Introduction to VPC-SI

This chapter introduces Cisco Virtualized Packet Core—Single Instance (VPC-SI). VPC-SI addresses the
need for virtualized cloud architectures that enable the accelerated deployment of new applications and services
in the mobile market.

* Product Description, on page 1

* Feature Set, on page 4

* Redundancy and Availability, on page 5

* Hypervisor Requirements, on page 6

* DPDK Internal Forwarder, on page 8

* Capacity, CEPS and Throughput, on page 11

* Diagnostics and Monitoring, on page 11

* StarOS VPC-SI Build Components, on page 11

* VPC-SI Boot Parameters, on page 12

* Software Installation and Network Deployment, on page 24

Product Description

This chapter describes the StarOS ASR 5500VPC-SI architecture and interaction with external devices.

VPC-SI consolidates the operations of physical Cisco ASR 5500 chassis running StarOS into a single Virtual
Machine (VM) able to run on commercial off-the-shelf (COTS) servers. Each VPC-SI VM operates as an
independent StarOS instance, incorporating the management and session processing capabilities of a physical
chassis.

Virtualized Mobility Functions

VPC-SI consists of the set virtualized mobility functions that implement mobility specific services and
applications within the core of the network. These functions include the:

* Mobile Packet Core

* LTE MME (Mobile Management Entity), P-GW (PDN Gateway) and S-GW (Serving Gateway)
* GGSN Gateway GPRS Support Node

* SAE-GW System Architecture Evolution Gateway

* SGSN Serving GPRS Support Node (3G only)

Introduction to VPC-SI .

Introduction to VPC-SI |
. VM Interconnect Architecture

* Mobile Control Plane PCRF (Policy and Charging Rule Function), application gateway, analytics, services
orchestration, abstraction and control functions
* Small cell gateways

* HNBGW Home NodeB Gateway

* HeNBGW evolved Home NodeB Gateway

* SAMOG S2a Mobility over GTP combine CGW (Converged Access Gateway) and Trusted WLAN
AAA Proxy (TWAP) functions on a single service node

Mobile Cloud Network (MCN) is a network infrastructure that includes Infrastructure as a Service (IaaS), the
orchestration mechanisms, analytics mechanisms etc., upon which the VPC-SI as well as other services are

deployed.

VM Interconnect Architecture
This figure below shows basic L2/L3 interconnection as supported by VPC-SI.

Figure 1: L2/L3 Interconnection

StarOS StarOS Star0Ss Star0S
L L4 L ¥
DY S — | e -
Hypervisor ey | | VLANB Hypervisor VLAN A | I VLANB

(KVM or Vmware) (KVM or Vmware)

Server Hardware - Server Hardware
(CPU, Memory, Storage) E (CPU, Memory, Storage)
o
UCS Server - UCS Server
g
------ PHY
(Physical Top of Rack Switch/Router
H ______ IPHY
~
| Data Center/Cloud Fabric

35833

In the figure above, a virtual switch is embedded within the hypervisor to support SDN L2 capabilities across
the data center. The virtual switch is interconnected to other virtual switches using 802.1Q trunks (VLANS).
Typically, the virtual switch is a dynamically loaded kernel module.

. Introduction to VPC-SI

| Introduction to VPC-SI
Standalone Instance .

Standalone Instance

VPC-SI is essentially StarOS running within a Virtual Machine (VM) on a COTS platform. It can be used as
a stand-alone single VM within an enterprise, remote site, or customer data center. Alternatively, VPC-SI can
be integrated as a part of a larger service provider orchestration solution.

The Single Instance architecture is best suited for low capacity scenarios. Scaling the VPC-SI Virtual Network
Function (VNF) requires significant network level configurations for certain VNF types (such as, P-GW,
S-GW, MME, PCREF, Firewall and NAT). For example, if a new VPC-SI P-GW is added or removed, various
Diameter peers must be configured with this information DNS is provisioned or de-provisioned with this
information.

VPC-SI only interacts with supported hypervisors KVM (Kernel-based Virtual Machine) and VMware ESXi.
It has little or no knowledge of physical devices.

Typically, VPC-SI should be deployed in Interchassis Session Recovery (ICSR) pairs to provide physical
redundancy in case of hardware or hypervisor failure.

Figure 2: VPC-SI Overview

Blade or Standalone Server
Hypervisor . .
Virtual Machine
(KVM or VMware)
StarOS Star0S
Telneted (KVM) Saral Linux Kemal Software Tasks
Proprietary {Whhware) Console
Eth || WHC (KWWY WEA
MGMT Propigtary (Whwars) KBD Metlink MEMT
Boxartap NFUMGR
NIC A Ethemet 1 MGMT vEth port Eth 111
Bridges/Switch (mgmt}
BME VPN
[multiple)
NIC P S Ethermit Eth 1110
BridgesSwitch (2] DEMUK
1 to 12 service IPuIPvE (multipla)
vEth ports
NIC A Ethemet Eth 111
Bridge/Switch (smve) BETHEPFP SESS/ALA
[multiple)
NAS Miscellaneous
BDP
Storage
FC Eal e 4GB vHDD ffash Tasks
g NPUSIM NPUSIM
. Local SAN Largs vHOD Ihe-raid {muttiple) (muliiple)
ar [opfionaly (aptional)
Local

335812

Each VPC-SI VM takes on the roles of an entire StarOS system. The only interfaces exposed outside the VM
are those for external management and service traffic. Each VM is managed independently.

Each VPC-SI VM performs the following StarOS functions:

* Controller tasks
* Out-of-band management for CLI and Logging (vSerial and vK VM)

Introduction to VPC-SI .

. Feature Set

Introduction to VPC-SI |

* Local context vpnmgr

* Local context management (VNICs)

* System boot image and configuration storage on vHDD
* Record storage on vHDD

» NPU simulation via fastpath and slowpath

* Non-local context (vNICs, 1 to 12).

» Demux and vpnmgr for session processing

* Crypto processing

Feature Set

Interfaces and Addressing

The VM is represented as a virtual card with a single CPU subsystem. This makes many CLI commands, logs,
and functions work similarly to StarOS running on ASR 5500 platform.

