La documentazione per questo prodotto è stata redatta cercando di utilizzare un linguaggio senza pregiudizi. Ai fini di questa documentazione, per linguaggio senza di pregiudizi si intende un linguaggio che non implica discriminazioni basate su età, disabilità, genere, identità razziale, identità etnica, orientamento sessuale, status socioeconomico e intersezionalità. Le eventuali eccezioni possono dipendere dal linguaggio codificato nelle interfacce utente del software del prodotto, dal linguaggio utilizzato nella documentazione RFP o dal linguaggio utilizzato in prodotti di terze parti a cui si fa riferimento. Scopri di più sul modo in cui Cisco utilizza il linguaggio inclusivo.
Cisco ha tradotto questo documento utilizzando una combinazione di tecnologie automatiche e umane per offrire ai nostri utenti in tutto il mondo contenuti di supporto nella propria lingua. Si noti che anche la migliore traduzione automatica non sarà mai accurata come quella fornita da un traduttore professionista. Cisco Systems, Inc. non si assume alcuna responsabilità per l’accuratezza di queste traduzioni e consiglia di consultare sempre il documento originale in inglese (disponibile al link fornito).
In questo documento viene descritto come risolvere i problemi e convalidare lo stato del control plane sugli switch Catalyst della famiglia 9000 con Cisco IOS® XE.
Il compito principale di uno switch è inoltrare i pacchetti nel più breve tempo possibile. La maggior parte dei pacchetti viene inoltrata nell'hardware, ma alcuni tipi di traffico devono essere gestiti dalla CPU del sistema. Il traffico che arriva alla CPU viene gestito il più rapidamente possibile. Si prevede che alla CPU venga rilevata una certa quantità di traffico, ma una sovrabbondanza genera problemi operativi. Per impostazione predefinita, la famiglia di switch Catalyst 9000 incorpora un robusto meccanismo CoPP (Control Plane Policing) per prevenire i problemi causati dalla sovrasaturazione del traffico della CPU.
In alcuni casi di utilizzo si verificano problemi imprevisti in funzione del normale funzionamento. La correlazione tra causa ed effetto a volte non è ovvia, il che rende il problema difficile da affrontare. Questo documento fornisce gli strumenti per convalidare lo stato del control plane e fornisce un flusso di lavoro su come affrontare i problemi che coinvolgono il punt o il percorso di inserimento del control plane. Fornisce inoltre diversi scenari comuni basati sui problemi riscontrati sul campo.
Tenete presente che il percorso del punt della CPU è una risorsa limitata. I moderni switch di inoltro hardware possono gestire volumi di traffico sempre maggiori. La famiglia di switch Catalyst 9000 supporta circa 19.000 pacchetti al secondo (pps) aggregati alla CPU in un determinato momento. Supera questa soglia e il traffico puntato viene sorvegliato senza pesare.
La base della protezione della CPU sulla famiglia di switch Catalyst 9000 è CoPP. Con CoPP, viene applicata una policy QoS (Quality of Service) generata dal sistema sul percorso punt/inserimento della CPU. Il traffico basato sulla CPU viene raggruppato in molte classi diverse e successivamente mappato sui singoli policy hardware associati alla CPU. I policer impediscono la sovracorsaturazione della CPU da parte di una particolare classe di traffico.
Il traffico basato sulla CPU viene classificato nelle code. Queste code/classi sono definite dal sistema e non possono essere configurate dall'utente. I criteri sono configurati nell'hardware. La famiglia Catalyst 9000 supporta 32 policer hardware per 32 code.
I valori specifici variano da piattaforma a piattaforma. In generale, esistono 32 code definite dal sistema. Queste code si riferiscono a mappe di classi, che si riferiscono agli indici dei policer. Gli indici del policer hanno una frequenza del policer predefinita. Questo tasso è configurabile dall'utente, sebbene le modifiche apportate al criterio CoPP predefinito aumentino la vulnerabilità a un impatto imprevisto sul servizio.
Mappe classi - Nomi |
Indice Policer (n. Policer) |
Code CPU (n. coda) |
---|---|---|
system-cpp-Police-data | WK_CPP_POLICE_DATA(0) |
WK_CPU_Q_ICMP_GEN(3) WK_CPU_Q_BROADCAST(12) WK_CPU_Q_ICMP_REDIRECT(6) |
system-cpp-Police-l2-control | WK_CPP_POLICE_L2_ CONTROL(1) |
WK_CPU_Q_L2_CONTROL(1) |
system-cpp-Police-routing-control | WK_CPP_POLICE_ROUTING_CONTROL(2) |
WK_CPU_Q_ROUTING_CONTROL(4) WK_CPU_Q_LOW_LATENCY (27) |
system-cpp-Police-control-low-priority | WK_CPP_POLICE_CO NTROL_LOW_PRI(3) |
WK_CPU_Q_GENERAL_PUNT(25) |
system-cpp-Police-punt-webauth | WK_CPP_POLICE_PU NT_WEBAUTH(7) |
WK_CPU_Q_PUNT_WEBAUTH(2) |
system-cpp-Police-controllo-topologia | WK_CPP_POLICE_TOPOLOGY_CONTROL(8) |
WK_CPU_Q_TOPOLOGY_CONTROL(15) |
system-cpp-Police-multicast | WK_CPP_POLICE_MULTICAST(9) |
WK_CPU_Q_TRANSIT_TRAFFIC(18) WK_CPU_Q_MCAST_DATA(30) |
system-cpp-Police-sys-data | WK_CPP_POLICE_SYS _DATI(10) |
WK_CPU_Q_LEARNING_CACHE_OVFL(13) WK_CPU_Q_CRYPTO_CONTROL(23) WK_CPU_Q_EXCEPTION(24) WK_CPU_Q_EGR_EXCEPTION(28) WK_CPU_Q_NFL_SAMPLED_DATA(26) WK_CPU_Q_GOLD_PKT(31) WK_CPU_Q_RPF_FAILED(19) |
system-cpp-Police-dot1x-auth | WK_CPP_POLICE_DOT1X(1) |
WK_CPU_Q_DOT1X_AUTH(0) |
system-cpp-Police-protocol-snooping | WK_CPP_POLICE_PR(12) |
WK_CPU_Q_PROTO_SNOOPING(16) |
system-cpp-Police-sw-forward | WK_CPP_POLICE_SW_FWD (13) |
WK_CPU_Q_SW_FORWARDING_Q(14) WK_CPU_Q_LOGGING(21) WK_CPU_Q_L2_LVX_DATA_PACK(1) |
system-cpp-Police-forus | WK_CPP_POLICE_FORUS(14) |
WK_CPU_Q_FORUS_ADDR_RESOLUTION(5) WK_CPU_Q_FORUS_TRAFFIC(2) |
system-cpp-Police-multicast-end-station | WK_CPP_POLICE_MULTICAST_SNOOPING(15) |
