
Pods and Services Reference

• Feature Summary and Revision History, on page 1
• Feature Description, on page 2
• Associating Pods to the Nodes, on page 9
• Viewing the Pod Details and Status, on page 9

Feature Summary and Revision History

Summary Data
Table 1: Summary Data

SMFApplicable Products or Functional Area

SMIApplicable Platform(s)

Enabled – Always-onFeature Default Setting

Not ApplicableRelated Changes in this Release

Not ApplicableRelated Documentation

Revision History
Table 2: Revision History

ReleaseRevision Details

Pre-2020.02.0First introduced.

Pods and Services Reference
1



Feature Description
The SMF is built on the Kubernetes cluster strategy, which implies that it has adopted the native concepts of
containerization, high availability, scalability, modularity, and ease of deployment. To achieve the benefits
offered by Kubernetes, SMF uses the construct that includes the components, such as pods and services.

Depending on your deployment environment, the SMF deploys the pods on the virtual machines that you
have configured. Pods operate through the services that are responsible for the intrapod communications. If
the machine hosting the pods fails or experiences network disruption, the pods are terminated or deleted.
However, this situation is transient and Kubernetes spins new pods to replace the invalid pods.

The following workflow provides a high-level visibility into the host machines, and the associated pods and
services. It also represents how the pods communicate with each other. The representation may differ based
on your deployment infrastructure.

Figure 1: Communication Workflow of Pods

Kubernetes deployment includes the kubectl command-line tool to manage the Kubernetes resources in the
cluster. You can manage the pods, nodes, and services.

For information on the Kubernetes concepts, see the Kubernetes documentation.

For more information on the Kubernetes components in SMF, see the following:

• Pods

• Services

Pods and Services Reference
2

Pods and Services Reference
Feature Description



Pods
A pod is a process that runs on your Kubernetes cluster. Pod encapsulates a granular unit known as a container.
A pod contains one or multiple containers.

Kubernetes deploys one or multiple pods on a single node which can be a physical or virtual machine. Each
pod has a discrete identity with an internal IP address and port space. However, the containers within a pod
can share the storage and network resources.

The following table lists the SMF pod names and the hosts on which they are deployed depending on the
labels that you assign. For information on how to assign the labels, see Associating Pods to the Nodes.

Table 3: SMF Pods

Virtual
Machine
Name

DescriptionPod Name

OAMFunctions as the confD API pod for the SMF Ops Center.api-smf-ops-center

OAMSupports Smart Licensing feature.base-entitlement-smf

ProtocolDynamic routing for L3 route management and BFD
monitoring

bgpspeaker

ProtocolOperates as the pod to cache any sort of system information
that will be used by other pods as applicable.

cache-pod

SessionProvides an interface to the CDL.cdl-ep-session

SessionPreserves the mapping of keys to the session pods.cdl-index-session

SessionOperates as the CDL session pod to store the session data.cdl-slot-session

ProtocolOperates as DNS endpoint of SMFdns-proxy

OAMContains the documentation.documentation

OAMHosts the etcd for the SMF application to store information,
such as pod instances, leader information, NF-UUID,
endpoints, and so on.

etcd-smf-etcd-cluster

ProtocolResponsible for cache, etcd replication across sites, and
site role management

georeplication

OAMContains the default dashboard of CDLmetrics in Grafana.grafana-dashboard-cdl

OAMContains the default dashboard of SMF service metrics in
Grafana.

grafana-dashboard-smf

ProtocolOperates as GTPC endpoint of SMF.gtpc-ep

ProtocolHosts the Kafka details for the CDL replication.kafka

ProtocolOperates as Lawful Intercept endpoint of SMF.li-ep

OAMOperates as the pod to facilitate Ops Center actions like
show commands, configuration commands, monitor
protocol monitor subscriber, and so on.

oam-pod

OAMActs as the SMF Ops Center.ops-center-smf-ops-center

Pods and Services Reference
3

Pods and Services Reference
Pods



Virtual
Machine
Name

DescriptionPod Name

OAMOperates as the utility pod for the SMF Ops Center.smart-agent-smf-ops-center

ServicePerforms node level interactions, such as N4 link
establishment, management (heart-beat), and so on. Also,
generates unique identifiers, such as UE IP address, SEID,
CHF-ID, Resource URI, and so on.

nodemgr

ProtocolOperates as encoder and decoder of application protocols
(PFCP, GTP, RADIUS, and so on) whose underlying
transport protocol is UDP.

protocol

ProtocolOperates as RADIUS endpoint of SMFradius-ep

ProtocolOperates as REST endpoint of SMF for HTTP2
communication.

rest-ep

ServiceContains main business logic of SMF.service

ProtocolOperates as proxy for all UDPmessages. Owns UDP client
and server functionalities.

udp-proxy

OAMOperates as the utility pod for the SMF Ops Center.swift-smf-ops-center

OAMAssists Kafka for topology management.zookeeper

For details on UDP proxy, see the UDP Proxy Pod, on page 5 section.