Applications written for StarOS see VPC-SI as just another platform with a one-slot virtual chassis supporting
a single virtual card.

StarOS concepts of contexts, services, pools, interfaces, cards, and ports exist on VPC-SI just as on existing
platforms.

When the VM boots, the vNICs configured in the VM profile are detected and an equivalent number of "Virtual
Ethernet' type ports appear in the StarOS CLI.

» VPC-SI assigns the vNIC interfaces in the order offered by the hypervisor.

* First interface offered is 1/1 for VPC-SI management.

* Second interface offered is 1/10 for VPC-SI Services control and data traffic.

* Optional third interface offered is 1/11 for VPC-SI Services control and data traffic.
* Optional fourth and subsequent interfaces will be 1/12, 1/13

» It is critical to confirm that the interfaces listed in the supported hypervisors line up with the KVM BR
group or VMware vSwitch in the order in which you want them to match the VPC-SI interfaces.

Note

Encryption

You cannot be guaranteed that the order of the vNICs as listed in the hypervisor CLI/GUI is the same as how
the hypervisor offers them to VPC-SI. On initial setup you must use the show hardware CLI command to
walk through the MAC addresses shown on the hypervisor's vVNIC configuration and match them up with the
MAC addresses learned by VPC-SI. This will confirm that the VPC-SI interfaces are connected to the intended
BR group/Vswitch.

VMs within a ASR 5500VPC-SI instance perform software-based encryption and tunneling of packets (as
opposed to the higher-throughput hardware-based services). Call models that make heavy use of encryption
for bearer packets or have significant PKI (Public Key Infrastructure) key generation rates may require
significant compute resources.

. Introduction to VPC-SI

| Introduction to VPC-SI

Security

Security .

If your COTS server hardware uses the Coleto Creek chipset based on the Intel 89xx chip, the system
automatically utilizes this hardware chip for encryption and decryption of packets. However, all service
function VMs must use this chipset in order for the system to use the hardware chipset for encryption and
decryption.

Security of external traffic including tunneling, encryption, Access Control Lists (ACLs), context separation,
and user authentication function as on existing StarOS platforms. User ports and interfaces on the CFs and
SFs are protected through StarOS CLI configuration.

The virtual system adds additional security concerns on the customer because network communication travel
over the DI network on datacenter equipment.

The DI network must be isolated from other hosts within the datacenter by limiting membership in the system
network's VLAN to VMs within that specific ASR 5500VPC-SI instance. Unauthorized access to the DI
network through other hosts being inadvertently added to that network or the compromise of a router, switch
or hypervisor could disrupt or circumvent the security measures of StarOS. Such disruptions can result in
failures, loss of service, and/or exposure of control and bearer packets. Properly securing access to the DI
network is beyond the control of StarOS.

Communication between DI network component (e.g. CF and SF) VMs is now only possibley via authentication
over externally supplied SSH keys. In addition, the system enforces public/private key-based SSH authentication
for logins within the DI network. No passwords, keys or LI information are stored or sent in clear text.

If an operator requires physical separation of networks, such as management versus bearer versus LI (Lawful
Intercept), then physical separation of the DI network should also be done since it carries sensitive data. In a
virtualized environment, the physical separation of networks may not be possible or practical. Operators that
have these requirements may need to qualify their hypervisor and infrastructure to confirm that it will provide
sufficient protection for their needs.

Redundancy and Availability

Platform Requirements

The virtual system relies on the underlying hardware and hypervisor for overall system redundancy and
availability.

The hardware and hypervisor should provide:
* Redundant hardware components where practical (such as power supplies, disks)
* Redundant network paths (dual fabric/NICs, with automatic failover)

* Redundant network uplinks (switches, routers, etc.)
High availability can only be achieved if the underlying infrastructure (hosts, hypervisor, and network) can

provide availability and reliability that exceeds expected values. The system is only as reliable as the
environment on which it runs.

Introduction to VPC-SI .

Introduction to VPC-SI |
. ICSR Support

Interchassis Session Recovery (ICSR) is also recommended to improve availability and recovery time in the
case of a non-redundant hardware failure (such as CPU, memory, motherboard, hypervisor software). ICSR
provides redundancy at the session level for gateways only.

ICSR Support

ASR 5500VPC-SI supports ICSR between two instances for services that support ICSR in the StarOS software

release. When more than one service type is in use, only those services that support ICSR will be able to use
ICSR.

ICSR supports redundancy for site/row/rack/host outages, and major software faults. To do so, the two instances
should be run on non-overlapping hosts and network interconnects. ICSR is supported only between
like-configured instances. ICSR between a ASR 5500VPC-SI instance and another type of platform (such as
an ASR 5500) is not supported.

L3 ICSR is supported.

For additional information, refer to the Interchassis Session Recovery chapter in this guide.

Hypervisor Requirements

VPC-SI has been qualified to run under the following hypervisors:

* Kernel-based Virtual Machine (KVM) - QEMU emulator 2.0. The VPC-SI StarOS installation build
includes a libvirt XML template and ssi_install.sh for VM creation under Ubuntu Server14.04.

* KVM - Red Hat Enterprise Linux 7.2: The VPC-SI StarOS installation build includes an install script
called qvpc-si_install.sh.

* VMware ESXi 6.0: The VPC-SI StarOS installation build includes OVF (Open Virtualization Format)
and OVA (Open Virtual Application) templates for VM creation via the ESXi GUI.