WK_CPU_Q_MCAST_END_STA_TION_SERVICE(20) |
system-cpp-default | WK_CPP_POLICE_DEFAULT_POLICER(16) |
WK_CPU_Q_DHCP_SNOOPING(17) WK_CPU_Q_UNUSED(7) WK_CPU_Q_EWLC_CONTROL(9) WK_CPU_Q_EWLC_DATA(10) |
system-cpp-Police-stackwise-virt-control | WK_CPP_STACKWISE_VIRTUAL_CONTROL(5) |
WK_CPU_Q_STACKWISE_VIRTUAL_CONTROL (29) |
system-cpp-Police-l2lvx-control |
WK_CPP_ L2_LVX_CONT_PACK(4) |
WK_CPU_Q_L2_LVX_CONT_PACK(8) |
Ogni coda è correlata a un tipo di traffico o a un insieme di funzionalità specifico. L'elenco che segue non è esaustivo:
Code CPU (n. coda) |
Funzionalità |
---|---|
WK_CPU_Q_DOT1X_AUTH(0) |
Autenticazione basata sulla porta IEEE 802.1x |
WK_CPU_Q_L2_CONTROL(1) |
Protocollo DTP (Dynamic Trunking Protocol) Protocollo VLAN Trunking Protocol (VTP) Protocollo PAgP (Port Aggregation Protocol) Protocollo CISP (Client Information Signaling Protocol) Protocollo di inoltro sessione messaggi Protocollo MVRP (Multiple VLAN Registration Protocol) MMN (Metropolitan Mobile Network) LLDP (Link Level Discovery Protocol) UDLD (UniDirectional Link Detection) Protocollo LACP (Link Aggregation Control Protocol) Protocollo CDP (Cisco Discovery Protocol) STP (Spanning Tree Protocol) |
WK_CPU_Q_FORUS_TRAFFIC(2) |
Host come Telnet, Pingv4 e Pingv6 e SNMP Rilevamento keepalive/loopback Protocollo IPSec (Initiate-Internet Key Exchange) |
WK_CPU_Q_ICMP_GEN(3) |
ICMP - destinazione non raggiungibile ICMP-TTL scaduto |
WK_CPU_Q_ROUTING_CONTROL(4) |
Protocollo RIPv1 (Routing Information Protocol versione 1) RIPv2 IGRP (Interior Gateway Routing Protocol) Border Gateway Protocol (BGP) PIM-UDP Protocollo VRRP (Virtual Router Redundancy Protocol) Protocollo HSRPv1 (Hot Standby Router Protocol versione 1) HSRPv2 Protocollo GLBP (Gateway Load Balancing Protocol) Protocollo LDP (Label Distribution Protocol) Protocollo WCCP (Web Cache Communication Protocol) Protocollo RIPng (Routing Information Protocol next-generation) OSPF (Open Shortest Path First) Open Shortest Path First versione 3 (OSPFv3) Protocollo EIGRP (Enhanced Interior Gateway Routing Protocol) Enhanced Interior Gateway Routing Protocol versione 6 (EIGRPv6) DHCPv6 PIM (Protocol Independent Multicast) PIMv6 (Protocol Independent Multicast versione 6) Protocollo HSRPng (Hot Standby Router Protocol next-generation) Controllo IPv6 GRE (Generic Routing Encapsulation) keepalive Punt Network Address Translation (NAT) IS-IS (Intermediate System-to-Intermediate System) |
WK_CPU_Q_FORUS_ADDR_RESOLUTION(5) |
Protocollo ARP (Address Resolution Protocol) Annuncio router adiacente IPv6 e richiesta router adiacenti |
WK_CPU_Q_ICMP_REDIRECT(6) |
Reindirizzamento Internet Control Message Protocol (ICMP) |
WK_CPU_Q_INTER_FED_TRAFFIC(7) |
Inserimento del dominio bridge di layer 2 per la comunicazione interna. |
WK_CPU_Q_L2_LVX_CONT_PACK(8) |
Pacchetto ID Exchange (XID) |
WK_CPU_Q_EWLC_CONTROL(9) |
Embedded Wireless Controller (eWLC) [Control and Provisioning of Wireless Access Point (CAPWAP) (UDP 5246)] |
WK_CPU_Q_EWLC_DATA(10) |
pacchetto dati eWLC (CAPWAP DATA, UDP 5247) |
WK_CPU_Q_L2_LVX_DATA_PACK(1) |
Pacchetto unicast sconosciuto su cui è stato eseguito il push per la richiesta di mapping. |
WK_CPU_Q_BROADCAST(12) |
Tutti i tipi di trasmissione |
WK_CPU_Q_OPENFLOW(13) |
Overflow della cache di apprendimento (livello 2 + livello 3) |
WK_CPU_Q_CONTROLLER_PUNT(14) |
Dati - elenco di controllo di accesso (ACL) completo Dati - Opzioni IPv4 Dati - Hop-by-hop IPv6 Dati: risorse insufficienti/cattura di tutto Dati - Inoltro percorso inverso (RPF) incompleto Pacchetto verde |
WK_CPU_Q_TOPOLOGY_CONTROL(15) |
STP (Spanning Tree Protocol) Protocollo REP (Resilient Ethernet Protocol) Protocollo SSTP (Shared Spanning Tree Protocol) |
WK_CPU_Q_PROTO_SNOOPING(16) |
Snooping ARP (Address Resolution Protocol) per l'ispezione ARP dinamica (DAI) |
WK_CPU_Q_DHCP_SNOOPING(17) |
snooping DHCP |
WK_CPU_Q_TRANSIT_TRAFFIC(18) |
Questa opzione viene usata per i pacchetti puntati da NAT, che devono essere gestiti nel percorso software. |
WK_CPU_Q_RPF_FAILED(19) |
Dati - mRPF (multicast RPF) non riuscito |
WK_CPU_Q_MCAST_END_STATION _SERVIZIO(20) |
Controllo IGMP (Internet Group Management Protocol) / MLD (Multicast Listener Discovery) |
WK_CPU_Q_LOGGING(21) |
Registrazione Access Control List (ACL) |
WK_CPU_Q_PUNT_WEBAUTH(2) |
Autenticazione Web |
WK_CPU_Q_HIGH_RATE_APP(23) |
Trasmissione |
WK_CPU_Q_EXCEPTION(24) |
Indicazione IKE Violazione di apprendimento IP Violazione della sicurezza delle porte IP Violazione dell'indirizzo IP statico Controllo ambito IPv6 Eccezione RCP (Remote Copy Protocol) Errore RPF unicast |
WK_CPU_Q_SYSTEM_CRITICAL(25) |
Segnalazione supporti/ARP proxy wireless |
WK_CPU_Q_NFL_SAMPLED_DATA(26) |
Dati campionati da Netflow e MSP (Media Services Proxy) |
WK_CPU_Q_LOW_LATENCY(27) |
BFD (Bidirectional Forwarding Detection), PTP (Precision Time Protocol) |
WK_CPU_Q_EGR_EXCEPTION(28) |
Eccezione risoluzione in uscita |
WK_CPU_Q_STACKWISE_VIRTUAL_CONTROL(29) |
Protocolli di stacking sul lato anteriore, ossia SVL |
WK_CPU_Q_MCAST_DATA(30) |
Dati: creazione (S,G) Dati - join locali Dati - Registrazione PIM Dati - Switchover SPT Dati - Multicast |
WK_CPU_Q_GOLD_PKT(31) |
Oro |
Per impostazione predefinita, il criterio CoPP generato dal sistema viene applicato al percorso punt/inserimento. È possibile visualizzare il criterio predefinito utilizzando i comandi comuni basati su MQC. Può essere visualizzato anche nella configurazione dello switch. L'unica regola che può essere applicata in entrata o in uscita dalla CPU o dal control-plane è quella definita dal sistema.
