Dans le cadre de la documentation associée à ce produit, nous nous efforçons d’utiliser un langage exempt de préjugés. Dans cet ensemble de documents, le langage exempt de discrimination renvoie à une langue qui exclut la discrimination en fonction de l’âge, des handicaps, du genre, de l’appartenance raciale de l’identité ethnique, de l’orientation sexuelle, de la situation socio-économique et de l’intersectionnalité. Des exceptions peuvent s’appliquer dans les documents si le langage est codé en dur dans les interfaces utilisateurs du produit logiciel, si le langage utilisé est basé sur la documentation RFP ou si le langage utilisé provient d’un produit tiers référencé. Découvrez comment Cisco utilise le langage inclusif.
Cisco a traduit ce document en traduction automatisée vérifiée par une personne dans le cadre d’un service mondial permettant à nos utilisateurs d’obtenir le contenu d’assistance dans leur propre langue. Il convient cependant de noter que même la meilleure traduction automatisée ne sera pas aussi précise que celle fournie par un traducteur professionnel.
Ce document décrit les étapes à suivre pour comprendre et dépanner le processus de détection de fabric initial, y compris des exemples de scénarios de problèmes.
Le matériel de ce document a été extrait de la Dépannage de l'infrastructure axée sur les applications Cisco, deuxième édition , en particulier le Découverte de fabric - Configuration initiale du fabric chapitre.
Le processus de découverte du fabric ACI suit une séquence d'événements spécifique. Les étapes de base sont les suivantes :
À partir de la version 4.2, une nouvelle commande CLI est disponible sur les noeuds de fabric pour faciliter le diagnostic des problèmes de détection courants. Les sections suivantes décrivent les vérifications effectuées et fournissent des commandes de validation supplémentaires pour vous aider à résoudre les problèmes.
leaf101# show discoveryissues
Checking the platform type................LEAF!
Check01 - System state - in-service [ok]
Check02 - DHCP status [ok]
TEP IP: 10.0.72.67 Node Id: 101 Name: leaf101
Check03 - AV details check [ok]
Check04 - IP rechability to apic [ok]
Ping from switch to 10.0.0.1 passed
Check05 - infra VLAN received [ok]
infra vLAN:3967
Check06 - LLDP Adjacency [ok]
Found adjacency with SPINE
Found adjacency with APIC
Check07 - Switch version [ok]
version: n9000-14.2(1j) and apic version: 4.2(1j)
Check08 - FPGA/BIOS out of sync test [ok]
Check09 - SSL check [check]
SSL certificate details are valid
Check10 - Downloading policies [ok]
Check11 - Checking time [ok]
2019-09-11 07:15:53
Check12 - Checking modules, power and fans [ok]
Une fois qu'un ID de noeud a été attribué au noeud leaf et enregistré dans le fabric, il commence à télécharger son bootstrap, puis passe à l'état en service.
Check01 - System state - out-of-service [FAIL]
Check01 - System state - downloading-boot-script [FAIL]
Pour valider l'état actuel du leaf, l'utilisateur peut exécuter moquery -c topSystem
leaf101# moquery -c topSystem
Total Objects shown: 1
# top.System
address : 10.0.72.67
bootstrapState : done
...
serial : FDO20160TPS
serverType : unspecified
siteId : 1
state : in-service
status :
systemUpTime : 00:18:17:41.000
tepPool : 10.0.0.0/16
unicastXrEpLearnDisable : no
version : n9000-14.2(1j)
virtualMode : no
Check02 - DHCP status [FAIL]
ERROR: node Id not configured
ERROR: Ip not assigned by dhcp server
ERROR: Address assigner's IP not populated
TEP IP: unknown Node Id: unknown Name: unknown
Le terminal doit recevoir une adresse TEP via DHCP du contrôleur APIC1, puis établir une connectivité IP avec les autres contrôleurs APIC. Le TEP physique (PTEP) du leaf est attribué à loopback0. Si aucune adresse n'est attribuée, l'utilisateur peut valider que le leaf envoie une détection DHCP avec l'utilitaire tpcdump. Notez que nous allons utiliser l'interface kpm_inb qui vous permet de voir tout le trafic réseau du plan de contrôle intrabande du processeur.
(none)# tcpdump -ni kpm_inb port 67 or 68
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on kpm_inb, link-type EN10MB (Ethernet), capture size 65535 bytes
16:40:11.041148 IP 0.0.0.0.68 > 255.255.255.255.67: BOOTP/DHCP, Request from a0:36:9f:c7:a1:0c, length 300
^C
1 packets captured
1 packets received by filter
0 packets dropped by kernel
L'utilisateur peut également valider que dhcpd est exécuté sur le contrôleur APIC et qu'il écoute sur la sous-interface bond0. L'interface de liaison représente le fabric faisant face aux ports APIC. Nous allons utiliser le format bond0.<infra VLAN>.
