La documentazione per questo prodotto è stata redatta cercando di utilizzare un linguaggio senza pregiudizi. Ai fini di questa documentazione, per linguaggio senza di pregiudizi si intende un linguaggio che non implica discriminazioni basate su età, disabilità, genere, identità razziale, identità etnica, orientamento sessuale, status socioeconomico e intersezionalità. Le eventuali eccezioni possono dipendere dal linguaggio codificato nelle interfacce utente del software del prodotto, dal linguaggio utilizzato nella documentazione RFP o dal linguaggio utilizzato in prodotti di terze parti a cui si fa riferimento. Scopri di più sul modo in cui Cisco utilizza il linguaggio inclusivo.
Cisco ha tradotto questo documento utilizzando una combinazione di tecnologie automatiche e umane per offrire ai nostri utenti in tutto il mondo contenuti di supporto nella propria lingua. Si noti che anche la migliore traduzione automatica non sarà mai accurata come quella fornita da un traduttore professionista. Cisco Systems, Inc. non si assume alcuna responsabilità per l’accuratezza di queste traduzioni e consiglia di consultare sempre il documento originale in inglese (disponibile al link fornito).
Questo documento descrive come comprendere, configurare e verificare la funzionalità BGP Dynamic Segment Routing Traffic Engineering (SR-TE) in Cisco IOS® XR.
Non sono previsti prerequisiti per questo documento.
Nessun requisito specifico previsto per questo documento.
Il riferimento delle informazioni contenute in questo documento è Cisco IOS XR e Cisco IOS XE.
Le informazioni discusse in questo documento fanno riferimento a dispositivi usati in uno specifico ambiente di emulazione. Su tutti i dispositivi menzionati nel documento la configurazione è stata ripristinata ai valori predefiniti. Se la rete è operativa, valutare attentamente eventuali conseguenze derivanti dall'uso dei comandi.
SR-TE fornisce le funzionalità per indirizzare il traffico attraverso un core abilitato per SR senza creazione e manutenzione dello stato (stateless). Un criterio SR-TE è espresso come elenco di segmenti che specifica un percorso, denominato elenco ID segmento (SID). Non è richiesta alcuna segnalazione in quanto lo stato è nel pacchetto e l'elenco SID viene elaborato come un insieme di istruzioni dai router di transito.
Con il protocollo BGP (Dynamic Border Gateway Protocol) SR-TE è possibile generare policy SR-TE automatiche basate su criteri arbitrari, come ad esempio le comunità segnalate da un router che partecipa a una rete di routing del segmento. Per soddisfare gli SLA (Service Level Assurance) delle applicazioni del sito e i percorsi di elaborazione in base a requisiti specifici, è possibile generare policy SR-TE automatiche per una determinata subnet IP o servizi impostando le comunità e attivando tali policy.
Nota: i criteri di corrispondenza diversi dalle comunità sono supportati anche per creare criteri SR-TE dinamici.
Un'applicazione comune per questa funzione è negli ambienti MPLS L3VPN, dove l'amministratore di rete può attivare criteri automatici del tunnel SR-TE per instradare il traffico in base a vincoli specifici (ritardo, larghezza di banda e così via). Per le dimostrazioni di questo documento, viene creato un servizio L3VPN che connette XR1 e XR5 e attivano i tunnel automatici su XR2 (headend) in base a una particolare community impostata su XR4 (coda) su MP-BGP.
Le configurazioni di base L3VPN, Segment Routing e SR-TE sono state abilitate.
