Configurazione di più trasporti e progettazione del traffico con criteri di controllo centralizzati e criteri di route delle applicazioni

Sommario

Introduzione Prerequisiti Requisiti Componenti usati Configurazione Problema Soluzione Verifica Risoluzione dei problemi Informazioni correlate

Introduzione

In questo documento viene descritto come configurare i criteri di controllo centralizzato e i criteri route dell'app per ottenere la progettazione del traffico tra i siti. Può anche essere considerata una specifica linea guida di progettazione per un particolare caso di utilizzo.

Prerequisiti

Requisiti

Nessun requisito specifico previsto per questo documento.

Componenti usati

Il documento può essere consultato per tutte le versioni software o hardware.

Le informazioni discusse in questo documento fanno riferimento a dispositivi usati in uno specifico ambiente di emulazione. Su tutti i dispositivi menzionati nel documento la configurazione è stata ripristinata ai valori predefiniti. Se la rete è operativa, valutare attentamente eventuali conseguenze derivanti dall'uso dei comandi.

Configurazione

Per una dimostrazione e una migliore comprensione del problema descritto più avanti, considerare la topologia mostrata in questa immagine.

Notare che in generale tra **vedge1** e **vedge3** si dovrebbe avere anche un secondo collegamento/sottointerfaccia per l'estensione TLOC **biz-internet**, ma qui per semplicità non è stato configurato.

Di seguito sono riportate le impostazioni di sistema corrispondenti per vEdges/vSmart (vedge2 rappresenta tutti gli altri siti):

hostname id-sito ip-sistema

vedge1	13	192.168.30.4
vedge3	13	192.168.30.6
vedge4	4	192.168.30.7
vedgex	Х	192.168.30.5
vsmart1	1	192.168.30.3

Qui è possibile trovare configurazioni lato trasporto per riferimento.

vedge1:

```
interface ge0/0
 description "ISP_1"
 ip address 192.168.109.4/24
 nat
  respond-to-ping
  ļ
 tunnel-interface
  encapsulation ipsec
  color biz-internet
  no allow-service bgp
  allow-service dhcp
  allow-service dns
  allow-service icmp
  allow-service sshd
  no allow-service netconf
  no allow-service ntp
  no allow-service ospf
  allow-service stun
  !
 no shutdown
 1
 interface ge0/3
 description "TLOC-extension via vedge3 to ISP_2"
 ip address 192.168.80.4/24
 tunnel-interface
  encapsulation ipsec
  color public-internet
  no allow-service bgp
  allow-service dhcp
  allow-service dns
  allow-service icmp
  no allow-service sshd
  no allow-service netconf
  no allow-service ntp
  no allow-service ospf
  allow-service stun
  !
 no shutdown
 1
 1
ip route 0.0.0.0/0 192.168.80.6
ip route 0.0.0.0/0 192.168.109.10
1
vedge3:
vpn 0
```

```
interface ge0/0
description "ISP_2"
ip address 192.168.110.6/24
nat
 respond-to-ping
 1
 tunnel-interface
  encapsulation ipsec
 color public-internet
 carrier carrier3
 no allow-service bgp
  allow-service dhcp
  allow-service dns
  allow-service icmp
  no allow-service sshd
  no allow-service netconf
```

```
no allow-service ntp
no allow-service ospf
no allow-service stun
!
no shutdown
!
interface ge0/3
ip address 192.168.80.6/24
tloc-extension ge0/0
no shutdown
!
ip route 0.0.0.0/0 192.168.110.10
```

vedge4:

```
vpn 0
 interface ge0/1
  ip address 192.168.103.7/24
  tunnel-interface
  encapsulation ipsec
  color public-internet
  no allow-service bqp
   allow-service dhcp
   allow-service dns
   allow-service icmp
  no allow-service sshd
  no allow-service netconf
  no allow-service ntp
  allow-service ospf
  no allow-service stun
  1
 no shutdown
 1
 ip route 0.0.0.0/0 192.168.103.10
1
```

Problema

L'utente desidera raggiungere i seguenti obiettivi:

Il servizio Internet fornisce l'ISP 2 e per alcuni motivi è preferibile preferire la comunicazione tra il sito 13 e il sito 4. Ad esempio, è un caso di utilizzo piuttosto comune e uno scenario in cui la qualità della connessione/connettività all'interno di un ISP tra i propri client è molto buona, ma verso il resto della qualità della connettività Internet non soddisfa lo SLA aziendale a causa di alcuni problemi o congestione su un uplink ISP e quindi questo ISP (ISP 2 nel nostro caso) dovrebbe essere evitato in generale.