apic1# ps aux | grep dhcp
root 18929 1.3 0.2 818552 288504 ? Ssl Sep26 87:19 /mgmt//bin/dhcpd.bin -f -4 -cf /data//dhcp/dhcpd.conf -lf /data//dhcp/dhcpd.lease -pf /var/run//dhcpd.pid --no-pid bond0.3967
admin 22770 0.0 0.0 9108 868 pts/0 S+ 19:42 0:00 grep dhcp
Check03 - AV details check [ok]
Le leaf vérifiera si le contrôleur APIC enregistré a une adresse IP dans une plage valide pour le pool TEP. Si aucune information APIC n'a encore été enregistrée, cette vérification réussira. L'utilisateur peut voir les informations APIC actuelles du point de vue du noeud leaf via la commande « acidiag avread ». Notez dans l'exemple ci-dessous que lorsque l'invite leaf/spine affiche (none)#, cela indique que le leaf/spine n'est pas encore membre du fabric.
(none)# acidiag avread
Cluster of 0 lm(t):0(zeroTime) appliances (out of targeted 0 lm(t):0(zeroTime)) with FABRIC_DOMAIN name=Undefined Fabric Domain Name set to version= lm(t):0(zeroTime); discoveryMode=PERMISSIVE lm(t):0(zeroTime); drrMode=OFF lm(t):0(zeroTime)
---------------------------------------------
clusterTime=<diff=0 common=2019-10-01T18:51:50.315+00:00 local=2019-10-01T18:51:50.315+00:00 pF=<displForm=1 offsSt=0 offsVlu=0 lm(t):0(zeroTime)>>
---------------------------------------------
leaf101# acidiag avread
Cluster of 3 lm(t):0(2019-09-30T18:45:10.320-04:00) appliances (out of targeted 3 lm(t):0(2019-10-01T14:52:55.217-04:00)) with FABRIC_DOMAIN name=ACIFabric1 set to version=apic-4.2(1j) lm(t):0(2019-10-01T14:52:55.217-04:00); discoveryMode=PERMISSIVE lm(t):0(1969-12-31T20:00:00.003-04:00); drrMode=OFF lm(t):0(1969-12-31T20:00:00.003-04:00); kafkaMode=OFF lm(t):0(1969-12-31T20:00:00.003-04:00)
appliance id=1 address=10.0.0.1 lm(t):2(2019-09-27T17:32:08.669-04:00) tep address=10.0.0.0/16 lm(t):1(2019-07-09T19:41:24.672-04:00) routable address=192.168.1.1 lm(t):2(2019-09-30T18:37:48.916-04:00) oob address=0.0.0.0 lm(t):0(zeroTime) version=4.2(1j) lm(t):1(2019-09-30T18:37:49.011-04:00) chassisId=c67d1076-a2a2-11e9-874e-a390922be712 lm(t):1(2019-09-30T18:37:49.011-04:00) capabilities=0X3EEFFFFFFFFF--0X2020--0X1 lm(t):1(2019-09-26T09:32:20.747-04:00) rK=(stable,absent,0) lm(t):0(zeroTime) aK=(stable,absent,0) lm(t):0(zeroTime) oobrK=(stable,absent,0) lm(t):0(zeroTime) oobaK=(stable,absent,0) lm(t):0(zeroTime) cntrlSbst=(APPROVED, FCH1929V153) lm(t):1(2019-10-01T12:46:44.711-04:00) (targetMbSn= lm(t):0(zeroTime), failoverStatus=0 lm(t):0(zeroTime)) podId=1 lm(t):1(2019-09-26T09:26:49.422-04:00) commissioned=YES lm(t):101(2019-09-30T18:45:10.320-04:00) registered=YES lm(t):3(2019-09-05T11:42:41.371-04:00) standby=NO lm(t):0(zeroTime) DRR=NO lm(t):101(2019-09-30T18:45:10.320-04:00) apicX=NO lm(t):0(zeroTime) virtual=NO lm(t):0(zeroTime) active=YES
appliance id=2 address=10.0.0.2 lm(t):2(2019-09-26T09:47:34.709-04:00) tep address=10.0.0.0/16 lm(t):2(2019-09-26T09:47:34.709-04:00) routable address=192.168.1.2 lm(t):2(2019-09-05T11:45:36.861-04:00) oob address=0.0.0.0 lm(t):0(zeroTime) version=4.2(1j) lm(t):2(2019-09-30T18:37:48.913-04:00) chassisId=611febfe-89c1-11e8-96b1-c7a7472413f2 lm(t):2(2019-09-30T18:37:48.913-04:00) capabilities=0X3EEFFFFFFFFF--0X2020--0X7 lm(t):2(2019-09-26T09:53:07.047-04:00) rK=(stable,absent,0) lm(t):0(zeroTime) aK=(stable,absent,0) lm(t):0(zeroTime) oobrK=(stable,absent,0) lm(t):0(zeroTime) oobaK=(stable,absent,0) lm(t):0(zeroTime) cntrlSbst=(APPROVED, FCH2045V1X2) lm(t):2(2019-10-01T12:46:44.710-04:00) (targetMbSn= lm(t):0(zeroTime), failoverStatus=0 lm(t):0(zeroTime)) podId=1 lm(t):2(2019-09-26T09:47:34.709-04:00) commissioned=YES lm(t):101(2019-09-30T18:45:10.320-04:00) registered=YES lm(t):2(2019-09-26T09:47:34.709-04:00) standby=NO lm(t):0(zeroTime) DRR=NO lm(t):101(2019-09-30T18:45:10.320-04:00) apicX=NO lm(t):0(zeroTime) virtual=NO lm(t):0(zeroTime) active=YES