* VMware ESXi

* Version 6.0: The VPC-SI StarOS installation build includes OVF (Open Virtualization Format) and
OVA (Open Virtual Application) templates for VM creation via the ESXi GUI. This version is
supported in releases prior to Release 21.8

* Version 6.5: Supported in Release 21.8 and 21.9

* Version 6.7: Supported from Release 21.10 onwards

VM Configuration
VPC-SI requires that the VM be configured with:
* X vCPUs (see vCPU and vVRAM Options, on page 7)
* Y vVRAM (see vCPU and vRAM Options, on page 7)
* First vNIC is the management port (see VNIC Options, on page 7)

* Second and subsequent vINICs are service ports; one VNIC is required and up to 12 are supported by the
VPC, but this number may be limited by the hypervisor

. Introduction to VPC-SI

| Introduction to VPC-SI

vCPU and vRAM Options [JJ]

* First vHDD is for boot image and configuration storage (4 GB recommended)

* Second vHDD is for record storage [optional] (16 GB minimum)

vCPU and vRAM Options

A CPU is a single physical computer chip that can have more than one physical CPU core that is fully capable
of running the entire system and applications by itself. Virtual core technology supports multiple logical
processors (vCPUs) per physical core. The total number of vCPUs supported on a specific platform varies
based on the number of available physical cores and the type of virtual core technology implemented in each
core.

CF and SF run within VMs that are assigned a number of vCPUs, each supporting one thread (sequence of
instructions). The number of available vCPUs supported by the platform CPU may exceed the maximum
number of vCPUs that can be assigned to the VM via the hypervisor.

Note

The number vCPUs per VM should never exceed the maximum number of vCPUs supported by the platform
CPU.

To maximize performance, it may be desirable to adjust the number of vCPUs or VRAM to align with the
underlying hardware. SF supports varied vCPU and VRAM combinations, however all SFs must share the
same combination within an instance.

Software will determine the optimal number of SESSMGR tasks per SF on startup of the SF based on the
number of vCPUs and amount of vVRAM on that SF.

Note

vNIC Options

Dynamic resizing of vCPU count, VRAM size or vNIC type/count (via hotplug, ballooning, etc.) is not
supported. If these values need to be changed after provisioning, all VMs must be shut down and reconfigured.
Reconfiguration can be performed only on all VMs at once. VMs cannot be reconfigured one at a time since
the CPUs and RAM would not match the other instances.

In this release the supported vNIC options include:
* VMXNET3—Paravirtual NIC for VMware

e VIRTIO—Paravirtual NIC for KMV
* ixgbe—Intel 10 Gigabit NIC virtual function
* enic—Cisco UCS NIC

Introduction to VPC-SI .

. Hard Drive Storage

Introduction to VPC-SI |

Hard Drive Storage

In additional to the mandatory /flash (non-RAID) drive, the system supports RAID1 under a virtual machine
(VM). For each VM, Virtual SCSI disks can be created, on CF only, matching the SCSI ID shown in this
table. The minimum disk size must be greater than 16 GB.

Table 1: Disk Mapping

Type [flash hd-locall Notes
(non-RAID)
KVM SCSI 0:0:0:0 SCSI 0:0:1:0 Raw disk hd-locall uses
RAID1
VMware SCSI 0:0:0:0 SCSI0:0:1:0 Raw disk hd-locall and
hd-remotel use RAID1

For record storage (CDRs and UDRs) the CF VM should be provisioned with a second vHDD sized to meet
anticipated record requirements (minimum 16GB). Records will be written to /records on the second vHDD.

DPDK Internal Forwarder

The Intel Data Plane Development Kit (DPDK) is an integral part of the VPC-SI architecture and is used to
enhance performance of VPC-SI systems configured with 8 or more vCPUs. The DPDK Internal Forwarder
(IFTASK) is a software component that is responsible for packet input and output operations and provides a
fast path for packet processing in the user space by bypassing the Linux kernel. During the VPC-SI boot
process, a proportion of the vCPUs are allocated to IFTASK and the remainder are allocated to application
processing.

To determine which vCPUs are used by IFTASK and view their utilization, use the show npu utilization
table command as shown here:

[local]lmySystem# show npu utilization table

Frkxkxkxx gshow npu utilization table card 1 ****x**x*

5-Sec Avg: lcore00|lcore0l|lcore02|lcore03|lcorel4|lcore05|lcorel6|lcorel7]
IDLE: | 4% | 43% | 24% | 45% | 17%| |
|
QUEUE_PORT RX: [345 56% | | I I I

QUEUE_PORT_TX: I I [[I I
QUEUE_VNPU_RX: I I [[I I
QUEUE_VNPU_TX: I I [[I I
QUEUE_KNI_RX: [57%| | | | |
QUEUE_KNI_TX: I [[[I I I
QUEUE_THREAD KNT: I 3% I I I I

QUEUE_MCDMA_RX: I [I 7%

o
u
o

QUEUE_MCDMA_TX: I I [[I I I

. Introduction to VPC-SI

| Introduction to VPC-SI
DPDK Internal Forwarder .

QUEUE_THREAD_ MCDMA: | | | 8% | | 24%|
QUEUE_THREAD VNPU: | | I I I I
QUEUE_CRYPTO_RX: I I [[I I
QUEUE_CRYPTO_TX: I I [[I I
QUEUE_THREAD_IPC: I I [[I I
MCDMA_FLUSH: | I I 59%| 54%| 51%]|
QUEUE_THREAD_TYPE MAX: I I [[I I
300-Sec Avg: lcore00|lcore0l]|lcore02|lcore03|lcore04|lcore05|lcorel6]|lcorel7]

IDLE: | 99% | 100%| 31%| 30% 32%| |
QUEUE_PORT RX: | 0% I | | I
QUEUE_PORT TX: I I | | I I
QUEUE_VNPU RX: I I | | I I
QUEUE_VNPU TX: I I | | I I

QUEUE_ KNI RX: I | | | I I I

QUEUE_ KNI TX: I | | | I I I
QUEUE_THREAD_KNI: I I [[I I
QUEUE_MCDMA RX: | | | 0% | 0% | 0%
QUEUE MCDMA TX: I I | | I I
QUEUE_THREAD_ MCDMA: | | | | | |
QUEUE_THREAD VNPU: | | I I I I
QUEUE_CRYPTO_RX: I I [[I I
QUEUE_CRYPTO_TX: I I [[I I
QUEUE_THREAD_IPC: I I [[I I
MCDMA_FLUSH: | I I 68%| 69%| 67%|
QUEUE_THREAD_TYPE MAX: I I [[I I

900-Sec Avg: lcore00|lcore0l]|lcore02]|lcore03|lcore04|lcore05|lcorel6]|lcorel7]

IDLE: | 99%| 100% | 31%| 31%| 32%|
QUEUE_PORT RX: | 0% I | | I
QUEUE_PORT TX: I I | | I I
QUEUE_VNPU RX: I I | | I I
QUEUE_VNPU TX: I I | | I I

QUEUE_ KNI RX: I | | | I I I

Introduction to VPC-SI .

