Release Notes for Cisco Catalyst 9800 Series Wireless Controller, Cisco IOS XE 17.15.x
Introduction to Cisco Catalyst 9800 Series Wireless Controllers
The Cisco Catalyst 9800 Series Wireless Controllers comprise next-generation wireless controllers (referred to as controller in this document) built for intent-based networking. The controllers use Cisco IOS XE software and integrate the radio frequency (RF) capabilities from Cisco Aironet with the intent-based networking capabilities of Cisco IOS XE to create a best-in-class wireless experience for your organization.
The controllers are enterprise ready to power your business-critical operations and transform end-customer experiences:
-
The controllers come with high availability and seamless software updates that are enabled by hot and cold patching. This keeps your clients and services up and running always, both during planned and unplanned events.
-
The controllers come with built-in security, including secure boot, run-time defenses, image signing, integrity verification, and hardware authenticity.
-
The controllers can be deployed anywhere to enable wireless connectivity, for example, on an on-premise device, on cloud (public or private), or embedded on a Cisco Catalyst switch (for SDA deployments) or a Cisco Catalyst access point (AP).
-
The controllers can be managed using Cisco Catalyst Center, programmability interfaces, for example, NETCONF and YANG,or web-based GUI or CLI.
-
The controllers are built on a modular operating system. Open and programmable APIs enable the automation of your day zero to day n network operations. Model-driven streaming telemetry provides deep insights into your network and client health.
The controllers are available in multiple form factors to cater to your deployment options:
-
Catalyst 9800 Series Wireless Controller Appliance
-
Cisco Catalyst 9800-80, Catalyst 9800-40, and Catalyst 9800-L Wireless Controllers
-
Cisco Catalyst CW9800H1 and CW9800H2 Wireless Controllers
-
Cisco Catalyst CW9800M Wireless Controller
-
-
Catalyst 9800 Series Wireless Controller for Cloud
-
Catalyst 9800 Embedded Wireless Controller for a Cisco Switch
Note |
All the Cisco IOS XE programmability-related topics on the controllers are supported by DevNet, either through community-based support or through DevNet developer support. For more information, go to https://developer.cisco.com. |
Note |
For information about the recommended Cisco IOS XE releases for Cisco Catalyst 9800 Series Wireless Controllers, see the documentation at: |
Revision History
Modification Date |
Modification Details |
---|---|
November 27, 2024 |
Cisco IOS XE 17.15.2 release. |
November 14, 2024 |
Added bug ID CSCwi39486 to the Resolved Issues list. |
September 26, 2024 |
Updated: Compatibility Matrix section—Added version 3.3 to the Cisco Identity Services Engine information in the Compatibility Information table. |
September 17, 2024 |
Updated: What's New in Cisco IOS XE 17.15.1 section—Changed "Tier B/C/D Country Support for Cisco Catalyst 9124 Outdoor Access Points" to "Tier B/C/D Country Support for Cisco Catalyst 9163E Outdoor Access Points". |
What's New in Cisco IOS XE 17.15.2
Warning |
If you have deployments that use web authentication with FlexConnect local switching, we recommend that you do not use Cisco IOS XE 17.15.2 release because FlexConnect local switching traffic on web authentication SSID is randomly centralized and clients lose connectivity (see CSCwn17412). Therefore, we recommend that you wait until a fix is available in an APSP or a subsequent release. |
Feature Name |
Description and Documentation Link |
||
---|---|---|---|
Cisco Network Subscription |
Cisco Wireless licenses, a part of the Cisco Networking Subscription licensing model, is a software license that helps you to deploy your Wi-Fi 7 Access Points in an on-premise, hybrid, or a cloud managed network. From Cisco IOS XE 17.15.2, Cisco Wireless licenses are supported on Wi-Fi 7 Access Points (APs) and later models of APs. The Cisco Wireless licenses consist of the following tiers:
For more information, see Cisco Wireless Licensing. |
||
Support for the following Wi-Fi 7 APs:
|
The CW9178I APs, CW9176I APs, and CW9176D APs, are enterprise-class tri-band (2.4 GHz, 5 GHz, 6 GHz) APs. The APs support full interoperability with leading 802.11be, 802.11ax, and legacy clients, and a hybrid deployment with other APs and controllers. For a full listing of the APs' features and specifications, see:
|
||
AP AnyLocate |
In this release, Ultra Wide Band Ranging technology is introduced, which provides superior location accuracy and enhanced network reliability in high-density and multipath-prone environments, resulting in precise and improved wireless performance. UWB radio is used by APs to perform AP-to-AP ranging that improves the accuracy of AP AnyLocate. The following commands are introduced:
For more information, see AP Management. |
||
Third-Party Antenna Support for Cisco Catalyst 9163E Outdoor Access Point (CW9163E-x). |
From this release, third-party antennas are supported on the CW9163E-x APs . |
||
Dynamic Band Switching in Cisco Catalyst 9166 Series APs (CW9166) |
The CW9166I and CW9166D APs include dynamic XOR 5-GHz or 6-GHz radio band switching that optimizes performance and ensuring regulatory compliance. The APs actively adjust and communicate channel power settings, offering full 5-GHz channels when configured for 6-GHz and restricted channels when in 5-GHz mode. The following commands are introduced:
For more information, see Countries and Regulations. |
||
Enhanced Security Group Access Control List (SG-ACL) Logging |
The Enhanced SG-ACL Logging feature uses High-Speed Logging (HSL) to forward the SG-ACL IPv4 and IPv6 permit or deny logging messages in HSL v9 format to the syslog server. |
||
Fast Switching on RLAN Ports in Cisco Catalyst 9105 Series APs |
Fast switching for RLAN client traffic is supported on Cisco Catalyst 9105 Series APs. The following command is introduced: rlan fast-switching
For more information, see Remote LANs. |
||
Global Use APs |
With the new Wi-Fi 7 APs, Cisco now has one AP portfolio that can be used either with the Meraki cloud native network or Catalyst on-premise controller-based deployments. With the introduction of the one AP portfolio, it is essential to have a single product ID (PID) at manufacturing, to simplify logistics or operations. The Global Use AP simplifies the Cisco Wireless AP portfolio, by
The two key aspects that are addressed by Global Use AP for Catalyst and Meraki Cloud deployments are — AP Mode of Operation and Cisco Regulatory Domain. The following commands are introduced:
For more information, see Global Use APs. |
||
Global Navigation Satellite System (GNSS) Raw Data Streaming from Cisco AP to Cisco Spaces Connector |
In this release, the Global Navigation Satellite System (GNSS) raw data streaming through Google Remote Procedure Call (gRPC) feature allows data to be streamed from the APs directly to Cisco Spaces Connector using the gRPC protocol. For more information, see AP Management. |
||
Support for Cisco Catalyst 9124AX Series Outdoor Access Points in Morocco |
Morocco allows indoor channels and power for units attached outside buildings. In this release, the Catalyst 9124AXI and 9124AXD Outdoor APs are supported in Morocco. The outdoor designation is 2.4 GHz. For more information, see the Detailed Channels and Maximum Power Settings document at https://www.cisco.com/c/en/us/support/ios-nx-os-software/ios-xe-17/products-technical-reference-list.html. |
||
Support for Multi-link Statistics Table |
The multilink statistics table tracks performance for multilink clients, keyed by their MAC address. It stores both per-link and aggregated statistics. For Multicast Listener Discovery (MLD) stations, the system generates and updates these statistics automatically as new links are added. Non-MLD stations initially record only aggregated stats, which are later transferred to the per-link stats table if they connect to an MLD access point. The following commands are introduced:
For more information, see Wi-Fi 7 Operations. |
||
Support for Multi-link Operation (MLO) in Wi-Fi 7 APs |
In this release, Wi-Fi 7 APs allow client devices to operate multiple links with APs as part of the 802.11be standard. The system automatically enables Multi-link Operation (MLO) with 802.11be, requiring no separate configuration. The following AP commands are introduced:
|
||
Wi-Fi 7 WPA3 Security Constraints |
In this release, the Wi-Fi 7 standard dictates the following security constraints, which are applicable for Wi-Fi 7 compliant APs: The security standards mentioned below are beaconed as Wi-Fi 7 clients. This is a deviation from the actual security constraint.
For more information, see WPA3 Security Enhancements for Access Points |
Feature Name |
GUI Path |
---|---|
Unified Licensing |
|
AP AnyLocate |
|
Global Use APs |
|
Support for the following Wi-Fi 7 APs:
|
|
MIBs
The following MIBs are newly added or modified:
-
CISCO-LWAPP-DOT11-MIB.my
-
CISCO-LWAPP-DOT11-MIB.my
What's New in Cisco IOS XE 17.15.1
Feature Name |
Description and Documentation Link |
||
---|---|---|---|
Packet Capture: TCP Dump on WGB |
This feature captures packets from a WGB terminal using a default or customized filter through a WGB wired port and uploads them to an external server for further analysis. The feature is supported on the following APs:
For more information, see Packet Capture: TCP Dump on WGB on Cisco Catalyst IW9167E Heavy Duty Access Point Configuration Guide and Cisco Catalyst IW9165E Rugged Access Point and Wireless Client Configuration Guide. |
||
Cisco IW9167IH AP Mesh Support |
This feature enables Bridge and Flex+Bridge mode on the Cisco IW9167IH AP allowing you to extend the wireless network coverage through mesh backhaul using the 2.4 GHz and 5 GHz frequencies. The following command is introduced:
For more information, see Mesh Support. |
||
AAA User Authentication Support for WGB |
The AAA User Authentication Support for WGB feature provides information about how to use AAA to control network resource usage and define permissible actions. The feature is supported on the following APs:
For more information, see AAA User Authentication Support on Cisco Catalyst IW9167E Heavy Duty Access Point Configuration Guide and Cisco Catalyst IW9165E Rugged Access Point and Wireless Client Configuration Guide. |
||
Radio 4 in Scanning Only Mode |
This feature enhances the WGB auxiliary scanning and roaming capabilities, allowing you to configure radio 4 to operate in scanning mode only. Radio 4 supports both 2.4 GHz and 5 GHz frequencies. The feature is supported on Cisco Catalyst IW9167E Heavy Duty Series Access Points. For more information, see Configure Aux Scanning. |
||
Optimized Roaming with Dual-Radio WGB |
This feature reduces service downtime and ensures a smoother and reliable network experience. When roaming is triggered by a beacon miss-count or maximum packet retries, the second radio enables the WGB to bypass the scanning phase and check the scanning table for potential APs. The feature is supported on the following APs:
For more information, see Configure Aux Scanning on Cisco Catalyst IW9167E Heavy Duty Access Point Configuration Guide and Cisco Catalyst IW9165E Rugged Access Point and Wireless Client Configuration Guide. |
||
Cisco Catalyst 9800-CL Cloud Wireless Controller Oracle Cloud Infrastructure (OCI) Support |
The Cisco Catalyst Wireless Controller for Cloud (C9800-CL) sets the standard for Infrastructure as a Service (IaaS) secure wireless network services with Oracle Cloud Infrastructure (OCI). C9800-CL combines the advantages and flexibility of an OCI public cloud with the customization and feature-richness that customers usually experience on-prem deployments.