Utilizzare "show policy-map control-plane" per visualizzare la policy applicata al control-plane:
Catalyst-9600#show policy-map control-plane
Control Plane
Service-policy input: system-cpp-policy
Class-map: system-cpp-police-ios-routing (match-any)
0 packets, 0 bytes
5 minute offered rate 0000 bps, drop rate 0000 bps
Match: none
police:
rate 17000 pps, burst 4150 packets
conformed 95904305 bytes; actions:
transmit
exceeded 0 bytes; actions:
drop
<snip>
Class-map: class-default (match-any)
0 packets, 0 bytes
5 minute offered rate 0000 bps, drop rate 0000 bps
Match: any
Le velocità dei policer CoPP sono configurabili dall'utente. Gli utenti possono inoltre disattivare le code.
In questo esempio viene illustrato come regolare un singolo valore del policer. In questo esempio, la classe adeguata è "system-cpp-Police-protocol-snooping".
Device> enable
Device# configure terminal
Device(config)# policy-map system-cpp-policy
Device(config-pmap)#
Device(config-pmap)# class system-cpp-police-protocol-snooping
Device(config-pmap-c)#
Device(config-pmap-c)# police rate 100 pps
Device(config-pmap-c-police)#
Device(config-pmap-c-police)# exit
Device(config-pmap-c)# exit
Device(config-pmap)# exit
Device(config)#
Device(config)# control-plane
Device(config-cp)#
Device(config)# control-plane
Device(config-cp)#service-policy input system-cpp-policy
Device(config-cp)#
Device(config-cp)# end
Device# show policy-map control-plane
In questo esempio viene illustrato come disabilitare completamente una coda. procedere con cautela quando si disabilitano le code, in quanto ciò potrebbe causare una possibile sovracapacità della CPU.
Device> enable
Device# configure terminal
Device(config)# policy-map system-cpp-policy
Device(config-pmap)#
Device(config-pmap)# class system-cpp-police-protocol-snooping
Device(config-pmap-c)#
Device(config-pmap-c)# no police rate 100 pps
Device(config-pmap-c)# end
L'utilizzo della CPU è influenzato da due attività di base: i processi e l'interruzione. I processi sono attività strutturate che la CPU esegue mentre l'interruzione fa riferimento a pacchetti intercettati sul dataplane e inviati alla CPU per l'azione. Insieme, queste attività costituiscono l'utilizzo totale della CPU. Poiché CoPP è abilitato per impostazione predefinita, l'impatto del servizio non è necessariamente correlato a un utilizzo elevato della CPU. Se CoPP esegue il proprio lavoro, l'utilizzo della CPU non subisce un impatto significativo. È importante considerare l'utilizzo complessivo della CPU, ma l'utilizzo complessivo non racconta l'intera storia. I comandi e le utilità show in questa sezione vengono usati per valutare rapidamente lo stato della CPU e per identificare i dettagli rilevanti sul traffico basato sulla CPU.
Linee guida:
Lo switch consente un rapido controllo dello stato della CPU e delle statistiche CoPP. La CLI è inoltre utile per determinare rapidamente il punto di entrata del traffico basato sulla CPU.
Catalyst-9600#show processes cpu sorted
CPU utilization for five seconds: 92%/13%; one minute: 76%; five minutes: 73% <<<--- Utilization is displayed for 5 second (both process and interrupt), 1 minute and 5 minute intervals. The value
92% refers to the cumulative percentage of process-driven utilization over the previous 5 seconds.
The 13% value refers to cumulative utilization due to interrupt traffic.
PID Runtime(ms) Invoked uSecs 5Sec 1Min 5Min TTY Process <<<--- Runtime statistics, as well as utilization averages are displayed here. The process is also identified by name.