appliance id=3 address=10.0.0.3 lm(t):3(2019-09-26T10:12:34.114-04:00) tep address=10.0.0.0/16 lm(t):3(2019-09-05T11:42:27.199-04:00) routable address=192.168.1.3 lm(t):2(2019-10-01T13:19:08.626-04:00) oob address=0.0.0.0 lm(t):0(zeroTime) version=4.2(1j) lm(t):3(2019-09-30T18:37:48.904-04:00) chassisId=99bade8c-cff3-11e9-bba7-5b906a49dc39 lm(t):3(2019-09-30T18:37:48.904-04:00) capabilities=0X3EEFFFFFFFFF--0X2020--0X4 lm(t):3(2019-09-26T10:18:13.149-04:00) rK=(stable,absent,0) lm(t):0(zeroTime) aK=(stable,absent,0) lm(t):0(zeroTime) oobrK=(stable,absent,0) lm(t):0(zeroTime) oobaK=(stable,absent,0) lm(t):0(zeroTime) cntrlSbst=(APPROVED, FCH1824V2VR) lm(t):3(2019-10-01T12:48:03.726-04:00) (targetMbSn= lm(t):0(zeroTime), failoverStatus=0 lm(t):0(zeroTime)) podId=2 lm(t):3(2019-09-26T10:12:34.114-04:00) commissioned=YES lm(t):101(2019-09-30T18:45:10.320-04:00) registered=YES lm(t):2(2019-09-05T11:42:54.935-04:00) standby=NO lm(t):0(zeroTime) DRR=NO lm(t):101(2019-09-30T18:45:10.320-04:00) apicX=NO lm(t):0(zeroTime) virtual=NO lm(t):0(zeroTime) active=YES
---------------------------------------------
clusterTime=<diff=15584 common=2019-10-01T14:53:01.648-04:00 local=2019-10-01T14:52:46.064-04:00 pF=<displForm=0 offsSt=0 offsVlu=-14400 lm(t):21(2019-09-26T10:40:35.412-04:00)>>
---------------------------------------------
Lorsque le leaf a reçu une adresse IP, il tente d’établir des sessions TCP avec le contrôleur APIC et commence le processus de téléchargement de sa configuration. L'utilisateur peut valider la connectivité IP au contrôleur APIC à l'aide de l'utilitaire « ping ».
leaf101# iping -V overlay-1 10.0.0.1
PING 10.0.0.1 (10.0.0.1) from 10.0.0.30: 56 data bytes
64 bytes from 10.0.0.1: icmp_seq=0 ttl=64 time=0.651 ms
64 bytes from 10.0.0.1: icmp_seq=1 ttl=64 time=0.474 ms
64 bytes from 10.0.0.1: icmp_seq=2 ttl=64 time=0.477 ms
64 bytes from 10.0.0.1: icmp_seq=3 ttl=64 time=0.54 ms
64 bytes from 10.0.0.1: icmp_seq=4 ttl=64 time=0.5 ms
--- 10.0.0.1 ping statistics --- 5 packets transmitted, 5 packets received, 0.00% packet loss
round-trip min/avg/max = 0.474/0.528/0.651 ms
Check05 - infra VLAN received [ok]
La vérification du VLAN infra ne réussit que si le noeud est connecté à un Pod où un APIC existe. Si ce n'est pas le cas, l'utilisateur peut ignorer le message car la vérification est censée échouer.
Le leaf déterminera le VLAN infra en fonction des paquets LLDP reçus d'autres noeuds ACI. Le premier reçu sera accepté lorsque le commutateur est en phase de détection.
(none)# moquery -c lldpInst
Total Objects shown: 1
# lldp.Inst
adminSt : enabled
childAction :
ctrl :
dn : sys/lldp/inst
holdTime : 120
infraVlan : 3967
initDelayTime : 2
lcOwn : local
modTs : 2019-09-12T07:25:33.194+00:00
monPolDn : uni/fabric/monfab-default
name :
operErr :
optTlvSel : mgmt-addr,port-desc,port-vlan,sys-cap,sys-desc,sys-name
rn : inst
status :
sysDesc : topology/pod-1/node-101
txFreq : 30
(none)# show vlan encap-id 3967
VLAN Name Status Ports
---- -------------------------------- --------- -------------------------------
8 infra:default active Eth1/1
VLAN Type Vlan-mode
---- ----- ----------
8 enet CE
Si le VLAN infra n'a pas été programmé sur les interfaces de port de commutation connectées aux APIC, vérifiez les problèmes de câblage détectés par le leaf.