For more information, see Cisco Catalyst 9800-CL Cloud Wireless Controller Installation Guide. |
||
Cloud Monitoring for Cisco Catalyst 9800 Hardware Wireless Controllers |
The Cloud Monitoring for Cisco Catalyst 9800 Hardware Wireless Controllers feature helps to monitor controllers using the Meraki dashboard. The following command is introduced:
For more information, see Using Cloud Monitoring as a Solution for Network Monitoring. |
||
Cisco Spaces Connect for IoT Services: Support for On-Premise in Cisco Catalyst Wireless Infrastructure |
Cisco Spaces Connect for IoT Services solution enables delivery of advanced BLE capabilities over Cisco Catalyst Wireless infrastructure. The key component of this solution is the IoT Orchestrator which is a Cisco IOx application that can be deployed on existing Cisco Catalyst 9800 Wireless Controller platforms. With the Spaces Connect for IoT Services solution, you have capabilities to securely onboard and control BLE devices, and consume data telemetry using the Message Queuing Telemetry Transport (MQTT).
|
||
New Channel Support for United Arab Emirates and Qatar |
In this release, the following channels are supported for indoor APs in the United Arab Emirates and Qatar: 149, 153, 157, 161, and 165. The following channels are supported for outdoor APs in the United Arab Emirates: 36, 40, 44, 52, 56, 60, 64. Also, the outdoor power table value for the 5-GHz band is updated for the United Arab Emirates in this release. For more information, see Countries and Regulations. |
||
New Countries for 6-GHz Support |
From this release, Taiwan (TW) and Guatemala (GT) are added to the list of countries that support the 6-GHz radio band. For more information, see Countries and Regulations. |
||
Software-Defined Access (SDA) Updates |
The following are the SDA updates for Cisco IOS XE 17.15.1:
|
||
SuiteB-1X and SuiteB-192-1X Support in FlexConnect Mode for WPA2 and WPA3 |
From Cisco IOS XE 17.15.1 onwards, Cisco WLAN FlexConnect mode supports enterprise authentication key management (AKM) — SuiteB-192-1X (AKM 12) and SuiteB-1X (AKM 11). This feature supports the configuration of SuiteB-192-1X and SuiteB-1X in FlexConnect mode, and also supports Galois Counter Mode Protocol 128 (GCMP-128), GCMP-256, and Counter Cipher Mode with Block Chaining Message Authentication Code Protocol 256 (CCMP-256) ciphers for pairwise transport keys (PTK) and group temporal key (GTK) derivation in FlexConnect Local Authentication mode and FlexConnect Central Authentication mode.
For more information, see SuiteB-1X and SuiteB-192-1X Support in FlexConnect Mode for WPA2 and WPA3. |
||
Support for Security-Enhanced Linux |
In this release, the controller is supported with Security-Enhanced Linux (SELinux) MAC operating in enforcing mode, to improve the overall security profile. SELinux is a solution composed of Linux kernel security module and system utilities to incorporate a strong, flexible Mandatory Access Control (MAC) architecture into the controller. The following commands are introduced:
For more information, see Security-Enhanced Linux. |
||
Wi-Fi Protected Access (WPA3) Security Enhancements for Access Points |
The following are the security enhancements developed in Cisco IOS XE 17.15.1, for APs:
The following commands are introduced:
For more information, see Wi-Fi Protected Access (WPA3) Security Enhancements for Access Points. |
||
Tier B/C/D Country Support for Cisco Catalyst 9163E Outdoor Access Points |
From this release, Cisco Catalyst 9163E Outdoor APs are supported in the following countries: Bosnia, Hong Kong, India, Indonesia, Israel, Jordan, Kuwait, Puerto Rico, Qatar, Saudi Arabia, Singapore, South Africa, Taiwan, Turkey, and United Arab Emirates. For more information, see Countries and Regulations. |
Feature Name |
GUI Path |
---|---|
Cloud Monitoring for Cisco Catalyst 9800 Hardware Controllers |
Configuration > Services > Cloud Services > Meraki |
Cisco Spaces Connect for IoT Services: Support for On-Premise in Cisco Catalyst Wireless Infrastructure |
Configuration > Services > IoT Services Currently, this feature is in a limited customer public beta phase and supported by Cisco TAC. For more information about this feature, contact the following mailer: c9800-spaces-connect-for-iot-services@external.cisco.com |
SuiteB-1X and SuiteB-192-1X Support in FlexConnect Mode for WPA2 and WPA3 |
Configuration > Tags & Profiles > WLANs |
Wi-Fi Protected Access (WPA3) Security Enhancements for Access Points |
Configuration > Tags & Profiles > WLANs |
MIBs
The following MIBs are newly added or modified:
-
AIRESPACE-WIRELESS-MIB.my
-
CISCO-LWAPP-AP-MIB.my
-
CISCO-LWAPP-DOT11-MIB.my
-
CISCO-LWAPP-DOT11-CLIENT-MIB.my
-
CISCO-LWAPP-REAP-MIB.my
-
CISCO-LWAPP-RF-MIB.my
-
CISCO-LWAPP-TAGS-MIB.my
-
CISCO-LWAPP-TC-MIB.my
-
CISCO-LWAPP-WLAN-SECURITY-MIB.my
Product Analytics
This feature allows for the collection of non-personal usage device systems information for Cisco products, which helps in continuous product improvements. This feature is supported on the Cisco Catalyst 9800 Series Wireless Controllers (9800-80, 9800-40, 9800-L, 9800-CL, CW9800M, and CW9800H1/H2). You can use the the pae command to enable or disable this feature.
The following commands are introduced as part of this feature:
-
pae
-
show product-analytics kpi
-
show product-analytics report
-
show product-analytics stats
Note |
Turning off Smart Licensing Device Systems Information does not impact other Systems Information collection including from Cisco Catalyst Center or vManage. |
Important: We are constantly striving to advance our products and services. Knowing how you use our products is key to accomplishing this goal. To that end, Cisco will collect device and licensing Systems Information through Cisco Smart Software Manager (CSSM) and other channels for product and customer experience improvement, analytics, and adoption. Cisco processes your data in accordance with the General Terms and Conditions, the Cisco Privacy Statement and any other applicable agreement with Cisco. To modify your organization’s preferences for device and licensing systems information, use the pae command. For more information, see Cisco Catalyst 9800 Series Wireless Controller Command Reference.
For additional information on this feature, see Wireless Product Analytics FAQ.
Behavior Change
Behavior Change for Cisco IOS XE 17.15.2
-
When Wi-Fi 7 APs are converted from Meraki to Cisco Catalyst with a valid country code stored in the shared environment, the Country Code Resolution Method is displayed as Installed via Meraki Dashboard.
-
XOR 5-GHz or 6-GHz slot 2 will be put in the 5-GHz band if the country code set on Cisco Catalyst Wireless 9166I Series AP does not support the 6-GHz band.
-
Fast Transition Adaptive is not supported for WPA3 SAE.
-
In Cisco IOS XE 17.15.2, the lack of support for link re-configuration in Multi-Link Operation (MLO) may lead to client disruptions. This issue arises when clients are connected to 802.11be radios, especially if 802.11be is enabled across all radio bands. To notify of potential disruptions, users will be notified through pop-up notifcations. These messages appear across all radio bands of the AP whenever configuration changes to radio parameters result in a radio reset, or enable or disable the workflow.
-
The output for show ap config slots and show ap config general commands are duplicate. To reduce the duplicate output, perform the following:
-
Leave the detailed information for each radio slot remains unchanged.
-
Retain only the key AP general information.
-
-
When a country using channels 1, 5, 9, and 13 is added to the controller, the 2.4-GHz RF profiles automatically update to include these channels, leading to inconsistencies. The behaviour is observed in Cisco IOS XE Amsterdam 17.3.x, Cisco IOS XE Bengaluru 17.6.x, and Cisco IOS XE Cupertino 17.9.x, and it should be avoided. RF profiles should remain unchanged initially, with manual adjustments made only if necessary for countries supporting additional channels.
-
When a country from the European Telecommunications Standards Institute (ETSI) or Rest of World (ROW) domain is set up in the controller and AP join profile, Dual 5G is enabled. If the country code is then changed to another within the same domain, it causes the AP to continuously reboot.
-
Global Use APs: APs are not able to migrate to Meraki in Catalyst mode via Option 17 in external DHCPv6 server. Set the Fast Offline migration bit to 01 in external DHCP server, for the APs to migrate to Meraki mode.
-
Global Use APs: The output of the show ap regulatory activation all command displays the regulatory activation file metadata.
-
You can allow the 5-GHz or 6-GHz XOR radio to move to 6GHz:
-
When the 6-GHz network is enabled.
-
When the Regulatory Domain Allowed by Country is 6GHz.
Note
This does not apply when the Flexible Radio Assignment (FRA) configuration is enabled.
-
-
The IP overlap feature supports FlexConnect VLAN-based central switching.
-
The Security Group Access Control List (SGACL) logging records are generated and managed through an internal High-Speed Logging (HSL) server. These records are then sent to a Syslog server under the following conditions:
-
A packet hits a logging access control entry (ACE).
-
The Cisco TrustSec role-based policy is enabled.
-
-
The Unscheduled Automatic Power Save Delivery (U-APSD) can now be configured to be enabled or disabled in the probe, beacon, and association response.
Behavior Change for Cisco IOS XE 17.15.1
-
From this release, the Mobility Tunnel UP/DOWN messages will be marked for severity level ALERT.
-
From this release, it is not possible to disable the 802.11h channel switch. The channel switch announcements (CSA) remain enabled at all times because they help clients when the APs announce the change from the current channel to a new channel, thereby reducing the number of reconnections.
-
The minimum memory requirement of the Cisco Catalyst 9800 Wireless Controller for Cloud - Ultra-Low Profile variant is increased from 4 GB to 6 GB.
-
From this release, the SuiteB and SuiteB-192 authentication and key management (AKMs) are decoupled from the GCMP128, GCMP256/CCMP256 and must be configured separately. When the controller is upgraded from a lower version to 17.15, WLANs configured with suiteb AKMs will be affected. If the controller downgrades from version 17.15 to a lower one, the WLANs enabled with only suiteb AKMs will remain operational, while the WLANs with multiple AKMs enabled will be operational without the suiteb-related AKMs.
-
From this release, the default air pressure sample interval is changed from 30 seconds to 60 seconds. For example, if the duration is set to 10 minutes, the APs send 10 samples spaced at 60 seconds each.
Interactive Help
The Cisco Catalyst 9800 Series Wireless Controller GUI features an interactive help that walks you through the GUI and guides you through complex configurations.
You can start the interactive help in the following ways:
-
By hovering your cursor over the blue flap at the right-hand corner of a window in the GUI and clicking Interactive Help.
-
By clicking Walk-me Thru in the left pane of a window in the GUI.
-
By clicking Show me How displayed in the GUI. Clicking Show me How triggers a specific interactive help that is relevant to the context you are in.
For instance, Show me How in Configure > AAA walks you through the various steps for configuring a RADIUS server. Choose Configuration> Wireless Setup > Advanced and click Show me How to trigger the interactive help that walks you through the steps relating to various kinds of authentication.
The following features have an associated interactive help:
-
Configuring AAA
-
Configuring FlexConnect Authentication
-
Configuring 802.1X Authentication
-
Configuring Local Web Authentication
-
Configuring OpenRoaming
-
Configuring Mesh APs
Note |
If the WalkMe launcher is unavailable on Safari, modify the settings as follows:
|
Important Notes
-
To prevent controller discovery by Meraki APs (unicast, multicast, or broadcast discovery) during the CAPWAP discovery mode, configure the following:
Device(config)# ap profile cisco-ap-profile Device(config-ap-profile)# capwap-discovery onboarding {all | unicast}
-
When multi-ciphers (GCMP-128 + GCMP-256) and multi-AKMs (SuiteB + SuiteB-192) are enabled on a WLAN, clients that are compatible with WPA3 security will not support GCMP-128 encryption. Clients supporting GCMP-128 encryption will not be able to join the GCMP-128 + GCMP-256 cipher with SuiteB and SuiteB-192 AKMs.
Supported Hardware
The following table lists the supported virtual and hardware platforms. (See Supported PIDs and Ports for the list of supported modules.)