XR1 hostname XR1 logging console debugging interface Loopback0 ipv4 address 10.0.1.1 255.255.255.255 ! interface GigabitEthernet0/0/0/0.12 ipv4 address 192.0.2.1 255.255.255.0 encapsulation dot1q 12 ! route-policy PASS pass end-policy ! router bgp 100 bgp router-id 10.0.1.1 address-family ipv4 unicast network 10.0.1.1/32 ! neighbor 192.0.2.7 remote-as 200 address-family ipv4 unicast route-policy PASS in route-policy PASS out ! ! ! end
XR2
hostname XR2 logging console debugging vrf BLUE address-family ipv4 unicast import route-target 1:1 ! export route-target 1:1 ! ! ! interface Loopback0 ipv4 address 10.0.2.2 255.255.255.255 ! interface GigabitEthernet0/0/0/0.12 vrf BLUE ipv4 address 192.0.2.7 255.255.255.0 encapsulation dot1q 12 ! interface GigabitEthernet0/0/0/0.23 ipv4 address 192.0.2.8 255.255.255.0 encapsulation dot1q 23 ! interface GigabitEthernet0/0/0/0.26 ipv4 address 192.0.2.9 255.255.255.0 encapsulation dot1q 26 ! route-policy PASS pass end-policy ! ! router ospf 1 segment-routing mpls segment-routing forwarding mpls segment-routing sr-prefer address-family ipv4 area 0 mpls traffic-eng interface Loopback0 prefix-sid index 2 ! interface GigabitEthernet0/0/0/0.23 cost 100 network point-to-point ! interface GigabitEthernet0/0/0/0.26 cost 200 network point-to-point ! ! mpls traffic-eng router-id Loopback0 ! router bgp 100 bgp router-id 10.0.2.2 address-family vpnv4 unicast ! neighbor 10.0.4.4 remote-as 200 update-source Loopback0 address-family vpnv4 unicast ! ! vrf BLUE rd 1:1 address-family ipv4 unicast ! neighbor 192.0.2.10 remote-as 200 address-family ipv4 unicast route-policy PASS in route-policy PASS out as-override ! ! ! ! mpls oam ! mpls traffic-eng interface GigabitEthernet0/0/0/0.23 admin-weight 100 ! interface GigabitEthernet0/0/0/0.26 admin-weight 1 ! ! end
XR3
hostname XR3 logging console debugging interface Loopback0 ipv4 address 10.0.3.3 255.255.255.255 ! ! interface GigabitEthernet0/0/0/0.23 ipv4 address 192.0.2.11 255.255.255.0 encapsulation dot1q 23 ! interface GigabitEthernet0/0/0/0.34 ipv4 address 192.0.2.12 255.255.255.0 encapsulation dot1q 34 ! router ospf 1 segment-routing mpls segment-routing forwarding mpls segment-routing sr-prefer address-family ipv4 area 0 mpls traffic-eng interface Loopback0 prefix-sid index 3 ! interface GigabitEthernet0/0/0/0.23 cost 100 network point-to-point ! interface GigabitEthernet0/0/0/0.34 cost 100 network point-to-point ! ! mpls traffic-eng router-id Loopback0 ! mpls oam ! mpls traffic-eng interface GigabitEthernet0/0/0/0.23 admin-weight 100 ! interface GigabitEthernet0/0/0/0.34 admin-weight 100 ! ! end
XR4
hostname XR4 logging console debugging vrf BLUE address-family ipv4 unicast import route-target 1:1 ! export route-target 1:1 ! ! ! interface Loopback0 ipv4 address 10.0.4.4 255.255.255.255 ! interface GigabitEthernet0/0/0/0.34 ipv4 address 192.0.2.13 255.255.255.0 encapsulation dot1q 34 ! interface GigabitEthernet0/0/0/0.45 vrf BLUE ipv4 address 192.0.2.14 255.255.255.0 encapsulation dot1q 45 ! interface GigabitEthernet0/0/0/0.46 ipv4 address 192.0.2.15 255.255.255.0 encapsulation dot1q 46 ! route-policy PASS pass end-policy ! ! router ospf 1 segment-routing mpls segment-routing forwarding mpls segment-routing sr-prefer address-family ipv4 area 0 mpls traffic-eng interface Loopback0 prefix-sid index 4 ! interface GigabitEthernet0/0/0/0.34 cost 100 network point-to-point ! interface GigabitEthernet0/0/0/0.46 cost 200 network point-to-point ! ! mpls traffic-eng router-id Loopback0 ! router bgp 100 bgp router-id 10.0.4.4 address-family vpnv4 unicast ! neighbor 10.0.2.2 remote-as 200 update-source Loopback0 address-family vpnv4 unicast ! ! vrf BLUE rd 1:1 bgp unsafe-ebgp-policy address-family ipv4 unicast ! neighbor 192.0.2.16 remote-as 200 address-family ipv4 unicast route-policy PASS in route-policy PASS out as-override ! ! ! ! mpls oam ! mpls traffic-eng interface GigabitEthernet0/0/0/0.34 admin-weight 100 ! interface GigabitEthernet0/0/0/0.46 admin-weight 1 ! ! end