344 547030523 607054509 901 38.13% 30.61% 29.32% 0 SISF Switcher Th
345 394700227 615024099 641 31.18% 22.68% 21.66% 0 SISF Main Thread
98 112308516 119818535 937 4.12% 4.76% 5.09% 0 Crimson flush tr
247 47096761 92250875 510 2.42% 2.21% 2.18% 0 Spanning Tree
123 35303496 679878082 51 1.85% 1.88% 1.84% 0 IOSXE-RP Punt Se
234 955 1758 543 1.61% 0.71% 0.23% 3 SSH Process
547 5360168 5484910 977 1.04% 0.46% 0.44% 0 DHCPD Receive
229 27381066 963726156 28 1.04% 1.34% 1.23% 0 IP Input
79 13183805 108951712 121 0.48% 0.55% 0.55% 0 IOSD ipc task
9 1073134 315186 3404 0.40% 0.06% 0.03% 0 Check heaps
37 11099063 147506419 75 0.40% 0.54% 0.52% 0 ARP Input
312 2986160 240782059 12 0.24% 0.12% 0.14% 0 DAI Packet Proce
<snip>
565 0 1 0 0.00% 0.00% 0.00% 0 LICENSE AGENT
566 14 1210 11 0.00% 0.00% 0.00% 0 DHCPD Timer
567 40 45 888 0.00% 0.00% 0.00% 0 OVLD SPA Backgro
568 12 2342 5 0.00% 0.00% 0.00% 0 DHCPD Database
569 0 12 0 0.00% 0.00% 0.00% 0 SpanTree Flush
571 0 1 0 0.00% 0.00% 0.00% 0 EM Action CNS
572 681 140276 4 0.00% 0.00% 0.00% 0 Inline power inc
Catalyst-9600#show processes cpu history
999777776666688888666667777777777888887777766666999998888866 <<<--- The numbers at the top of each column represent the highest value seen throughout the time period.
222555559999944444444440000088888888881111177777333335555500 It is read top-down. "9" over "2" in this example means "92%" for example.
100
90 *** ***** **********
80 ******** ***** ********** **********
70 ****************** ***********************************
60 **********************************************************
50 **********************************************************
40 **********************************************************
30 **********************************************************
20 **********************************************************
10 ********************************************************** <<<--- The "*" represents the highest value during the given time period. This relates to a momentary spike in utilization.
0....5....1....1....2....2....3....3....4....4....5....5....6 In this example, utilization spiked to 92% in the last 5 seconds.
0 5 0 5 0 5 0 5 0 5 0
CPU% per second (last 60 seconds)
* = maximum CPU% # = average CPU%
999898989999898998998998989889999989889898899999999899999999
431823091102635316235129283771336574892809604014230901133511
100 ** *
90 ***** ****************************************************
80 ************#***#*#**#***####*##*****#**#***#***#*********
70 ########################################################## <<<--- The "#" represents the average utilization. This indicates sustained utilization.
60 ########################################################## In this example, within the last 5 minutes the average utilization was sustained around 70% while
50 ########################################################## the maximum utilization spiked to 94%.
40 ##########################################################
30 ##########################################################
20 ##########################################################
10 ##########################################################
0....5....1....1....2....2....3....3....4....4....5....5....6
0 5 0 5 0 5 0 5 0 5 0
CPU% per minute (last 60 minutes)
* = maximum CPU% # = average CPU%
999999999999999999999999999999999999999999999999999999999999999999999999
665656566646555666655656575654556567737555567574545545775957554648576757
100 ********** ****************** ******* ********* * ** ********* * *****
90 **********************************************************************
80 **********************************************************************
70 ######################################################################
60 ######################################################################
50 ######################################################################
40 ######################################################################
30 ######################################################################
20 ######################################################################
10 ######################################################################
0....5....1....1....2....2....3....3....4....4....5....5....6....6....7..
0 5 0 5 0 5 0 5 0 5 0 5 0
CPU% per hour (last 72 hours)
* = maximum CPU% # = average CPU%
Catalyst9500#show platform hardware fed active qos queue stats internal cpu policer CPU Queue Statistics ============================================================================================ (default) (set) Queue Queue QId PlcIdx Queue Name Enabled Rate Rate Drop(Bytes) Drop(Frames) <-- The top section of this output gives a historical view of CoPP drops. Run the command several times in succession to check for active incrementation. -------------------------------------------------------------------------------------------- CPU queues correlate with a Policer Index (PlcIdx) and Queue (QId). 0 11 DOT1X Auth Yes 1000 1000 0 0 Note that multiple policer indices map to the same queue for some classes. 