(none)# moquery -c lldpIf -f 'lldp.If.wiringIssues!=""'
Total Objects shown: 1
# lldp.If
id : eth1/1
adminRxSt : enabled
adminSt : enabled
adminTxSt : enabled
childAction :
descr :
dn : sys/lldp/inst/if-[eth1/1]
lcOwn : local
mac : E0:0E:DA:A2:F2:83
modTs : 2019-09-30T18:45:22.323+00:00
monPolDn : uni/fabric/monfab-default
name :
operRxSt : enabled
operTxSt : enabled
portDesc :
portMode : normal
portVlan : unspecified
rn : if-[eth1/1]
status :
sysDesc :
wiringIssues : infra-vlan-mismatch
Check06 - LLDP Adjacency [FAIL]
Error: leaf not connected to any spine
Afin de déterminer quels ports se connectent à d'autres périphériques ACI, le leaf doit recevoir le protocole LLDP des autres noeuds de fabric. Pour valider la réception du protocole LLDP, l'utilisateur peut cocher « show lldp neighbors ».
(none)# show lldp neighbors
Capability codes:
(R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS Cable Device
(W) WLAN Access Point, (P) Repeater, (S) Station, (O) Other
Device ID Local Intf Hold-time Capability Port ID
apic1 Eth1/1 120 eth2-1
apic2 Eth1/2 120 eth2-1
switch Eth1/51 120 BR Eth2/32
switch Eth1/54 120 BR Eth1/25
Total entries displayed: 4
Check07 - Switch version [ok]
version: n9000-14.2(1j) and apic version: 4.2(1j)
Si les versions APIC et leaf ne sont pas identiques, la découverte de fabric peut échouer. Pour valider la version exécutée sur le noeud leaf, utilisez « show version » ou « vsh -c « show version ».
(none)# show version
Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Documents: http://www.cisco.com/en/US/products/ps9372/tsd_products_support_series_home.htmlCopyright (c) 2002-2014, Cisco Systems, Inc. All rights reserved.
The copyrights to certain works contained in this software are
owned by other third parties and used and distributed under
license. Certain components of this software are licensed under
the GNU General Public License (GPL) version 2.0 or the GNU
Lesser General Public License (LGPL) Version 2.1. A copy of each
such license is available at
http://www.opensource.org/licenses/gpl-2.0.php and
http://www.opensource.org/licenses/lgpl-2.1.php
Software
BIOS: version 07.66
kickstart: version 14.2(1j) [build 14.2(1j)]
system: version 14.2(1j) [build 14.2(1j)]
PE: version 4.2(1j)
BIOS compile time: 06/11/2019
kickstart image file is: /bootflash/aci-n9000-dk9.14.2.1j.bin
kickstart compile time: 09/19/2019 07:57:41 [09/19/2019 07:57:41]
system image file is: /bootflash/auto-s
system compile time: 09/19/2019 07:57:41 [09/19/2019 07:57:41]
...
La même commande fonctionne également sur les cartes APIC.
apic1# show version
Role Pod Node Name Version
---------- ---------- ---------- ------------------------ --------------------
controller 1 1 apic1 4.2(1j)
controller 1 2 apic2 4.2(1j)
controller 2 3 apic3 4.2(1j)
leaf 1 101 leaf101 n9000-14.2(1j)
leaf 1 102 leaf102 n9000-14.2(1j)
leaf 1 103 leaf103 n9000-14.2(1j)
spine 1 1001 spine1 n9000-14.2(1j)
spine 1 1002 spine2 n9000-14.2(1j)
Les versions FPGA, EPLD et BIOS peuvent affecter la capacité du noeud leaf à activer les modules comme prévu. Si celles-ci sont trop obsolètes, les interfaces du commutateur risquent de ne pas s'activer. L'utilisateur peut valider les versions en cours et attendues de FPGA, EPLD et BIOS avec les commandes moquery suivantes.
(none)# moquery -c firmwareCardRunning
Total Objects shown: 2
# firmware.CardRunning
biosVer : v07.66(06/11/2019)
childAction :
descr :
dn : sys/ch/supslot-1/sup/running
expectedVer : v07.65(09/04/2018) interimVer : 14.2(1j)
internalLabel :
modTs : never
mode : normal
monPolDn : uni/fabric/monfab-default
operSt : ok
rn : running
status :
ts : 1970-01-01T00:00:00.000+00:00
type : switch
version : 14.2(1j)
# firmware.CardRunning
biosVer : v07.66(06/11/2019)
childAction :
descr :
dn : sys/ch/lcslot-1/lc/running
expectedVer : v07.65(09/04/2018) interimVer : 14.2(1j)
internalLabel :
modTs : never
mode : normal
monPolDn : uni/fabric/monfab-default
operSt : ok
rn : running
status :
ts : 1970-01-01T00:00:00.000+00:00
type : switch
version : 14.2(1j)
(none)# moquery -c firmwareCompRunning
Total Objects shown: 2
# firmware.CompRunning
childAction :
descr :
dn : sys/ch/supslot-1/sup/fpga-1/running
expectedVer : 0x14 internalLabel :
modTs : never
mode : normal
monPolDn : uni/fabric/monfab-default
operSt : ok
rn : running
status :
ts : 1970-01-01T00:00:00.000+00:00
type : controller
version : 0x14
# firmware.CompRunning
childAction :
descr :
dn : sys/ch/supslot-1/sup/fpga-2/runnin
expectedVer : 0x4
internalLabel :
modTs : never
mode : normal
monPolDn : uni/fabric/monfab-default
operSt : ok
rn : running
status :
ts : 1970-01-01T00:00:00.000+00:00
type : controller
version : 0x4
Si la version FPGA en cours d'exécution ne correspond pas à la version FPGA attendue, elle peut être mise à jour avec les étapes décrites dans le chapitre « Détection de structure », section « Remplacement de périphérique » sous le scénario « EPLD/FPGA Leaf/Spine incorrect, F1582 ».
