
Managing Tasks

This chapter contains the following sections:

• Tasks, page 1

• Developing a TaskConfigIf, page 2

• Developing an Abstract Task, page 3

• About Schedule Tasks, page 4

• Registering Custom Workflow Inputs, page 5

• Registering Custom Task Output, page 5

• Consuming Custom Output as Input in Other Tasks, page 6

• Consuming Output from Existing Tasks as Input, page 6

• Verifying the Custom Task Is In Place, page 8

Tasks
Workflow Tasks provide the necessary artifacts to contribute to the Task library maintained by Cisco UCS
Director. The task can be used in a Workflow definition.

At a minimum, a task should have the following classes:

• A class that implements the TaskConfigIf interface.

• A class that extends and implements methods in the AbstractTask class.

TaskConfigIf

A class that implements this interface becomes a Task’s input. That is, a task that wants to accept inputs for
its execution shall depend on a class that implements TaskConfigIf. The class that implements this interface
should also contain all the input field definitions appropriately annotated for prompting the user. The class
should also have JDO annotations to enable the Platform runtime to persist this object in the database.

A sample Config class is shown in the sample code.

Cisco UCS Director Open Automation Cookbook, Release 6.5
1

AbstractTask

A task implementation must extend the AbstractTask abstract class and should provide implementation for
all the abstract methods. This is the main class where all the business logic pertaining to the task goes. The
most important method in this class, where the business logic implementation will be scripted, is
executeCustomAction(). The rest of the methods provide sufficient context to the Platform runtime to enable
the task to appear in the Orchestration designer tree and to enable the task to be dragged and dropped in a
Workflow.

Developing a TaskConfigIf
To develop a task, you must first implement TaskConfigIf. During the process of setting up the task
configuration interface, you must determine what data is required to perform your task.

In the following example,EnableSNMPConfig exposes details of the process of developing aTaskConfigIf.
The Enable SNMP task is designed to enable SNMP on a Cisco Nexus device.

To proceed, you must have the IP address of the Nexus device, the login, and the password.

You see the annotation at the beginning of EnableSNMPConfig.
@PersistenceCapable(detachable= "true", table = "foo_enable_snmp_config")
public class EnableSNMPConfig implements TaskConfigIf
{
You must provide a PersistenceCapable annotation with a table name that is prefixed with your module ID.
You must follow this convention; because Cisco UCS Director prevents a task from being registered if you
try to use a table name that is not prefixed with your module ID.

Next, see the following fields:

• handler name

• configEntryId

• actionId

public static finald String HANDLER_NAME = "Enable SNMP for Nexus";

//configEntryId and actionId are mandatory fields
@Persistent
private long configEntryId
@Persistent
private long actionId

The handler name is the name of the task. The name should be a unique string; you will create problems if
you use the same handler name in multiple tasks.

Each task must have a configEntryId and actionId, exactly as shown above. You must have corresponding
getter and setters for these two fields. These two fields are absolutely mandatory; you must have these fields
in your config object.

Next, you see the data actually needed to perform the task:
//This is the ip address for the Nexus device on which you want to enable SNMP.
@FormField(label = "Host IP Address", help = "Host AP Address", mandatory = true,

type = FormFieldDefinition.FIELD_TYPE_EMBEDDED_LOV,
lovProvider = ModuleConstants.NEXUS_DEVICES_LOV_PROVIDER)

@USerInputField(type = ModuleConstants.NEXUS_DEVICE_LIST)
@Peristent
private String ipAddress = "";

@FormField(label = "Login", help = "Login", mandatory = true

 Cisco UCS Director Open Automation Cookbook, Release 6.5
2

Managing Tasks
Developing a TaskConfigIf

@Persistent
private String login;

@FormField(label = "Password", help = "Password", mandatory = true
@Persistent
private String password;

As you review the code sample above, note that the developer needs the following:

• The IP address of the device.
In this example, an LOV is used to get this IP address. See Annotations for more information about
annotations and LOVs.

• The login and password, which the user must enter.
To obtain these, use the form field annotations to mark these fields as data that will be provided by the
user.

• Getters and setters for each of these fields.

