Supervisión del uso de la CPU en la serie ISR4300

Contenido

Introducción
Prerequisites
Requirements
Componentes Utilizados
Arquitectura
Uso de CPU en Cisco IOSd
Uso de la CPU por tráfico
Núcleos de CPU instalados
Distribución de núcleos de CPU
Prácticas recomendadas para supervisar la CPU

Introducción

En este documento se describe cómo leer el uso de la unidad central de proceso (CPU) en routers de servicios integrados (ISR) de la familia de la serie 4300.

Prerequisites

Requirements

Cisco recomienda que tenga conocimiento sobre estos temas:

- Cisco IOS® XE
- ISR43XX

Componentes Utilizados

La información de este documento se basa en la versión de hardware y software:

- ISR4321/K9
- ISR4331/K9
- ISR4351/K9
- 03.16.01a.S // 15.5(3)S1a
- 03.16.04b.S // 15.5(3)S4b
- 16.9.7
- 16.12.4

La información que contiene este documento se creó a partir de los dispositivos en un ambiente

de laboratorio específico. Todos los dispositivos que se utilizan en este documento se pusieron en funcionamiento con una configuración verificada (predeterminada). Si tiene una red en vivo, asegúrese de entender el posible impacto de cualquier comando.

Arquitectura

Las plataformas Cisco ISR serie 4000 ejecutan Cisco IOS XE, que cuenta con una arquitectura de software distribuida que ejecuta un kernel de Linux en el que Cisco IOS® se ejecuta como uno de los muchos procesos de Linux. Cisco IOS se ejecuta como un demonio, que se denomina Cisco IOS-Daemon (IOSd).

Uso de CPU en Cisco IOSd

Para monitorear el uso de la CPU en IOSd, ejecute el comando show process cpu:

#sho	w process cpu							
CPU ı	utilization for	five seconds:	1%/0%;	one mi	nute: 1	%; five	e mir	nutes: 0%
PID	Runtime(ms)	Invoked	uSecs	5Sec	1Min	5Min	TTY	Process
1	2	8	250	0.00%	0.00%	0.00%	0	Chunk Manager
2	5	18	277	0.07%	0.00%	0.00%	0	Load Meter
3	0	2	0	0.00%	0.00%	0.00%	0	DiagCard4/-1
4	0	1	0	0.00%	0.00%	0.00%	0	Retransmission o
5	0	1	0	0.00%	0.00%	0.00%	0	IPC ISSU Dispatc

El resultado muestra dos valores para el uso de CPU, el primer valor es la cantidad total de uso de CPU y el segundo valor es la cantidad de CPU por interrupciones enviadas a IOSd:

	То	tal CPU usage		CPU (usage by	Interrupts		
Router#	show process	cpu sorted						
CPU uti	lization for	five seconds	18/08	ne mi	nute: (0%; five	mir	nutes: 0%
PID Ru	ntime(ms)	Invoked	uSecs	5Sec	1Min	5Min	TTY	Process
64	995	46	21630	0.47%	0.05%	0.00%	0	Licensing Auto U
182	1207	41371	29	0.07%	0.05%	0.05%	0	VRRS Main thread
363	78	5172	15	0.07%	0.00%	0.00%	0	Inspect process
249	3678	262284	14	0.07%	0.10%	0.11%	0	Inline Power
129	476	2653	179	0.07%	0.02%	0.00%	0	Per-Second Jobs
5	0	1	0	0.00%	0.00%	0.00%	0	IPC ISSU Dispate
6	21	12	1750	0.00%	0.00%	0.00%	0	RF Slave Main Th

La diferencia entre la cantidad total de CPU y la cantidad de CPU por interrupciones son los valores de CPU consumida por los procesos; para corroborar, agregue el uso de todos los procesos durante los últimos cinco segundos:

 Consumo de CPU de los procesos = 1% - 0% = 1% = Todos los procesos Consumo de CPU enumerados en el comando

Para mostrar los procesos que consumen la mayor cantidad de CPU en la parte superior, ejecute el comando show process cpu sorted:

#sho	w process cpu so	orted						
CPU	utilization for	five seconds:	1%/0%;	one mi	nute: 0%	%; five	mir	nutes: 0%
PID	Runtime(ms)	Invoked	uSecs	5Sec	1Min	5Min	TTY	Process
64	103	10	10300	0.33%	0.02%	0.00%	0	Licensing Auto U
83	26	231	112	0.27%	0.00%	0.00%	0	PuntInject Keepa
235	555	48176	11	0.11%	0.09%	0.07%	0	Inline Power
1	2	8	250	0.00%	0.00%	0.00%	0	Chunk Manager

Nota: La adición de todos los procesos puede dar como resultado valores de coma flotante, IOSd redondea el resultado al siguiente entero.

Uso de la CPU por tráfico

El diseño de la familia ISR4300, para reenviar el tráfico, se realiza a través de un elemento denominado procesador QuantumFlow (QFP).

Precaución: QFP se encuentra en ASR1K como uno o varios chips físicos, en el ISR4400 se realiza la misma funcionalidad con los coprocesadores Cavium Octeon, en el ISR4300 esa funcionalidad se realiza en ciertos núcleos de la CPU Intel principal. Puede pensar en el QFP de la familia ISR4300 como un software que reenvía paquetes.

Para determinar la cantidad de CPU consumida por el tráfico, puede ejecutar el comando show platform hardware qfp active datapath utilization:

#show platform hardware qfp active datapath utilization											
CPP 0: Subdev ()	5 secs	1 min	5 min	60 min						
Input: Priority	(pps)	0	0	0	0						
	(bps)	0	0	0	0						
Non-Priority	(pps)	3	2	2	1						
	(bps)	1448	992	992	568						
Total	(pps)	3	2	2	1						
	(bps)	1448	992	992	568						
Output: Priority	(pps)	0	0	0	0						
	(bps)	0	0	0	0						
Non-Priority	(pps)	3	2	2	1						
	(bps)	12216	8024	8024	4576						
Total	(pps)	3	2	2	1						
	(bps)	12216	8024	8024	4576						
Processing: Load	(pct)	0	0	0	1						

El comando enumera el uso de CPU de entrada y salida para paquetes prioritarios y no prioritarios, la información se muestra con paquetes por segundo (PPS) y bits por segundo (BPS), la última línea muestra la cantidad total de carga de CPU debido a los valores de reenvío de paquetes en porcentaje (PCT).

Núcleos de CPU instalados

La familia ISR4300 tiene instalada una cantidad diferente de núcleos de CPU que depende del modelo. Para identificar el número de núcleos instalados en su dispositivo, ejecute el comando show processes cpu platform:

#show processes cpu platform CPU utilization for five seconds: 30%, one minute: 29%, five minutes: 29% Core 0: CPU utilization for five seconds: 13%, one minute: 13%, five minutes: 13% Core 1: CPU utilization for five seconds: 2%, one minute: 3%, five minutes: 3% Core 2: CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 0% Core 3: CPU utilization for five seconds: 99%, one minute: 99%, five minutes: 99% Pid PPid 5Sec 1Min 5Min Status Size Name _____ 0 0% 0% 0% S 1863680 init 1 0% S 2 0 0% 0% 0 kthreadd

Como alternativa, ejecute el comando show platform software status control-processor:

```
#show platform software status control-processor
<output omitted>
Per-core Statistics
CPU0: CPU Utilization (percentage of time spent)
User: 4.80, System: 10.30, Nice: 0.00, Idle: 84.50
IRQ: 0.40, SIRQ: 0.00, IOwait: 0.00
CPU1: CPU Utilization (percentage of time spent)
User: 2.00, System: 3.40, Nice: 0.00, Idle: 94.59
IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
CPU2: CPU Utilization (percentage of time spent)
User: 0.50, System: 0.00, Nice: 0.00, Idle: 99.49
IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
CPU3: CPU Utilization (percentage of time spent)
User: 24.72, System: 75.27, Nice: 0.00, Idle: 0.00
IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
```

