric Id of an existing User Group.

See Also

Reading a User, on page 59

Updating a User , on page 59

Deleting a User, on page 61

Enabling a User, on page 62

Disabling a User, on page 63

Updating a User Expiry Date, on page 64

Updating a User Password, on page 65

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
58

Examples
Creating a User

Reading a User
Objective

This task allows the user to query the details of an existing user. The userId argument must be a valid
login name of a user. If no argument is specified, no results will be returned.

Prerequisites

None

REST URL
/cloupia/api-v2/user/{userId}

Implementation

The userId argument must be a valid login name of a user. If no argument is specified, no results will
be returned.

See Also

Creating a User, on page 56

Updating a User , on page 59

Deleting a User, on page 61

Enabling a User, on page 62

Disabling a User, on page 63

Updating a User Expiry Date, on page 64

Updating a User Password, on page 65

Updating a User
Objective

This task allows to update an existing user.

Prerequisites

None

REST URL
/cloupia/api-v2/user

Cisco IMC Supervisor REST API Cookbook, Release 2.0
59

Examples
Reading a User

Components

The parameters of the UPDATE USER API are:

• String loginName—The login name for the user.

• String userType—The type of user.

• String userGroup—Optional. The group of the user.

• String mspOrganization—Optional. MSP organization user.

• String userContactEmail—The email address.

• String firstName—Optional. The first name of the group owner.

• String lastName—Optional. The last name of the group owner.

• String phone—Optional. The phone number of the group owner.

• String address—Optional. The address of the group owner.

Sample Input XML
<cuicOperationRequest>
<operationType>UPDATE_USER</operationType>
<payload>
<![CDATA[
<ModifyUserConfig>
<loginName></loginName>

<userType>GroupAdmin</userType>

<userGroup>1</userGroup>

<mspOrganization></mspOrganization>

<userContactEmail></userContactEmail>

<firstName></firstName>

<lastName></lastName>

<phone></phone>

<address></address>

</ModifyUserConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Login Name is mandatory and must denote an existing valid user. It cannot be changed. User Contact
Email is mandatory. User Type is mandatory and must be an existing valid User Role. User Group Id
is required only if the User Type is set to 'Group Admin', and it must denote the numeric Id of an existing
User Group.

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
60

Examples
Updating a User

See Also

Creating a User, on page 56

Reading a User, on page 59

Deleting a User, on page 61

Enabling a User, on page 62

Disabling a User, on page 63

Updating a User Expiry Date, on page 64

Updating a User Password, on page 65

Deleting a User
Objective

This task allows to delete an existing User.

Prerequisites

None

REST URL
/cloupia/api-v2/user

Components

The parameters of the DELETE_USER API are:

String loginName—The login name for the user.

Sample Input XML
<cuicOperationRequest>
<operationType>DELETE_USER</operationType>
<payload>
<![CDATA[
<DeleteUserConfig>
<loginName></loginName>

</DeleteUserConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Login Name is mandatory and must denote an existing valid user.

Cisco IMC Supervisor REST API Cookbook, Release 2.0
61

Examples
Deleting a User

See Also

Creating a User, on page 56

Reading a User, on page 59

Updating a User , on page 59

Enabling a User, on page 62

Disabling a User, on page 63

Updating a User Expiry Date, on page 64

Updating a User Password, on page 65

Enabling a User
Objective

This task allows to enable an existing user whose account has been disabled.

Prerequisites

None

REST URL
/cloupia/api-v2/user

Components

The parameter of the ENABLE_USER API is:

String loginName—The login name for the user.

Sample Input XML
<cuicOperationRequest>
<operationType>ENABLE_USER</operationType>
<payload>
<![CDATA[
<EnableUserConfig>
<loginName></loginName>

</EnableUserConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Login Name is mandatory and must denote an existing valid user.

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
62

Examples
Enabling a User

See Also

Creating a User, on page 56

Reading a User, on page 59

Updating a User , on page 59

Deleting a User, on page 61

Disabling a User, on page 63

Updating a User Expiry Date, on page 64

Updating a User Password, on page 65

Disabling a User
Objective

This task allows to disable an existing User whose account has been enabled.

Prerequisites

None

REST URL
/cloupia/api-v2/user

Components

The parameter of the DISABLE_USER API is:

String loginName—The login name for the user.

Sample Input XML
<cuicOperationRequest>
<operationType>DISABLE_USER</operationType>
<payload>
<![CDATA[
<DisableUserConfig>
<loginName></loginName>

</DisableUserConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Login Name is mandatory and must denote an existing valid user.

Cisco IMC Supervisor REST API Cookbook, Release 2.0
63

Examples
Disabling a User

See Also

Creating a User, on page 56

Reading a User, on page 59

Updating a User , on page 59

Deleting a User, on page 61

Enabling a User, on page 62

Updating a User Expiry Date, on page 64

Updating a User Password, on page 65

Updating a User Expiry Date
Objective

This task allows to update the expiry date of an existing user.

