
Getting Started with Cisco UCS Director Open
Automation

• Cisco UCS Director Open Automation, page 1

• Upgrading Your Connector to the Current Release, page 5

• Modules, page 5

Cisco UCS Director Open Automation
You can use the Cisco UCS Director Open Automation tools to develop and integrate your own Cisco UCS
Director features as modules. You can customize modules to meet your unique needs.

Using the module, you can perform the following functions:

• Develop your own Cisco UCS Director reports and report actions

• Inventory your devices

• Track changes made to the system through your module

• Develop tasks that can be used for workflows

• Develop and schedule repeatable tasks

• Set up new resource limits

The Open Automation SDK bundle includes code samples that provide models, examples, and comments.
You can download the SDK bundle with the sample code from Cisco DevNet.

Recommended Tools
We recommend that you use the following tools:

• Java version 1.8

• Eclipse (can be downloaded from www.eclipse.org)

Cisco UCS Director Open Automation Getting Started Guide, Release 6.5
1

https://developer.cisco.com/site/ucs-director/overview/index.gsp

Setting up Eclipse

Before You Begin

Install Java Runtime Environment (JRE) 1.8.

Step 1 In Eclipse, right-click the Cisco UCS Director Open Automation SDK and choose Properties.
Step 2 Set the Java Compiler to compile against 1.8.
Step 3 Click OK.

Make sure that you include the Cisco UCS Director Open Automation SDK jar files in your class path. Also
make sure that your project setup mirrors the setup provided in the Open Automation SDK sample.

Note

Downloading the Open Automation SDK Bundle
The Cisco UCS Director SDK binaries can be downloaded from the software download area of Cisco.com or
the Cisco DevNet site. Also, an admin user can download the SDK binaries from Cisco UCS Director.

Step 1 Log in to Cisco UCS Director.
Step 2 On the menu bar, choose Administration > Downloads.
Step 3 Choose Administration > Downloads.
Step 4 Several files are displayed:

• REST API SDK—cucsd-rest-api-sdk-bundle.zip

• PowerShell Console—console.exe

• Open Automation SDK—cucsd-open-auto-sdk-bundle.zip

• Custom Tasks Script Samples—cucsd-cloupia-script-bundle.zip

Choose the cucsd-open-auto-sdk-bundle.zip file.

Step 5 Click Download.
The file is downloaded to the default download location.

 Cisco UCS Director Open Automation Getting Started Guide, Release 6.5
2

Getting Started with Cisco UCS Director Open Automation
Setting up Eclipse

https://software.cisco.com/download/navigator.html?mdfid=284775897
https://cisco.com
https://developer.cisco.com/site/ucs-director/overview/

Importing the Cisco UCS Director Open Automation SDK Project into the Eclipse
IDE

The following instructions describe how to import the Open Automation SDK bundle into Eclipse. Follow
the instructions provided for your development environment if you do not use Eclipse.

Step 1 Download the Open Automation SDK bundle from the Cisco.com download site or from Cisco DevNet.
Step 2 Extract the SDK bundle.
Step 3 Save the sample SDK project zip file on your file system.
Step 4 Launch Eclipse.
Step 5 Choose File > Import.
Step 6 In the Import dialog box, choose General > Existing Projects into Workspace.
Step 7 Click Next.
Step 8 Choose Select root directory and browse to the location where you extracted the project.
Step 9 Click Finish.

The project is automatically compiled.

Using EGit to Import the Open Automation SDK Bundle
Git with Eclipse (EGit) is an Eclipse plug-in that enables using the distributed version control system Git.
EGit uses a connector plug-in in Eclipse to import the Open Automation SDK bundle into the IDE.

The Eclipse IDE downloaded from the www.Eclipse.org site contains support for Git in its default configuration.
If the Git functionality is missing in your Eclipse IDE installation, you can use the Eclipse installation manager
to install it. See the following:

• Installing the EGit Plug-In in Eclipse

• Importing the Open Automation SDK Bundles into Eclipse

Installing the EGit Plug-In in Eclipse

Step 1 Log in to Eclipse.
Step 2 Choose Help > Install New Software.