1 1 L2 Control Yes 2000 2000 0 0 2 14 Forus traffic Yes 4000 4000 0 0 3 0 ICMP GEN Yes 750 750 0 0 4 2 Routing Control Yes 5500 5500 0 0 5 14 Forus Address resolution Yes 4000 4000 83027876 1297199 6 0 ICMP Redirect Yes 750 750 0 0 7 16 Inter FED Traffic Yes 2000 2000 0 0 8 4 L2 LVX Cont Pack Yes 1000 1000 0 0 9 19 EWLC Control Yes 13000 13000 0 0 10 16 EWLC Data Yes 2000 2000 0 0 11 13 L2 LVX Data Pack Yes 1000 1000 0 0 12 0 BROADCAST Yes 750 750 0 0 13 10 Openflow Yes 250 250 0 0 14 13 Sw forwarding Yes 1000 1000 0 0 15 8 Topology Control Yes 13000 16000 0 0 16 12 Proto Snooping Yes 2000 2000 0 0 17 6 DHCP Snooping Yes 500 500 0 0 18 13 Transit Traffic Yes 1000 1000 0 0 19 10 RPF Failed Yes 250 250 0 0 20 15 MCAST END STATION Yes 2000 2000 0 0 21 13 LOGGING Yes 1000 1000 769024 12016 22 7 Punt Webauth Yes 1000 1000 0 0 23 18 High Rate App Yes 13000 13000 0 0 24 10 Exception Yes 250 250 0 0 25 3 System Critical Yes 1000 1000 0 0 26 10 NFL SAMPLED DATA Yes 250 250 0 0 27 2 Low Latency Yes 5500 5500 0 0 28 10 EGR Exception Yes 250 250 0 0 29 5 Stackwise Virtual OOB Yes 8000 8000 0 0 30 9 MCAST Data Yes 500 500 0 0 31 3 Gold Pkt Yes 1000 1000 0 0 * NOTE: CPU queue policer rates are configured to the closest hardware supported value CPU Queue Policer Statistics ==================================================================== Policer Policer Accept Policer Accept Policer Drop Policer Drop Index Bytes Frames Bytes Frames ------------------------------------------------------------------- 0 59894 613 0 0 1 15701689 57082 0 0 2 5562892 63482 0 0 3 3536 52 0 0 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0 7 0 0 0 0 8 2347194476 32649666 0 0 9 0 0 0 0 10 0 0 0 0 11 0 0 0 0 12 0 0 0 0 13 577043 8232 769024 12016 14 719225176 11182355 83027876 1297199 15 132766 1891 0 0 16 0 0 0 0 17 0 0 0 0 18 0 0 0 0 19 0 0 0 0 Second Level Policer Statistics <-- Second level policer information begins here. Catalyst CoPP is organized with two policers to allow for further prioritization of system-critical traffic. ==================================================================== 20 2368459057 32770230 0 0 21 719994879 11193091 0 0 Policer Index Mapping and Settings -------------------------------------------------------------------- level-2 : level-1 (default) (set) PlcIndex : PlcIndex rate rate -------------------------------------------------------------------- 20 : 1 2 8 13000 17000 21 : 0 4 7 9 10 11 12 13 14 15 6000 6000 ==================================================================== Second Level Policer Config ==================================================================== level-1 level-2 level-2 QId PlcIdx PlcIdx Queue Name Enabled -------------------------------------------------------------------- 0 11 21 DOT1X Auth Yes 1 1 20 L2 Control Yes 2 14 21 Forus traffic Yes 3 0 21 ICMP GEN Yes 4 2 20 Routing Control Yes 5 14 21 Forus Address resolution Yes 6 0 21 ICMP Redirect Yes 7 16 - Inter FED Traffic No 8 4 21 L2 LVX Cont Pack Yes 9 19 - EWLC Control No 10 16 - EWLC Data No 11 13 21 L2 LVX Data Pack Yes 12 0 21 BROADCAST Yes 13 10 21 Openflow Yes 14 13 21 Sw forwarding Yes 15 8 20 Topology Control Yes 16 12 21 Proto Snooping Yes 17 6 - DHCP Snooping No 18 13 21 Transit Traffic Yes 19 10 21 RPF Failed Yes 20 15 21 MCAST END STATION Yes 21 13 21 LOGGING Yes 22 7 21 Punt Webauth Yes 23 18 - High Rate App No 24 10 21 Exception Yes 25 3 - System Critical No 26 10 21 NFL SAMPLED DATA Yes 27 2 20 Low Latency Yes 28 10 21 EGR Exception Yes 29 5 - Stackwise Virtual OOB No 30 9 21 MCAST Data Yes 31 3 - Gold Pkt No CPP Classes to queue map <-- Information on how different traffic types map to different queues are found here. ====================================================================================== PlcIdx CPP Class : Queues -------------------------------------------------------------------------------------- 0 system-cpp-police-data : ICMP GEN/ BROADCAST/ ICMP Redirect/ 10 system-cpp-police-sys-data : Openflow/ Exception/ EGR Exception/ NFL SAMPLED DATA/ RPF Failed/ 13 system-cpp-police-sw-forward : Sw forwarding/ LOGGING/ L2 LVX Data Pack/ Transit Traffic/ 9 system-cpp-police-multicast : MCAST Data/ 15 system-cpp-police-multicast-end-station : MCAST END STATION / 7 system-cpp-police-punt-webauth : Punt Webauth/ 1 system-cpp-police-l2-control : L2 Control/ 2 system-cpp-police-routing-control : Routing Control/ Low Latency/ 3 system-cpp-police-system-critical : System Critical/ Gold Pkt/ 4 system-cpp-police-l2lvx-control : L2 LVX Cont Pack/ 8 system-cpp-police-topology-control : Topology Control/ 11 system-cpp-police-dot1x-auth : DOT1X Auth/ 12 system-cpp-police-protocol-snooping : Proto Snooping/ 6 system-cpp-police-dhcp-snooping : DHCP Snooping/ 14 system-cpp-police-forus : Forus Address resolution/ Forus traffic/ 5 system-cpp-police-stackwise-virt-control : Stackwise Virtual OOB/ 16 system-cpp-default : Inter FED Traffic/ EWLC Data/ 18 system-cpp-police-high-rate-app : High Rate App/ 19 system-cpp-police-ewlc-control : EWLC Control/ 20 system-cpp-police-ios-routing : L2 Control/ Topology Control/ Routing Control/ Low Latency/ 21 system-cpp-police-ios-feature : ICMP GEN/ BROADCAST/ ICMP Redirect/ L2 LVX Cont Pack/ Proto Snooping/ Punt Webauth/ MCAST Data/ Transit Traffic/ DOT1X Auth/ Sw forwarding/ LOGGING/ L2 LVX Data Pack/ Forus traffic/ Forus Address resolution/ MCAST END STATION / Openflow/ Exception/ EGR Exception/ NFL SAMPLED DATA/ RPF Failed/
Questi comandi vengono utilizzati per raccogliere informazioni sul traffico puntato alla CPU, tra cui il tipo di traffico e i punti fisici di ingresso.
C9300#show platform software fed switch active punt cpuq all Punt CPU Q Statistics =========================================== CPU Q Id : 0 CPU Q Name : CPU_Q_DOT1X_AUTH Packets received from ASIC : 964 Send to IOSd total attempts : 964 Send to IOSd failed count : 0 RX suspend count : 0 RX unsuspend count : 0 RX unsuspend send count : 0 RX unsuspend send failed count : 0 RX consumed count : 0 RX dropped count : 0 RX non-active dropped count : 0 RX conversion failure dropped : 0 RX INTACK count : 964 RX packets dq'd after intack : 0 Active RxQ event : 964 RX spurious interrupt : 0 RX phy_idb fetch failed: 0 RX table_id fetch failed: 0 RX invalid punt cause: 0 CPU Q Id : 1 CPU Q Name : CPU_Q_L2_CONTROL Packets received from ASIC : 80487 Send to IOSd total attempts : 80487 Send to IOSd failed count : 0 RX suspend count : 0 RX unsuspend count : 0 RX unsuspend send count : 0 RX unsuspend send failed count : 0 RX consumed count : 0 RX dropped count : 0 RX non-active dropped count : 0 RX conversion failure dropped : 0 RX INTACK count : 80474 RX packets dq'd after intack : 16 Active RxQ event : 80474 RX spurious interrupt : 9 RX phy_idb fetch failed: 0 RX table_id fetch failed: 0 RX invalid punt cause: 0 CPU Q Id : 2 CPU Q Name : CPU_Q_FORUS_TRAFFIC Packets received from ASIC : 176669 Send to IOSd total attempts : 176669 Send to IOSd failed count : 0 RX suspend count : 0 RX unsuspend count : 0 RX unsuspend send count : 0 RX unsuspend send failed count : 0 RX consumed count : 0 RX dropped count : 0 RX non-active dropped count : 0 RX conversion failure dropped : 0 RX INTACK count : 165584 RX packets dq'd after intack : 12601 Active RxQ event : 165596 RX spurious interrupt : 11851 RX phy_idb fetch failed: 0 RX table_id fetch failed: 0 RX invalid punt cause: 0