. DPDK Internal Forwarder

QUEUE_KNI_TX: I
QUEUE_THREAD_KNI: [
QUEUE_MCDMA_RX: |
QUEUE_MCDMA_TX: |
QUEUE_THREAD_ MCDMA: |
QUEUE_THREAD_ VNPU: [
QUEUE_CRYPTO_RX: |
QUEUE_CRYPTO_TX: |
QUEUE_THREAD_IPC: [
MCDMA FLUSH: I

QUEUE THREAD TYPE MAX: |

thread 2 QUEUE PORT RX 77.22 %
thread 2 IDLE 22.78 %
thread 5 MCDMA_FLUSH 57.74 %
thread 5 IDLE 40.13 %
thread 5 QUEUE_THREAD MCDMA 2.13 %
thread 1 QUEUE KNI RX 50.39 %
thread 1 QUEUE PORT RX 40.72 %
thread 1 IDLE 6.13 %
thread 1 QUEUE_THREAD KNI 2.76 %
thread 3 QUEUE_THREAD MCDMA 41.17 %
thread 3 MCDMA FLUSH 38.31 %
thread 3 IDLE 16.28 %
thread 3 QUEUE MCDMA RX 4.24 %
thread 4 IDLE 56.03 %
thread 4 MCDMA_FLUSH 43.97 %

Introduction to VPC-SI |

68% | 68% | 67% |

To view CPU utilization for the VM without the IFTASK vCPUs, use the show cpu info command. For more

detailed information use the verbose keyword.

[local]lmySystem# show cpu info
Card 1, CPU O:

Status : Active, Kernel Running, Tasks Running
Load Average : 8.99, 9.50, 8.20 (11.89 max)

Total Memory : 16384M

Kernel Uptime 0D OH 49M

Last Reading:
CPU Usage
Poll CPUs
Processes / Tasks
Network

. Introduction to VPC-SI

16.6% user, 10.5% sys, 0.0% io, 4.6% irg, 68.3% idle
5 (1, 2, 3, 4, 5)
234 processes / 54 tasks

353.452 kpps rx, 3612.279 mbps rx, 282.869 kpps tx, 2632.760 mbps

| Introduction to VPC-SI

Capacity, CEPS and Throughput .

File Usage : 2336 open files, 1631523 available

Memory Usage : 4280M 26.1% used, 42M 0.3% reclaimable
Maximum/Minimum:

CPU Usage : 23.2% user, 11.2% sys, 0.1% io, 5.5% irqg, 61.5% idle

Poll CPUs : 5 (1, 2, 3, 4, 5)

Processes / Tasks : 244 processes / 54 tasks

Network : 453.449 kpps rx, 4635.918 mbps rx, 368.252 kpps tx, 3483.816 mbps
tx

File Usage : 3104 open files, 1630755 available

Memory Usage : 4318M 26.4% used, 46M 0.3% reclaimable

Capacity, CEPS and Throughput

Sizing a ASR 5500VPC-SI instance requires modeling of the expected call model.

Many service types require more resources than others. Packet size, throughput per session, CEPS (Call Events
per Second) rate, IPSec usage (site-to-site, subscriber, LI), contention with other VMs, and the underlying
hardware type (CPU speed, number of vCPUs) will further limit the effective number of maximum subscribers.
Qualification of a call model on equivalent hardware and hypervisor configuration is required.

Diagnostics and Monitoring

Because VPC-SI runs within VMs, no hardware diagnostics or monitoring are provided. Retrieval of hardware
sensor data (temperature, voltage, memory errors) are accomplished via the hypervisor and external monitoring
systems.

VPC-SI monitors and exports vCPU, VRAM, and vNIC usage through existing mechanisms including CLI
show commands, bulkstats and MIB traps. However, an operator may find that monitoring physical CPU,
RAM, and NIC values in the hypervisor is more useful.

Because vNICs have a variable max throughput (not defined as 1 Gbps or 10 Gbps for example), counters

and bulkstats that export utilization as a percentage of throughput may have little value. Absolute values (bps)
can be obtained from VPC-SI, but where possible physical infrastructure utilization should be obtained from
the hypervisor. This would not apply to pass-through PF NICs, as those will have a fixed maximum throughput.

Star0S VPC-SI Build Components

The following StarOS build filename types are associated with VPC-SI:

* qvpc-si-<version>.iso initial installation or startover ISO file.

* qvpc-si-<version>.bin update, upgrade or recovery file for a system that is already running. For additional
information refer to the StarOS Management Operations chapter.

* qvpc-si-template-libvirt-kvm-<version>.tgz KVM libvirt template plus ssi_install.sh.
* qvpc-si-template-vmware-<version>.ova VMware OVA template.

* qvpce-si-<version>.qcow2.gz KVM QCOW?2 disk template.

Introduction to VPC-SI .

Introduction to VPC-SI |
. VPC-SI Boot Parameters

VPC-SI Boot Parameters

The boot parameters file provides a means to pass configuration items to StarOS before it boots. These
parameters specify items such as the management, service, and VNFM interface details, as well as configuration
for the Internal Forwarder Task (iftask) created at StarOS start up.

The boot parameters are sourced in multiple ways, with all methods using the same parameter names and
usage. The first location for the boot parameters file is on the first partition of the first VM drive, for example,
/bootl/param.cfg. The second location searched is on the configuration drive, which is a virtual CD-ROM
drive. If you are using OpenStack, specify the target boot parameters file name as staros_param.cfg. If you
are not using OpenStack, create an ISO image with staros_param.cfg in the root directory and attach this ISO
to the first virtual CD-ROM drive of the VM.