The Install window appears.

Step 3 Click the Add button available near theWork with field.

Cisco UCS Director Open Automation Getting Started Guide, Release 6.5
3

Getting Started with Cisco UCS Director Open Automation
Importing the Cisco UCS Director Open Automation SDK Project into the Eclipse IDE

https://software.cisco.com/download/release.html?mdfid=286290596&flowid=77183&softwareid=285018084&release=5&relind=AVAILABLE&rellifecycle=&reltype=latest
https://developer.cisco.com/site/ucs-director/overview/index.gsp
https://www.Eclipse.org

The Add Site window appears.
Step 4 Enter the repository location name.
Step 5 In theLocation field, copy and paste the following URL: http://download.eclipse.org/egit/updates/.
Step 6 Click OK to add the repository location.

The Eclipse Git Team Provider and JGit packages appear.
Step 7 Check the Eclipse Git Team Provider (Incubation) check box.
Step 8 (Optional) Check the JGit (Incubation) check box.
Step 9 Click Next.

The chosen packages appear for verification.
Step 10 Click Next.
Step 11 Click I accept the terms of the license agreement.
Step 12 Click Finish.

All the necessary dependencies and executable are downloaded and installed.
Step 13 Accept the prompt to restart Eclipse.

What to Do Next

Import the open automation SDK bundle from the Git repository into Eclipse and run the SDK bundle.

Importing the Open Automation SDK Bundles into Eclipse
You can use Git to import the Cisco UCS DirectorSDK Bundles into Eclipse.

Before You Begin

You must have a Git account. If you do not have a Git account, sign up for a new account at GitLab.com.

Step 1 Log in to Eclipse.
Step 2 In the Java perspective, right-click in the Package Explorer pane.
Step 3 Click Import.
Step 4 Expand Git.
Step 5 Click Projects from Git.
Step 6 Click Next.
Step 7 Click Clone URI.
Step 8 In the Import Projects from Git window, perform the following operations:

a) In the URI field, enter the location of the source repository.
Enter one of the following source repository locations:

• The repository location for the sample code is https://gitlab.com/CUCSDSDK/OpenAutomationSample.git.

• The repository location for the storage module is https://gitlab.com/CUCSDSDK/OpenAutomationStorage.git.

• The repository location for the networkmodule is https://gitlab.com/CUCSDSDK/OpenAutomationNetwork.git.

• The repository location for the computemodule is https://gitlab.com/CUCSDSDK/OpenAutomationCompute.git.

 Cisco UCS Director Open Automation Getting Started Guide, Release 6.5
4

Getting Started with Cisco UCS Director Open Automation
Using EGit to Import the Open Automation SDK Bundle

https://www.gitlab.com

The host and repository path are auto-populated.
b) In the Authentication section, enter your Git account credentials.
c) Click Next.

The branches available in the repository appear.
d) Check the branches that you want to clone from the Git repository.
e) Click Next.
f) In the Directory field, enter the local destination where you want to save the Open Automation SDK.
g) From the Initial branch drop-down list, choose OpenAutomationSDK.

By default, the remote name is set as origin.

h) Click Finish.
The Open Automation SDK bundle is imported into Eclipse. You can view the SDK bundle in the Project Explorer.

Upgrading Your Connector to the Current Release
Cisco UCS Director uses a connector to collect the inventory of the other vendor devices for managing those
devices.
For more information on upgrading, refer the Cisco UCS Director Upgrade Guide.

Modules
A module is the top-most logical entry point into Cisco UCS Director.

A module can include the following components:

DescriptionComponent

AWorkflow Task that can be used as part of a Workflow.Task

A report that appears in the Cisco UCS Director UI. Reports may (but are not required
to) contain clickable actions.

Report

A condition that, once satisfied, can be associated with some action. Examples:
shutdown VM, start VM, and so on.