<snip>
C9300#show platform software fed switch active punt cpuq 16 <-- Queue ID 16 correlates with Protocol Snooping. Queue IDs can be found in the output of "show platform hardware fed <switch> active qos queue stats internal cpu policer". Punt CPU Q Statistics =========================================== CPU Q Id : 16 CPU Q Name : CPU_Q_PROTO_SNOOPING Packets received from ASIC : 55661 Send to IOSd total attempts : 55661 Send to IOSd failed count : 0 RX suspend count : 0 RX unsuspend count : 0 RX unsuspend send count : 0 RX unsuspend send failed count : 0 RX consumed count : 0 RX dropped count : 0 RX non-active dropped count : 0 RX conversion failure dropped : 0 RX INTACK count : 55659 RX packets dq'd after intack : 9 Active RxQ event : 55659 RX spurious interrupt : 23 RX phy_idb fetch failed: 0 RX table_id fetch failed: 0 RX invalid punt cause: 0 Replenish Stats for all rxq: ------------------------------------------- Number of replenish : 4926842 Number of replenish suspend : 0 Number of replenish un-suspend : 0 -------------------------------------------
C9300#show platform software fed switch active punt cause summary Statistics for all causes Cause Cause Info Rcvd Dropped ------------------------------------------------------------------------------ 7 ARP request or response 142962 0 11 For-us data 490817 0 21 RP<->QFP keepalive 448742 0 24 Glean adjacency 2 0 55 For-us control 415222 0 58 Layer2 bridge domain data packe 3654659 0 60 IP subnet or broadcast packet 37167 0 75 EPC 17942 0 96 Layer2 control protocols 358614 0 97 Packets to LFTS 964 0 109 snoop packets 48867 0 ------------------------------------------------------------------------------
C9300#show platform software fed switch active punt rates interfaces Punt Rate on Interfaces Statistics Packets per second averaged over 10 seconds, 1 min and 5 mins =========================================================================================== | | Recv | Recv | Recv | Drop | Drop | Drop Interface Name | IF_ID | 10s | 1min | 5min | 10s | 1min | 5min =========================================================================================== TenGigabitEthernet1/0/2 0x0000000a 5 5 5 0 0 0 TenGigabitEthernet1/0/23 0x0000001f 1 1 1 0 0 0 -------------------------------------------------------------------------------------------
C9300#show platform software fed switch active punt rates interfaces 0x1f <-- "0x1f" is the IF_ID of Te1/0/23, seen in the previous example. Punt Rate on Single Interfaces Statistics Interface : TenGigabitEthernet1/0/23 [if_id: 0x1F] Received Dropped -------- ------- Total : 1010652 Total : 0 10 sec average : 1 10 sec average : 0 1 min average : 1 1 min average : 0 5 min average : 1 5 min average : 0 Per CPUQ punt stats on the interface (rate averaged over 10s interval) ========================================================================== Q | Queue | Recv | Recv | Drop | Drop | no | Name | Total | Rate | Total | Rate | ========================================================================== 0 CPU_Q_DOT1X_AUTH 0 0 0 0 1 CPU_Q_L2_CONTROL 9109 0 0 0 2 CPU_Q_FORUS_TRAFFIC 176659 0 0 0 3 CPU_Q_ICMP_GEN 0 0 0 0 4 CPU_Q_ROUTING_CONTROL 447374 0 0 0 5 CPU_Q_FORUS_ADDR_RESOLUTION 80693 0 0 0 6 CPU_Q_ICMP_REDIRECT 0 0 0 0 7 CPU_Q_INTER_FED_TRAFFIC 0 0 0 0 8 CPU_Q_L2LVX_CONTROL_PKT 0 0 0 0 9 CPU_Q_EWLC_CONTROL 0 0 0 0 10 CPU_Q_EWLC_DATA 0 0 0 0 11 CPU_Q_L2LVX_DATA_PKT 0 0 0 0 12 CPU_Q_BROADCAST 22680 0 0 0 13 CPU_Q_CONTROLLER_PUNT 0 0 0 0 14 CPU_Q_SW_FORWARDING 0 0 0 0 15 CPU_Q_TOPOLOGY_CONTROL 271014 0 0 0 16 CPU_Q_PROTO_SNOOPING 0 0 0 0 17 CPU_Q_DHCP_SNOOPING 0 0 0 0 18 CPU_Q_TRANSIT_TRAFFIC 0 0 0 0 19 CPU_Q_RPF_FAILED 0 0 0 0 20 CPU_Q_MCAST_END_STATION_SERVICE 2679 0 0 0 21 CPU_Q_LOGGING 444 0 0 0 22 CPU_Q_PUNT_WEBAUTH 0 0 0 0 23 CPU_Q_HIGH_RATE_APP 0 0 0 0 24 CPU_Q_EXCEPTION 0 0 0 0 25 CPU_Q_SYSTEM_CRITICAL 0 0 0 0 26 CPU_Q_NFL_SAMPLED_DATA 0 0 0 0 27 CPU_Q_LOW_LATENCY 0 0 0 0 28 CPU_Q_EGR_EXCEPTION 0 0 0 0 29 CPU_Q_FSS 0 0 0 0 30 CPU_Q_MCAST_DATA 0 0 0 0 31 CPU_Q_GOLD_PKT 0 0 0 0 --------------------------------------------------------------------------
La famiglia di switch Catalyst 9000 offre utility per il monitoraggio e la visualizzazione del traffico basato sulla CPU. Utilizzare questi strumenti per capire quale traffico viene indirizzato attivamente alla CPU.
EPC (Embedded Packet Capture)
L'EPC sul piano di controllo può essere eseguito in entrambe le direzioni (o in entrambe). Per il traffico puntuale, cattura in entrata. EPC sul piano di controllo può essere salvato nel buffer o nel file.
C9300#monitor capture CONTROL control-plane in match any buffer circular size 10
C9300#show monitor capture CONTROL parameter <-- Check to ensure parameters are as expected. monitor capture CONTROL control-plane IN monitor capture CONTROL match any monitor capture CONTROL buffer size 10 circular C9300#monitor capture CONTROL start <-- Starts the capture. Started capture point : CONTROL C9300#monitor capture CONTROL stop <-- Stops the capture. Capture statistics collected at software: Capture duration - 5 seconds Packets received - 39 Packets dropped - 0 Packets oversized - 0 Bytes dropped in asic - 0 Capture buffer will exists till exported or cleared Stopped capture point : CONTROL
I risultati dell'acquisizione possono essere visualizzati in un output breve o dettagliato.