Por otro lado, ejecute el comando show platform software status control-processor brief y cualquiera de estos comandos mostrará la cantidad de núcleos instalados:

#show platform software status control-processor brief <output omitted> CPU Utilization Slot CPU User System Nice Idle IRQ SIRQ IOwait RP0 0 4.30 9.80 0.00 85.90 0.00 0.00 0.00 1 0.79 0.99 0.00 98.20 0.00 0.00 0.00 2 0.50 0.00 0.00 99.50 0.00 0.00 0.00 3 24.60 75.40 0.00 0.00 0.00 0.00 0.00 Distribución de núcleos de CPU

El diseño de la familia ISR4300 da como resultado núcleos específicos que se utilizan para el proceso de paquetes. Los núcleos cuatro a siete se reservan para el proceso de paquetes en ISR4331 y 4351, mientras que los núcleos dos y tres se utilizan para ISR4321.

Hasta la versión 16.5.x de Cisco IOS XE incluida debido a motivos de rendimiento, el marco de cola jerárquico (HQF) siempre realiza giros en caliente y se ejecuta con un uso elevado de la CPU, independientemente de la configuración que haya en la caja o de la cantidad de tráfico que atraviese el sistema. En las plataformas ISR4300, esto puede aparecer como un uso elevado de la CPU en uno o más de los núcleos, ya que el software QFP se ejecuta en la CPU principal.

Sin embargo, después de la inclusión de las versiones de Cisco IOS XE 16.6.x, se implementó un cambio para que estas plataformas no hicieran girar los subprocesos en caliente. En este caso, la utilización de la CPU se distribuye más a través de los núcleos.

Para mostrar el uso de hot-spin, ejecute el comando show processes cpu platform sorted, antes de Cisco IOS XE 16.6.x:

#show pr	ocesses	cpu plat	form sort	ted								
CPU util	ization	for five	e seconds:	: 28%, or	e min	ute:	29%, fiv	/e mii	nutes:	29%		
Core 0:	CPU util	ization	for five	seconds:	12%,	one	minute:	13%,	five	minutes:	14%	
Core 1:	CPU util	ization	for five	seconds:	2%,	one	minute:	3%,	five	minutes:	3%	
Core 2:	CPU util	ization	for five	seconds:	0%,	one	minute:	0%,	five	minutes:	0%	
Core 3:	CPU util	ization	for five	seconds:	99%,	one	minute:	99%,	five	minutes:	99%	<<< hot-spin
Pid	PPid	5Sec	1Min	5Min S	tatus		Size	Name	e			
2541	 1955	 99%	 99%	99% S	 ;	107	 73807360	qfp	 -ucode		 < hig	gh CPU process
1551	929	7%	7%	7% S		203	38525952	fmaı	n_fp_i	mage		

En una arquitectura de ocho núcleos, puede ver el mismo resultado, con un núcleo diferente en la rotación en caliente, antes de Cisco IOS XE 16.6.x:

#show pr	rocesses	cpu plat	tform sort	ted								
CPU util	lization	for five	e seconds	: 15%, o	ne min	ute: 14%	, five	e min	utes:	15%		
Core 0:	CPU uti	lization	for five	seconds	: 6%,	one min	ute:	4%,	five r	minutes:	8%	
Core 1:	CPU uti	lization	for five	seconds	: 1%,	one min	ute:	0%,	five r	minutes:	2%	
Core 2:	CPU uti	lization	for five	seconds	: 9%,	one min	ute: 1	.0%,	five r	minutes:	7%	
Core 3:	CPU uti	lization	for five	seconds	: 1%,	one min	ute:	2%,	five r	minutes:	1%	
Core 4:	CPU uti	lization	for five	seconds	: 1%,	one min	ute:	1%,	five r	minutes:	1%	
Core 5:	CPU uti	lization	for five	seconds	: 0%,	one min	ute:	0%,	five r	minutes:	0%	
Core 6:	CPU uti	lization	for five	seconds	: 99%,	one min	ute: 9	9%,	five r	minutes:	99% <<	< hot-spin
Core 7:	CPU uti	lization	for five	seconds	: 0%,	one min	ute:	0%,	five r	minutes:	0%	
Pid	PPid	5Sec	1Min	5Min	Status	:	Size	Name				
						100624						CDU
3432	2779	99%	99%	99%	5	108634.	1120	qтр-	ucode-	-utan <<	< nign	CPU process
2612	1893	7%	7%	7%	S	203869	7984	fman.	_fp_ir	nage		
26114	25132	4%	5%	5%	R	4280	3200	hman				