As the VM boots, the param.cfg file is parsed first by the preboot environment known as CFE. Once the VM
starts Linux, the virtual CD-ROM drive is accessed to parse the staros_param.cfg file. If there are any conflicts
with values stored in the /boot1/param.cfg file, parameters in staros_param.cfg take precedence.

Format of the Boot Parameters File

The structure of the boot parameters file is:
VARIABLE NAME = VALUE

Specify one variable per line with a newline as the end of the line terminator (UNIX text file format). Variable
names and values are case insensitive. Invalid values are ignored and an error indication is displayed on the
VM console. If there are duplicate values for a variable (two different values specified for the same variable
name), the last value defined is used.

Numeric values do not need to be zero padded. For example a PCI_ID of 0:1:1.0 is treated the same as
0000:01:01.0.

Network Interface Identification

ASR 5500VPC-SI assigns the vNIC interfaces in the order offered by the hypervisor. You cannot be guaranteed
that the order of the vNICs as listed in the hypervisor CLI/GUI is the same as how the hypervisor offers them
to the VM.

The order that ASR 5500VPC-SI finds the vNICs is subject to the PCI bus enumeration order and even
paravirtual devices are represented on the PCI bus. The PCI bus is enumerated in a depth first manner where
bridges are explored before additional devices at the same level. If all the network interfaces are of the same
type then knowing the PCI topology is sufficient to get the vNIC order correct. If the network interfaces are
of different types, then the order is dependent on the PCI topology plus the device driver load order inside
the VM. The device driver load order is not guaranteed to be the same from software release to release but in
general paravirtual devices are prior to pass-through devices.

There are several methods available to identify NICs.
* MAC address: MAC address of the interface
* Virtual PCI ID

. Introduction to VPC-SI

| Introduction to VPC-SI
Network Interface Identification .

* Bonded interfaces: When using network device bonding, network interfaces are identified to serve as
the slave interface role. The slave interfaces in the bond are identified using MAC, PCI ID, or Interface

type.

* Interface type and instance number.

Virtual PCI ID

Devices on a PCI bus are identified by a unique tuple known as the domain, bus, device, and function numbers.
These identifiers can be identified in several ways.

Inside the guest, the Ispeci utility shows the bus configuration:

lspci

00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC [Natoma] (rev 02)
00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II]
00:01.1 IDE interface: Intel Corporation 82371SB PIIX3 IDE [Natoma/Triton II]
00:01.2 USB controller: Intel Corporation 82371SB PIIX3 USB [Natoma/Triton II] (rev 01)
00:01.3 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 03)

00:02.0 VGA compatible controller: Cirrus Logic GD 5446

00:03.0 System peripheral: Intel Corporation 6300ESB Watchdog Timer

00:04.0 Unclassified device [00ff]: Red Hat, Inc Virtio memory balloon
00:05.0 Ethernet controller: Red Hat, Inc Virtio network device

00:06.0 Ethernet controller: Red Hat, Inc Virtio network device

The domain, bus, device, and function numbers for this virtual bus are shown here:

Table 2: Virtual PCI IDs

Line Domain |Bus Device |Function
00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC | 0 0 0 0
[Natoma] (rev 02)

00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA 0 0 1 0
[Natoma/Triton II]

00:01.1 IDE interface: Intel Corporation 82371SB PIIX3 IDE |0 0 1 1
[Natoma/Triton II]

00:01.2 USB controller: Intel Corporation 82371SB PIIX3 USB | 0 0 1 2
[Natoma/Triton II] (rev 01)

00:01.3 Bridge: Intel Corporation 82371 AB/EB/MB PIIX4 ACPI | 0 0 1 3
(rev 03)

00:02.0 VGA compatible controller: Cirrus Logic GD 5446 0 0 2 0
00:03.0 System peripheral: Intel Corporation 6300ESB Watchdog | 0 0 3 0
Timer

00:04.0 Unclassified device [00ff]: Red Hat, Inc Virtio memory | 0 0 4 0
balloon

00:05.0 Ethernet controller: Red Hat, Inc Virtio network device | 0 0 5 0

Introduction to VPC-SI .

. Network Interface Identification

Introduction to VPC-SI |

Line Domain |Bus

Device

Function

00:06.0 Ethernet controller: Red Hat, Inc Virtio network device | 0 0

6

0

For libvirt-based virtual machines, you can get the virtual PCI bus topology from the virsh dumpxml command.
Note that the libvirt schema uses the term slof for the device number. This is a snippet of the xml description

of the virtual machine used in the previous example:

<interface type='bridge'>
<mac address='52:54:00:c2:d0:5f"'/>
<source bridge='br3043'/>
<target dev='vnet0'/>
<model type='virtio'/>
<driver name='vhost' queues='8'/>
<alias name='net0'/>

<address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>

</interface>
<interface type='bridge'>
<mac address='52:54:00:c3:60:eb'/>
<source bridge='br0'/>
<target dev='vnetl'/>
<model type='virtio'/>
<alias name='netl'/>

<address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/>

</interface>

Interface Type and Instance Number

Here the NIC is identified by its type using its Linux device driver name (virtio_net, vmxnet3, ixgbe, i40e,
etc) and its instance number. The instance number is based on PCI enumeration order for that type of interface
starting at instance number 1. The interface type is available to identify both paravirtual types as well as
pass-through interfaces and SR-IOV virtual functions. The PCI enumeration order of devices on the PCI bus

can be seen from the Ispci utility.

For example, a CF with the following guest PCI topology indicates that virtio net interface number] is the
Ethernet controller at 00:05.0 and virtio_net interface number 2 is the Ethernet Controller at 00:06.0. The

output is from the Ispci command executed in the guest:

lspci

00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC [Natoma] (rev 02)
00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II]
00:01.1 IDE interface: Intel Corporation 82371SB PIIX3 IDE [Natoma/Triton II]
00:01.2 USB controller: Intel Corporation 82371SB PIIX3 USB [Natoma/Triton II]
00:01.3 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 03)

00:02.0 VGA compatible controller: Cirrus Logic GD 5446

00:03.0 System peripheral: Intel Corporation 6300ESB Watchdog Timer

00:04.0 Unclassified device [00ff]: Red Hat, Inc Virtio memory balloon
00:05.0 Ethernet controller: Red Hat, Inc Virtio network device

00:06.0 Ethernet controller: Red Hat, Inc Virtio network device

Here is the complete list of the supported Linux drivers:

. Introduction to VPC-SI

(rev 01)

| Introduction to VPC-SI

Table 3: Supported Linux Drivers

Network Interface Identification .

