Introduction

* Introduction to CTI, on page 1

* CTI-Enabled Applications, on page 1

* Events and Requests Within CTI Environment, on page 2
* Overview of CTI OS, on page 4

Introduction to CTI

The workflow of a modern contact center is based on two main areas: the media for communicating with the
customer and the platform for servicing customer requests.

CTlI is the integration of the communications media (phone, email, or web) with the customer service platform
(customer databases, transaction processing systems, or CRM (customer relationship management) software
packages).

Integrating communications media with the customer service platform helps agents serve customers improved
and faster in the following two ways:

» It enables the agent to leverage the information and events provided by the media to direct workflow.

* It increases the depth and breadth of customer information presented to the agent when the customer's
contact arrives at the workstation.

CTl-Enabled Applications

Screen Pop

A CTlI-enabled application is one in which the software an agent uses to service a customer request is driven
by information generated by the presentation of the customer contact.

The most common CTI application is a screen pop. In a screen pop, the customer service platform is provided
with customer information at the arrival of a phone call and begins processing the customer's transaction at
the same time as the communication begins between the customer and the agent. This transfer of customer
information is called the call context information: a rich set of customer-specific data that travels with the call
throughout the enterprise.

Introduction .

. Agent State Control

Introduction |

For example, a phone call can trigger a screen pop application for a cellular telephone company. It uses the
customer ANI (automated number identification, or calling line ID) to do a database look up to retrieve the
customer's account information and displays this customer record for the agent. By the time the agent can say
“Thank you for calling ABC Telephony Company,” the account record is on the screen and the agent is ready
to service the customer's request.

Agent State Control

Similar to a screen pop, CTI application control of agent state is a way to improve the agent's workflow by
integrating the service delivery platform with the communications media. A CTI application enabled for agent
state can set the agent's current work state according to the type of work being performed.

For example, a sales application can automatically send an agent to a wrap-up or after-call work state when
the customer contact terminates. The agent can then enter wrap up data about that transaction or customer
inquiry and (subject to a timer) change the state automatically back to available when the wrap up work is
complete.

Third-Party Call Control

The most advanced CTI integration projects seek a total integration of the customer service platform with the
communications media. In third-party call control applications, the actual control over the teleset or other
media is initiated via the software application and coordinated with application screens or views.

For example, a financial services application can transfer a phone call to a speed-dial number designated by
the application itself. In this scenario, the agent can click a button to determine the appropriate destination
for the transfer, save the application's customer context, and transfer the call to the other agent.

Events and Requests Within CTI Environment

The first step to developing a CTI-enabled application is to understand the events and requests that are at play
within the CTI environment. Asynchronous events are messages sent to applications that indicate an event to
which the application can respond (for example, CallBeginEvent). Requests are the mechanism that the
application uses to request that a desired behavior happen (for example, TransferCall).

Asynchronous Events

The CTI environment is one of diverse servers and applications communicating over a network. This naturally
leads to asynchronous, or unsolicited events — events that arrive based on some stimulus external to the user's
application. The main source of events in the CTI environment is the communications media.

The following figure depicts the stages of a typical inbound telephone call and its associated events.

Figure 1: Typical Inbound Call Events Flow

fcn,gﬁl-m f ﬁzll:rL\rEllED/ %;;Erm /E’L‘LE;RE,, / GALLEND
| CALL SETUR | RINGING | TALKING | IWRAP UP
I I ! | ’{

The following events are generated, based on the state of the call:

. Introduction

| Introduction
Request-Response Paradigm .

* OnCallBegin: Indicates that the call has entered the setup phase.

* OnCallDelivered: Generated when the call starts ringing.

* OnCallEstablished: Generated when the call is answered.

* OnCallCleared: Generated when the voice connection is terminated (e.g. call hung up).

* OnCallEnd: Generated when the logical call appearance (including call data) is complete.

In addition to the events and states shown in the figure above, the following are typical call events that CTI
applications use:

» OnCallHeld: Generated when the call transitions from the active to held state.
» OnCallRetrieved: Generated when the call is removed from hold.
* OnCallTransferred: Indicates that the call has been transferred to another party.

* OnCallConferenced: Indicates that a new party has been added to the call.

The foregoing is only a brief sample of the events available via CTI OS. The complete set of events available
for CTI developers is detailed in later chapters in this guide.

Request-Response Paradigm

In addition to responding to asynchronous events, a CTI enabled application can make programmatic requests
for services via the CTI interface. Specifically, the CTI application uses the request-response mechanism to
perform agent state and third-party call control, and to set call context data.

The typical request-response flow for CTI uses the model shown in the following figure:

Figure 2: Sample Request-Response Message Flow

CLIENT SERVER

REGQUEE

COMF

2V

EVENT

A request generated by the CTI-enabled application (CLIENT) is sent to the CTI service (SERVER), and a
response message (CONF) is generated to indicate that the request was received. In most cases if the request
is successful, a follow-on event is received indicating that the desired behavior has occurred. Detailed
descriptions of this kind of request-response-event message flow are detailed in later chapters in this guide.

Introduction .

Introduction |
B overiewofcTiOS

Overview of CTI 0S

The Computer Telephony Integration Object Server (CTI OS) is Cisco's next generation customer contact
integration platform. CTI OS combines a powerful, feature-rich server and an object-oriented software
development toolkit to enable rapid development and deployment of complex CTI applications. Together
with the Cisco CTI Server Interface, CTI OS and Client Interface Library (CIL) creates a high performance,
scalable, fault-tolerant three-tiered CTI architecture, as illustrated in the figure below.