Después de la inclusión de Cisco IOS XE 16.6.x, sin embargo, puede ver que hay una distribución de carga entre Core 2 y Core 3:

------ show process cpu platform sorted ------

Después de la inclusión de Cisco IOS XE 16.6.x, se aplica lo mismo que el resultado anterior, pero para los núcleos 4 a 7:

	show process cpu platform sorted													
CPU uti	PU utilization for five seconds: 30%, one minute: 24%, five minutes: 27%													
Core 0:	CPU uti	lization	for five	seconds:	41%,	one	minute:	13%,	five	minutes:	13%			
Core 1:	CPU uti	lization	for five	seconds:	23%,	one	minute:	11%,	five	minutes:	13%			
Core 2:	CPU uti	lization	for five	seconds:	19%,	one	minute:	10%,	five	minutes:	12%			
Core 3:	CPU uti	lization	for five	seconds:	38%,	one	minute:	12%,	five	minutes:	12%			
Core 4:	CPU uti	lization	for five	seconds:	28%,	one	minute:	26%,	five	minutes:	28% <<	< load	distributed	
Core 5:	CPU uti	lization	for five	seconds:	53%,	one	minute:	40%,	five	minutes:	37% <<	< load	distributed	
Core 6:	CPU uti	lization	for five	seconds:	18%,	one	minute:	16%,	five	minutes:	17% <<	< load	distributed	
Core 7:	CPU uti	lization	for five	seconds:	93%,	one	minute:	81%,	five	minutes:	81% <<	< load	distributed	
Pid	PPid	5Sec	1Min	5Min S [.]	tatus		Size	Name	e 					
26049	25462	164%	165%	170% S			394128	qfp	-ucode	e-utah <<	< high	CPU pro	ocess	

Precaución: si sospecha que existe un problema con el uso de la CPU principal, abra un caso del Technical Assistance Center (TAC) para obtener asistencia y confirmar la estabilidad del dispositivo.

Prácticas recomendadas para supervisar la CPU

Es mejor utilizar los comandos específicos para la utilización de rutas de datos o el uso de IOSd, el resultado de los comandos de visualización de núcleo puede conducir a alertas de falsos positivos.

El comando para monitorear la utilización de la trayectoria de datos es:

· show platform hardware qfp active datapath utilization

El comando para monitorear el uso de IOSd es:

• show process cpu sorted

Utilice cualquiera de estos identificadores de objeto (OID) para supervisar el uso de CPU IOSd con el protocolo simple de administración de red (SNMP):

- <u>busyPer</u> = porcentaje ocupado de CPU IOSd en los últimos 5 segundos
- <u>avgBusy1</u> = IOSd un minuto de promedio móvil con disminución exponencial del porcentaje de ocupación de CPU
- <u>avgBusy5</u> = IOSd cinco minutos de promedio móvil exponencialmente decaído del porcentaje ocupado de la CPU

Acerca de esta traducción

Cisco ha traducido este documento combinando la traducción automática y los recursos humanos a fin de ofrecer a nuestros usuarios en todo el mundo contenido en su propio idioma.

Tenga en cuenta que incluso la mejor traducción automática podría no ser tan precisa como la proporcionada por un traductor profesional.

Cisco Systems, Inc. no asume ninguna responsabilidad por la precisión de estas traducciones y recomienda remitirse siempre al documento original escrito en inglés (insertar vínculo URL).