Type

PCI Vendor / Device ID

Driver Name

VIRTIO (paravirtual NIC for KVM)

0x10af/ 0x1000

virtio_net

VMXNETS3 (paravirtual NIC for VMware)

0x15ad / 0x07b0

vmxnet3

Intel 10 Gigabit Ethernet

0x8086 / 0x10b6
0x8086 / 0x10c6
0x8086 / 0x10c7
0x8086 / 0x10c8
0x8086 / 0x150b
0x8086 / 0x10dd
0x8086 / 0x10ec
0x8086 / 0x10f1
0x8086 / 0x10el
0x8086 / 0x10db
0x8086 / 0x1508
0x8086 / 0x10£7
0x8086 / 0x10fc
0x8086 / 0x1517
0x8086 / 0x10fb
0x8086 / 0x1507
0x8086 / 0x1514
0x8086 / 0x10f9
0x8086 / 0x152a
0x8086 / 0x1529
0x8086 / 0x151c
0x8086 / 0x10£8
0x8086 / 0x1528
0x8086 / 0x154d
0x8086 / 0x154f
0x8086 / 0x1557

ixgbe

Intel 10 Gigabit NIC virtual function

0x8086 / 0x10ed
0x8086 / 0x1515

ixgbevf

Introduction to VPC-SI .

. Configuring VPC-SI Boot Parameters

Introduction to VPC-SI |

Type

PCI Vendor / Device ID

Driver Name

Cisco UCS NIC

0x1137/0x0043
0x1137 / 0x0044
0x1137/0x0071

enic

Mellanox ConnectX-5

Note Mellanox is supported only on
the User Plane.

0x15b3/0x1017
0x15b3/0x1018

mlx5 core

Intel 710 family NIC (PF)

0x8086 / 0x1572 (40 gig)
0x8086 / 0x1574 (40 gig)
0x8086 / 0x1580 (40 gig)
0x8086 / 0x1581 (40 gig)
0x8086 / 0x1583 (40 gig)
0x8086 / 0x1584 (40 gig)
0x8086 / 0x1585 (40 gig)
0x8086 / 0x158a (25 gig)
0x8086 / 0x158b (25 gig)

140e**

Intel 710 family NIC virtual function

0x8086 / 0x154c

140evf

** Note: A known issue exists where MAC address assignment does not occur dynamically for SRIOV VFs
created on the host when using the i40e driver. MAC address assignment is necessary to boot the StarOS VM.
As a workaround, MAC address assignment must be configured from the host. Refer to the following link for
more information:https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/

x1710-sr-iov-config-guide-gbe-linux-brief.pdf

Configuring VPC-SI Boot Parameters

VPC-SI VMs have one interface configured to connect to the management network. This interface is typically
configured in StarOS and should be part of the Day 0 configuration. The management interface supports static
address assignment through the main StarOS configuration file.

An additional 0 to 4 network interfaces serve as service ports. These interfaces are configured by StarOS.
Typically these ports are configured as trunk ports in the VNF infrastructure (VNFI).

VPC-SI VMs have the option of having a network interface that is connected to the virtual network function
(VNF) manager (VNFM) if it exists. This interface can be configured via DHCP or static IP assignment and
is used to talk to a VNFM or higher level orchestrator. This interface is enabled before the main application

starts.

. Introduction to VPC-SI

https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/xl710-sr-iov-config-guide-gbe-linux-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/xl710-sr-iov-config-guide-gbe-linux-brief.pdf

| Introduction to VPC-SI

Table 4: VPC-SI Boot Parameters

Configuring VPC-SI Boot Parameters .

Parameter

Description

MGMT_INTERFACE=value

Interface to the management port on the VPC-SI VM.
Valid values are:

e MAC: XX:XXIXX:XX:XX:XX

* PCI_ID: xXX:XX:XX.X
(Domain:Bus:Device.Function)

* TYPE: drive-name-instance-number

* BOND: slave-interface-A,slave-interface-B

Refer to Network Interface Identification, on page
12 for information on determining the interface
identifier.

SERVICE#_INTERFACE=value

Interface to a service port number #, where # can be
from 1 to 4.

Service interfaces support the same values listed above
for the MGMT_INTERFACE.

SERVICE_INTERFACE_MTU=value

By default, the IFTASK process sets the maximum
interface MTU as 2100 bytes.

value must be an integer from 576 to 9100 bytes.

VNFM_INTERFACE=value

Optional network interface to the Virtual Network
Function Manager (VNFM) or orchestrator.

VNFM interfaces support the same values listed above
for the MGMT_INTERFACE.

VNFM_1PV4 _ENABLE={true | false }

Enables the VNFM interface.

VNFM_IPV4 DHCP_ENABLE={rue | false }

Enables DHCP to the VNFM.

VNFM_IPV4_ADDRESS=value

Specifies the IP address for the VNFM where DHCP
is not used.

VNFM_IPV4_NETMASK=value

Specifies the netmask for the IP address of the VNFM
where DHCP is not used.

VNFM_IPV4_GATEWAY=value

Specifies the gateway for the IP address of the VNFM
where DHCP is not used.

Introduction to VPC-SI .

. Configuring VPC-SI Boot Parameters

Introduction to VPC-SI |

Parameter

Description

IFTASK_CRYPTO_CORES=value

(Optional)
(Optional) IFTASK _CRYPTO_CORES
When IFTASK _SERVICE TYPE is configured to

"2" (EPDG), this parameter specifies the percentages
of iftask cores

to allocate to crypto processing. Values can range
from 0 to 50 percent, though the cores dedicate will
be capped at 4.

The default is 0.