Il sito 13 dovrebbe preferire l'uplink **pubblico-internet** per collegarsi al **sito 4**, ma comunque mantenere la ridondanza e dovrebbe essere in grado di raggiungere il **sito 4** se **internet-pubblico** non riesce.

Il **sito 4** deve comunque mantenere la connettività ottimale con tutti gli altri siti direttamente (pertanto non è possibile utilizzare la parola chiave **restrictingqui** su **vedge4** per raggiungere tale obiettivo).

Il **sito 13** dovrebbe utilizzare il collegamento di migliore qualità con il colore **biz-internet** per raggiungere tutti gli altri siti (rappresentato dal **sito X** nel diagramma topologico).

Un altro motivo potrebbe essere costituito da problemi di costo/prezzo quando il traffico all'interno dell'ISP è gratuito, ma molto più costoso quando il traffico che esce da una rete del provider (sistema autonomo).

Alcuni utenti che non hanno esperienza con l'approccio SD-WAN e si abituano al routing classico possono iniziare a configurare il routing statico per forzare il traffico tra **vedge1** e l'indirizzo dell'interfaccia pubblica **vedge4** tramite l'interfaccia di estensione TLOC tra **vedge1** e **vedge3**, ma non daranno il risultato desiderato e possono creare confusione perché:

Il traffico del piano di gestione (ad esempio, ping, pacchetto di utilità traceroute) segue il percorso desiderato.

Allo stesso tempo, i tunnel del piano dati SD-WAN (tunnel IPsec o gre) ignorano le informazioni della tabella di routing e le connessioni dei moduli basate sui **colori** TLOC.

Poiché una route statica non dispone di informazioni, se TLOC pubblico-Internet non è attivo su vedge3 (uplink su ISP 2), vedge1 non noterà questa condizione e la connettività a **vedge4** non riuscirà, nonostante **vedge1** disponga ancora di **biz-internet**.

Questo approccio dovrebbe quindi essere evitato e non utilizzabile.

Soluzione

1. Uso di criteri di controllo centralizzati per impostare una preferenza per il TLOC **Internet pubblico** sul controller vSmart quando si annunciano le route OMP corrispondenti per **vedge4**. Aiuta ad archiviare il percorso del traffico desiderato dal **sito 4** al **sito 13**.

2. Per ottenere il percorso del traffico desiderato in direzione inversa dal **sito 13** al **sito 4**, non è possibile usare i criteri di controllo centralizzato perché **vedge4** ha solo un TLOC disponibile, quindi non è possibile impostare una preferenza su niente, ma è possibile usare i criteri di route dell'app per ottenere questo risultato per il traffico in uscita dal **sito 13**.

Di seguito è riportato l'aspetto dei criteri di controllo centralizzati sul controller vSmart per preferire il TLOC Internet pubblico al sito 13:

```
policy
control-policy S4_S13_via_PUB
 sequence 10
  match tloc
   color public-internet
   site-id 13
   !
  action accept
   set
    preference 333
   !
  !
  1
 default-action accept
 !
1
```

E qui c'è un esempio di criteri di route delle app che preferiscono l'uplink **Internet pubblico** come punto di uscita per il traffico in uscita dal **sito 13** al **sito 4**:

```
policy
 app-route-policy S13_S4_via_PUB
  vpn-list CORP_VPNs
   sequence 10
    match
    destination-data-prefix-list SITE4_PREFIX
    !
    action
     count
                                COUNT PKT
     sla-class SLA_CL1 preferred-color public-internet
    !
   1
  !
 !
policy
 lists
  site-list S13
   site-id 13
  1
  site-list S40
  site-id 4
  !
  data-prefix-list SITE4_PREFIX
   ip-prefix 192.168.60.0/24
  !
  vpn-list CORP_VPNs
   vpn 40
  !
 !
 sla-class SLA_CL1
  loss 1
  latency 100
  jitter 100
 !
```

I criteri devono essere applicati correttamente sul controller vSmart:

```
apply-policy
site-list S13
app-route-policy S13_S4_via_PUB
!
site-list S4
control-policy S4_S13_via_PUB out
!
```

I criteri di route dell'app non possono essere configurati come criteri localizzati e devono essere applicati solo a vSmart.