Once the config object is completed, you must mark it for Java Data Object (JDO) enhancement.

Before You Begin

You must have the Cisco UCS Director Open Automation software development kit (SDK).

Step 1 Include a jdo.files file in the same package as your config objects.
See the jdo.files and packaging in the SDK example. Note that the jdo.files must be named exactly in this way.

Step 2 In the jdo.files, specify all the classes that need to go through JDO enhancement.
The build script supplied with the SDK will complete JDO enhancement for you if you have executed this step properly.

What to Do Next

The handler object is where you actually execute your custom code. A handler object must implement
AbstractTask. The executeCustomAction method enables you to retrieve the corresponding config object
that you developed previously to execute your code.

Developing an Abstract Task
When your config object is ready, you must extendAbstractTask to actually use the new config object. This
example shows the EnableSNMPTask.

At this point, you should look at this method: executeCustomAction.
public void executeCustomAction(CustomActionTriggerContext context, CustomActionLogger
actionLogger) throws Exception
{

long configEntryId = context.getConfigEntry().getConfigEntryID();
//retrieving the corresponding config object for this handler
EnableSNMPConfig config = (EnableSNMPConfig) context.loadConfigObject();

executeCustomAction is where the custom logic takes place. When you call context.loadConfigObject(), you
can cast it to the config object that you defined earlier. This process allows you to retrieve all the details that
you need to perform your task. This example shows that after getting the config object, the SSH APIs are
used to execute the enable SNMP commands.

Cisco UCS Director Open Automation Cookbook, Release 6.5
3

Managing Tasks
Developing an Abstract Task

cisco_ucsd_open_automation_cookbook_7_0_chapter_0111.pdf#unique_45

When a workflow is rolled back, a task must provide a way to undo the changes it has made. This example
shows the use of a change tracker:
//If the user decides to roll back a workflow containing this task,
//then using the change tracker, we can take care of rolling back this task (i.e.,
//disabling snmp)
context.getChangeTracker().undoableResourceAdded("assetType", "idString",
SNMP enabled", "SNMP enabled on " + config.getIpAddress(),
new DisableSNMPNexusTask().getTaskName(), new DisableSNMPNexusConfig(config));

The rollback code informs the system that the undo task of Enable SNMP task is the Disable SNMP task.
You provide the undo config object and its name. The rest of the arguments are about logging data, which
you might or might not want to provide.

DisableConfig actually takes place in the EnableConfig. In this case, the enable config contains the device
details, so when the Disable SNMP task is called, you know exactly which device to disable SNMP on.

You must also implement getTaskConfigImplementation. This example instantiates an instance of the config
object in returning it:
@Override
public TaskConfigIf getTaskConfigImplementation() {

return new EnbleSNMPConfig();
}

Make sure that you specify the config object that you intend to use with this task.Note

What to Do Next: Include this task in your module to make it ready for use in Cisco UCS Director.

About Schedule Tasks
If you need to develop a purge task or aggregation task, or some other kind of repeatable task, you can use
the Schedule Task framework, which includes the following components:

• AbstractScheduleTask

• AbstractCloupiaModule

AbstractScheduleTask

Your task logic should be placed in the execute() method of this class. Provide your module ID and a string
that describes this task to get started. You must provide your own module ID, or the module will not be
registered properly.

For more information, refer the DummyScheduleTask class in the foo module.
public DummyScheduleTask(){
super("foo");
}

Adding/Removing Schedule Tasks

AbstractCloupiaModule has an add and remove schedule task API. Typically, in the onStart() implementation
of your AbstractCloupiaModule, you would instantiate your tasks and register them with the add method
by calling the addScheduleTask method in your module class as follows:
addScheduleTask(new DummyScheduleTask());

For more information, refer the FooModule.java class.

 Cisco UCS Director Open Automation Cookbook, Release 6.5
4

Managing Tasks
About Schedule Tasks

Registering Custom Workflow Inputs
You can develop your own input types in Cisco UCS Director. For more information, refer to Cisco UCS
Director Orchestration Guide, Release 4.1. However, they must be prefixed with your module ID. See
Developing a TaskConfigIf, on page 2, in which an additional annotation is used to specify a custom
workflow input.
public static final String NEXUS_DEVICE_LIST = "foo_nexus_device_list";
@UserInputField(type = ModuleConstants.NEXUS_DEVICE_LIST)

In this example, ModuleConstants.NEXUS_DEVICE_LIST resolves to foo_nexus_device_list.