XR5 hostname XR5 logging console debugging interface Loopback0
description REGULAR LSP PATH ipv4 address 10.0.5.5 255.255.255.255 ! interface Loopback1
description DELAY SENSITIVE - LOW LATENCY PATH (1:1) ipv4 address 10.0.5.55 255.255.255.255 ! interface GigabitEthernet0/0/0/0.45 ipv4 address 192.0.2.16 255.255.255.0 encapsulation dot1q 45 ! route-policy PASS pass end-policy ! router bgp 100 bgp router-id 10.0.5.5 bgp unsafe-ebgp-policy address-family ipv4 unicast network 10.0.5.5/32 network 10.0.5.55/32 ! neighbor 192.0.2.14 remote-as 200 address-family ipv4 unicast route-policy PASS in route-policy PASS out ! ! ! mpls oam ! end
XR6
hostname XR6 logging console debugging interface Loopback0 ipv4 address 10.0.6.6 255.255.255.255 ! interface GigabitEthernet0/0/0/0.26 ipv4 address 192.0.2.17 255.255.255.0 encapsulation dot1q 26 ! interface GigabitEthernet0/0/0/0.46 ipv4 address 192.0.2.18 255.255.255.0 encapsulation dot1q 46 ! router ospf 1 segment-routing mpls segment-routing forwarding mpls segment-routing sr-prefer address-family ipv4 area 0 mpls traffic-eng interface Loopback0 prefix-sid index 6 ! interface GigabitEthernet0/0/0/0.26 cost 200 network point-to-point ! interface GigabitEthernet0/0/0/0.46 cost 200 network point-to-point ! ! mpls traffic-eng router-id Loopback0 ! mpls oam ! mpls traffic-eng interface GigabitEthernet0/0/0/0.26 admin-weight 1 ! interface GigabitEthernet0/0/0/0.46 admin-weight 1 ! ! end
XR2 e XR4 (PE) hanno creato un LSP utilizzando il routing dei segmenti. È possibile verificare questa condizione utilizzando il ping MPLS per la FEC del routing dei segmenti corrispondente. Per questo scenario, sono disponibili due percorsi possibili per il trasporto del traffico L3VPN da XR1 a XR5:
Percorso LSP normale: XR1 > XR2 > XR3 > XR4 > XR5
Percorso LSP a bassa latenza: XR1 > XR2 > XR6 > XR4 > XR5
Inizialmente, tutto il traffico tra XR1 e XR5 viene instradato attraverso XR3 tramite il normale percorso LSP a causa dei costi IGP inferiori, possiamo confermare sia i LSP che la connettività in base a queste verifiche. Il costo IGP per raggiungere XR4 da XR2 tramite XR3 è 201 rispetto a 401 tramite XR6. Anche se il percorso tramite XR3 presenta una metrica migliore, i servizi a bassa latenza su VRF BLUE devono essere instradati attraverso il percorso tramite XR6.
RP/0/0/CPU0:XR2#ping mpls ipv4 10.0.4.4/32 fec-type generic verbose Sending 5, 100-byte MPLS Echos to 10.0.4.4/32, timeout is 2 seconds, send interval is 0 msec: Codes: '!' - success, 'Q' - request not sent, '.' - timeout, 'L' - labeled output interface, 'B' - unlabeled output interface, 'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch, 'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label, 'P' - no rx intf label prot, 'p' - premature termination of LSP, 'R' - transit router, 'I' - unknown upstream index, 'X' - unknown return code, 'x' - return code 0 Type escape sequence to abort. ! size 100, reply addr 192.0.2.13, return code 3 ! size 100, reply addr 192.0.2.13, return code 3 ! size 100, reply addr 192.0.2.13, return code 3 ! size 100, reply addr 192.0.2.13, return code 3 ! size 100, reply addr 192.0.2.13, return code 3 Success rate is 100 percent (5/5), round-trip min/avg/max = 1/4/10 ms
Nota: quando si utilizza l'applicazione ping MPLS nel routing dei segmenti, è necessario utilizzare Nil-FEC o FEC generico.
Se si verificano i servizi L3VPN su XR1, è possibile confermare la raggiungibilità al loopback XR5 10.0.5.5/32 e 10.0.5.55/32 rispettivamente tramite il normale percorso LSP. I servizi L3VPN di base sono abilitati nel core SR MPLS.