Platform |
Description |
---|---|
Cisco Catalyst 9800-80 Wireless Controller |
A modular wireless controller with up to 100-GE modular uplinks and seamless software updates. The controller occupies a 2-rack unit space and supports multiple module uplinks. |
Cisco Catalyst 9800-40 Wireless Controller |
A fixed wireless controller with seamless software updates for mid-size to large enterprises. The controller occupies a 1-rack unit space and provides four 1-GE or 10-GE uplink ports. |
Cisco Catalyst 9800-L Wireless Controller |
The Cisco Catalyst 9800-L Wireless Controller is the first low-end controller that provides a significant boost in performance and features. |
Cisco Catalyst 9800 Wireless Controller for Cloud |
A virtual form factor of the Catalyst 9800 Wireless Controller that can be deployed in a private cloud (supports VMware ESXi, Kernel-based Virtual Machine [KVM], Microsoft Hyper-V, and Cisco Enterprise NFV Infrastructure Software [NFVIS] on Enterprise Network Compute System [ENCS] hypervisors), or in the public cloud as Infrastructure as a Service (IaaS) in Amazon Web Services (AWS), Google Cloud Platform (GCP) marketplace, Microsoft Azure, and Oracle Cloud Infrastructure (OCI). |
Cisco Catalyst 9800 Embedded Wireless Controller for Switch |
The Catalyst 9800 Wireless Controller software for the Cisco Catalyst 9000 switches brings the wired and wireless infrastructure together with consistent policy and management. This deployment model supports only Software Defined-Access (SDA), which is a highly secure solution for small campuses and distributed branches. |
Cisco Catalyst CW9800M Wireless Controller |
The Cisco Catalyst CW9800M Wireless Controller is the next generation Cisco Catalyst CW9800 Series Wireless LAN Controller built to deliver a 53% performance improvement while consuming 18% less power when compared to the previous generation models. Additionally, the Cisco Catalyst CW9800M Wireless Controller supports 3000 APs and 32000 clients to ensure better performance and scale for business-critical networks and provides up to 40 Gbps of forwarding throughput for both normal packet and encrypted packets while remaining a single RU designed to save you space and provide greater flexibility in your datacenters. |
Cisco Catalyst CW9800H1 and CW9800H2 Wireless Controllers |
The Cisco Catalyst CW9800H1 and CW9800H2 Wireless Controllers are the next-generation Cisco Catalyst CW9800 Series Wireless LAN Controllers that boast up to a 36% increase in performance and consume up to 40% less power compared to their predecessors. Additionally, the CW9800H1 and CW9800H2 models are built with a space-saving single RU design and support up to 6000 APs and 64,000 clients with 100 Gbps of maximum throughput. They also offer a choice of uplinks with either 4 x 25 Gbps (CW9800H1) or 2 x 40 Gbps (CW9800H2) configurations to meet high throughput demands of next-generation wireless requirements. |
The following table lists the host environments supported for private and public cloud.
Host Environment |
Software Version |
---|---|
VMware ESXi |
|
KVM |
|
AWS |
AWS EC2 platform |
NFVIS |
ENCS 3.8.1 and 3.9.1 |
GCP |
GCP marketplace |
Microsoft Hyper-V |
Windows Server 2022, Windows Server 2019, and Windows Server 2016 (Version 1607) with Hyper-V Manager (Version 10.0.14393) |
Microsoft Azure |
Microsoft Azure |
Oracle Cloud Infrastructure (OCI) |
Oracle Cloud Infrastructure (OCI) |
The following table lists the supported Cisco Catalyst 9800 Series Wireless Controller hardware models.
The base PIDs are the model numbers of the controller.
The bundled PIDs indicate the orderable part numbers for the base PIDs that are bundled with a particular network module. Running the show version , show module , or show inventory command on such a controller (bundled PID) displays its base PID.
Note that unsupported SFPs will bring down a port. Only Cisco-supported SFPs (GLC-LH-SMD and GLC-SX-MMD) should be used on the route processor (RP) ports of C9800-80-K9 and C9800-40-K9.
Controller Model |
Description |
---|---|
C9800-CL-K9 |
Cisco Catalyst Wireless Controller as an infrastructure for cloud. |
C9800-80-K9 |
Eight 1/10-Gigabit Ethernet SFP or SFP+ ports and two power supply slots. |
C9800-40-K9 |
Four 1/10-Gigabit Ethernet SFP or SFP+ ports and two power supply slots. |
C9800-L-C-K9 |
|
C9800-L-F-K9 |
|
CW9800H1 |
|
CW9800H2 |
|
CW9800M |
|
The following table lists the supported SFP models.
SFP Name |
C9800-80-K9 |
C9800-40-K9 |
C9800-L-F-K9 |
CW9800H1 |
CW9800H2 |
CW9800M |
---|---|---|---|---|---|---|
COLORCHIP-C040- Q020-CWDM4-03B |
Supported |
— |
— |
— |
— |
— |
DWDM-SFP10G-30.33 |
Supported |
Supported |
— |
— |
— |
— |
DWDM-SFP10G-61.41 |
Supported |
Supported |
— |
— |
— |
— |
FINISAR-LR – FTLX1471D3BCL 1 |
Supported |
Supported |
Supported |
— |
— |
— |
FINISAR-SR – FTLX8574D3BCL |
Supported |
Supported |
Supported |
— |
— |
— |
GLC-BX-D |
Supported |
Supported |
Supported |
Supported |
Supported |
Supported |
GLC-BX-U |
Supported |
Supported |
Supported |
Supported |
Supported |
Supported |
GLC-EX-SMD |
Supported |
Supported |
— |
Supported |
Supported |
Supported |
GLC-LH-SMD |
Supported |
Supported |
— |
Supported |
Supported |
Supported |
GLC-SX-MMD |
Supported |
Supported |
Supported |
Supported |
Supported |
Supported |
GLC-T |
Supported |
— |
— |
— |
— |
— |
GLC-TE |
Supported |
Supported |
Supported |
Supported |
Supported |
Supported |
GLC-ZX-SMD |
Supported |
Supported |
Supported |
Supported |
Supported |
Supported |
QSFP-100G-LR4-S |
Supported |
— |
— |
— |
— |
— |
QSFP-100G-SR4-S |
Supported |
— |
— |
— |
— |
— |
QSFP-40G-BD-RX |
Supported |
— |
— |
— |
— |
— |
QSFP-40G-ER4 |
Supported |
— |
— |
— |
Supported |
— |
QSFP-40G-LR4 |
Supported |
— |
— |
— |
Supported |
— |
QSFP-40G-LR4-S |
Supported |
— |
— |
— |
Supported |
— |
QSFP-40G-CSR4 |
— |
— |
— |
— |
Supported |
— |
QSFP-40G-SR4 |
Supported |
— |
— |
— |
Supported |
— |
QSFP-40G-SR4-S |
Supported |
— |
— |
— |
Supported |
— |
QSFP-40GE-LR4 |
Supported |
— |
— |
— |
— |
— |
QSFP-H40G-ACU10M |
— |
— |
— |
— |
Supported |
— |
QSFP-H40G-CU1M |
— |
— |
— |
— |
Supported |
— |
QSFP-H40G-CU2M |
— |
— |
— |
— |
Supported |
— |
QSFP-H40G-CU3M |
— |
— |
— |
— |
Supported |
— |
QSFP-H40G-CU4M |
— |
— |
— |
— |
Supported |
— |
QSFP-H40G-CU5M |
— |
— |
— |
— |
Supported |
— |
QSFP-H40G-CUO-5M |
— |
— |
— |
— |
Supported |
— |
QSFP-H40G-AOC1M |
— |
— |
— |
— |
Supported |
— |
QSFP-H40G-AOC2M |
— |
— |
— |
— |
Supported |
— |
QSFP-H40G-AOC3M |
— |
— |
— |
— |
Supported |
— |
QSFP-H40G-AOC5M |
— |
— |
— |
— |
Supported |
— |
QSFP-H40G-AOC7M |
— |
— |
— |
— |
Supported |
— |
QSFP-H40G-AOC10M |
— |
— |
— |
— |
Supported |
— |
QSFP-H40G-AOC15M |
— |
— |
— |
— |
Supported |
— |
QSFP-H40G-AOC20M |
— |
— |
— |
— |
Supported |
— |
QSFP-H40G-AOC25M |
— |
— |
— |
— |
Supported |
— |
QSFP-H40G-AOC30M |
— |
— |
— |
— |
Supported |
— |
SFP-10G-AOC10M |
Supported |
Supported |
— |
— |
— |
— |
SFP-10G-AOC1M |
Supported |
Supported |
— |
Supported |
Supported |
Supported |
SFP-10G-AOC2M |
Supported |
Supported |
— |
Supported |
Supported |
Supported |
SFP-10G-AOC3M |
Supported |
Supported |
— |
Supported |
Supported |
Supported |
SFP-10G-AOC5M |
Supported |
Supported |
— |
Supported |
Supported |
Supported |
SFP-10G-AOC7M |
Supported |
Supported |
— |
Supported |
Supported |
Supported |
SFP-10G-ER |
Supported |
Supported |
— |
Supported |
Supported |
Supported |
SFP-10G-LR |
Supported |
Supported |
Supported |
Supported |
Supported |
Supported |
SFP-10G-LR-S |
Supported |
Supported |
Supported |
— |
— |
— |
SFP-10G-LR-X |
Supported |
Supported |
Supported |
Supported |
Supported |
Supported |
SFP-10G-LRM |
Supported |
Supported |
Supported |
— |
— |
— |
SFP-10G-SR |
Supported |
Supported |
Supported |
Supported |
Supported |
Supported |
SFP-10G-SR-S |
Supported |
Supported |
Supported |
Supported |
Supported |
Supported |
SFP-10G-SR-I |
— |
— |
— |
Supported |
Supported |
Supported |
SFP-10G-SR-X |
Supported |
Supported |
Supported |
— |
— |
— |
SFP-10G-ZR |
Supported |
Supported |
— |
— |
— |
— |
SFP-10G-ZR-I |
— |
— |
— |
Supported |
Supported |
Supported |
SFP-10G-T-X |
— |
— |
— |
Supported |
Supported |
Supported |
SFP-25G-SR-S |
— |
— |
— |
Supported |
— |
Supported |
SFP-25G-ER-I |
— |
— |
— |
Supported |
— |
Supported |
SFP-10/25G-LR-I |
— |
— |
— |
Supported |
— |
Supported |
SFP-10/25G-LR-S |
— |
— |
— |
Supported |
— |
Supported |
SFP-10/25G-CSR-S |
— |
— |
— |
Supported |
— |
Supported |
SFP-10/25G-BXD-I |
— |
— |
— |
Supported |
— |
Supported |
SFP-10/25G-BXU-I |
— |
— |
— |
Supported |
— |
Supported |
SFP-H25G-CU1M |
— |
— |
— |
Supported |
— |
Supported |
SFP-H25G-CU5M |
— |
— |
— |
Supported |
— |
Supported |
SFP-25G-AOC1M |
— |
— |
— |
Supported |
— |
Supported |
SFP-25G-AOC2M |
— |
— |
— |
Supported |
— |
Supported |
SFP-25G-AOC3M |
— |
— |
— |
Supported |
— |
Supported |
SFP-25G-AOC5M |
— |
— |
— |
Supported |
— |
Supported |
SFP-25G-AOC7M |
— |
— |
— |
Supported |
— |
Supported |
SFP-25G-AOC10M |
— |
— |
— |
Supported |
— |
Supported |
SFP-H10GB-ACU10M |
Supported |
Supported |
Supported |
Supported |
Supported |
Supported |
SFP-H10GB-ACU7M |
Supported |
Supported |
Supported |
Supported |
Supported |
Supported |
SFP-H10GB- CU1.5M |
Supported |
Supported |
Supported |
— |
— |
— |
SFP-H10GB-CU1M |
Supported |
Supported |
Supported |
Supported |
Supported |
Supported |
SFP-H10GB-CU2.5M |
Supported |
Supported |
Supported |
— |
— |
— |
SFP-H10GB-CU2M |
Supported |
Supported |
Supported |
Supported |
Supported |