These SMF pods communicate with the Common Execution Environment (CEE) pods. For the complete list
of CEE pods, see the UCC CEE Configuration and Administration Guide.

Replicas
Each pod runs on a single instance of an application. To provide more resources by running more instances,
you can use multiple Pods, one for each instance. This concept in Kubernetes is referred to as replication.
Replicated Pods or replicas are usually created and managed as a group by a workload resource and its
controller.

With multiple replicas, Kubernetes can distribute the load between them. During node failures, replicas can
be used.

Replicas are based on the hardware and deployed call model.Note

Pods and Services Reference
4

Pods and Services Reference
Replicas



UDP Proxy Pod

Feature Description
The SMF has UDP interfaces toward the UPF (N4) and SGW (s5 or s8 for EPS interworking). With the help
of the protocol layer pods (smf-protocol and gtp-ep), the messages are encoded and decoded and exchanged
on these UDP interfaces.

For achieving the functionalities mentioned on the 3GPP specifications:

• It is mandatory for the protocol layer pods to receive the original source and destination IP address and
port number. But the original IP and UDP header is not preserved when the incoming packets arrive at
the UDP service in the Kubernetes (K8s) cluster.

• Similarly, for the outgoing messages, the source IP set to the external IP address of the UDP service
(published to the peer node) is mandatory. But the source IP is selected as per the egress interface when
different instances of protocol layer pods send outgoing messages from different nodes of the K8s cluster.

The protocol layer POD spawns on the node, which has the physical interface configured with the external
IP address to achieve the conditions mentioned earlier. However, spawning the protocol layer pods has the
following consequences:

• It is not possible to achieve the node level HA (High Availability) because the protocol pods are spawned
on the same node of the K8s cluster. Any failure to that node may result in loss of service.

• The protocol pods (smf-protocol, gtp-ep, and radius-ep) must include their own UDP client and server
functionalities. In addition, each protocol layer pod may require labeling of the K8s nodes with the affinity
rules. This restricts the scaling requirements of the protocol layer pods.

The SMF addresses these issues with the introduction of a new K8s POD called "udp-proxy." The primary
objectives of this POD are:

• The “udp-proxy" POD acts as a proxy for all kinds of UDP messages. It also owns the UDP client and
server functionalities.

• The protocol pods perform the individual protocol (PFCP, GTP, Radius) encoding and decoding and
provide the UDP payload to the "udp-proxy" POD. The "udp-proxy" POD sends the UDP payload out
after it receives the payload from the protocol pods.

• The "udp-proxy" POD opens the UDP sockets on a virtual IP (VIP) instead of a physical IP. This ensures
that the "udp-proxy" POD does not have any strict affinity to a specific K8s node (VM). Thus, enabling
node level HA for the UDP proxy.

One instance of the "udp-proxy" POD is spawned by default in all the worker nodes in the K8s cluster.

The UDP proxy for SMF feature has functional relationship with the Virtual IP Address feature.

Note

Architecture

The "udp-proxy" POD is placed in the worker nodes in the K8s cluster.

Pods and Services Reference
5

Pods and Services Reference
UDP Proxy Pod



1. Each of the K8s worker node contains one instance of the "udp-proxy" POD. However, only one of the
K8s worker node owns the virtual IP at any time. The worker node that owns the virtual IP remains in the
active mode while all the other worker nodes remain in the standby mode.

2. The active "udp-proxy" POD binds to the virtual IP and the designated ports for listening to the UDP
messages from the peer nodes (UPF and SGW).

3. The UDP payload received from the peer nodes are forwarded to one instance of the protocol, gtp-ep, or
radius-ep pods. The payload is forwarded either on the same node or different node for further processing.

4. The response message from the protocol, gtp-ep, or radius-ep pods is forwarded back to the active instance
of the "udp-proxy" POD. The "udp-proxy" POD sends the response message back to the corresponding
peer nodes.