Trigger

Guidelines for Developing a Module
When you develop a module to support new devices, follow these guidelines:

• Develop for a device family so that you have only one module to support all devices in the family.

• Develop a single module to support only devices within the same category. A module should handle
only compute devices, network devices, or storage devices. For example, do not develop a module that

Cisco UCS Director Open Automation Getting Started Guide, Release 6.5
5

Getting Started with Cisco UCS Director Open Automation
Upgrading Your Connector to the Current Release

http://www.cisco.com/c/en/us/support/servers-unified-computing/ucs-director/products-installation-guides-list.html

supports both a network switch and a storage controller. Instead, develop one module for the network
switch and one module for the storage controller.

• Ensure that the devices supported by the same module are similar.

• The same device may come in different models that are meant for distinct purposes. In such cases, it
may be appropriate to use different modules to support them.

Creating a Module
The following items must be in place for your custom module to work:

• A class extending AbstractCloupiaModule.

• Override the OnStart method in the Module Class that extends the AbstractCloupiaModule.

• A .feature file specifying your dependent jars and module class.

• A module.properties file is required in the custom module.

 Cisco UCS Director Open Automation Getting Started Guide, Release 6.5
6

Getting Started with Cisco UCS Director Open Automation
Creating a Module

Before You Begin

Refer to FooModule in the sample project of the Open Automation SDK bundle.

Step 1 Extend the AbstractCloupiaModule class and register all your custom components in this class.
Step 2 Create a .feature file that specifies the dependent jars and module class.

This file must end with an extension of .feature; see foo.feature for reference. The best practice is to name this file
with your module ID. For more details about the .feature file, see Packaging the Module, on page 10.

Step 3 Add the necessary custom jar files to the lib folder.
Step 4 Package the properties file at the root level of your module jar.

Cisco UCS Director provides you with a properties file for validation purposes. The SDK sample provides you with
a build file that handles the packaging process.

The content of the module.properties file is described in Understanding the module.properties File, on
page 8.

Note

Cisco UCS Director Open Automation Getting Started Guide, Release 6.5
7

Getting Started with Cisco UCS Director Open Automation
Creating a Module

Step 5 In the module.properties file, replace the moduleID with the ID of the custom module.
Step 6 From the Eclipse IDE package explorer, right-click the build.xml file and run the ANT target build. This action

generates the module zip file and save the file to the base directory of your project.

Understanding the module.properties File
The module.properties file exposes the module to the platform runtime. This file defines properties of
the module.

Here is a sample module.properties file:

moduleID=foo
version=1.0
ucsdVersion=6.5.0.0
category=/foo
format=1.0
name=Foo Module
description=UCSD Open Automation Sample Module
contact=support@cisco.com
key=5591befd056dd39c8f5d578d39c24172

The contents are described in the following table:

Table 1: New Module.Properties (module.properties)

DescriptionName

The unique identifier for the module. This property is mandatory.

Example:
moduleID=foo

We recommend that you restrict this ID to a string of 3 to 5
lowercase alphabetic ASCII characters.

Tip

moduleID

The current version of your module. This property is mandatory.

Example:
version=1.0

version

The version of Cisco UCSDirector designed to support your module
(with which your module works best). This property is mandatory.

Example:
ucsdVersion=6.5.0.0

ucsdVersion

 Cisco UCS Director Open Automation Getting Started Guide, Release 6.5
8

Getting Started with Cisco UCS Director Open Automation
Creating a Module

DescriptionName

The path (/location) where all your tasks must be placed. This
property is mandatory.

Example:
category=/foo

The category parameter is the full path to the location where
your tasks are placed. If the tasks module is not validated,
the path is set to Open Automation Community
Tasks/Experimental. If the tasksmodule is validated,
the tasks are placed relative to the root folder. For example,
you can use /Physical Storage Tasks/foo,
/Open Automation Community
Tasks/Validated/foo, or /foo. In the last case,
there is a folder at root level called foo. This feature
enables developers to place tasks in categories that are not
under Open Automation or in its categories.