Supported |
SFP-H10GB-CU3M |
Supported |
Supported |
Supported |
Supported |
Supported |
Supported |
SFP-H10GB-CU5M |
Supported |
Supported |
Supported |
Supported |
Supported |
Supported |
SFP-H10GB-CU1-5M |
— |
— |
— |
Supported |
Supported |
Supported |
Finisar-LR (FTLX1471D3BCL) |
— |
— |
Supported |
Supported |
Supported |
Supported |
Finisar-SR (FTLX8574D3BC) |
— |
— |
— |
Supported |
Supported |
Supported |
Optics Modules
The Cisco Catalyst 9800 Series Wireless Controller supports a wide range of optics. The list of supported optics is updated on a regular basis. See the tables at the following location for the latest transceiver module compatibility information:
https://www.cisco.com/en/US/products/hw/modules/ps5455/products_device_support_tables_list.html
Network Protocols and Port Matrix
Source |
Destination |
Protocol |
Destination Port |
Source Port |
Description |
---|---|---|---|---|---|
Any |
Cisco Catalyst 9800 Series Wireless Controller |
TCP |
22 |
Any |
SSH |
Any |
Cisco Catalyst 9800 Series Wireless Controller |
TCP |
23 |
Any |
Telnet |
Any |
Cisco Catalyst 9800 Series Wireless Controller |
TCP |
80 |
Any |
HTTP |
Any |
Cisco Catalyst 9800 Series Wireless Controller |
TCP |
443 |
Any |
HTTPS |
Any |
Cisco Catalyst 9800 Series Wireless Controller |
UDP |
161 |
Any |
SNMP Agent |
Any |
Any |
UDP |
5353 |
5353 |
mDNS |
Any |
Cisco Catalyst 9800 Series Wireless Controller |
UDP |
69 |
69 |
TFTP |
Any |
DNS Server |
UDP |
53 |
Any |
DNS |
Any |
Cisco Catalyst 9800 Series Wireless Controller |
TCP |
830 |
Any |
NetConf |
Any |
Cisco Catalyst 9800 Series Wireless Controller |
TCP |
443 |
Any |
REST API |
Any |
WLC Protocol |
UDP |
1700 |
Any |
Receive CoA packets. |
AP |
Cisco Catalyst 9800 Series Wireless Controller |
UDP |
5246 |
Any |
CAPWAP Control |
AP |
Cisco Catalyst 9800 Series Wireless Controller |
UDP |
5247 |
Any |
CAPWAP Data |
AP |
Cisco Catalyst 9800 Series Wireless Controller |
UDP |
5248 |
Any |
CAPWAP MCAST |
AP |
Cisco Catalyst Center |
TCP |
32626 |
Any |
Intelligent capture and RF telemetry |
AP |
AP |
UDP |
16670 |
Any |
Client Policies (AP-AP) |
Cisco Catalyst 9800 Series Wireless Controller |
Cisco Catalyst 9800 Series Wireless Controller |
UDP |
16666 |
16666 |
Mobility Control |
Cisco Catalyst 9800 Series Wireless Controller |
SNMP |
UDP |
162 |
Any |
SNMP Trap |
Cisco Catalyst 9800 Series Wireless Controller |
RADIUS |
UDP |
1812/1645 |
Any |
RADIUS Auth |
Cisco Catalyst 9800 Series Wireless Controller |
RADIUS |
UDP |
1813/1646 |
Any |
RADIUS ACCT |
Cisco Catalyst 9800 Series Wireless Controller |
TACACS+ |
TCP |
49 |
Any |
TACACS+ |
Cisco Catalyst 9800 Series Wireless Controller |
Cisco Catalyst 9800 Series Wireless Controller |
UDP |
16667 |
16667 |
Mobility |
Cisco Catalyst 9800 Series Wireless Controller |
NTP Server |
UDP |
123 |
Any |
NTP |
Cisco Catalyst 9800 Series Wireless Controller |
Syslog Server |
UDP |
514 |
Any |
SYSLOG |
Cisco Catalyst 9800 Series Wireless Controller |
NetFlow Server |
UDP |
9996 |
Any |
NetFlow |
Cisco Catalyst 9800 Series Wireless Controller |
Cisco Connected Mobile Experiences (CMX) |
UDP |
16113 |
Any |
NMSP |
Cisco Catalyst Center |
Cisco Catalyst 9800 Series Wireless Controller |
TCP |
32222 |
Any |
Device Discovery |
Cisco Catalyst Center |
Cisco Catalyst 9800 Series Wireless Controller |
TCP |
25103 |
Any |
Telemetry Subscriptions |
Supported APs
The following Cisco APs are supported in this release.
Indoor Access Points
-
Cisco Catalyst 9105AX (I/W) Access Points
-
Cisco Catalyst 9115AX (I/E) Access Points
-
Cisco Catalyst 9117AX (I) Access Points
-
Cisco Catalyst 9120AX (I/E/P) Access Points
-
Cisco Catalyst 9130AX (I/E) Access Points
-
Cisco Catalyst 9136AX Access Points
-
Cisco Catalyst 9162 (I) Series Access Points
-
Cisco Catalyst 9164 (I) Series Access Points
-
Cisco Catalyst 9166 (I/D1) Series Access Points
-
Cisco Wireless 9176 (I/D1) Series Wi-Fi 7 Access Points
-
Cisco Wireless 9178 (I) Series Wi-Fi 7 Access Points
-
Cisco Aironet 1815 (I/W/M/T), 1830 (I), 1840 (I), and 1852 (I/E) Access Points
-
Cisco Aironet 1800i Access Point
-
Cisco Aironet 2800 (I/E) Series Access Points
-
Cisco Aironet 3800 (I/E/P) Series Access Points
-
Cisco Aironet 4800 (I) Series Access Points
Outdoor Access Points
-
Cisco Aironet 1540 (I/D) Series Access Points
-
Cisco Aironet 1560 (I/D/E) Series Access Points
-
Cisco Aironet 1570 (IC/EC/EAC) Series Access Points
-
Cisco Catalyst Industrial Wireless 6300 Heavy Duty Series Access Point
-
Cisco 6300 Series Embedded Services Access Point
-
Cisco Catalyst 9124AX (I/D/E) Access Points
-
Cisco Catalyst 9163 (E) Series Access Points
-
Cisco Catalyst Industrial Wireless 9167 (I/E) Heavy Duty Access Points
-
Cisco Catalyst Industrial Wireless 9165E Rugged Access Point
-
Cisco Catalyst Industrial Wireless 9165D Heavy Duty Access Point
Integrated Access Points
-
Integrated Access Point on Cisco 1100 ISR (ISR-AP1100AC-x, ISR-AP1101AC-x, and ISR-AP1101AX-x)
Network Sensor
-
Cisco Aironet 1800s Active Sensor
Pluggable Modules
-
Cisco Wi-Fi Interface Module (WIM)
Supported Access Point Channels and Maximum Power Settings
Supported access point channels and maximum power settings on Cisco APs are compliant with the regulatory specifications of channels, maximum power levels, and antenna gains of every country in which the access points are sold. For more information about the supported access point transmission values in Cisco IOS XE software releases, see the Detailed Channels and Maximum Power Settings document at https://www.cisco.com/c/en/us/support/ios-nx-os-software/ios-xe-17/products-technical-reference-list.html.
For information about Cisco Wireless software releases that support specific Cisco AP modules, see the "Software Release Support for Specific Access Point Modules" section in the Cisco Wireless Solutions Software Compatibility Matrix document.
Compatibility Matrix
The following table provides software compatibility information. For more information, see Cisco Wireless Solutions Software Compatibility Matrix
Cisco Catalyst 9800 Series Wireless Controller Software | Cisco Identity Services Engine | Cisco Prime Infrastructure | Cisco AireOS-IRCM Interoperability | Cisco Catalyst Center | Cisco CMX | ||
---|---|---|---|---|---|---|---|
IOS XE 17.16.1 |
3.4 3.3 3.2 3.1 3.0 2.7 * all with latest patches |
3.10.6 (base version)
|
8.10.196.0 8.10.190.0 8.10.185.0 8.10.183.0 8.10.182.0 8.10.181.0 8.10.171.0 8.10.162.0 8.10.151.0 8.10.142.0 8.10.130.0 8.5.176.2 8.5.182.104 |
11.0 10.6.3 |
|||
IOS XE 17.15.2 |
3.4 3.3 3.2 3.1 3.0 2.7 * all with latest patches |
3.10.6 (base version)
|
8.10.196.0 8.10.190.0 8.10.185.0 8.10.183.0 8.10.182.0 8.10.181.0 8.10.171.0 8.10.162.0 8.10.151.0 8.10.142.0 8.10.130.0 8.5.176.2 8.5.182.104 |
11.0 10.6.3 |
|||
IOS XE 17.15.1 |
3.4 3.3 3.2 3.1 3.0 2.7 * all with latest patches |
3.10.6 (base version)
|
8.10.196.0 8.10.190.0 8.10.185.0 8.10.183.0 8.10.182.0 8.10.181.0 8.10.171.0 8.10.162.0 8.10.151.0 8.10.142.0 8.10.130.0 8.5.176.2 8.5.182.104 |
11.0 10.6.3 |
GUI System Requirements
The following subsections list the hardware and software required to access the Cisco Catalyst 9800 Controller GUI.
Processor Speed |
DRAM |
Number of Colors |
Resolution |
Font Size |
---|---|---|---|---|
233 MHz minimum2 |
512 MB3 |
256 |
1280 x 800 or higher |
Small |
Software Requirements
Operating Systems:
-
Windows 7 or later
-
Mac OS X 10.11 or later
Browsers:
-
Google Chrome: Version 59 or later (on Windows and Mac)
-
Microsoft Edge: Version 40 or later (on Windows)
-
Safari: Version 10 or later (on Mac)
-
Mozilla Firefox: Version 60 or later (on Windows and Mac)
Note |
Firefox Version 63.x is not supported. |
The controller GUI uses Virtual Terminal (VTY) lines for processing HTTP requests. At times, when multiple connections are open, the default number of VTY lines of 15 set by the device might get exhausted. Therefore, we recommend that you increase the number of VTY lines to 50.
To increase the VTY lines in a device, run the following commands in the following order:
-
device# configure terminal
-
device(config)# line vty 50
A best practice is to configure the service tcp-keepalives to monitor the TCP connection to the device.
-
device(config)# service tcp-keepalives-in
-
device(config)# service tcp-keepalives-out
Before You Upgrade
Ensure that you familiarize yourself with the following points before proceeding with the upgrade:
-
Kernel panic is observed in CW9176 while disabling few of the associated clients.
-
Kernel panic is observed in CW9176 and CW9178 during configuration change, after the initial bootup.
After upgrading the controller image, the AP joins the controller and reboots. Kernel panic is observed when the policy tag is changed for the first time. This is seen only the first time after build upgrade.
-
When you upgrade from Cisco IOS XE Dublin 17.12.3 to 17.12.4 or Cisco IOS XE 17.15.1, the Cisco Catalyst Wi-Fi 6 APs fail to upgrade the AP image.
Workaround:
-
Reboot the impacted APs through the power cycle.
-
Important |
The Cisco Catalyst 9800 Series Wireless Controller may experience an unexpected reload when CLI accounting is enabled and the wireless configuration is changed using the WebUI with an IPv6 address. The issue affects only wireless platforms. Workaround:
|
-
The Air Quality Sensor feature is disabled in Cisco IOS XE 17.15.1. Although, you may be able to view the Config-State (as Enabled), Admin-State (as Enabled), and Oper-Status (as Up), there will be no values sent from the Air Quality Sensor.