Check09 - SSL check [check]
SSL certificate details are valid
La communication SSL est utilisée entre tous les noeuds du fabric pour assurer le chiffrement du trafic du plan de contrôle. Le certificat SSL utilisé est installé lors de la fabrication et est généré en fonction du numéro de série du châssis. Le format du sujet doit être le suivant :
subject= /serialNumber=PID:N9K-C93xxxxx SN:FDOxxxxxxxx/CN=FDOxxxxxxxx
Pour valider le certificat SSL lors de la détection d'un commutateur, utilisez la commande suivante.
(none)# cd /securedata/ssl && openssl x509 -noout -subject -in server.crt
subject= /serialNumber=PID:N9K-C93180YC-EX SN:FDO20432LH1/CN=FDO20432LH1
Notez que ce qui précède ne fonctionnera en tant qu'utilisateur non racine que si le noeud de commutateur est toujours en phase de découverte.
Le numéro de série du châssis est indiqué à l'aide de la commande suivante.
(none)# show inventory
NAME: "Chassis", DESCR: "Nexus C93180YC-EX Chassis"
PID: N9K-C93180YC-EX , VID: V00 , SN: FDO20160TPS
...
En outre, le certificat doit être valide à l'heure actuelle. Pour afficher les dates valides du certificat, utilisez l'indicateur « -dates » dans la commande openssl.
(none)# cd /securedata/ssl && openssl x509 -noout -dates -in server.crt
notBefore=Nov 28 17:17:05 2016 GMT
notAfter=Nov 28 17:27:05 2026 GMT
Check10 - Downloading policies [FAIL]
Registration to all PM shards is not complete
Policy download is not complete
Une fois que le leaf a l'accessibilité IP au contrôleur APIC, il télécharge sa configuration à partir du contrôleur APIC et le contrôleur APIC reconnaît que le téléchargement est terminé. L'état de ce processus peut être affiché avec la commande suivante.
(none)# moquery -c pconsBootStrap
Total Objects shown: 1
# pcons.BootStrap
allLeaderAcked : no
allPortsInService : yes
allResponsesFromLeader : yes
canBringPortInService : no
childAction :
completedPolRes : no
dn : rescont/bootstrap
lcOwn : local
modTs : 2019-09-27T22:52:48.729+00:00
rn : bootstrap
state : completed
status :
timerTicks : 360
try : 0
worstCaseTaskTry : 0
Check11 - Checking time [ok]
2019-10-01 17:02:34
Cette vérification indique l'heure actuelle à l'utilisateur. S'il y a trop de delta entre l'APIC et l'heure du commutateur, la détection peut échouer. Sur le contrôleur APIC, l'heure peut être vérifiée à l'aide de la commande date.
apic1# date
Tue Oct 1 14:35:38 UTC 2019
Pour que le commutateur soit connecté à d'autres périphériques, les modules doivent être opérationnels et en ligne. Cela peut être validé par les commandes « show module » et « show environment ».