This parameter should only be used if the
IFTASK _SERVICE TYPE is set to "2" (EPDG). If
it is set to any

other service type, then this parameter should be set
tO HOH.

IFTASK_MCDMA_CORES=value

(Optional) Sets the number of cores assigned to
Multi-channel Direct Memory Access (MCDMA) to
be a percentage of total iftask cores. You must first
define IFTASK CORES parameter above. NOTE:
When NUMA optimization is enabled and also this
MCDMA core count setting is configured you must
set IFTASK CORES=percentage-of-cores to be an
even number. This ensures that the MCDMA threads
are evenly distributed across the NUMA nodes.

CHASSIS_ID=value

The chassis ID protects select commands in the CLI
configuration such as administrator credentials, snmp
community, radius/diameter data, and the
authentication data. It is required to save or load
configuration and is normally generated using random
data and a user seed from a CLI command. The
chassis ID is then saved on the “/flash” storage of the
system to be used later to load saved configurations.

Configuring this option loads the the chassis ID from
the parameters configuration files from /flash. The
chassis id on /flash will be ignored (i.e. support
upgrade from previous version) and generation of new
chassis id using the CLI commands will be prevented.
The chassis ID will no longer be stored on /flash if
provided using this method. This will also require
ESC (or another VNFM) to manage and provide the
chassis id to the VM.

. Introduction to VPC-SI

| Introduction to VPC-SI

Configuring VNFM Interface Options .

Parameter Description

IFTASK _SERVICE_TYPE=value (Optional) Specifies the service type being deployed
in order to calculate the service memory and enable
service-specific features. The default is 0.

The following service types can be specified:
* 0 = VPC service type
* 1 = GiLAN service type
» 2 =¢ePDQG service type
* 3 = CUPS controller service type

» 4 = CUPS forwarder service type

FORWARDER TYPE=value Specifies the forwarder type as "vpp" or "iftask".

By default, the forwarder type is "iftask". The
forwarder type is VPP only when the
FORWARDER TYPE is properly configured as VPP.

For example, FORWARDER_TYPE=vpp

Example params.cfg

MGMT_INTERFACE=MAC:00:01:02:03:04:05
SERVICEl INTERFACE=PCI ID:0000:01:02.0
SERVICE2 INTERFACE=PCI ID:0000:01:03.0
VNEFM INTERFACE=MAC:00:01:02:03:04:AA
VNFM IPV4 ENABLE=true

VNFM IPV4 DHCP ENABLE=false

VNFM IPV4 ADDRESS=10.1.1.100

VNEFM IPV4 NETMASK=255.255.255.0

VNFM IPV4 GATEWAY=10.1.1.1
IFTASK MCDMA CORES=20

CHASSIS ID=2sg9xlwgbj

IFTASK SERVICE TYPE=0

Use the StarOS command show cloud hardware iftask to verify that the iftask boot parameters took effect.

Configuring VNFM Interface Options

\}

Note

These configuration options are optional.

The virtual network functions manager (VNFM) interface is designed to communicate between each VM and
a VNFM. The VNFM interface initializes before the main application and only boot parameters can configure
the interface.

The VNFM interface is disabled by default.

Introduction to VPC-SI .

. Configuring VNFM Interface Options

Enable VNFM IPv4 Interface

The default value is False (disabled).

Introduction to VPC-SI |

Variable

Valid Values

VNFM_IPV4 ENABLE

True or False

Configure IPv4 DHCP Client

Variable

Valid Values

VNFM_IPV4 DHCP_ENABLE

True or False

Configure IPv4 Static IP

Note

If IPv4 DHCP client is enabled, static configuration parameters are ignored.

Variable Valid Values
VNFM_1PV4 ADDRESS X.X.X.X
VNFM_I1PV4 NETMASK X.X.X.X
VNFM_IPV4 GATEWAY X.X.X.X
Enable VNFM IPv6 Interface.

Variable Valid Values

VNFM_IPV6_ENABLE

True or False

Enable IPv6 Static IP Configuration

Variable

Valid Values

VNFM IPV6 STATIC ENABLE

True or False

If set to true, static IP parameters configuration applies to the interface as shown in the following section. If
set to false, the interface attempts to use both stateless autoconfiguration (RFC4862) and DHCPv®6 to configure

the address of the interface.

Configure IPv6 Static IP

Note

Ifthe "VNFM _IPV6_ENABLE" parameter value is set to false, the static configuration parameters are ignored.
The IPv6 address field should conform to RFC 5952. Prefix is fixed at /64.

. Introduction to VPC-SI

| Introduction to VPC-SI

VPP Configuration Parameters .

Variable

Valid Values

VNFM_IPV6 ADDRESS

XIXIXIXIXIXiXix

VNFM _[PV6 GATEWAY

XIXIXIXIXIXIXIX

VPP Configuration Parameters

The following sections list the parameters that are applicable only when the FORWARDER TYPE selected
is VPP. These parameters enable a fine-grained control over the CPU of the VPP and the interface configuration.

)

Note

Before overriding any of the VPP configuration parameters, ensure that you contact your Cisco account

representative to help identify the override values.

VPP CPU Assignment

VPP workers are real-time threads that consume an entire CPU core. While the VPP main thread does not
consume an entire core, it can be busy. Therefore, assign it to avoid conflicts.

The following table lists the VPP-CPU parameters.

Table 5: VPP-CPU Parameters

Parameter

Description

VPP_CPU_MAIN=value

Specifies the Linux processor number, that is 0 —
(number of CPUs minus 1). The default value is 1.

Use the following example to set the main thread value
to the Linux processor number 1.

VPP_CPU MAIN=1

VPP_CPU_WORKER_CNT=value

Specifies the number of worker threads set on the Linux
processor. The valid value is 0 — (number of CPUs

minus 3). The default value is 50% of the Linux CPUs
or number of CPUs in the VPP_CPU_WORKER LIST.

Use the following example to set the number of worker
threads to 3.

VPP _CPU WORKER CNT=3

Introduction to VPC-SI .