Caution |
During controller upgrade or reboot, if route processor ports are connected to any Cisco switch, ensure that the route processor ports are not flapped (shut/no shut process). Otherwise, it may lead to a kernel crash. |
Cisco Wave 2 APs may get into a boot loop when upgrading software over a WAN link. For more information, see: https://www.cisco.com/c/en/us/support/docs/wireless/catalyst-9800-series-wireless-controllers/220443-how-to-avoid-boot-loop-due-to-corrupted.html.
The following Wave 1 APs are not supported from 17.4 to 17.9.2, 17.10.x, 17.11.x, 17.13.x, 17.14.x, and 17.15.x:
-
Cisco Aironet 1570 Series Access Point
-
Cisco Aironet 1700 Series Access Point
-
Cisco Aironet 2700 Series Access Point
-
Cisco Aironet 3700 Series Access Point
Note |
|
-
From Cisco IOS XE Dublin 17.10.x, Key Exchange and MAC algorithms like diffie-hellman-group14-sha1, hmac-sha1, hmac-sha2-256, and hmac-sha2-512 are not supported by default and it may impact some SSH clients that only support these algorithms. If required, you can add them manually. For information on manually adding these algorithms, see the SSH Algorithms for Common Criteria Certification document available at: https://www.cisco.com/c/en/us/td/docs/routers/ios/config/17-x/sec-vpn/b-security-vpn/m_sec-secure-shell-algorithm-ccc.html
-
If APs fail to detect the backup image after running the archive download-sw command, perform the following steps:
-
Upload the image using the no-reload option of the archive download-sw command:
Device# archive download-sw /no-reload tftp://<tftp_server_ip>/<image_name>
-
Restart the CAPWAP process using capwap ap restart command. This allows the AP to use the correct backup image after the restart (reload is not required.)
Device# capwap ap restart
Caution
The AP will lose connection to the controller during the join process. When the AP joins the new controller, it will see a new image in the backup partition. So, the AP will not download a new image from the controller.
-
-
Fragmentation lower than 1500 is not supported for the RADIUS packets generated by wireless clients in the Gi0 (OOB) interface.
-
Cisco IOS XE allows you to encrypt all the passwords used on the device. This includes user passwords and SSID passwords (PSK). For more information, see the "Password Encryption" section of the Cisco Catalyst 9800 Series Configuration Best Practices document.
-
While upgrading to Cisco IOS XE 17.3.x and later releases, if the ip http active-session-modules none command is enabled, you will not be able to access the controller GUI using HTTPS. To access the GUI using HTTPS, run the following commands in the order specified below:
-
ip http session-module-list pkilist OPENRESTY_PKI
-
ip http active-session-modules pkilist
-
-
Cisco Aironet 1815T OfficeExtend Access Point will be in local mode when connected to the controller. However, when it functions as a standalone AP, it gets converted to FlexConnect mode.
-
The Cisco Catalyst 9800-L Wireless Controller may fail to respond to the BREAK signals received on its console port during boot time, preventing users from getting to the ROMMON. This problem is observed on the controllers manufactured until November 2019, with the default config-register setting of 0x2102. This problem can be avoided if you set config-register to 0x2002. This problem is fixed in the 16.12(3r) ROMMON for Cisco Catalyst 9800-L Wireless Controller. For information about how to upgrade the ROMMON, see the Upgrading ROMMON for Cisco Catalyst 9800-L Wireless Controllers section of the Upgrading Field Programmable Hardware Devices for Cisco Catalyst 9800 Series Wireless Controllers document.
-
By default, the controller uses a TFTP block size value of 512, which is the lowest possible value. This default setting is used to ensure interoperability with legacy TFTP servers. If required, you can change the block size value to 8192 to speed up the transfer process, using the ip tftp blocksize command in global configuration mode.
-
We recommend that you configure the password encryption aes and the key config-key password-encrypt key commands to encrypt your password.
-
If the following error message is displayed after a reboot or system crash, we recommend that you regenerate the trustpoint certificate:
ERR_SSL_VERSION_OR_CIPHER_MISMATCH
Use the following commands in the order specified below to generate a new self-signed trustpoint certificate:
-
device# configure terminal
-
device(config)# no crypto pki trustpoint trustpoint_name
-
device(config)# no ip http server
-
device(config)# no ip http secure-server
-
device(config)# ip http server
-
device(config)# ip http secure-server
-
device(config)# ip http authentication local/aaa
-
-
Do not deploy OVA files directly to VMware ESXi 6.5. We recommend that you use an OVF tool to deploy the OVA files.
-
Ensure that you remove the controller from Cisco Prime Infrastructure before disabling or enabling Netconf-YANG. Otherwise, the system may reload unexpectedly.
-
Unidirectional Link Detection (UDLD) protocol is not supported.
-
SIP media session snooping is not supported on FlexConnect local switching deployments.
-
The Cisco Catalyst 9800 Series Wireless Controllers (C9800-CL, C9800-L, C9800-40, and C9800-80) support a maximum of 14,000 leases with internal DHCP scope.
-
Configuring the mobility MAC address using the wireless mobility mac-address command is mandatory for both HA and 802.11r.
-
If you have Cisco Catalyst 9120 (E/I/P) and Cisco Catalyst 9130 (E) APs in your network and you want to downgrade, use only Cisco IOS XE Gibraltar 16.12.1t. Do not downgrade to Cisco IOS XE Gibraltar 16.12.1s.
-
The following SNMP variables are not supported:
-
CISCO-LWAPP-WLAN-MIB: cLWlanMdnsMode
-
CISCO-LWAPP-AP-MIB.my: cLApDot11IfRptncPresent, cLApDot11IfDartPresent
-
-
If you are upgrading from Cisco IOS XE Gibraltar 16.11.x or an earlier release, ensure that you unconfigure the advipservices boot-level licenses on both the active and standby controllers using the no license boot level advipservices command before the upgrade. Note that the license boot level advipservices command is not available in Cisco IOS XE Gibraltar 16.12.1s and 16.12.2s.
-
The Cisco Catalyst 9800 Series Wireless Controller has a service port that is referred to as GigabitEthernet 0 port.
The following protocols and features are supported through this port:
-
Cisco Catalyst Center
-
Cisco Smart Software Manager
-
Cisco Prime Infrastructure
-
Telnet
-
Controller GUI
-
HTTP
-
HTTPS
-
Licensing for Smart Licensing feature to communicate with CSSM
-
SSH
-
-
During device upgrade using GUI, if a switchover occurs, the session expires and the upgrade process gets terminated. As a result, the GUI cannot display the upgrade state or status.
-
From Cisco IOS XE Bengaluru 17.4.1 onwards, the telemetry solution provides a name for the receiver address instead of the IP address for telemetry data. This is an additional option. During the controller downgrade and subsequent upgrade, there is likely to be an issue—the upgrade version uses the newly named receivers, and these are not recognized in the downgrade. The new configuration gets rejected and fails in the subsequent upgrade. Configuration loss can be avoided when the upgrade or downgrade is performed from Cisco Catalyst Center.
-
Communication between Cisco Catalyst 9800 Series Wireless Controller and Cisco Prime Infrastructure uses different ports:
-
All the configurations and templates available in Cisco Prime Infrastructure are pushed through SNMP and CLI, using UDP port 161.
-
Operational data for controller is obtained over SNMP, using UDP port 162.
-
AP and client operational data leverage streaming telemetry:
-
Cisco Prime Infrastructure to controller: TCP port 830 is used by Cisco Prime Infrastructure to push the telemetry configuration to the controller (using NETCONF).
-
Controller to Cisco Prime Infrastructure: TCP port 20828 is used for Cisco IOS XE 16.10.x and 16.11.x, and TCP port 20830 is used for Cisco IOS XE 16.12.x, 17.1.x and later releases.
-
-
-
To migrate public IP address from 16.12.x to 17.x. ensure that you configure the service internal command. If you do not configure the service internal command, the IP address does not get carried forward.
-
RLAN support with Virtual Routing and Forwarding (VRF) is not available.
-
When you encounter the SNMP error SNMP_ERRORSTATUS_NOACCESS 6, it means that the specified SNMP variable is not accessible.
-
We recommend that you perform a controller reload whenever there is a change in the controller's clock time to reflect an earlier time.
Note |
The DTLS version (DTLSv1.0) is deprecated for Cisco Aironet 1800 based on latest security policies. Therefore, any new out-of-box deployments of Cisco Aironet 1800 APs will fail to join the controller and you will get the following error message:
To onboard new Cisco Aironet 1800 APs and to establish a CAPWAP connection, explicitly set the DTLS version to 1.0 in the controller using the following configuration:
Note that setting the DTLS version to 1.0 affects all the existing AP CAPWAP connections. We recommend that you apply the configuration only during a maintenance window. After the APs download the new image and join the controller, ensure that you remove the configuration. |
To upgrade the field programmable hardware devices for Cisco Catalyst 9800 Series Wireless Controllers, see Upgrading Field Programmable Hardware Devices for Cisco Catalyst 9800 Series Wireless Controllers.
Important |
Before you begin a downgrade process, you must manually remove the configurations which are applicable in the current version but not in older version. Otherwise, you might encounter an unexpected behavior. |
-
When you downgrade an AP from a higher version to Cisco IOS XE Amsterdam 17.3.x, the AP will not be accessible through SSH or the console due to the denial of the enable password, when the AP has not yet joined a controller. If the AP joins a controller, then the AP becomes accessible without any password denial.
Upgrade Path to Cisco IOS XE 17.15.x
Current Software |
Upgrade Path for Deployments with 9130 or 9124 |
Upgrade Path for Deployments Without 9130 or 9124 |
---|---|---|
16.10.x |
—4 |
Upgrade first to 16.12.5 or 17.3.x and then to 17.15.x. |
16.11.x |
— |
Upgrade first to 16.12.5 or 17.3.x and then to 17.15.x. |
16.12.x |
Upgrade first to 17.3.5 or later or 17.6.x or later, and then to 17.15.x. | Upgrade first to 17.3.5 or later or 17.6.x or later, and then to 17.15.x. |
17.1.x |
Upgrade first to 17.3.5 or later and then to 17.15.x. | Upgrade first to 17.3.5 or later and then to 17.15.x. |
17.2.x |
Upgrade first to 17.3.5 or later and then to 17.15.x. | Upgrade first to 17.3.5 or later and then to 17.15.x. |
17.3.1 to 17.3.4 |
Upgrade first to 17.3.5 or later or 17.6.x or later, and then to 17.15.x. |
Upgrade directly to 17.15.x. |
17.3.4c or later |
Upgrade directly to 17.15.x. |
Upgrade directly to 17.15.x. |
17.4.x |
Upgrade first to 17.6.x and then to 17.15.x. |
Upgrade directly to 17.15.x. |
17.5.x |
Upgrade first to 17.6.x and then to 17.15.x. |
Upgrade directly to 17.15.x. |
17.6.x |
Upgrade directly to 17.15.x. |
Upgrade directly to 17.15.x. |
17.7.x |
Upgrade directly to 17.15.x. |
Upgrade directly to 17.15.x. |
17.8.x |
Upgrade directly to 17.15.x. |
Upgrade directly to 17.15.x. |
17.9.x |
Upgrade directly to 17.15.x |
Upgrade directly to 17.15.x |
17.10.x |
Upgrade directly to 17.15.x |
Upgrade directly to 17.15.x |
17.11.x |
Upgrade directly to 17.15.x |
Upgrade directly to 17.15.x |
17.12.x |
Upgrade directly to 17.15.x |
Upgrade directly to 17.15.x |
17.13.x |
Upgrade directly to 17.15.x |
Upgrade directly to 17.15.x |
17.14.x |
Upgrade directly to 17.15.x |
Upgrade directly to 17.15.x |
8.9.x or any 8.10.x version prior to 8.10.171.0 |
Upgrade first to 17.3.5 or later or 17.6.x or later, and then to 17.15.x |
Upgrade directly to 17.15.x. |
Upgrading the Controller Software
This section describes the various aspects of upgrading the controller software.