RP/0/0/CPU0:XR1#ping 10.0.5.5 source 10.0.1.1
Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 10.0.5.5, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 1/7/9 ms RP/0/0/CPU0:XR1#ping 10.0.5.55 source 10.0.1.1 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 10.0.5.55, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 1/7/9 ms RP/0/0/CPU0:XR1#traceroute 10.0.5.5 source 10.0.1.1 Type escape sequence to abort. Tracing the route to 10.0.5.5 1 192.0.2.7 9 msec 0 msec 0 msec 2 192.0.2.11 [MPLS: Labels 16004/24002 Exp 0] 0 msec 0 msec 0 msec 3 192.0.2.13 [MPLS: Label 24002 Exp 0] 0 msec 0 msec 0 msec 4 192.0.2.16 0 msec * 0 msec RP/0/0/CPU0:XR1#traceroute 10.0.5.55 source 10.0.1.1 Type escape sequence to abort. Tracing the route to 10.0.5.55 1 192.0.2.7 9 msec 0 msec 0 msec 2 192.0.2.11 [MPLS: Labels 16004/24005 Exp 0] 0 msec 0 msec 0 msec 3 192.0.2.13 [MPLS: Label 24005 Exp 0] 0 msec 0 msec 0 msec 4 192.0.2.16 0 msec * 0 msec
Come osservato, tutto il traffico su VRF BLUE passa attraverso il normale percorso LSP XR1 > XR2 > XR3 > XR4 > XR5.
Per questo esempio, configurare XR4 (coda) in modo che inserisca la community 1:1 e la invii a XR2 per segnalare la creazione di un criterio SR-TE per il prefisso 10.0.5.55/32 su VRF BLUE. La selezione del percorso dei criteri SR-TE verrà impostata in modo da utilizzare il percorso a bassa latenza anziché il provider di servizi di traduzione normale. A tale scopo, selezionare la metrica TE più bassa (peso amministratore) tramite XR6. Il valore totale della metrica TE (peso amministrativo) tramite XR6 è 2, in quanto i pesi amministrativi sono stati impostati su 1 sulle interfacce in uscita verso XR4 (coda) tramite XR6, come indicato nel diagramma della topologia di riferimento e nelle configurazioni iniziali.
Per creare le policy dinamiche SR-TE, è necessario configurare il loopback da utilizzare come origine e l'intervallo del tunnel dinamico che verrà generato dall'headend. Questa configurazione è richiesta sull'headend della policy SR-TE XR2. Impostare l'intervallo del tunnel su un minimo di 500 e un massimo di 500, creando in modo efficace un singolo tunnel SR-TE e il loopback dell'origine su loopback 0 sull'headend del tunnel.
XR2 ipv4 unnumbered mpls traffic-eng Loopback0 mpls traffic-eng auto-tunnel p2p tunnel-id min 500 max 500 ! ! end
Su XR4, impostare la community su 1:1 e applicarla al prefisso BLU VRF 10.0.5.55/32, in modo da poter inserire la community nell'aggiornamento BGP.
XR4 route-policy COMMUNITY_1:1 # 1:1 Community if destination in (10.0.5.55/32) then set community (1:1) endif pass end-policy ! router bgp 100 vrf BLUE ! neighbor 192.0.2.16 address-family ipv4 unicast route-policy COMMUNITY_1:1 in ! ! end
La verifica di XR2 (headend) dimostra che la community è impostata su 1:1 sugli aggiornamenti VPNv4 ricevuti da XR4.
RP/0/0/CPU0:XR2#show bgp vrf BLUE 10.0.5.55/32 detail
BGP routing table entry for 10.0.5.55/32, Route Distinguisher: 1:1 Versions: Process bRIB/RIB SendTblVer Speaker 36 36 Flags: 0x00043001+0x00000200; Last Modified: Nov 23 17:50:59.798 for 00:02:53 Paths: (1 available, best #1) Advertised to CE peers (in unique update groups): 192.0.2.10 Path #1: Received by speaker 0 Flags: 0x4000000085060005, import: 0x9f Advertised to CE peers (in unique update groups): 192.0.2.10 200 10.0.4.4 (metric 201) from 10.0.4.4 (10.0.4.4) Received Label 24005 Origin IGP, metric 0, localpref 100, valid, internal, best, group-best, import-candidate, imported Received Path ID 0, Local Path ID 0, version 36 Community: 1:1 Extended community: RT:1:1 Source AFI: VPNv4 Unicast, Source VRF: BLUE, Source Route Distinguisher: 1:1
In XR2 (headend) creare un criterio di route RPL corrispondente alla community 1:1 e impostare il set di attributi corrispondente per la progettazione del traffico MPLS. Dopo aver impostato il criterio, è possibile passare alla sezione di configurazione di MPLS-TE e impostare il set di attributi corrispondente per il criterio SR-TE e indicare i criteri di selezione del percorso, ovvero Instradamento segmento e metrica TE in questo caso, poiché si desidera scegliere il percorso utilizzando il peso amministrativo più basso tramite XR6.