Prerequisites

None

REST URL
/cloupia/api-v2/user

Components

The parameters of the DISABLE_DATE API are:

• String loginName—The login name for the user.

• Long userExpiryDate—The expiry date set for the user.

Sample Input XML
<cuicOperationRequest>
<operationType>DISABLE_DATE</operationType>
<payload>
<![CDATA[
<ConfigureUserExpiryDateConfig>
<loginName></loginName>

<!-- Accepts value from the list: date_time-->
<userExpiryDate>1460449200000</userExpiryDate>

</ConfigureUserExpiryDateConfig>

]]>
</payload>
</cuicOperationRequest>

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
64

Examples
Updating a User Expiry Date

Implementation

Login Name is mandatory and must denote an existing valid User. Expiry Date is mandatory and must
be represented in a numeric form denoting the timestamp of the expiry date/time.

See Also

Creating a User, on page 56

Reading a User, on page 59

Updating a User , on page 59

Deleting a User, on page 61

Enabling a User, on page 62

Disabling a User, on page 63

Updating a User Password, on page 65

Updating a User Password
Objective

This task allows to update an existing user password.

Prerequisites

None

REST URL
/cloupia/api-v2/user

Components

The parameters of the UPDATE_USER_PASSWORD API are:

• String loginName—The login name for the user.

• String password—The password for the user.

• String confirmPassword—Repeat the password from the previous field.

Cisco IMC Supervisor REST API Cookbook, Release 2.0
65

Examples
Updating a User Password

Sample Input XML
<cuicOperationRequest>
<operationType>UPDATE_USER_PASSWORD</operationType>
<payload>
<![CDATA[
<AddUserConfig>
<loginName></loginName>

<!-- Accepts value from the list: password-->
<password></password>

<!-- Accepts value from the list: password-->
<confirmPassword></confirmPassword>

</AddUserConfig>

]]>
</payload>
</cuicOperationRequest>

Implementation

Login Name is mandatory and must denote an existing valid User. Password and Confirm Password
are mandatory and values must match.

See Also

Creating a User, on page 56

Reading a User, on page 59

Updating a User , on page 59

Deleting a User, on page 61

Enabling a User, on page 62

Disabling a User, on page 63

Updating a User Expiry Date, on page 64

 Cisco IMC Supervisor REST API Cookbook, Release 2.0
66

Examples
Updating a User Password

	Examples
	Managing Firmware
	Overview
	Creating a Firmware Network Image
	Updating Firmware Network Image
	Finding Firmware Image
	Creating a Firmware Local Image
	Downloading Firmware Local Image
	Deleting Firmware Image Profile
	Running Firmware Upgrade
	Reading Firmware Image by a Profile Name
	Reading Firmware Image by Type
	Reading Firmware Image by Platform
	Reading Download Status by Profile Name
	Reading Firmware Upgrade Status by Profile Name
	Reading Firmware Upgrade Status by IP Address

	Managing Platform Tasks
	Overview
	Creating an Email Alert Rule
	Reading an Email Alert Rule
	Updating an Email Alert Rule
	Deleting Email Alert Rules

	Managing Server Tasks
	Overview
	Creating a Rack Group
	Reading All Rack Groups
	Updating a Rack Group
	Deleting a Rack Group
	Creating a Discovery Profile
	Reading a Discovery Profile
	Updating a Discovery Profile
	Deleting a Discovery Profile
	Running Server Discovery
	Reading Discovered Devices
	Importing Discovered Devices
	Hard Reset Server
	Power Cycle Server
	Power Off Server
	Power On Server
	Shutdown Server
	Set Label on Server
	Toggle Locator LED on Server
	Reading Servers by Tag Name
	Reading Servers by Tag Value
	Reading Server Faults by DN
	Reading Server Faults by IP Address
	Reading Server Faults by Account Name
	Reading Server Faults by Severity
	Reading Server Faults by Fault Code
	Reading Server Faults History by DN
	Reading Server Faults History by IP Address
	Reading Server Faults History by Account Name
	Reading Server Faults History by Severity
	Reading Server Faults History by Fault Code
	Reading Servers by Product ID
	Reading Servers by Account Name
	Reading Servers by UUID
	Reading Servers by Server IP
	Reading Servers by Serial Number
	Reading Servers by Rack Group
	Reading Server Inventory by Account Name
	Reading Server Inventory by Server IP
	Reading Server Utilization by Account Name
	Reading Server Utilization by Server IP
	Reading Server Utilization History by Account Name
	Reading Server Utilization History by Server IP

	Managing Users and Groups
	Overview
	Creating a User Group
	Updating a User Group
	Deleting a User Group
	Enabling All Users in a Group
	Disabling All Users in a Group
	Creating a User
	Reading a User
	Updating a User
	Deleting a User
	Enabling a User
	Disabling a User
	Updating a User Expiry Date
	Updating a User Password