Before You Begin

Develop the required TaskConfigIf and the AbstractTask components for your custom workflow.

What to Do Next

Register a custom workflow output. See Registering Custom Task Output, on page 5.

Registering Custom Task Output
You can enable a task to add an output.

Before You Begin

See the EmailDatacentersTask to see an example of how to create custom task outputs.

SUMMARY STEPS

1. Implement the method getTaskoutputDefinitions() in the task implementation and return the output
definitions that the task is supposed to return.

2. Set the output from the task implementation.

DETAILED STEPS

Step 1 Implement the method getTaskoutputDefinitions() in the task implementation and return the output definitions that the
task is supposed to return.
@Override
public TaskOutputDefinition[] getTaskOutputDefinitions() {

TaskOutputDefinition[] ops = new TaskOututDefiniton[1];
ops[0] = FooModule.OP_TEMP_EMAIL_ADDRESS;
return ops;

]

Step 2 Set the output from the task implementation.
@Override
public void executeCustomAction(CustomActionTriggerContext context,
CustomerActionLogger action Logger) throws Exception
{

long configEntryId = context.getConfigEntry().getConfigEntryId();
//retrieving the corresponding config object for this handler
EmailDatacentersConfig config = (EmailDatacentersConfig context.loadConfigObject();

if (config == null)

Cisco UCS Director Open Automation Cookbook, Release 6.5
5

Managing Tasks
Registering Custom Workflow Inputs

{
throw net Exception("No email configuration found for custom Action"

+ context.getAction().getName
+ "entryId" + configEntryId);

}

|.......
.......

try
{

context.saveOutputValue(OutPutConstants.OUTPUT_TEMP_EMAIL_ADDRESS, toAddresses);

Consuming Custom Output as Input in Other Tasks
This section describes how output can be used as input in another task. This section uses some aspects of the
example in the previous section. The output definition is defined as follows:
@Override
public TaskOutputDefinition[] get TaskOutputDefinitions() {

TaskOutputDefinition[] ops = new TaskOutputDefinitions[1};
//NOTE: If you want to use the output of this task as input to another task. Then the second
argument
//of the output definition MUST MATCH the type of UserInputField in the config of the task
that will
//be recieving this output. Take a look at the HelloWorldConfig as an example.
ops[0] = new TaskOutputDefinition(

FooConstants.EMAIL_TASK_OUTPUT_NAME,
FooConstants.FOO_HELLO_WORLD_NAME,
"EMAIL IDs");

return ops;
}
,
The example defines an output with the FooConstants.EMAIL_TASK_OUTPUT_NAME name, and with
the FooConstants.FOO_HELLO_WORLD_NAME type. To configure another task that can consume the
output as input, you must make the types match.

So, in the new task that consumes FooConstants.FOO_HELLO_WORLD_NAME as input, you must enter
the following in the configuration object:
//This field is supposed to consume output from the EmailDatacentersTask.
//You'll see the type in user input field below matches the output type
//in EmailDatacentersTasks's output definition.
@FormField(label = "name", help = "Name passed in from a previous task", mandatory = true)
@UserInputField(type = FooConstants.FOO_HELLO_WORLD_NAME)
@Persistent
private String login;
The type in the UserInputField annotation matches the type that is registered in the output definition. With
that match in place, when you drag and drop the new task in the Cisco UCS DirectorWorkflow Designer,
you can map the output from one task as input to the other task while you are developing the workflow.

Consuming Output from Existing Tasks as Input
This section shows how to consume output from built-in workflow tasks as input to your custom task. This
process is similar to setting up custom outputs to be consumed as input in one important way: the configuration
object of your task must have a field whose type is exactly the same as the type of the output that you want.