XR2 route-policy DYN_BGP_SR-TE # Matches community 1:1 if community matches-every (1:1) then set mpls traffic-eng attributeset DYN_SR-TE_POLICIES endif pass end-policy ! router bgp 100 ! neighbor 10.0.4.4 address-family vpnv4 unicast route-policy DYN_BGP_SR-TE in ! mpls traffic-eng attribute-set p2p-te DYN_SR-TE_POLICIES path-selection metric te segment-routing adjacency unprotected ! end
Al termine, è possibile verificare che l'interfaccia tunnel-te 500 è stata creata in modo dinamico per l'intervallo specificato.
RP/0/0/CPU0:XR2#show mpls traffic-eng tunnels segment-routing tabular Tunnel LSP Destination Source Tun FRR LSP Path Name ID Address Address State State Role Prot ----------------- ----- --------------- --------------- ------ ------ ---- ----- ^tunnel-te500 2 10.0.4.4 10.0.2.2 up Inact Head Inact ^ = automatically created P2P/P2MP tunnel
BGP RIB indica che il criterio "DYN_SR-TE_POLICIES" è associato al prefisso, ossia il traffico deve essere indirizzato in base al criterio.
RP/0/0/CPU0:XR2#show bgp vrf BLUE
Status codes: s suppressed, d damped, h history, * valid, > best i - internal, r RIB-failure, S stale, N Nexthop-discard Origin codes: i - IGP, e - EGP, ? - incomplete Network Next Hop Metric LocPrf Weight Path Route Distinguisher: 1:1 (default for vrf BLUE) *> 10.0.1.1/32 192.0.2.10 0 0 200 i *>i10.0.5.5/32 10.0.4.4 0 100 0 200 i *>i10.0.5.55/32 10.0.4.4 T:DYN_SR-TE_POLICIES 0 100 0 200 i
Se si verifica in dettaglio il BGP RIB per il prefisso 10.0.5.55/32, si possono vedere le informazioni sul control plane a cui verrà fatto riferimento per generare il tunnel SR-TE.
RP/0/0/CPU0:XR2#show bgp vrf BLUE 10.0.5.55/32 detail BGP routing table entry for 10.0.5.55/32, Route Distinguisher: 1:1 Versions: Process bRIB/RIB SendTblVer Speaker 39 39 Flags: 0x00041001+0x00000200; Last Modified: Nov 23 17:55:22.798 for 00:04:43 Paths: (1 available, best #1) Advertised to CE peers (in unique update groups): 192.0.2.10 Path #1: Received by speaker 0 Flags: 0x4000000085060005, import: 0x9f Advertised to CE peers (in unique update groups): 192.0.2.10 200 10.0.4.4 T:DYN_SR-TE_POLICIES (metric 201) from 10.0.4.4 (10.0.4.4) Received Label 24005 Origin IGP, metric 0, localpref 100, valid, internal, best, group-best, import-candidate, imported Received Path ID 0, Local Path ID 0, version 39 Community: 1:1 Extended community: RT:1:1 TE tunnel attribute-set DYN_SR-TE_POLICIES, up, registered, binding-label 24000, if-handle 0x00000130 Source AFI: VPNv4 Unicast, Source VRF: BLUE, Source Route Distinguisher: 1:1
È possibile osservare che i criteri del tunnel sono nello stato attivo e sono registrati. Il SID di binding assegnato è 24000. Questo SID di binding può essere utilizzato per verificare il tunnel utilizzato per questo particolare prefisso. Come osservato in precedenza, tunnel-te500 è stato creato e installato in LFIB.
RP/0/0/CPU0:XR2#show mpls forwarding labels 24000 detail
Local Outgoing Prefix Outgoing Next Hop Bytes Label Label or ID Interface Switched ------ ----------- ------------------ ------------ --------------- ------------ 24000 Pop No ID tt500 point2point 0 Updated: Nov 23 17:55:23.267 Label Stack (Top -> Bottom): { } MAC/Encaps: 0/0, MTU: 0 Packets Switched: 0
Nota: il SID di binding presenta molti casi di utilizzo. Per questo particolare documento, limitarne l'utilizzo per la verifica locale, ma l'applicazione è molto più ampia.