Verifica

Nota: i criteri di route dell'app non verranno applicati al traffico generato localmente da vEdge. Per verificare se i flussi di traffico sono indirizzati in base al percorso desiderato, è consigliabile generare traffico dai segmenti LAN dei siti corrispondenti. Come scenario di test di alto livello, è possibile utilizzare iperf per generare il traffico tra gli host nei segmenti LAN del **sito 13** e del **sito 4** e quindi controllare le statistiche di un'interfaccia. Ad esempio, nel mio caso, non c'era traffico oltre a quello generato dal sistema e quindi potete vedere che la maggior parte del traffico è passata attraverso l'interfaccia ge0/3 verso l'estensione TLOC sul **vedge3**:

vedge1# show interface statistics

PPPOE	PPPOE	DOT1	X DO	OT1X									
			AF	RX			RX		RX	TX		TX	TX
RX	RX	ΤX	5	ГХ	ΤX	RX	TX	R	X				
VPN	INTERFACE	1	TYPE	PACKE	TS	RX OCTETS	ERRO	RS	DROPS	PACKETS	TX OCTETS	ERRORS	DROPS
PPS	Kbps	PPS	H	Kbps	PK	IS PKTS	PKTS	PI	KTS				
0	ge0/0		ipv4	1832		394791	0		167	1934	894680	0	0
26	49	40		229	-	-	0	0					
0	ge0/2		ipv4	0		0	0		0	0	0	0	0
0	0	0	(C	-	-	0	0					
0	ge0/3		ipv4	30530	34	4131607715	0		27	2486248	3239661783	0	0
51933	563383	415	88 4	432832	-	-	0	0					
0	ge0/4		ipv4	0		0	0		0	0	0	0	0
0	0	0	(C	-	-	0	0					

Risoluzione dei problemi

Prima di tutto, assicurarsi che le sessioni BFD corrispondenti siano stabilite (non utilizzare parole chiave **restrictes** in nessun punto):

vedge1# show bf	d sessions								
				SOURCE TLOC		REMOTE	TLOC		
DST PUBLIC			DST P	UBLIC	DETE	СТ	TX		
SYSTEM IP	SITE ID	STATE		COLOR		COLOR		SOURCE IP	
IP			PORT	ENCAP	MULT	IPLIER	INTERVAL	(msec) UPTIME	
TRANSITIONS									
192.168.30.5	2	up		public-inter	net	public-	internet	192.168.80.4	
192.168.109.5			12386	ipsec	7		1000	0:02:10:54	3
192.168.30.5	2	up		biz-internet		public-	internet	192.168.109.4	
192.168.109.5			12386	ipsec	7		1000	0:02:10:48	3
192.168.30.7	4	up		public-inter	net	public-	internet	192.168.80.4	
192.168.103.7			12366	ipsec	7		1000	0:02:11:01	2
192.168.30.7	4	up		biz-internet		public-	internet	192.168.109.4	
192.168.103.7			12366	ipsec	7		1000	0:02:10:56	2
vedge3# show bf	d sessions			SOURCE TLOC		REMOTE	TLOC		
DST PUBLIC			DST P	UBLIC	DETE	CT	TX		
SYSTEM IP	SITE ID	STATE		COLOR		COLOR		SOURCE IP	
IP			PORT	ENCAP	MULT	IPLIER	INTERVAL	(msec) UPTIME	
TRANSITIONS									
192.168.30.5	2	up	10005	public-inter	net	public-	internet	192.168.110.6	-
192.168.109.5	4		T7386	ipsec			T000	0:02:11:05	1
192.168.30.7	4	up	10265	public-inter	net	public-	internet	192.168.110.6	-
192.108.103./			12366	lpsec	.7		T000	0:02:11:13	2

				SOURCE TLOC		REMOTE	TLOC		
DST PUBLIC			DST P	UBLIC	DET	ECT	TX		
SYSTEM IP	SITE ID	STATE		COLOR		COLOR		SOURCE IP	
IP			PORT	ENCAP	MUL	TIPLIER	INTERVAL	(msec) UPTIME	
TRANSITIONS									
192.168.30.4	13	up		public-inter	net	biz-int	ernet	192.168.103.7	
192.168.109.4			12346	ipsec	7		1000	0:02:09:11	2
192.168.30.4	13	up		public-inter	net	public-	internet	192.168.103.7	
192.168.110.6			63084	ipsec	7		1000	0:02:09:16	2
192.168.30.5	2	up		public-inter	net	public-	internet	192.168.103.7	
192.168.109.5			12386	ipsec	7		1000	0:02:09:10	3
192.168.30.6	13	up		public-inter	net	public-	internet	192.168.103.7	
192.168.110.6			12386	ipsec	7		1000	0:02:09:07	2

Se non è possibile ottenere il risultato desiderato con la progettazione del traffico, verificare che i criteri siano stati applicati correttamente:

1. In **vedge4** verificare che per i prefissi originati dal **sito 13** sia stato selezionato il valore TLOC appropriato:

vedge4# show omp routes 192.168.40.0/24 detail _____ omp route entries for vpn 40 route 192.168.40.0/24 _____ RECEIVED FROM: 192.168.30.3 72 peer path-id label 1002 status R loss-reason tloc-preference lost-to-peer 192.168.30.3 lost-to-path-id 74 Attributes: originator 192.168.30.4 installed **192.168.30.4, biz-internet**, ipsec type tloc ultimate-tloc not set domain-id not set overlay-id 1 site-id 13 overlay-id1site-id13preferencenot settagnot set origin-proto connected origin-metric 0 as-path not set unknown-attr-len not set RECEIVED FROM: 192.168.30.3 peer path-id 73 label I.C. C,I,R loss-reason not set lost-to-peer not set lost-to-path-id not set Attributes: originator 192.168.30.4 type installed

192.168.30.4, public-internet, ipsec tloc ultimate-tloc not set domain-id not set overlay-id 1 13 site-id preference not set not set tag origin-proto connected origin-metric 0 as-path not set unknown-attr-len not set RECEIVED FROM: 192.168.30.3 peer path-id 74 1002 label status C,I,R loss-reason not set lost-to-peer not set lost-to-path-id not set Attributes: originator 192.168.30.6 type installed 192.168.30.6, public-internet, ipsec ultimate-tloc not set domain-id not set overlay-id 1 13 not set site-id site-14 preference not set tag connected origin-proto origin-metric 0 as-path not set unknown-attr-len not set

2. Su **vedge1** e **vedge3** verificare che sia installata la policy appropriata di vSmart e che i pacchetti siano abbinati e conteggiati:

```
vedge1# show policy from-vsmart
from-vsmart sla-class SLA_CL1
loss 1
latency 100
 jitter 100
from-vsmart app-route-policy S13_S4_via_PUB
vpn-list CORP_VPNs
 sequence 10
  match
   destination-data-prefix-list SITE4_PREFIX
  action
                              COUNT_PKT
   count
   backup-sla-preferred-color biz-internet
   sla-class SLA_CL1
   no sla-class strict
   sla-class preferred-color public-internet
from-vsmart lists vpn-list CORP_VPNs
vpn 40
from-vsmart lists data-prefix-list SITE4_PREFIX
ip-prefix 192.168.60.0/24
vedgel# show policy app-route-policy-filter
```

NAME NAME NAME PACKETS BYTES

S13_S4_via_PUB_CORP_VPNs_COUNT_PKT 81126791 110610503611

Inoltre, si dovrebbero vedere molti più pacchetti inviati tramite **public-internet** color dal **sito 13** (durante il mio test non c'è stato traffico tramite **biz-internet** TLOC):

vedge1# show app-route stats remote-system-ip 192.168.30.7 app-route statistics 192.168.80.4 192.168.103.7 ipsec 12386 12366 remote-system-ip 192.168.30.7 local-color public-internet remote-color public-internet mean-loss 0 1 mean-latency mean-jitter 0 sla-class-index 0,1 TOTAL AVERAGE AVERAGE TX DATA RX DATA INDEX PACKETS LOSS LATENCY JITTER PKTS PKTS _____ 6000000060001050610616731986600000318729136196586000000060002092309601270721660001099508404541723 0 1 2 3 4 5 app-route statistics 192.168.109.4 192.168.103.7 ipsec 12346 12366 remote-system-ip 192.168.30.7 local-color biz-internet public-internet remote-color 0 mean-loss mean-latency 0 mean-jitter 0 sla-class-index 0,1 TOTAL AVERAGE AVERAGE TX DATA RX DATA INDEX PACKETS LOSS LATENCY JITTER PKTS PKTS _____
 0
 600
 0
 0
 0
 0
 0

 1
 600
 0
 1
 0
 0
 0

 2
 600
 0
 0
 0
 0
 0

 3
 600
 0
 2
 0
 0
 0

 4
 600
 0
 2
 0
 0
 0

 5
 600
 0
 0
 0
 0
 0

Informazioni correlate

- <u>https://sdwan-</u> <u>docs.cisco.com/Product_Documentation/Software_Features/Release_18.3/07Policy_Applicationons/01Application-Aware_Routing/01Configuring_Application-Aware_Routing</u>
- https://sdwan-

docs.cisco.com/Product_Documentation/Software_Features/Release_18.3/02System_and_Int erfaces/06Configuring_Network_Interfaces

 <u>https://sdwan-</u> <u>docs.cisco.com/Product_Documentation/Command_Reference/Configuration_Commands/col</u>