 Cisco UCS Director Open Automation Cookbook, Release 6.5
6

Managing Tasks
Consuming Custom Output as Input in Other Tasks

SUMMARY STEPS

1. Choose Policies > Orchestration > Workflows, and then click Task Library.
2. Find the task that you want to add, and then choose it to see the information displayed under the heading:

User and Group Tasks: Add Group.
3. Pick the appropriate Type value from the Outputs table.
4. Specify the Type value in the UserInputField.
5. Configure the mapping as you develop your workflow, using the User Input Mapping to Task Input

Attributes window as you add an action to the workflow, or edit related information in the workflow.

DETAILED STEPS

Step 1 Choose Policies > Orchestration > Workflows, and then click Task Library.
Press Cntl–Find to locate tasks in the very long list that appears. For example, entering Group takes you directly
to User and Group Tasks.

Tip

Step 2 Find the task that you want to add, and then choose it to see the information displayed under the heading: User and
Group Tasks: Add Group.

PressCntl–Find to locate tasks in the very long list that appears. For example, entering Group takes you directly
to User and Group Tasks.

Tip

The crucial type data is provided in the Outputs table, the last table provided under the heading.

Table 1: Add Group - Outputs Table

TypeDescriptionOutput

gen_text_inputName of the group that was created by adminOUTPUT_GROUP_NAM

gen_text_inputID of the group that was created by adminOUTPUT_GROUP_ID

Step 3 Pick the appropriate Type value from the Outputs table.
The goal is to obtain the Type value that will be matched to the Task. In the example, the task consumes the group ID,
so you know that the Type is gen_text_input.

Step 4 Specify the Type value in the UserInputField.

Example:
@FormField(label = "Name", help = "Name passed in from previous task",
mandatory = true)
@UserInputField(type="gen_text_input")
@Persistent
private String name;

You could also use@UserInputField(type = WorkflowInputFieldTypeDeclaration.GENERIC_TEXT). This is
equivalent to using@UserInputField(type="gen_text_input"). You may find it easier to use type =
WorkflowInputFieldTypeDeclaration.GENERIC_TEXT which uses the constants defined in the SDK.

Note

The last step is to configure the mapping properly when you are developing your workflow.

Step 5 Configure the mapping as you develop your workflow, using theUser InputMapping to Task Input Attributeswindow
as you add an action to the workflow, or edit related information in the workflow.

Cisco UCS Director Open Automation Cookbook, Release 6.5
7

Managing Tasks
Consuming Output from Existing Tasks as Input

Verifying the Custom Task Is In Place
Assuming that your module is working properly, you can verify that the custom task is in place by opening
the Cisco UCS Director Task Library and verifying that the task appears in it.

SUMMARY STEPS

1. In Cisco UCS Director, choose Policies > Orchestration, and then choose theWorkflows tab.
2. In theWorkflows tree directory, navigate to a workflow in which the task appears, and and then choose

that workflow row.
3. With workflow selected, clickWorkflow Designer.
4. Verify that the task of interest appears in the list of available tasks and in the graphic representation of the

tasks in the workflow.

DETAILED STEPS

Step 1 In Cisco UCS Director, choose Policies > Orchestration, and then choose theWorkflows tab.
TheWorkflows tab displays a table that lists all available workflows.

Step 2 In theWorkflows tree directory, navigate to a workflow in which the task appears, and and then choose that workflow
row.
To facilitate navigation, use the Search option in the upper right-hand corner, above the table, to navigate to the workflow.

Additional workflow-related controls appear above the workflows table.
Step 3 With workflow selected, clickWorkflow Designer.

TheWorkflow Designer screen opens, displaying an Available Tasks list and the Workflow Design graphic view.

Step 4 Verify that the task of interest appears in the list of available tasks and in the graphic representation of the tasks in the
workflow.

 Cisco UCS Director Open Automation Cookbook, Release 6.5
8

Managing Tasks
Verifying the Custom Task Is In Place

	Managing Tasks
	Tasks
	Developing a TaskConfigIf
	Developing an Abstract Task
	About Schedule Tasks
	Registering Custom Workflow Inputs
	Registering Custom Task Output
	Consuming Custom Output as Input in Other Tasks
	Consuming Output from Existing Tasks as Input
	Verifying the Custom Task Is In Place