Note

category

The version of the format of this module. This property is mandatory.
By default, 1.0 version is set for the custom module.

Example:
format=1.0

1.0 is the only acceptable value
here.

Restriction

format

A user-friendly string that identifies your module in the Open
Automation reports.

Example:
name=Foo Module

name

A user-friendly description of what your module does.

Example:
description=UCSD Open Automation Sample Module

description

An email address that consumers of your module can use to request
support.

Example:
contact=support@cisco.com

contact

An encrypted key that the Cisco UCS Director Open Automation
group provides for validating the module.

Example:
key=5591befd056dd39c8f5d578d39c24172

key

Cisco UCS Director Open Automation Getting Started Guide, Release 6.5
9

Getting Started with Cisco UCS Director Open Automation
Creating a Module

Modifying any mandatory properties invalidates your module. If you change any of the mandatory
properties, you must request validation again. The name, description, and contact values, which are not
mandatory, can be modified or omitted without revalidation.

Note

Packaging the Module
A module is packaged with all the necessary classes, dependent JAR files, a module.properties file,
and a .feature (pronounced "dot-feature") file. The .feature file is placed in the same folder as the
root of the project. The .feature file shows the JAR associated with this module and the path to the
dependent JAR files. The name of the .feature file is <moduleID>-module.feature.

The following example shows the content of a .feature file:

{
jars: ["features/feature-chargeback.jar",
"features/chargeback/activation-1.1.jar",
"features/chargeback/axis2-jaxbri-1.5.6.jar",
"features/chargeback/bcel-5.1.jar",
"features/chargeback/jalopy-1.5rc3.jar",
"features/chargeback/neethi-2.0.5.jar",
"features/chargeback/antlr-2.7.7.jar",
"features/chargeback/axis2-jaxws-1.5.6.jar",]
features: ["com.cloupia.feature.oabc.OABCModule"]

}

Before You Begin

We recommend that you use the Apache ANT build tool that comes with Eclipse. You can use any build tool
or create the build by hand, but you must deliver a package with the same characteristics as one built with
ANT.

SUMMARY STEPS

1. If your module depends on JARs that are not provided with the sample source code, include the jars in
the build.xml file so that they are packaged in the zip file.

2. From the build.xml file, run the ANT target build.

DETAILED STEPS

PurposeCommand or Action

The following example shows a module layout with a third-party JAR:

feature-oabc
feature oabc.jar

If your module depends on JARs that
are not provided with the sample
source code, include the jars in the
build.xml file so that they are
packaged in the zip file.

Step 1

oabc
lib
flex
flex-messaging-common.jar

oabc.feature

 Cisco UCS Director Open Automation Getting Started Guide, Release 6.5
10

Getting Started with Cisco UCS Director Open Automation
Packaging the Module

PurposeCommand or Action

The module jar and .feature are at the top level of the zip file. We recommend
that you put the third-party jars under the /moduleID/lib folder path, then any
other sub-directories you may want to add.

{
jars: ['features/feature-oabc.jar",

features/oabc/lib/flex-messaging-common.jar],
features: ["com.cloupia.feature.oabc.OABCModule"]

}

When you list the jars in the .feature file, ensure that the jars start with
features/; this is mandatory. This convention enables you to include the path to
the jar. The path of each jar must be the same path that is used in your zip file. We
recommend that you put your module jar first, followed by its dependencies, to ensure
that your module loads.

The zip file is generated and saved to the base directory of your project. (We
recommend that you create your own project directory for your module. For

From the build.xml file, run the
ANT target build.

Step 2

convenience, in this example we assume that the sample project is the base directory
for your project.)

Deploying a Module on Cisco UCS Director
The Cisco UCS Director user interface provides Open Automation controls that you can use to upload and
manage modules. Use these controls to upload the zip file of the module to Cisco UCS Director.