In alternativa, è possibile utilizzare l'handle if 0x00000130 fornito dall'output del comando BGP RIB per verificare la policy SR-TE assegnata al prefisso 10.0.5.55/32.
RP/0/0/CPU0:XR2#show mpls forwarding tunnels ifh 0x00000130 detail
Tunnel Outgoing Outgoing Next Hop Bytes Name Label Interface Switched ------------- ----------- ------------ --------------- ------------ tt500 (SR) 24003 Gi0/0/0/0.26 192.0.2.17 0 Updated: Nov 23 17:55:23.267 Version: 138, Priority: 2 Label Stack (Top -> Bottom): { 24003 } NHID: 0x0, Encap-ID: N/A, Path idx: 0, Backup path idx: 0, Weight: 0 MAC/Encaps: 18/22, MTU: 1500 Packets Switched: 0 Interface Name: tunnel-te500, Interface Handle: 0x00000130, Local Label: 24001 Forwarding Class: 0, Weight: 0 Packets/Bytes Switched: 0/0
Il criterio SR-TE su XR2 (headend) avrà queste proprietà dalla prospettiva di un piano di controllo e di un piano dati per inoltrare il traffico. Anche le informazioni sullo stato del tunnel SR-TE possono essere visualizzate come in output, che deve corrispondere alle verifiche precedenti.
RP/0/0/CPU0:XR2#show mpls traffic-eng tunnels segment-routing p2p 500 Name: tunnel-te500 Destination: 10.0.4.4 Ifhandle:0x130 (auto-tunnel for BGP default) Signalled-Name: auto_XR2_t500 Status: Admin: up Oper: up Path: valid Signalling: connected path option 10, (Segment-Routing) type dynamic (Basis for Setup, path weight 2) G-PID: 0x0800 (derived from egress interface properties) Bandwidth Requested: 0 kbps CT0 Creation Time: Fri Nov 23 17:55:23 2018 (00:09:01 ago) Config Parameters: Bandwidth: 0 kbps (CT0) Priority: 7 7 Affinity: 0x0/0x0 Metric Type: TE (interface) Path Selection: Tiebreaker: Min-fill (default) Protection: Unprotected Adjacency Hop-limit: disabled Cost-limit: disabled Path-invalidation timeout: 10000 msec (default), Action: Tear (default) AutoRoute: disabled LockDown: disabled Policy class: not set Forward class: 0 (default) Forwarding-Adjacency: disabled Autoroute Destinations: 0 Loadshare: 0 equal loadshares Auto-bw: disabled Path Protection: Not Enabled Attribute-set: DYN_SR-TE_POLICIES (type p2p-te) BFD Fast Detection: Disabled Reoptimization after affinity failure: Enabled SRLG discovery: Disabled History: Tunnel has been up for: 00:09:01 (since Fri Nov 23 17:55:23 UTC 2018) Current LSP: Uptime: 00:09:01 (since Fri Nov 23 17:55:23 UTC 2018) Reopt. LSP: Last Failure: LSP not signalled, identical to the [CURRENT] LSP Date/Time: Fri Nov 23 17:56:53 UTC 2018 [00:07:31 ago] Segment-Routing Path Info (OSPF 1 area 0) Segment0[Link]: 192.0.2.9 - 192.0.2.17, Label: 24005 Segment1[Link]: 192.0.2.18 - 192.0.2.15, Label: 24003 Displayed 1 (of 1) heads, 0 (of 0) midpoints, 0 (of 0) tails Displayed 1 up, 0 down, 0 recovering, 0 recovered heads
Controllare il prefisso direttamente su VRF BLUE RIB, possiamo confermare che l'associazione SID 24000 è stata assegnata al prefisso.