5. The SMF-initiated messages are encoded at the protocol, gtp-ep, or radius-ep pods. In addition, the UDP
payload is sent to the "udp-proxy" POD. Eventually, the "udp-proxy" POD comprises of the complete IP
payload and sends the message to the peer. When the response from the peer is received, the UDP payload
is sent back to the same smf-protocol, gtp-ep, or radius-ep POD from which the message originated.

Protocol Pod Selection for Peer-Initiated Messages

When the "udp-proxy" pod receives the peer node (for instance UPF) initiated messages, it is load balanced
across the protocol instances to select any instance of the protocol pod. An entry of this instance number is
stored along with the source IP and source port number of the peer node. This ensures that the messages form
the same source IP and source port are sent to the same instance that was selected earlier.

High Availability for the UDP Proxy

The UDP proxy's HA model is based on the keepalived virtual IP concepts. A VIP is designated to the N4
interface during deployment. Also, a keepalived instance manages the VIP and ensures that the IP address of
the VIP is created as the secondary address of an interface in one of the worker nodes of the K8s cluster.

The "udp-proxy" instance on this worker node binds to the VIP and assumes the role of the active "udp-proxy"
POD. All "udp-proxy" instances in other worker nodes remain in the standby mode.

Services
The SMF configuration consists of several microservices that run on a set of discrete pods. Microservices are
deployed during the SMF deployment. SMF uses these services to enable communication between the pods.
When interacting with another pod, the service identifies the pod's IP address to initiate the transaction and
acts as an endpoint for the pod.

The following table describes the SMF services and the pod on which they run.

Table 4: SMF Services and Pods

DescriptionPod NameService Name

Supports Smart Licensing feature.base-entitlement-smfbase-entitlement-smf

Dynamic routing for L3 route
management and BFD monitoring

bgpspeakerbgpspeaker-pod

Responsible for the CDL session.cdl-ep-sessiondatastore-ep-session

Pods and Services Reference
6

Pods and Services Reference
Protocol Pod Selection for Peer-Initiated Messages



DescriptionPod NameService Name

Responsible for sending the
notifications from the CDL to the
smf-service through smf-rest-ep.

smf-rest-epdatastore-notification-ep

Responsible for the secure CDL
connection.

cdl-ep-sessiondatastore-tls-ep-session

Responsible for the SMF
documents.

documentationdocumentation

Responsible for pod discovery
within the namespace.

etcd-smf-etcd-cluster-0,
etcd-smf-etcd-cluster-1,
etcd-smf-etcd-cluster-2

etcd

Responsible for synchronization of
data among the etcd cluster.

etcd-smf-etcd-cluster-0etcd-smf-etcd-cluster-0

Responsible for synchronization of
data among the etcd cluster.

etcd-smf-etcd-cluster-1etcd-smf-etcd-cluster-1

Responsible for synchronization of
data among the etcd cluster.

etcd-smf-etcd-cluster-2etcd-smf-etcd-cluster-2

Responsible for the default
dashboard of app-infra metrics in
Grafana.

grafana-dashboard-app-infragrafana-dashboard-app-infra

Responsible for the default
dashboard of CDL metrics in
Grafana.

grafana-dashboard-cdlgrafana-dashboard-cdl

Responsible for the default
dashboard of SMF-service metrics
in Grafana.

grafana-dashboard-smfgrafana-dashboard-smf

Responsible for inter-pod
communication with GTP-C pod.

gtpc-epgtpc-ep

Manages the Ops Center API.api-smf-ops-centerhelm-api-smf-ops-center

Processes the Kafka messages.kafkakafka

Responsible for lawful-intercept
interactions.

li-epli-ep

Responsible for leveraging Ops
Center credentials by other
applications like Grafana.

ops-center-smf-ops-centerlocal-ldap-proxy-smf-ops-center

Responsible to facilitate Exec
commands on the Ops Center.

oam-podoam-pod

Manages the SMF Ops Center.ops-center-smf-ops-centerops-center-smf-ops-center

To access SMF Ops Center with
external IP address.

ops-center-smf-ops-centerops-center-smf-ops-center-expose-cli

Pods and Services Reference
7

Pods and Services Reference
Services



DescriptionPod NameService Name

Responsible for the SMF Ops
Center API.

smart-agent-smf-ops-centersmart-agent-smf-ops-center

Responsible for routing incoming
HTTP2 messages to REST-EP
pods.

smf-rest-epsmf-sbi-service

Responsible for routing incoming
N10 messages to REST-EP pods.

smf-rest-epsmf-n10-service

Responsible for routing incoming
N11 messages to REST-EP pods.

smf-rest-epsmf-n11-service

Responsible for routing incoming
N40 messages to REST-EP pods.