Only zip-formatted files can be uploaded using the Open Automation controls.Note

Before You Begin

Acquire shell administrator access on the Cisco UCS Director VM. You can get this access from your system
administrator. To use the Cisco UCS Director Shell Menu as a shell administrator, use SSH to access Cisco
UCS Director, using the login shelladmin with the password that you got from the administrator.

For SSH access in a Windows system, use PuTTY (see http://www.putty.org/). On a Mac, use the built-in
terminal application's SSH utility.

Step 1 Choose Administration > Open Automation.
Step 2 On the Open Automation page, clickModules.

TheModules page displays the following columns:

DescriptionColumn

The ID of the module.ID

Cisco UCS Director Open Automation Getting Started Guide, Release 6.5
11

Getting Started with Cisco UCS Director Open Automation
Deploying a Module on Cisco UCS Director

http://www.putty.org/

DescriptionColumn

The name of the module.Name

The description of the module.Description

The current version of the module. The module developer
must determine how to administer versioning of themodule.

Version

Which version of Cisco UCS Director best supports this
module.

Compatible

The contact information of the person responsible for
technical support for the module.

Contact

The time at which the module was uploaded.Upload Time

The status of the module. Possible statuses are: Enabled,
Disabled, Active, and Inactive.

You can control whether a module is enabled or disabled.
If enabled, Cisco UCS Director attempts to initialize the
module; if disabled, Cisco UCS Director ignores the
module. A module is set to the Active state only when
Cisco UCS Director is able to successfully initialize the
module without throwing an exception.

Active does not necessarily mean that everything
in the module is working properly; it merely
indicates that the module is up. Inactive means
that when Cisco UCS Director tried to initialize
the module, a severe error prevented it from doing
so. Typical causes for the Inactive flag are: the
module is compiled with the wrong version of
Java, or a class is missing from the module.

Note

Status

Indicates whether the module is validated or not.Validated

To enable module activation on upload, ensure that the .feature file in your module is named after your
module ID. For example: If moduleId is myFeatureName, then name your feature file
myFeatureName.feature.

The Cisco UCS Director framework identifies and loads the .feature file by name, based on the module ID.
If the name of the .feature file and the module ID are different, the .feature file does not load and the
module is not activated. If you choose to give the module ID and the .feature file different names, you must
restart Cisco UCS Director to activate the module.

Note

Step 3 Click Add to add a new module.

 Cisco UCS Director Open Automation Getting Started Guide, Release 6.5
12

Getting Started with Cisco UCS Director Open Automation
Deploying a Module on Cisco UCS Director

The Add Modules dialog box appears.

Step 4 Choose the module zip file from your local files and click Upload to upload the module zip file.
Step 5 Enable the module by choosing the module in theModules table and clicking Enable.
Step 6 Wait while Cisco UCS Director activates the module.

Restarting Cisco UCSDirector is not required to enable a module. However, youmust restart Cisco UCSDirector
to disable, modify, or delete a module.

Note

What to Do Next

Once the module is active, you can test the module.

Cisco UCS Director Open Automation Getting Started Guide, Release 6.5
13

Getting Started with Cisco UCS Director Open Automation
Deploying a Module on Cisco UCS Director

 Cisco UCS Director Open Automation Getting Started Guide, Release 6.5
14

Getting Started with Cisco UCS Director Open Automation
Deploying a Module on Cisco UCS Director

	Getting Started with Cisco UCS Director Open Automation
	Cisco UCS Director Open Automation
	Recommended Tools
	Setting up Eclipse
	Downloading the Open Automation SDK Bundle
	Importing the Cisco UCS Director Open Automation SDK Project into the Eclipse IDE
	Using EGit to Import the Open Automation SDK Bundle
	Installing the EGit Plug-In in Eclipse
	Importing the Open Automation SDK Bundles into Eclipse

	Upgrading Your Connector to the Current Release
	Modules
	Guidelines for Developing a Module
	Creating a Module
	Understanding the module.properties File

	Packaging the Module
	Deploying a Module on Cisco UCS Director