RP/0/0/CPU0:XR2#show route vrf BLUE 10.0.5.55/32 detail
Routing entry for 10.0.5.55/32 Known via "bgp 100", distance 200, metric 0 Tag 200, type internal Installed Nov 23 17:55:23.267 for 00:10:38 Routing Descriptor Blocks 10.0.4.4, from 10.0.4.4 Nexthop in Vrf: "default", Table: "default", IPv4 Unicast, Table Id: 0xe0000000 Route metric is 0 Label: 0x5dc5 (24005) Tunnel ID: None Binding Label: 0x5dc0 (24000) Extended communities count: 0 Source RD attributes: 0x0000:1:1 NHID:0x0(Ref:0) Route version is 0x5 (5) No local label IP Precedence: Not Set QoS Group ID: Not Set Flow-tag: Not Set Fwd-class: Not Set Route Priority: RIB_PRIORITY_RECURSIVE (12) SVD Type RIB_SVD_TYPE_REMOTE Download Priority 3, Download Version 27 No advertising protos.
FIB per VRF BLUE indica che l'inoltro per questo prefisso viene eseguito tramite tunnel-te 500 in base alla nostra policy BGP dynamic SR-TE.
RP/0/0/CPU0:XR2#show cef vrf BLUE 10.0.5.55/32 detail
10.0.5.55/32, version 27, internal 0x1000001 0x0 (ptr 0xa142a574) [1], 0x0 (0x0), 0x208 (0xa159d208) Updated Nov 23 17:55:23.287 Prefix Len 32, traffic index 0, precedence n/a, priority 3 gateway array (0xa129f23c) reference count 1, flags 0x4038, source rib (7), 0 backups [1 type 1 flags 0x48441 (0xa15b780c) ext 0x0 (0x0)] LW-LDI[type=0, refc=0, ptr=0x0, sh-ldi=0x0] gateway array update type-time 1 Nov 23 17:55:23.287 LDI Update time Nov 23 17:55:23.287 via local-label 24000, 3 dependencies, recursive [flags 0x6000] path-idx 0 NHID 0x0 [0xa1605bf4 0x0] recursion-via-label next hop VRF - 'default', table - 0xe0000000 next hop via 24000/0/21 next hop tt500 labels imposed {ImplNull 24005} Load distribution: 0 (refcount 1) Hash OK Interface Address 0 Y Unknown 24000/0
Con XR1 possiamo verificare la connettività e confermare che il traffico attraversi il tunnel 500 attraverso un percorso a bassa latenza tramite XR6.
RP/0/0/CPU0:XR1#traceroute 10.0.5.55 source 10.0.1.1 Type escape sequence to abort. Tracing the route to 10.0.5.55 1 192.0.2.7 0 msec 0 msec 0 msec 2 192.0.2.17 [MPLS: Labels 24003/24005 Exp 0] 0 msec 0 msec 0 msec 3 192.0.2.15 [MPLS: Label 24005 Exp 0] 0 msec 0 msec 0 msec 4 192.0.2.16 0 msec * 9 msec
Aumento dei contatori XR2 per tunnel-te500 che corrisponde ai criteri SR-TE.
RP/0/0/CPU0:XR2#show mpls forwarding tunnels Tunnel Outgoing Outgoing Next Hop Bytes Name Label Interface Switched ------------- ----------- ------------ --------------- ------------ tt500 (SR) 24003 Gi0/0/0/0.26 192.0.2.17 2250
Il percorso per il prefisso 10.0.5.5/32 sta ancora passando attraverso il normale percorso LSP tramite XR3, come mostrato di seguito.
RP/0/0/CPU0:XR1#traceroute 10.0.5.5 source 10.0.1.1 Type escape sequence to abort. Tracing the route to 10.0.5.5 1 192.0.2.7 0 msec 0 msec 0 msec 2 192.0.2.11 [MPLS: Labels 16004/24002 Exp 0] 0 msec 0 msec 0 msec 3 192.0.2.13 [MPLS: Label 24002 Exp 0] 0 msec 0 msec 0 msec 4 192.0.2.16 0 msec * 0 msec
Al momento non sono disponibili informazioni specifiche per la risoluzione dei problemi di questa configurazione.
BGP Dynamic SR-TE offre granularità e applicazione automatica delle policy di routing ai fini della progettazione del traffico nel core abilitato per SR. La creazione automatica del tunnel può essere attivata in base a criteri arbitrari, che possono consentire agli amministratori di rete di creare facilmente modelli di traffico che soddisfino i requisiti delle applicazioni del sito.
Revisione | Data di pubblicazione | Commenti |
---|---|---|
2.0 |
19-Oct-2022 |
Documento allineato con RFC 1918, 5737 e 6761 |
1.0 |
28-Nov-2018 |
Versione iniziale |