smf-rest-epsmf-n40-service

Responsible for routing incoming
N7 messages to REST-EP pods.

smf-rest-epsmf-n7-service

Responsible for routing incoming
NRF messages to REST-EP pod.

smf-rest-epsmf-nrf-service

Responsible for inter-pod
communication with smf-nodemgr
pod.

smf-nodemgrsmf-nodemgr

Responsible for inter-pod
communication with smf-protocol
pod

smf-protocolsmf-protocol

Responsible for inter-pod
communicationwith smf-radius-dns
pod

smf-radius-dnssmf-radius-dns

Responsible for inter-pod
communication with smf-rest-ep
pod

smf-rest-epsmf-rest-ep

Responsible for inter-pod
communication with smf-service
pod

smf-servicesmf-service

Operates as the utility pod for the
SMF Ops Center

swiftswift-smf-ops-center

Assists Kafka for topology
management

zookeeperzookeeper

Assists Kafka for topology
management

zookeeperzookeeper-service

Open Ports and Services
The SMF uses different ports for communication purposes. The following table describes the default open
ports and the associated services.

Pods and Services Reference
8

Pods and Services Reference
Open Ports and Services



Table 5: Open Ports and Services

UsageServicePort

SMF Ops Center uses this port to provide the ConfD CLI access.SSH2024

SMF endpoint pods use this port for routing incomingmessages on interfaces,
such as N10, N11, N40, N7, and so on.

HTTP8080

In addition to the preceding ports, SMF uses the ports that are destined for SMI for routing information between
hosts. For information on SMI ports, see the Ultra Cloud Core Subscriber Microservices Infrastructure
Operations Guide.

Associating Pods to the Nodes
This section describes how to associate a pod to the node based on their labels.

After you have configured a cluster, you can associate pods to the nodes through labels. This association
enables the pods to get deployed on the appropriate node based on the key-value pair.

Labels are required for the pods to identify the nodes where they must get deployed and to run the services.
For example, when you configure the protocol-layer label with the required key-value pair, the pods are
deployed on the nodes that match the key-value pair.

To associate pods to the nodes through the labels, use the following sample configuration:

config
k8 label vm_group key label_key value label_value

end

NOTES:

• k8 label vm_group key label_key value label_value: Configures the K8 node affinity label parameters.

• vm_group: Specify the VM group. It must be one of the following:

• cdl-layer

• oam-layer

• protocol-layer

• service-layer

• key label_key: Specify the label key. label_key must be a string.

• value label_value: Specify the label value. label_value must be a string.

• If you choose not to configure the labels, then SMF assumes the labels with the default key-value pair.

Viewing the Pod Details and Status
If the service requires additional pods, SMF creates and deploys the pods. You can view the list of pods in
your deployment through the SMF Ops Center.

Pods and Services Reference
9

Pods and Services Reference
Associating Pods to the Nodes



You can run the kubectl command from the master node to manage the Kubernetes resources.

The pod details are available in YAML format.

Use the following sample configuration to view the comprehensive pod details:

kubectl get pods -n smf pod_name -o yaml

The output of this command displays the following information:

• The IP address of the host where the pod is deployed.

• The service and application that is running on the pod.

• The ID and name of the container within the pod.

• The IP address of the pod.

• The current state and phase in which the pod is.

• The start time from when the pod is in the current state.

To view all the pods in the SMF namespace, use the following sample configuration:

kp get pods -n smf_namespace -o wide

States
Understanding the pod's state lets you determine the current health and prevent the potential risks. The following
table describes the pod's states.

Table 6: Pod States

DescriptionState

The pod is healthy and deployed on a node.

It contains one or more containers.

Running

The application is in the process of creating the container images for the pod.Pending

Indicates that all the containers in the pod are successfully terminated. These pods cannot be
restarted.

Succeeded

One ore more containers in the pod have failed the termination process. The failure occurred
as the container either exited with non zero status or the system terminated the container.

Failed

The state of the pod could not be determined. Typically, this could be observed because the
node where the pod resides was not reachable.

Unknown

Pods and Services Reference
10

Pods and Services Reference
States


	Pods and Services Reference
	Feature Summary and Revision History
	Summary Data
	Revision History

	Feature Description
	Pods
	Replicas
	UDP Proxy Pod
	Feature Description
	Architecture
	Protocol Pod Selection for Peer-Initiated Messages
	High Availability for the UDP Proxy


	Services
	Open Ports and Services

	Associating Pods to the Nodes
	Viewing the Pod Details and Status
	States