Figure 3: CTI OS Three-Tiered Architecture Topology

Cisco CTI OS5 Server

.

I L
|
Ethernet

Cisco Peripheral Gateway
Cisco CTI Server

Site Telephone
Network

==l

PBX/ACD

The CTI OS application architecture employs three tiers:

* The CIL is the first tier and provides an application-level interface to developers.

* The CTI OS Server is the second tier and provides the bulk of the event and request processing and
enabling the object services of the CTI OS system.

* The Cisco CTI Server is the third tier and provides the event source and the back-end handling of telephony
requests.

Advantages of CTI OS as a CTl Development Interface

CTI OS brings several major advances to developing custom CTI integration solutions. The CIL provides an
object-oriented and event driven application programming interface (API), while the CTI OS server does all
the heavy-lifting of the CTI integration: updating call context information, determining which buttons to
enable on softphones, providing easy access to supervisor features, and automatically recovering from failover
scenarios.

* Rapid integration. Developing CTI applications with CTI OS is significantly easier and faster than any
previously available Cisco CTI integration platform. The same object oriented interface is used across
programming languages, enabling rapid integrations in .NET, and C++, Visual Basic, or any Microsoft
COM compliant container environment. Developers can use CTI OS to create a screen pop application
in as little as five minutes. The only custom-development effort required is within the homegrown
application to which CTI is being added.

» Complex solutions made ssimple. CTI OS enables complex server-to-server integrations and multiple
agent monitoring-type applications. The CIL provides a single object-oriented interface that you can use

. Introduction

| Introduction
Key Benefits of CTI OS for CTI Application Developers .

in two modes: Agent Mode and Monitor Mode. See CTI OS Client Interface Library Architecture for an
explanation of these two modes.

« Fault tolerant. CTI OS is built upon the Unified ICM NodeManager fault-tolerance platform, which
automatically detects process failure and restarts the process, enabling work to continue. Upon recovery
from a failure, CTI OS initiates a complete, system-wide snapshot of all agents, calls, and supervisors
and propagates updates to all client-side objects.

Related Topics
Client Interface Library Architecture
Advantages of CTI OS as a CTI Development Interface, on page 4

Key Benefits of CTI OS for CTI Application Developers

The CTI OS Client Interface Library (CIL) provides programmers with the tools to rapidly develop high-quality
CTI enabled applications, taking advantage of the rich features of the CTI OS server. Every feature of CTI
OS was designed with ease of integration in mind, to remove the traditional barriers to entry for CTI integrations.

* Object-oriented interactions. CTI OS provides an object-oriented CTI interface by defining objects
for all call center interactions. Programmers interface directly with Session, Agent, SkillGroup, and Call
objects to perform all functions. CIL objects are thin proxies for the server-side objects, where all the
heavy-lifting is done. The Session object manages all objects within the CIL. A UniqueObjectID identifies
each object. Programmers can access an object by its UniqueObjectID or by iterating through the object
collections.

Connection and session management. The CTI OS CIL provides out-of-the-box connection and session
management with the CTI OS Server, hiding all of the details of the TCP/IP sockets connection. The
CIL also provides an out-of-the-box failover recovery: upon recovery from a failure, the CIL automatically
reconnects to another CTI OS (or reconnects to the same CTI OS after restart), re-establishes the session,
and recovers all objects for that session.

All parametersarekey-valuepairs. The CTI OS CIL provides helper classes treat all event and request
parameters as simply a set of key-value pairs. All properties on the CTI OS objects are accessible by
name via a simple Value = GetValue (“key”) mechanism. Client programmers can add values of any
type to the CTI OS Arguments structure, using the enumerated CTI OS keywords, or their own string
keywords (for example, AddItem[“DialedNumber”, “1234”]). This provides for future enhancement of
the interface without requiring any changes to the method signatures.

Simple event subscription model. The CTI OS CIL implements a publisher-subscriber design pattern
to enable easy subscription to event interfaces. Programmers can subscribe to the appropriate event
interface that suits their needs, or use the AlllnOne interface to subscribe for all events. C++ and COM
contain subclassable event adapter classes. These classes enable programmers to subscribe to event
interfaces; they add only minimal custom code for the events they use and no code at all for events they
do not use.

lllustrative Code Fragments

Throughout this manual, illustrative code fragments are provided both to clarify the usage and as examples.
These fragments are written in several languages, including NET (VB .NET). Note that the VB code fragments
are written using the VB 6 syntax.

Introduction .

ucce_b_ctios-developer-guide_12_5_chapter2.pdf#nameddest=unique_24
ucce_b_ctios-developer-guide_12_5_chapter2.pdf#nameddest=unique_25

Introduction |
. Illustrative Code Fragments

. Introduction

	Introduction
	Introduction to CTI
	CTI-Enabled Applications
	Screen Pop
	Agent State Control
	Third-Party Call Control

	Events and Requests Within CTI Environment
	Asynchronous Events
	Request-Response Paradigm

	Overview of CTI OS
	Advantages of CTI OS as a CTI Development Interface
	Key Benefits of CTI OS for CTI Application Developers
	Illustrative Code Fragments