(none)# show module
Mod Ports Module-Type Model Status
--- ----- ----------------------------------- ------------------ ----------
1 54 48x10/25G+6x40/100G Switch N9K-C93180YC-EX ok
Mod Sw Hw
--- -------------- ------
1 14.2(1j) 0.3050
Mod MAC-Address(es) Serial-Num
--- -------------------------------------- ----------
1 e0-0e-da-a2-f2-83 to e0-0e-da-a2-f2-cb FDO20160TPS
Mod Online Diag Status
--- ------------------
1 pass
(none)# show environment
Power Supply:
Voltage: 12.0 Volts
Power Actual Total
Supply Model Output Capacity Status
(Watts ) (Watts )
------- ------------------- ----------- ----------- --------------
1 NXA-PAC-650W-PI 0 W 650 W shut
2 NXA-PAC-650W-PI 171 W 650 W ok
Actual Power
Module Model Draw Allocated Status
(Watts ) (Watts )
-------- ------------------- ----------- ----------- --------------
1 N9K-C93180YC-EX 171 W 492 W Powered-Up
fan1 NXA-FAN-30CFM-B N/A N/A Powered-Up
fan2 NXA-FAN-30CFM-B N/A N/A Powered-Up
fan3 NXA-FAN-30CFM-B N/A N/A Powered-Up
fan4 NXA-FAN-30CFM-B N/A N/A Powered-Up
N/A - Per module power not available
Power Usage Summary:
--------------------
Power Supply redundancy mode (configured) Non-Redundant(combined)
Power Supply redundancy mode (operational) Non-Redundant(combined)
Total Power Capacity (based on configured mode) 650 W
Total Power of all Inputs (cumulative) 650 W
Total Power Output (actual draw) 171 W
Total Power Allocated (budget) N/A
Total Power Available for additional modules N/A
Fan:
------------------------------------------------------
Fan Model Hw Status
------------------------------------------------------
Fan1(sys_fan1) NXA-FAN-30CFM-B -- ok
Fan2(sys_fan2) NXA-FAN-30CFM-B -- ok
Fan3(sys_fan3) NXA-FAN-30CFM-B -- ok
Fan4(sys_fan4) NXA-FAN-30CFM-B -- ok
Fan_in_PS1 -- -- unknown
Fan_in_PS2 -- -- ok
Fan Speed: Zone 1: 0x7f
Fan Air Filter : Absent
Temperature:
-----------------------------------------------------------------------------------
Module Sensor MajorThresh MinorThres CurTemp Status
(Celsius) (Celsius) (Celsius)
-----------------------------------------------------------------------------------
1 Inlet(1) 70 42 35 normal
1 outlet(2) 80 70 37 normal
1 x86 processor(3) 90 80 38 normal
1 Sugarbowl(4) 110 90 60 normal
1 Sugarbowl vrm(5) 120 110 50 normal
Si un module n'est pas en ligne, réinstallez-le et vérifiez qu'il n'y a pas de discordance entre les normes FPGA, EPLD ou BIOS.
Dans ce scénario, l'utilisateur se connecte à APIC1 après avoir terminé le script de configuration et aucun commutateur n'est apparu dans l'appartenance au fabric. Pour que la détection du premier leaf réussisse, le contrôleur APIC doit recevoir une détection DHCP du leaf en phase de détection.
Vérifiez que le contrôleur APIC1 envoie des TLV LLDP correspondant aux paramètres définis dans le script de configuration.
apic1# acidiag run lldptool out eth2-1
Chassis ID TLV
MAC: e8:65:49:54:88:a1
Port ID TLV
MAC: e8:65:49:54:88:a1
Time to Live TLV
120
Port Description TLV
eth2-1
System Name TLV
apic1
System Description TLV
topology/pod-1/node-1
Management Address TLV
IPv4: 10.0.0.1
Ifindex: 4
Cisco Port State TLV
1
Cisco Node Role TLV
0
Cisco Node ID TLV
1
Cisco POD ID TLV
1
Cisco Fabric Name TLV
ACIFabric1
Cisco Appliance Vector TLV
Id: 1
IPv4: 10.0.0.1
UUID: c67d1076-a2a2-11e9-874e-a390922be712
Cisco Node IP TLV
IPv4:10.0.0.1
Cisco Port Role TLV
2
Cisco Infra VLAN TLV
3967
Cisco Serial Number TLV
FCH1929V153
Cisco Authentication Cookie TLV
1372058352
Cisco Standby APIC TLV
0
End of LLDPDU TLV
Vérifiez également que l’APIC1 reçoit le protocole LLDP du noeud leaf directement connecté.
apic1# acidiag run lldptool in eth2-1
Chassis ID TLV
MAC: e0:0e:da:a2:f2:83
Port ID TLV
Local: Eth1/1
Time to Live TLV
120
Port Description TLV
Ethernet1/1
System Name TLV
switch
System Description TLV
Cisco Nexus Operating System (NX-OS) Software 14.2(1j)
TAC support: http://www.cisco.com/tacCopyright (c) 2002-2020, Cisco Systems, Inc. All rights reserved.
System Capabilities TLV
System capabilities: Bridge, Router
Enabled capabilities: Bridge, Router
Management Address TLV
MAC: e0:0e:da:a2:f2:83
Ifindex: 83886080
Cisco 4-wire Power-via-MDI TLV
4-Pair PoE supported
Spare pair Detection/Classification not required
PD Spare pair Desired State: Disabled
PSE Spare pair Operational State: Disabled
Cisco Port Mode TLV
0
Cisco Port State TLV
1
Cisco Serial Number TLV
FDO20160TPS
Cisco Model TLV
N9K-C93180YC-EX
Cisco Firmware Version TLV
n9000-14.2(1j)
Cisco Node Role TLV
1
Cisco Infra VLAN TLV
3967
Cisco Node ID TLV
0
End of LLDPDU TLV
Si APIC1 reçoit le protocole LLDP du noeud leaf directement connecté, le leaf doit programmer le VLAN infra sur les ports connectés à l’APIC. Cette programmation VLAN peut être validée via la commande « show vlan encap-id <x> » où « x » est le VLAN infra configuré.