C9300#show monitor capture CONTROL buffer brief Starting the packet display ........ Press Ctrl + Shift + 6 to exit 1 0.000000 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f 2 0.030643 00:00:00:00:00:00 -> 00:06:df:f7:20:01 0x0000 30 Ethernet II 3 0.200016 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f 4 0.400081 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f 5 0.599962 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f 6 0.800067 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f 7 0.812456 00:1b:0d:a5:e2:a5 -> 01:80:c2:00:00:00 STP 60 RST. Root = 0/10/00:1b:53:bb:91:00 Cost = 19 Port = 0x8025 8 0.829809 10.122.163.3 -> 224.0.0.2 HSRP 92 Hello (state Active) 9 0.981313 10.122.163.2 -> 224.0.0.13 PIMv2 72 Hello 10 1.004747 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f 11 1.200082 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f 12 1.399987 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f 13 1.599944 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
<snip>
C9300#show monitor capture CONTROL buffer detail | begin Frame 7 Frame 7: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface /tmp/epc_ws/wif_to_ts_pipe, id 0 Interface id: 0 (/tmp/epc_ws/wif_to_ts_pipe) Interface name: /tmp/epc_ws/wif_to_ts_pipe Encapsulation type: Ethernet (1) Arrival Time: May 3, 2023 23:58:11.727432000 UTC [Time shift for this packet: 0.000000000 seconds] Epoch Time: 1683158291.727432000 seconds [Time delta from previous captured frame: 0.012389000 seconds] [Time delta from previous displayed frame: 0.012389000 seconds] [Time since reference or first frame: 0.812456000 seconds] Frame Number: 7 Frame Length: 60 bytes (480 bits) Capture Length: 60 bytes (480 bits) [Frame is marked: False] [Frame is ignored: False] [Protocols in frame: eth:llc:stp] IEEE 802.3 Ethernet Destination: 01:80:c2:00:00:00 (01:80:c2:00:00:00) Address: 01:80:c2:00:00:00 (01:80:c2:00:00:00) .... ..0. .... .... .... .... = LG bit: Globally unique address (factory default) .... ...1 .... .... .... .... = IG bit: Group address (multicast/broadcast) Source: 00:1b:0d:a5:e2:a5 (00:1b:0d:a5:e2:a5) Address: 00:1b:0d:a5:e2:a5 (00:1b:0d:a5:e2:a5) .... ..0. .... .... .... .... = LG bit: Globally unique address (factory default) .... ...0 .... .... .... .... = IG bit: Individual address (unicast) Length: 39 Padding: 00000000000000 Logical-Link Control DSAP: Spanning Tree BPDU (0x42) 0100 001. = SAP: Spanning Tree BPDU .... ...0 = IG Bit: Individual SSAP: Spanning Tree BPDU (0x42) 0100 001. = SAP: Spanning Tree BPDU .... ...0 = CR Bit: Command Control field: U, func=UI (0x03) 000. 00.. = Command: Unnumbered Information (0x00) .... ..11 = Frame type: Unnumbered frame (0x3) Spanning Tree Protocol Protocol Identifier: Spanning Tree Protocol (0x0000) Protocol Version Identifier: Rapid Spanning Tree (2) BPDU Type: Rapid/Multiple Spanning Tree (0x02) BPDU flags: 0x3c, Forwarding, Learning, Port Role: Designated 0... .... = Topology Change Acknowledgment: No .0.. .... = Agreement: No ..1. .... = Forwarding: Yes ...1 .... = Learning: Yes .... 11.. = Port Role: Designated (3) .... ..0. = Proposal: No .... ...0 = Topology Change: No Root Identifier: 0 / 10 / 00:1b:53:bb:91:00 Root Bridge Priority: 0 Root Bridge System ID Extension: 10 Root Bridge System ID: 00:1b:53:bb:91:00 (00:1b:53:bb:91:00) Root Path Cost: 19 Bridge Identifier: 32768 / 10 / 00:1b:0d:a5:e2:80 Bridge Priority: 32768 Bridge System ID Extension: 10 Bridge System ID: 00:1b:0d:a5:e2:80 (00:1b:0d:a5:e2:80) Port identifier: 0x8025 Message Age: 1 Max Age: 20 Hello Time: 2 Forward Delay: 15 Version 1 Length: 0
C9300#monitor capture CONTROL buffer display-filter "frame.number==9" detailed <-- Most Wireshark display filters are supported. Starting the packet display ........ Press Ctrl + Shift + 6 to exit Frame 9: 64 bytes on wire (512 bits), 64 bytes captured (512 bits) on interface /tmp/epc_ws/wif_to_ts_pipe, id 0 Interface id: 0 (/tmp/epc_ws/wif_to_ts_pipe) Interface name: /tmp/epc_ws/wif_to_ts_pipe Encapsulation type: Ethernet (1) Arrival Time: May 4, 2023 00:07:44.912567000 UTC [Time shift for this packet: 0.000000000 seconds] Epoch Time: 1683158864.912567000 seconds [Time delta from previous captured frame: 0.123942000 seconds] [Time delta from previous displayed frame: 0.000000000 seconds] [Time since reference or first frame: 1.399996000 seconds] Frame Number: 9 Frame Length: 64 bytes (512 bits) Capture Length: 64 bytes (512 bits) [Frame is marked: False] [Frame is ignored: False] [Protocols in frame: eth:ethertype:vlan:ethertype:arp] Ethernet II, Src: 5c:5a:c7:61:4c:5f (5c:5a:c7:61:4c:5f), Dst: 00:00:04:00:0e:00 (00:00:04:00:0e:00) Destination: 00:00:04:00:0e:00 (00:00:04:00:0e:00) Address: 00:00:04:00:0e:00 (00:00:04:00:0e:00) .... ..0. .... .... .... .... = LG bit: Globally unique address (factory default) .... ...0 .... .... .... .... = IG bit: Individual address (unicast) Source: 5c:5a:c7:61:4c:5f (5c:5a:c7:61:4c:5f) Address: 5c:5a:c7:61:4c:5f (5c:5a:c7:61:4c:5f) .... ..0. .... .... .... .... = LG bit: Globally unique address (factory default) .... ...0 .... .... .... .... = IG bit: Individual address (unicast) Type: 802.1Q Virtual LAN (0x8100) 802.1Q Virtual LAN, PRI: 0, DEI: 0, ID: 10 000. .... .... .... = Priority: Best Effort (default) (0) ...0 .... .... .... = DEI: Ineligible .... 0000 0000 1010 = ID: 10 Type: ARP (0x0806) Padding: 0000000000000000000000000000 Trailer: 00000000 Address Resolution Protocol (reply) Hardware type: Ethernet (1) Protocol type: IPv4 (0x0800) Hardware size: 6 Protocol size: 4 Opcode: reply (2) Sender MAC address: 5c:5a:c7:61:4c:5f (5c:5a:c7:61:4c:5f) Sender IP address: 192.168.10.1 Target MAC address: 00:00:04:00:0e:00 (00:00:04:00:0e:00) Target IP address: 192.168.10.25
I risultati dell'acquisizione possono essere scritti direttamente nel file o esportati dal buffer.