Finding the Software Version
The package files for the Cisco IOS XE software are stored in the system board flash device (flash:).
Use the show version privileged EXEC command to see the software version that is running on your controller.
Note |
Although the show version output always shows the software image running on the controller, the model name shown at the end of the output is the factory configuration, and does not change if you upgrade the software license. |
Use the show install summary privileged EXEC command to see the information about the active package.
Use the dir filesystem: privileged EXEC command to see the directory names of other software images that you have stored in flash memory.
Software Images
-
Release: Cisco IOS XE 17.15.x
-
Image Names (9800-80, 9800-40, and 9800-L):
-
C9800-80-universalk9_wlc.17.15.x.SPA.bin
-
C9800-40-universalk9_wlc.17.15.x.SPA.bin
-
C9800-L-universalk9_wlc.17.15.x.SPA.bin
-
-
Image Names (9800-CL):
-
Cloud: C9800-CL-universalk9.17.15.x.SPA.bin
-
Hyper-V/ESXi/KVM: C9800-CL-universalk9.17.15.x.iso, C9800-CL-universalk9.17.15.x.ova
-
KVM: C9800-CL-universalk9.17.15.x.qcow2
-
NFVIS: C9800-CL-universalk9.17.15.x.tar.gz
-
Software Installation Commands
Cisco IOS XE 17.15.x |
|||
---|---|---|---|
To install and activate a specified file, and to commit changes to be persistent across reloads, run the following command: device# install add file filename [activate |commit] To separately install, activate, commit, end, or remove the installation file, run the following command: device# install ?
|
|||
add file tftp: filename |
Copies the install file package from a remote location to a device, and performs a compatibility check for the platform and image versions. |
||
activateauto-abort-timer] |
Activates the file and reloads the device. The auto-abort-timer keyword automatically rolls back image activation. |
||
commit |
Makes changes that are persistent over reloads. |
||
rollback to committed |
Rolls back the update to the last committed version. |
||
abort |
Cancels file activation, and rolls back to the version that was running before the current installation procedure started. |
||
remove |
Deletes all unused and inactive software installation files. |
Licensing
Cisco Wireless Licences
Cisco Wireless licenses, a part of the Cisco Networking Subscription licensing model, is a software license that helps you to deploy your Wi-Fi 7 Access Points in an on-premise, hybrid, or a cloud managed network. From Cisco IOS XE 17.15.2, Cisco Wireless licenses are supported on Wi-Fi 7 Access Points (APs) and later models.
The Cisco Wireless licenses consist of the following tiers:
-
Cisco Wireless Essentials: The tier that provides fundamental features and functionalities that are essential to manage a network.
-
Cisco Wireless Advantage: The tier that supports additional features and capabilities, and includes all the essential capabilities in addition to the advanced capabilities to manage a network.
For more information, see Cisco Wireless Licensing.
Smart Licensing
The Smart Licensing Using Policy feature is automatically enabled on the controller. This is also the case when you upgrade to this release. By default, your Smart Account and Virtual Account in Cisco Smart Software Manager (CSSM) are enabled for Smart Licensing Using Policy. For more information, see the "Smart Licensing Using Policy" chapter in the Cisco Catalyst 9800 Series Wireless Controller Software Configuration Guide.
For a more detailed overview on Cisco Licensing, see cisco.com/go/licensingguide.
Interoperability with Clients
This section describes the interoperability of the controller software with client devices.
The following table lists the configurations used for testing client devices.
Hardware or Software Parameter |
Hardware or Software Type |
---|---|
Release |
Cisco IOS XE 17.15.x |
Cisco Wireless Controller |
See Supported Hardware. |
Access Points |
See Supported APs. |
Radio |
|
Security |
Open, PSK (WPA2-AES), 802.1X (WPA2-AES) (EAP-FAST, EAP-TLS) |
RADIUS |
See Compatibility Matrix. |
Types of tests |
Connectivity, traffic (ICMP), and roaming between two APs |
The following table lists the client types on which the tests were conducted. Client types included laptops, hand-held devices, phones, and printers.
Client Type and Name |
Driver or Software Version |
||
---|---|---|---|
Laptops |
|||
Acer Aspire E 15 E5-573-3870 (Qualcomm Atheros QCA9377) | Windows 10 Pro (12.0.0.832) | ||
Apple Macbook Air 11 inch | macOS Sierra 10.12.6 | ||
Apple Macbook Air 13 inch | macOS High Sierra 10.13.4 | ||
Macbook Pro Retina | macOS Catalina | ||
Macbook Pro Retina 13 inch early 2015 | macOS Mojave 10.14.3 | ||
Macbook Pro OS X | macOS X 10.8.5 | ||
Macbook Air | macOS Sierra v10.12.2 | ||
Macbook Air 11 inch | macOS Yosemite 10.10.5 | ||
MacBook M1 Chip |
macOS Catalina |
||
MacBook M1 Chip |
macOS Ventura 13.2.1 |
||
MacBook Pro M2 Chip |
macOS Ventura 13.3 beta |
||
MacBook Pro M2 Chip |
macOS Ventura 13.1 |
||
Dell Inspiron 2020 Chromebook |
Chrome OS 75.0.3770.129 |
||
Google Pixelbook Go |
Chrome OS 97.0.4692.27 |
||
HP chromebook 11a |
Chrome OS 76.0.3809.136 |
||
Samsung Chromebook 4+ |
Chrome OS 77.0.3865.105 |
||
Dell Latitude (Intel AX210) | Windows 11 (22.110.x.x) | ||
Dell Latitude 3480 (Qualcomm DELL wireless 1820) | Win 10 Pro (12.0.0.242) | ||
Dell Inspiron 15-7569 (Intel Dual Band Wireless-AC 3165) | Windows 10 Home (21.40.0) | ||
Dell Latitude E5540 (Intel Dual Band Wireless AC7260) | Windows 7 Professional (21.10.1) | ||
Dell Latitude E5430 (Intel Centrino Advanced-N 6205) | Windows 7 Professional (15.18.0.1) | ||
Dell Latitude E6840 (Broadcom Dell Wireless 1540 802.11 a/g/n) | Windows 7 Professional (6.30.223.215) | ||
Dell XPS 12 v9250 (Intel Dual Band Wireless AC 8260 ) | Windows 10 Home (21.40.0) | ||
Dell Latitude 5491 (Intel AX200) | Windows 10 Pro (21.20.1.1) | ||
Dell XPS Latitude12 9250 (Intel Dual Band Wireless AC 8260) | Windows 10 Home | ||
Dell Inspiron 13-5368 Signature Edition | Windows 10 Home (18.40.0.12) | ||
FUJITSU Lifebook E556 Intel 8260 (Intel Dual Band Wireless-AC 8260 (802.11n)) | Windows 8 (19.50.1.6) | ||
Lenovo Yoga C630 Snapdragon 850 (Qualcomm AC 2x2 Svc) |
Windows 10 Home | ||
Lenovo Thinkpad Yoga 460 (Intel Dual Band Wireless-AC 9260) | Windows 10 Pro (21.40.0) | ||
|
|||
Tablets |
|||
Apple iPad Pro (12.9 inch) 6th Gen |
iOS 16.4 | ||
Apple iPad Pro (11 inch) 4th Gen |
iOS 16.4 | ||
Apple iPad 2021 |
iOS 15.0 |
||
Apple iPad 7the Gen 2019 | iOS 14.0 | ||
Apple iPad MD328LL/A | iOS 9.3.5 | ||
Apple iPad 2 MC979LL/A | iOS 11.4.1 | ||
Apple iPad Air MD785LL/A | iOS 11.4.1 | ||
Apple iPad Air2 MGLW2LL/A | iOS 10.2.1 | ||
Apple iPad Mini 4 9.0.1 MK872LL/A | iOS 11.4.1 | ||
Apple iPad Mini 2 ME279LL/A | iOS 11.4.1 | ||
Apple iPad Mini 4 9.0.1 MK872LL/A | iOS 11.4.1 | ||
Microsoft Surface Pro 3 13 inch (Intel AX201) | Windows 10 (21.40.1.3) | ||
Microsoft Surface Pro 3 15 inch (Qualcomm Atheros QCA61x4A) | Windows 10 | ||
Microsoft Surface Pro 7 (Intel AX201) | Windows 10 | ||
Microsoft Surface Pro 6 (Marvell Wi-Fi chipset 11ac) | Windows 10 | ||
Microsoft Surface Pro X (WCN3998 Wi-Fi Chip) | Windows | ||
Mobile Phones |
|||
Apple iPhone 5 | iOS 12.4.1 | ||
Apple iPhone 6s | iOS 13.5 | ||
Apple iPhone 7 MN8J2LL/A | iOS 11.2.5 | ||
Apple iPhone 8 | iOS 13.5 | ||
Apple iPhone 8 Plus | iOS 14.1 | ||
Apple iPhone 8 Plus MQ8D2LL/A | iOS 12.4.1 | ||
Apple iPhone X MQA52LL/A | iOS 13.1 | ||
Apple iPhone 11 | iOS 15.1 | ||
Apple iPhone 12 | iOS 16.0 | ||
Apple iPhone 12 Pro | iOS 15.1 | ||
Apple iPhone 13 | iOS 15.1 | ||
Apple iPhone 13 Mini | iOS 15.1 | ||
Apple iPhone 13 Pro | iOS 15.1 | ||
Apple iPhone SE MLY12LL/A | iOS 11.3 | ||
Apple iPhone SE | iOS 15.1 | ||
ASCOM i63 | Build v 3.0.0 | ||
ASCOM Myco 3 | Android 9 | ||
Cisco IP Phone 8821 |
11.0.6 SR4 |
||
Drager Delta | VG9.0.2 | ||
Drager M300.3 | VG3.0 | ||
Drager M300.4 | VG3.0 | ||
Drager M540 | VG4.2 | ||
Google Pixel 3a |
Android 11 |
||
Google Pixel 4 |
Android 11 |
||
Google Pixel 5 |
Android 11 |
||
Google Pixel 6 |
Android 12 |
||
Google Pixel 7 |
Android 13 |
||
Huawei Mate 20 pro | Android 9.0 | ||
Huawei P20 Pro |
Android 10 |
||
Huawei P40 |
Android 10 |
||
LG v40 ThinQ | Android 9.0 | ||
One Plus 8 |
Android 11 |
||
Oppo Find X2 |
Android 10 |
||
Redmi K20 Pro |
Android 10 |
||
Samsung Galaxy S9+ - G965U1 |
Android 10.0 |
||
Samsung Galaxy S10 Plus |
Android 11.0 |
||
Samsung S10 (SM-G973U1) |
Android 11.0 |
||
Samsung S10e (SM-G970U1) |
Android 11.0 |
||
Samsung Galaxy S20 Ultra |
Android 10.0 |
||
Samsung Galaxy S21 Ultra 5G |
Android 13.0 |
||
Samsung Galaxy S22 Ultra |
Android 13.0 |
||
Samsung Fold 2 |
Android 10.0 | ||
Samsung Galaxy Z Fold 3 |
Android 13.0 |
||
Samsung Note20 |
Android 12.0 |
||
Samsung G Note 10 Plus |
Android 11.0 |
||
Samsung Galaxy A01 |
Android 11.0 |
||
Samsung Galaxy A21 |
Android 10.0 |
||
Sony Experia 1 ii |
Android 11 |
||
Sony Experia |
Android 11 |
||
Xiaomi Mi 9T |
Android 9 |
||
Xiaomi Mi 10 |
Android 11 |
||
Spectralink 84 Series | 7.5.0.x257 | ||
Spectralink 87 Series | Android 5.1.1 | ||
Spectralink Versity Phones 92/95/96 Series | Android 10.0 | ||
Spectralink Versity Phones 9540 Series | Android 8.1.0 | ||
Vocera Badges B3000n | 4.3.3.18 | ||
Vocera Smart Badges V5000 | 5.0.6.35 | ||
Zebra MC40 | Android 4.4.4 | ||
Zebra MC40N0 | Android 4.1.1 | ||
Zebra MC92N0 | Android 4.4.4 | ||
Zebra MC9090 | Windows Mobile 6.1 | ||
Zebra MC55A | Windows 6.5 | ||
Zebra MC75A | OEM ver 02.37.0001 | ||
Zebra TC51 | Android 6.0.1 | ||
Zebra TC52 | Android 10.0 | ||
Zebra TC55 | Android 8.1.0 | ||
Zebra TC57 | Android 10.0 | ||
Zebra TC58 | Android 11.0 | ||
Zebra TC70 | Android 6.1 | ||
Zebra TC75 | Android 10.0 | ||
Zebra TC520K |
Android 10.0 | ||
Zebra TC8000 | Android 4.4.3 | ||
Printers | |||
Zebra QLn320 Mobile Printer | LINK OS 5.2 | ||
Zebra ZT230 IndustrialPrinter | LINK OS 6.4 | ||
Zebra ZQ310 Mobile Printer | LINK OS 6.4 | ||
Zebra ZD410 Industrial Printer | LINK OS 6.4 | ||
Zebra ZT410 Desktop Printer | LINK OS 6.2 | ||
Zebra ZQ610 Industrial Printer | LINK OS 6.4 | ||
Zebra ZQ620 Mobile Printer | LINK OS 6.4 | ||
Wireless Module |
|||
Intel AX 411 |
Driver v22.230.0.8 | ||
Intel AX 211 |
Driver v22.230.0.8, v22.190.0.4 | ||
Intel AX 210 |
Driver v22.230.0.8, v22.190.0.4, v22.170.2.1 | ||
Intel AX 200 |
Driver v22.130.0.5 | ||
Intel 11AC |
Driver v22.30.0.11 | ||
Intel AC 9260 |
Driver v21.40.0 | ||
Intel Dual Band Wireless AC 8260 |
Driver v19.50.1.6 |
||
Samsung S21 Ultra |
Driver v20.80.80 |
||
QCA WCN6855 |
Driver v1.0.0.901 |
||
PhoenixContact FL WLAN 2010 |
Firmware version: 2.71 |
Issues
Issues describe unexpected behavior in Cisco IOS releases in a product. Issues that are listed as Open in a prior release are carried forward to the next release as either Open or Resolved.