Introduction to VPC-SI |
. VPP Configuration Parameters

Parameter Description

VPP_CPU_WORKER_LIST=value Specifies the worker threads set on the Linux processor.
The worker list is a comma-separated list of Linux
processor numbers. The valid value is 0 — (number of
CPUs minus 1). The default is a round-robin number
that is assigned across all sockets, skipping the first core
on all sockets and the second core on the first socket.

Use the following example to set the number of worker
threads to Linux processors 2, 9, and 10

VPP _CPU WORKER LIST=2,9,10

Default DPDK Configuration

The following parameters that are listed in the table configure DPDK in general or set the interface defaults.

Table 6: DPDK Parameters

Parameter Description

VPP_DPDK BUFFERS=value Specifies the number of DPDK buffers. The minimum
buffer is 32,000 and the maximum is based on the VM
size. The default number of buffers is 128,000.

Use the following example to set the DPDK buffer to
200,000.

VPP_DPDK_BUFFERS=200000

VPP_DPDK_RX QUEUES=value Specifies the number of RX queues for all interfaces
that do not have a specific configuration. The valid
values range from 1 through 64 depending on the
interface type and host configuration. The default value
is calculated from the VPP_CPU_WORKER COUNT
to minimize the overall number of queues while having
at least one queue assigned to each worker.

Use the following example to set the default number of
RX queues to 2.

Note Values that do not match can be set based on
the interface type and host configuration.

VPP_DPDK_RX_QUEUES=2

. Introduction to VPC-SI

| Introduction to VPC-SI

VPP Configuration Parameters .

Parameter

Description

VPP_DPDK_TX_QUEUES=value

Specifies the number of TX queues for all interfaces that
do not have a specific configuration. The valid values
range from 1 through 64 depending on the interface type
and host configuration. The default value is

VPP _DPDK RX QUEUES.

Use the following example to set the default number of
TX queues to 4.

Note Values that do not match can be set based on
the interface type and host configuration.

VPP_DPDK_TX_QUEUES=4

VPP_DPDK_RX_DESCS=value

Specifies the number of RX descriptors for all interfaces
that do not have a specific configuration. The valid
values range from 128 through 128,000 depending on
the interface type and host configuration. The default
value is an unspecified driver-dependent value.

Use the following example to set the default number of
RX descriptors to 256.

Note Values that do not match can be set based on
the interface type and host configuration.

VPP DPDK RX DESCS=256

VPP_DPDK_TX_DESCS=value

Specifies the number of TX descriptors for all interfaces
that do not have a specific configuration. The valid
values range from 128 through 128,000 depending on
the interface type and host configuration. The default
value is VPP_DPDK RX DESCS or an unspecified
driver-dependent value.

Use the following example to set the default number of
TX descriptors to 512.

Note Values that do not match can be set based on
the interface type and host configuration.

VPP DPDK_TX DESCS=512

Interface-Specific Configuration

The following parameters that are listed in the table refine individual interfaces. These parameters also override

the default DPDK configuration, where applicable.

Introduction to VPC-SI .

. Software Installation and Network Deployment

Table 7: Interface Parameters

Introduction to VPC-SI |

Parameter

Description

<ROLE>_VPP_RX QUEUES=value

Specifies the number of RX queues for the interface
ROLE. The valid values range from 1 through 64
depending on the interface type and host configuration.
The default value is unspecified.

Use the following example to set the number of RX
queues for service port 1-2.

SERVICEl INTERFACE VPP RX QUEUES=2

<ROLE>_VPP_TX_QUEUES=value

Specifies the number of TX queues for the interface
ROLE. The valid values range from 1 through 64
depending on the interface type and host configuration.
The default value is <ROLE> VPP _RX QUEUES or
is unspecified.

<ROLE>_VPP_RX DESCS=value

Specifies the number of RX descriptors for the interface
ROLE. The valid values range from 128 through 128,000
depending on the interface type and host configuration.
The default value is unspecified.

Use the following example to set the number of RX
descriptors for service port 1 to 1024.

SERVICEl INTERFACE VPP RX DESCS=1024

<ROLE>_VPP_TX_DESCS=value

Specifies the number of RX descriptors for the interface
ROLE. The valid values range from 128 through 128,000
depending on the interface type and host configuration.
The default value is <ROLE> VPP_RX DESCS or is
unspecified.

<ROLE> VPP_WORKER_LIST=value

Specifies the worker threads for the interface ROLE.
The worker list is a comma-separated list of Linux
processor numbers. The valid value is 0 — (number of
CPUs minus 1). The default is a round-robin number
that is assigned across all sockets, skipping the first core
on all sockets and the second core on the first socket.

Use the following example to set the worker thread list
for service port 1 to Linux processors 2 and 3.

SERVICEl INTERFACE VPP_WORKER LIST=2,3

Software Installation and Network Deployment

This guide assumes that VPC-SI has been properly installed to run in a virtual machine (VM) on a commercial

off-the shelf (COTS) server.

. Introduction to VPC-SI

| Introduction to VPC-SI
Software Installation and Network Deployment .

For additional information on supported operating system and hypervisor packages, as well as platform
configurations, please contact your Cisco representative. The Cisco Advanced Services (AS) group offer
consultation, installation and network deployment services for the ASR 5500VPC-SI product.

Introduction to VPC-SI .

Introduction to VPC-SI |
. Software Installation and Network Deployment

. Introduction to VPC-SI

	Introduction to VPC-SI
	Product Description
	Virtualized Mobility Functions
	VM Interconnect Architecture
	Standalone Instance

	Feature Set
	Interfaces and Addressing
	Encryption
	Security

	Redundancy and Availability
	Platform Requirements
	ICSR Support

	Hypervisor Requirements
	VM Configuration
	vCPU and vRAM Options
	vNIC Options
	Hard Drive Storage

	DPDK Internal Forwarder
	Capacity, CEPS and Throughput
	Diagnostics and Monitoring
	StarOS VPC-SI Build Components
	VPC-SI Boot Parameters
	Format of the Boot Parameters File
	Network Interface Identification
	Configuring VPC-SI Boot Parameters
	Configuring VNFM Interface Options
	VPP Configuration Parameters

	Software Installation and Network Deployment