(none)# show vlan encap-id 3967
VLAN Name Status Ports
---- -------------------------------- --------- -------------------------------
8 infra:default active Eth1/1
VLAN Type Vlan-mode
---- ----- ----------
8 enet CE
Si le VLAN infra n'a pas été programmé, vérifiez les problèmes de câblage détectés par le noeud leaf.
(none)# moquery -c lldpIf -f 'lldp.If.wiringIssues!=""'
Total Objects shown: 1
# lldp.If
id : eth1/1
adminRxSt : enabled
adminSt : enabled
adminTxSt : enabled
childAction :
descr :
dn : sys/lldp/inst/if-[eth1/1]
lcOwn : local
mac : E0:0E:DA:A2:F2:83
modTs : 2019-09-30T18:45:22.323+00:00
monPolDn : uni/fabric/monfab-default
name :
operRxSt : enabled
operTxSt : enabled
portDesc :
portMode : normal
portVlan : unspecified
rn : if-[eth1/1]
status :
sysDesc :
wiringIssues : infra-vlan-mismatch
Lorsque l'attribut des problèmes de câblage est défini sur « infra-vlan-mismatch », l'indication est que le leaf a appris d'un autre VLAN infra que la valeur envoyée par le contrôleur APIC (la valeur envoyée par le contrôleur APIC peut être vérifiée à l'aide de la commande « moquery -c lldpInst »). Ce scénario peut se produire si le noeud terminal reçoit le protocole LLDP d’un noeud qui faisait autrefois partie d’un autre fabric. Essentiellement, un noeud en cours de détection acceptera le premier VLAN infra reçu via LLDP. Pour résoudre ce problème, supprimez les connexions entre ce noeud leaf et les autres noeuds ACI, à l'exception de l'APIC, puis nettoyez et rechargez le commutateur à l'aide des commandes « acidiag touch clean » et « reload ». Une fois que le commutateur a démarré, vérifiez que le VLAN infrarouge correct est programmé. Si cela est vrai, les connexions peuvent être restaurées vers les autres noeuds et l'utilisateur peut poursuivre la configuration du fabric ACI.
Dans ce scénario, tous les noeuds de fabric ont été détectés, mais APIC2 et APIC3 n'ont pas encore rejoint le cluster APIC.
Validez les valeurs du script de configuration sur les cartes APIC. Les valeurs qui doivent correspondre sont :
apic1# cat /data/data_admin/sam_exported.config
Setup for Active and Standby APIC
fabricDomain = ACIFabric1
fabricID = 1
systemName =apic1
controllerID = 1
tepPool = 10.0.0.0/16
infraVlan = 3967
GIPo = 225.0.0.0/15
clusterSize = 3
standbyApic = NO
enableIPv4 = Y
enableIPv6 = N
firmwareVersion = 4.2(1j)
ifcIpAddr = 10.0.0.1
apicX = NO
podId = 1
oobIpAddr = 10.48.22.69/24
Vérifiez les problèmes courants avec la commande « acidiag cluster » sur les 3 APIC.
apic1# acidiag cluster
Admin password:
Product-name = APIC-SERVER-M1
Serial-number = FCH1906V1XV
Running...
Checking Core Generation: OK
Checking Wiring and UUID: OK
Checking AD Processes: Running
Checking All Apics in Commission State: OK
Checking All Apics in Active State: OK
Checking Fabric Nodes: OK
Checking Apic Fully-Fit: OK
Checking Shard Convergence: OK
Checking Leadership Degration: Optimal leader for all shards
Ping OOB IPs:
APIC-1: 10.48.22.69 - OK
APIC-2: 10.48.22.70 - OK
APIC-3: 10.48.22.71 - OK
Ping Infra IPs:
APIC-1: 10.0.0.1 - OK
APIC-2: 10.0.0.2 - OK
APIC-3: 10.0.0.3 - OK
Checking APIC Versions: Same (4.2(1j))
Checking SSL: OK
Done!
Enfin, utilisez « avread » pour vérifier si ces paramètres correspondent sur tous les APIC. Notez qu'il s'agit d'une commande différente de la commande typique « acidiag avread » qui affiche un résultat similaire, mais elle est analysée pour une consommation plus facile.
apic1# avread
Cluster:
-------------------------------------------------------------------------
fabricDomainName ACIFabric1
discoveryMode PERMISSIVE
clusterSize 3
version 4.2(1j)
drrMode OFF
operSize 3
APICs:
-------------------------------------------------------------------------
APIC 1 APIC 2 APIC 3
version 4.2(1j) 4.2(1j) 4.2(1j)
address 10.0.0.1 10.0.0.2 10.0.0.3
oobAddress 10.48.22.69/24 10.48.22.70/24 10.48.22.71/24
routableAddress 0.0.0.0 0.0.0.0 0.0.0.0
tepAddress 10.0.0.0/16 10.0.0.0/16 10.0.0.0/16
podId 1 1 1
chassisId 3c9e5024-.-5a78727f 573e12c0-.-6b8da0e5 44c4bf18-.-20b4f52& cntrlSbst_serial (APPROVED,FCH1906V1XV) (APPROVED,FCH1921V1Q9) (APPROVED,FCH1906V1PW)
active YES YES YES
flags cra- cra- cra-
health 255 255 255
apic1#
Dans ce scénario, la première feuille a été découverte dans le fabric, mais aucune épine n'est apparue pour la découverte dans le sous-menu Appartenance au fabric.