Note |
All incremental releases contain fixes from the current release. |
Cisco Bug Search Tool
The Cisco Bug Search Tool (BST) allows partners and customers to search for software bugs based on product, release, and keyword, and aggregates key data such as bug details, product, and version. The BST is designed to improve the effectiveness in network risk management and device troubleshooting. The tool has a provision to filter bugs based on credentials to provide external and internal bug views for the search input.
To view the details of an issue, click the corresponding identifier.
Open Issues for Cisco IOS XE 17.15.2
Identifier |
Headline |
---|---|
Kernel panic is observed in CW9176 and CW9178 APs at pc: stile_mpe_conv_set_signatures+0xb8/0x720 [ntdp] |
|
Kernel panic is observed in CW9176 at pc: dp_tx_mon_process_tlv_2_0+0xb18/0x18d0 |
|
Cisco Catalyst 9105W AP: RLAN fast switching breaks DHCP for non-native VLAN wireless |
|
Cisco Catalyst 9800-M controller does not connect the 25G port to the Nexus 9K Switch |
|
Clients are unable to connect due to assignment of IP address that is in use by stale client entry in device-tracking database in FlexConnect local switching |
|
Cisco Aironet 3802 AP displays false radar detection only on UNI-II after upgrading the software |
|
AP shadow record support in standby |
|
Controller sends multicast packets with previous WMI |
|
Controller unexpectedly reboots due to memory depletion due to mobilityd process |
|
Controller encounters kernel unresponsiveness due to IntelResetRequest |
|
Controller experiences kernel unresponsiveness due to tdl memory corruption |
|
Cisco Catalyst 9115 AP experiences kernel unresposiveness due to: Beacon Stuck Reset Radio |
|
Clients encounter slow speeds after connecting to the Cisco Catalyst 9166AX AP's slot 2 |
|
Cisco Catalyst 9800-40 controllers encounter kernel unresponsiveness and reboot unexpectedly at rogue_start_containers |
|
Cisco Aironet 1562 MAP does not form mesh with Cisco Catalyst 9124 RAP running 17.9 |
|
802.11ax client faces latency in AP. |
|
Clients encounter slow speeds while connecting to slot 2 operating in the 5-GHz band on CM66 |
|
DTLS timeout because of improper client load balancing |
|
Controller running in High Availability in guest anchor sends traffic to the wrong tunnel after switchover for already connected clients |
|
Anchor controller drops mobility tunnel even when keepalive timers aren't hit |
|
Controller's WNCd experiences kernel unresponsiveness due to SISF |
|
Controller encounters kernel unresponsiveness for WNCd in SSL Code |
|
Cisco Catalyst 9120 AP does not forward large packets when MTU=1500 |
|
Controller experiences kernel unresponsiveness due to Critical process WNCd fault |
|
Controller relays unicast DHCP requests |
|
Cisco Catalyst 9500 experiences kernel unresponsiveness when loading the controller package to enable EWC |
|
OEAP LAN Ports 2 and 3 become non-functional on RLAN Profile after the controller code is upgraded |
|
Displaying Standby Chassis STANDBY HOT stopped when the default gateway is unreachable |
|
Controller should permit duplicate IPv6 while IP Theft is disabled |
|
IP address of the TACACS server disappears when the GUI timeout is changed |
|
Controller does not use the latest APSP after failover, causing AP to download new image after rejoining |
|
AP gets removed from the controller due to an intermittent SW kernel unresponsiveness on the CAPWAPd process |
|
Cisco Catalyst 9105 AP displays Short Preamble "Allowed" but then rejects association with SP "Not Allowed" |
|
Controller does not generate AP disjoin event message syslog after the AP is disconnected |
|
Cisco Catalyst 9800-80 contoller reloads unexpectedly and experiences kernel unresponsiveness |
|
Controller does not send RADIUS request for web admin user |
|
Cisco Catalyst 9120 AP experiences kernel unresponsiveness due to ktime_get_update_offsets_now+0x6c/0xb8 |
|
Cisco Catalyst 9120 Wi_Fi 6 AP experiences kernel unresponsiveness due to wlc_bsscfg_find_by_target_bssid+0xb8/0xe0 |
|
Controller experiences unexpected kernel unresponsiveness while client association with key-wrap is enabled |
|
Controller unexpectedly reloads with CPUHOGS writing /tmp/rp/tdldb/0/NMSPD_DB on NMSPd process |
Open Issues for Cisco IOS XE 17.15.1
Identifier |
Headline |
---|---|
CSCwn17412 | The FlexConnect local switching traffic is centralized randomly during a web-auth SSID. |
Controller sends IGMP queries without IP address and MAC address on Cisco IOS XE Cupertino 17.9.3 |
|
APs repeatedly join and disjoin controller with traceback |
|
Cisco Catalyst 9130 AP experiences traffic loss and delays due to perceived channel utilization and interference |
|
Client is unable to connect due to delete reason NACK_IFID_EXISTS |
|
Clients are unable to connect due to assignment of IP address that is in use by stale client entry in device-tracking database in FlexConnect local switching |
|
APs become non-operational when connected to Cisco Catalyst 9300 Switch via mGig port |
|
Controller unexpectedly reloads while running the show wireless client mac-address detail command |
|
Cisco Aironet 2802 AP fails to send reassociation response or association request |
|
Controller unexpectedly reloads with reason "Critical process wncmgrd fault on rp_0_0 (rc=134)" |
|
AP experiences slowness on 5-GHz and 6-GHz band |
|
%EVENTLIB-3-CPUHOG message observed on Cisco IOS XE 17.12 |
|
Controller reloads unexpectedly |
|
Client experiences unexpected disconnect due to missing M1 packet |
|
Controller reboots due to high ODM memory consumption |
|
Controller shows "-1 day" logs when registering with AirGap SLUP |
|
Client VLAN is retained after changing SSIDs if \"vlan-persistent\" is enabled |
|
Client page is stuck in loading state |
|
Controller experiences unexpected reloads with high WNCd memory |
|
Cisco Catalyst 9130 does not accept clients on the 5 GHz band |
|
FlexConnect local switching dropping upstream broadcast ARP from Android devices in data path in Cisco Catalyst 9130 AP |
|
Cisco Catalyst 9120 AP unexpectedly reloads along with radio abnormalities on wlc_bmac_suspend_mac |
|
Controller voice CAC BW is not cleared |
|
Controller sends multicast packets with previous WMI |
|
Controller unexpectedly reloads on 17.9.4 with reason "critical process WNCd fault" |
|
Configuration update failure when AP is in delete pending state |
|
Cisco Catalyst 9120 AP running on Cisco IOS XE Cupertino 17.9.5 drops downstream ARP reply |
|
URL filter inconsistency observed post modification |
|
Cisco Catalyst 9130 experiences radio failure |
|
Cisco IW916x WGB: association is 802.11n, but the uplink statistics counts all Tx packets as MCS9 |
|
Cisco IW916x WGB: configure beacon miss-count 1000, roaming is never triggered |
Resolved Issues for Cisco IOS XE 17.15.2
Identifier |
Headline |
---|---|
Controller unexpectedly reloads with cpp-ucode exception due to a rbuf out-of-handle |
|
APs repeatedly join and disjoin controller with traceback |
|
Controller GUI displays error messages: %CLI_AGENT-1-NVGEN_ERR while processing NVGEN command |
|
Cisco Catalyst 9130 AP experiences traffic loss and delays due to perceived channel utilization and interference |
|
Controller unexpectedly stops working while running the show wireless client mac-address detail command |
|
Controller sends an invalid XML character (Unicode: 0x4) found in RPC response for ap-model |
|
Controller unexpectedly reloads with reason "Critical process wncmgrd fault on rp_0_0 (rc=134)" |
|
%EVENTLIB-3-CPUHOG message observed on Cisco IOS XE 17.12 |
|
Cisco Catalyst 9105/9115/9120 AP fails for clients connected in 5G slot |
|
Client experiences unexpected disconnect due to missing M1 packet |
|
Wireless clients are unable to receive the splash page and gets stuck due to webauth requirement |
|
Client VLAN is retained after changing SSIDs if \"vlan-persistent\" is enabled |
|
Cisco Catalyst 9115 and 9120 APs loses its port 802.1X configuration on upgrade |
|
Client page is stuck in loading state |
|
Cisco Catalyst 9120 AP unexpectedly reloads along with radio abnormalities on wlc_bmac_suspend_mac |
|
Controller voice CAC BW is not cleared |
|
Controller does not respond to CoA |
|
FRA sets slot 2 to 6 GHz in Cisco Catalyst 9166 AP even when 6-GHz network is disabled |
|
Controller stops responding constantly when running specific UDN related commands |
|
Cisco Catalyst 9120AXI-S AP does not detect the RFIDs in Monitor mode |
|
Local switching clients are assigned to Zone ID 0 when IP overlap is configured and FlexConnect VLAN central switching |
|
Controller ends abnormally during an ISSU upgrade from Cisco IOS XE 17.3 to 17.12 |
|
Cisco Catalyst 9166D APs are unable to transmit NDP packets over the air |
|
Controller experiences kernel unresponsiveness abnormally pointing to client_orch |
|
Cisco Catalyst 91xx AP does not rotate awipsd.log causing an upgrade issue "tar: write error: No space left on device" |
|
APs do not upgrade without a power cycle displaying error: unlzma: write: No space left on device |
|
EWC rogue syslogs are missing |
|
Controller experiences kernel unresponsiveness two times due to Critical process WNCd fault on rp_0_0 (rc=139) |
|
Controller reboots handling AP radio payloads due to Critical process wncd fault on rp_0_0 (rc=139) |
|
EWC does not start on RAP after factory reset |
|
Cisco Wave APs experience kernel unresponsiveness due to memory leak reason OOM |
|
Controller displays fman_rp memory leak in FMAN_RP_DB at /tmp/rp/tdldb |
|
Clients stuck in IP learning state as DHCP option 82 field is left empty with EoGRE tunnel enabled |
|
Controller upgrading to 17.9.5 removes the NAS Port-ID in Access-Request |
|
FlexConnect APs disable u-APSD in the assoc request if clients don't have it enabled |
|
Cisco Catalyst 9124 AP in FlexConnect mode with the FlexConnect EoGRE tunnel enabled leaves the Option 82 field unfilled |
|
Cisco Wave 2 APs 2800, 3800, and 4800 display duplicate entries for stale clients in the Wi-Fi driver |
|
Cisco Catalyst 9800-80 controller encounters critical process WNCd failure (rc 0) |
|
Controller encounters kernel unresponsiveness due to client being stuck in 802.11r preauth and BSSID/AP going down at the same time |
|
Controller encounters kernel unresponsiveness with geolocation config pointing towards geo_cloudm_graph_shortest_path |
|
Cisco Aironet 4800 AP: Radio Core data files generated Radio 1 during longevity testing |
|
Cisco Aironet 1815w AP encounters kernel unresponsiveness on image version 17.9.4.205 |
|
Cisco Catalyst 9300 and 9400 switches' mGig port displays half-duplex mismatch messages |
|
Loadbalancer feature does not work when AP sends negative SNR value |
|
Cisco Catalyst 9166 APs stop forwarding traffic for some seconds. |
|
Controller's Web UI enhancement shows login banner while using TACACS/RADIUS |
|
Controller displays no effect on disabling DCA Aggressive on startup |
|
ewlc_cert_mgr, SafeC Validation: strncpy_s: does not have enough space after assigning new WebAdmin cert |
|
Clients using Cisco IW3702 AP in FlexConnect mode cannot obtain IP addresses while behind third-party WGB |
|
Controller encounters fix flow control display issue |
|
Controller using channels 1, 5, 6, 9, 11, and 13 on 2.4GHz RF profiles causes discrepancies |
|
FlexConnect AP with Client QoS policy changes WLAN-VLAN mapping without manual configuration change |
|
AP does not update the MTU value for PMTU probe causing disconnection |
|
SNMP query with bsnAPIfTable OID fails for Cisco Catalyst 9166D APs |
|
Controller GUI does not change AP tags displaying "System Busy! Please retry after sometime" |
|
Cisco Aironet 2802 AP encounters kernel unresponsiveness after upgrading to 17.9.5.47 |
|
Cisco Catalyst 9800-80 encounters kernel unresponsiveness due to incorrect delete reason code in the AP delete mobile payload |
|
AP does not disjoin automatically when the AP-name is changed in the Regex filter |
|
APs mark own BSSID as rogue in 2.4 GHz and in 5 GHz |
|
SSH access remains unrestricted for EWC-capable APs connecting to the Cisco Embedded Wireless Controller |
|
Cisco IW-6300H-AC-E-K9 APs encounter kernel unresponsiveness due to FIQ/NMI reset |
|
Cisco Catalyst 9136 AP sends M5 with incorrect index 0, resulting in Apple Macbooks not responding |
|
Cisco Catalyst 9115AX displays BcmRadioStats error : Failed to add multicast MAC address for RRM as dot11_client entry |
|
Controller RADSEC fix using a Samsung device displays wrong Acct-Terminate-Code when manually disabling Wi-Fi |
|
Controller experiences an unexpected reset of WNCd |
|
OKC roam fails after a brief WAN drop |
|
AAA override VLAN does not apply upon roaming in FlexConnect local authentication |
|
Controller encounters kernel unresponsiveness due to TLB miss |
|
Cisco Catalyst 9164I-ROW AP VAP driver drops EAP identity requests packet intermittently |
|
AP displays BSSID as rogue intermittently, causing the control packet to be considered for impersonation detection |
|
Controller experiences unexpected reload while parsing null password on '? password encryption aes?' command |
|
Controller does not answer to A/AAAA queries for wired devices (mDNS gateway) |
|
Removing 'tls match-server-identity hostname <URL>' doesn't work |
|
AAA override VLAN is not used for FT 11R roam-in local authentication |
|
Cisco Catalyst 9130 AP encounters kernel unresponsiveness due to OOM |
|
Cisco Wave 2 AP does not send syslog messages if the receiver is using an IPv6 address |
|
Controller's UI and CLI fail to delete a mobility peer due to 'invalid transversal ctx for walker next rec' |
|
Cisco Embedded Wireless Controller in the Site Survey mode does not connect with the internal AP |
|
Cisco Catalyst 9120AXI-I AP's 2.4-GHz band does not activate due to a 'Regulatory domain check failed' error |
|
Controller RP undergoes unexpected reload while displaying OPSSL Handshake Errors |
|
IPv6 buffer overrun encounters kernel unresponsiveness when client IPv6 address removal happens in a larger number |
|
Controller RADSEC's accounting stop messages are missing when user disconnects from Wi-Fi |
|
Clients are unable to join due to high memory usage: AAA_CHUNK_ATTR_SUBLIST |
|
Controller running 17.9.4a code encounters kernel unresponsiveness when configuring "ip http server" |
|
Controller RADSEC's accounting does not stop while accounting starts including framed-IP |
|
WNCd logs display a CPU hog during association request processing |
Resolved Issues for Cisco IOS XE 17.15.1
Identifier |
Headline |
---|---|
During controller switchover, a client using static IP is assigned to the wrong VLAN |
|
Controller experiences flow monitor failure due to manual flow record parameters |
|
Cisco Wave 2 APs connected to the controller are losing the FlexConnect WLAN-VLAN mapping |
|
Slot 2 is down for GB country after performing factory reset |
|
APs do not join the controller with invalid radio slot ID error |
|
Controller becomes unresponsive within Radio Resource Management (RRM) service due to ReloadReason=Critical process rrm fault |
|
Media stream feature does not work |
|
Controller reloads unexpectedly due to Keymgmt: Failed to eapol key m1 retransmit failure |
|
Controller unexpectedly reboots when handling NMSP TLS connection |
|
MAC Authentication Bypass (MAB) is not initiated unless the client device is deauthenticated |
|
Cisco Catalyst 9800-40 Wireless Controller becomes unresponsive on Critical process Radio Resource Management (RRM) fault on rp_0_0 |
|
Cisco Catalyst 9800-40 Wireless Controller reloads due to critical process WNCd fault |
|
Controller does not have Network Access Control (NAC) in the policy profile configuration enabled on Prime Infrastructure |
|
Cisco Catalyst 9800 Wireless Controller encounters unresponsiveness generating system report, segmentation fault - Process = IGMPSN |
|
Cisco Catalyst 9800 Wireless Controller encounters an unexpected reset in wncmgrd with a scaled setup while being managed by the Meraki Dashboard |
|
Controller does not display the redundancy details on the Web-UI, only on the CLI |
|
Controller encounters an unexpected reset while trying to validate the MAC address with the EWLC_APP_INFRA_ID_MAGIC |
|
Controller reboots due to Radio Resource Management (RRM) process fault on rp_0_0 (rc=139) |
|
Controller reboots unexpectedly due to invalid QoS parameters |
|
Controller posture flow does not work when PMF is optional |
|
Cisco Catalyst 9800-80 Wireless Controller encounters WNCd issues when accessing Crimson Database |
|
Controller unexpectedly reboots during WNCd process due to assertation failure with invalid BSSID |
|
Memory leak in scale network with telemetry shared user events with Cisco Catalyst Center |
|
Controller becomes unresponsive during WNCd process |
|
Controller becomes unresponsive due to critical software exception |
|
Controller does not send RADIUS accounting messages WLAN with PSK/MAB authentication |
|
Controller and PI report observe RRM message mismatch |
|
AP does not allow you to apply URL filter after invalid configuration |
|
5-GHz and 2.4-GHz radios remain non-operational in an AP |
|
Controller does not send mobile address to AP if the CoA is received when the user is in the ip_learn state |
|
Controller uses incorrect username for "show platform" command when logging in GUI |
|
Per client rate limit with FlexConnect AP is not functioning |
|
Controller local password policy does not take effect on GUI login as expected |
|
VLAN group support for DHCP and static IP clients feature does not work on FlexConnect Central Switching mode |
|
Controller accepts the reserved IPv6 multicast address to be configured as a mobility multicast IPv6 address |
|
Controller returns with error while uploading backup file with FTP on GUI |
|
Controller GUI shows incorrect number of clients connected to the AP |
|
Controller configures aggregation scheduler parameter incorrectly, causing low downlink speed |
|
Pop-ups are not displayed correctly in dark mode in the controller |
|
Active controller becomes ActiveRecovery when the redundancy port link is down |
|
Personal Identity Verification (PIV) authentication requires an additional backslash in the redirection URL to work successfully |
|
AP undergoing Extensible Authentication Protocol (EAP) fails if the password is more than 31 characters |
|
Cisco NMSP runs into security protocol issues |
|
Controller reports incorrect values during SNMP polling |
|
URL filter allows only letters as the first character |
|
Incorrect selection of APs in load balancing |
|
Controller experiences unresponsiveness CPUHOG |
|
Enhanced URL is missing after FlexConnect AP CAPWAP flap |
|
Controller experiences unresponsiveness after displaying "\clear ap geolocation derivation\" message |
|
GUI does not display PC analytics statistics |
|
Loadbalancer server holds incorrect AP IP address and stale entries |
|
The "show run" command results are different from restore configuration |
|
The "show ap summary sort descending client-count" command shows wrong client count |
|
Unsupportive characters in the description field prevents re-sync |
|
Controller shows tech X is empty when previous tech X term length stop didn't finish before SSH close |
|
Controller encrypts ApDnaGlobalCfg token when the password encryption is configured using AES |
|
Syntax errors observed in CISCO-LWAPP-DOT11-CLIENT-MIB |
|
Syntax errors observed in CISCO-LWAPP-DOT11-MIB |
|
Standby controller does not take active role after reloading the active controller with "reload slot" command |
|
An RSA key pair is configured in the truspoint configuration when an EC keypair is selected when creating a trustpoint on the controller. |
|
Controller throws password policy alert while logging in GUI using TACACS+ credentials after upgrading to Cisco IOS XE 17.14 |
|
Controller unexpectedly reloads due to Cisco QuantumFlow Processor (QFP) ucode while updating the drop statistics |
|
Output for the show ap summary command takes lengthy duration to complete |
|
Cisco IW916x WGB: wcpd crash during 802.11v neighbor list updates after multiple roams |
|
COS uWGB: Does not translate the client MAC address of Broadcast DHCP offer |
|
Cisco IW9167: Clients cannot associate to APs in bridge mode (RAP) when the AP is on a fiber connection |
Troubleshooting
For the most up-to-date, detailed troubleshooting information, see Troubleshooting TechNotes.
Related Documentation
-
MIB Locator to locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets
Communications, Services, and Additional Information
-
To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.
-
To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.
-
To submit a service request, visit Cisco Support.
-
To discover and browse secure, validated enterprise-class apps, products, solutions, and services, visit Cisco DevNet.
-
To obtain general networking, training, and certification titles, visit Cisco Press.
-
To find warranty information for a specific product or product family, access Cisco Warranty Finder.
Cisco Bug Search Tool
Cisco Bug Search Tool (BST) is a gateway to the Cisco bug-tracking system, which maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. The BST provides you with detailed defect information about your products and software.
Documentation Feedback
To provide feedback about Cisco technical documentation, use the feedback form available in the right pane of every online document.