Validez la connectivité physique de leaf à spine. Dans l'exemple ci-dessous, le commutateur Leaf est connecté à une colonne vertébrale via l'interface e1/49.
leaf101# show int eth1/49
Ethernet1/49 is up
admin state is up, Dedicated Interface
Hardware: 1000/10000/100000/40000 Ethernet, address: 0000.0000.0000 (bia e00e.daa2.f3f3)
MTU 9366 bytes, BW 100000000 Kbit, DLY 1 usec
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, medium is broadcast
Port mode is routed
full-duplex, 100 Gb/s
...
Si le port est dans un état out-of-service, vérifiez sur la colonne vertébrale que LLDP a été reçu du leaf connecté directement.
(none)# show lldp neighbors
Capability codes:
(R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS Cable Device
(W) WLAN Access Point, (P) Repeater, (S) Station, (O) Other
Device ID Local Intf Hold-time Capability Port ID
leaf102 Eth2/27 120 BR Eth1/53
leaf103 Eth2/29 120 BR Eth1/49
leaf101 Eth2/32 120 BR Eth1/51
Total entries displayed: 3
Une autre validation consiste à vérifier qu'il n'y a pas de différence de version entre leaf et spine. Si tel est le cas, corrigez la situation en copiant la version la plus récente dans /bootflash de la colonne vertébrale. Configurez ensuite le commutateur pour démarrer le logiciel à l'aide des commandes suivantes :
(none)# ls -alh /bootflash
total 3.0G
drwxrwxr-x 3 root admin 4.0K Oct 1 20:21 .
drwxr-xr-x 50 root root 1.3K Oct 1 00:22 ..
-rw-r--r-- 1 root root 3.5M Sep 30 21:24 CpuUsage.Log
-rw-rw-rw- 1 root root 1.7G Sep 27 14:50 aci-n9000-dk9.14.2.1j.bin
-rw-r--r-- 1 root root 1.4G Sep 27 21:20 auto-s
-rw-rw-rw- 1 root root 2 Sep 27 21:25 diag_bootup
-rw-r--r-- 1 root root 54 Oct 1 20:20 disk_log.txt
-rw-rw-rw- 1 root root 693 Sep 27 21:23 libmon.logs
drwxr-xr-x 4 root root 4.0K Sep 26 15:24 lxc
-rw-r--r-- 1 root root 384K Oct 1 20:20 mem_log.txt
-rw-r--r-- 1 root root 915K Sep 27 21:10 mem_log.txt.old.gz
-rw-rw-rw- 1 root root 12K Sep 27 21:17 urib_api_log.txt
(none)# setup-bootvars.sh aci-n9000-dk9.14.2.1j.bin
In progress
In progress
In progress
In progress
Done
Si la nouvelle image est continuellement supprimée du bootflash, assurez-vous que le dossier est moins que la moitié plein en supprimant les images plus anciennes ou le fichier auto-s ; vérifiez l'utilisation de l'espace en utilisant « df -h » sur le commutateur.
Après avoir défini la variable d'amorçage, rechargez le commutateur et il devrait démarrer à la nouvelle version.
Une validation FPGA, EPLD et BIOS peut être requise après le rechargement. Reportez-vous à la sous-section « Leaf/Spine EPLD/FPGA not correct, F1582 » pour plus d'informations sur le dépannage de ce problème.
Si cela se produit après une nouvelle configuration de fabric, cela peut être dû à un câblage incorrect du module APIC-M3 ou APIC-L3 connecté au fabric. Vous pouvez confirmer ce câblage incorrect en exécutant la commande « show lldp neighbors » sur les deux commutateurs leaf connectés au contrôleur APIC. Vous remarquerez après avoir exécuté cette commande plusieurs fois que les deux commutateurs Leaf voient la même interface APIC.
L'arrière d'un serveur APIC-M3/L3 se présente comme suit :
Vue arrière du serveur APIC-M3/L3
Notez que pour un APIC-M3/L3, la carte VIC comporte 4 ports : ETH2-1, ETH2-2, ETH2-3 et ETH2-4, comme indiqué ci-dessous :
Vue de la carte APIC VIC 1455 avec étiquettes
Les règles de connexion du serveur APIC aux commutateurs Leaf sont les suivantes :
Pour une meilleure compréhension, ce qui suit est une représentation du mappage de port VIC sur la liaison APIC.
Ports VIC 1455 - port de fabric redondant APIC
Révision | Date de publication | Commentaires |
---|---|---|
1.0 |
05-Aug-2022 |
Première publication |