C9300#monitor capture CONTROL export location flash:control.pcap <-- Exports the current buffer to file. Extension '.pcap' is used so the file can be immediately opened by Wireshark, once moved from the switch.. Export Started Successfully Export completed for capture point CONTROL
C9300#
C9300#dir flash: | in control.pcap 475231 -rw- 3972 May 4 2023 00:00:38 +00:00 control.pcap C9300#
Acquisizione pacchetti CPU FED
La famiglia di switch Catalyst 9000 supporta un'utility di debug che consente una maggiore visibilità dei pacchetti da e verso la CPU.
C9300#debug platform software fed switch active punt packet-capture ? buffer Configure packet capture buffer clear-filter Clear punt PCAP filter set-filter Specify wireshark like filter (Punt PCAP) start Start punt packet capturing stop Stop punt packet capturing
C9300#$re fed switch active punt packet-capture buffer limit 16384
Punt PCAP buffer configure: one-time with buffer size 16384...done
C9300#show platform software fed switch active punt packet-capture status Punt packet capturing: disabled. Buffer wrapping: disabled Total captured so far: 0 packets. Capture capacity : 16384 packets C9300#debug platform software fed switch active punt packet-capture start Punt packet capturing started. C9300#debug platform software fed switch active punt packet-capture stop Punt packet capturing stopped. Captured 55 packet(s)
Il contenuto del buffer dispone di opzioni di output brevi e dettagliate.
C9300#show platform software fed switch active punt packet-capture brief Punt packet capturing: disabled. Buffer wrapping: disabled Total captured so far: 55 packets. Capture capacity : 16384 packets ------ Punt Packet Number: 1, Timestamp: 2023/05/04 00:17:41.709 ------ interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: 0x0000000a] <-- Brief output provides most actionable information, including where the packet ingressed the switch, punt reason and punt queue. metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100 ------ Punt Packet Number: 2, Timestamp: 2023/05/04 00:17:41.909 ------ interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: 0x0000000a] metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100 ------ Punt Packet Number: 3, Timestamp: 2023/05/04 00:17:42.109 ------ interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: 0x0000000a] metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100 ------ Punt Packet Number: 4, Timestamp: 2023/05/04 00:17:42.309 ------ interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: 0x0000000a] metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100 ------ Punt Packet Number: 5, Timestamp: 2023/05/04 00:17:42.509 ------ interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: 0x0000000a] metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100
C9300#show platform software fed switch active punt packet-capture detailed <-- Detailed provides the same information as brief, but also additional details including the packet payload in hexidecimal and additional frame descriptors. Punt packet capturing: disabled. Buffer wrapping: disabled Total captured so far: 55 packets. Capture capacity : 16384 packets ------ Punt Packet Number: 1, Timestamp: 2023/05/04 00:17:41.709 ------ interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: 0x0000000a] metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100 Packet Data Hex-Dump (length: 68 bytes) : 000004000E005C5A C7614C5F8100000A 0806000108000604 00025C5AC7614C5F C0A80A0100000400 0E00C0A80A190000 0000000000000000 0000000000000000 E9F1C9F3 Doppler Frame Descriptor : fdFormat = 0x4 systemTtl = 0xe loadBalHash1 = 0x20 loadBalHash2 = 0xc spanSessionMap = 0 forwardingMode = 0 destModIndex = 0 skipIdIndex = 0 srcGpn = 0x2 qosLabel = 0x83 srcCos = 0 ingressTranslatedVlan = 0x7 bpdu = 0 spanHistory = 0 sgt = 0 fpeFirstHeaderType = 0 srcVlan = 0xa rcpServiceId = 0x1 wccpSkip = 0 srcPortLeIndex = 0x1 cryptoProtocol = 0 debugTagId = 0 vrfId = 0 saIndex = 0 pendingAfdLabel = 0 destClient = 0x1 appId = 0 finalStationIndex = 0x74 decryptSuccess = 0 encryptSuccess = 0 rcpMiscResults = 0 stackedFdPresent = 0 spanDirection = 0 egressRedirect = 0 redirectIndex = 0 exceptionLabel = 0 destGpn = 0 inlineFd = 0x1 suppressRefPtrUpdate = 0 suppressRewriteSideEfects = 0 cmi2 = 0 currentRi = 0x1 currentDi = 0x527b dropIpUnreachable = 0 srcZoneId = 0 srcAsicId = 0 originalDi = 0 originalRi = 0 srcL3IfIndex = 0x27 dstL3IfIndex = 0 dstVlan = 0 frameLength = 0x44 fdCrc = 0x97 tunnelSpokeId = 0 isPtp = 0 ieee1588TimeStampValid = 0 ieee1588TimeStamp55_48 = 0 lvxSourceRlocIpAddress = 0 sgtCachingNeeded = 0 Doppler Frame Descriptor Hex-Dump : 0000000044004E04 000B40977B520000 0000000000000100 000000070A000000 0000000001000010 0000000074000100 0000000027830200 0000000000000000
Sono disponibili molti filtri di visualizzazione. Sono supportati i filtri di visualizzazione più comuni di Wireshark.
C9300#show platform software fed switch active punt packet-capture display-filter-help FED Punject specific filters : 1. fed.cause FED punt or inject cause 2. fed.linktype FED linktype 3. fed.pal_if_id FED platform interface ID 4. fed.phy_if_id FED physical interface ID 5. fed.queue FED Doppler hardware queue 6. fed.subcause FED punt or inject sub cause Generic filters supported : 7. arp Is this an ARP packet 8. bootp DHCP packets [Macro] 9. cdp Is this a CDP packet 10. eth Does the packet have an Ethernet header 11. eth.addr Ethernet source or destination MAC address 12. eth.dst Ethernet destination MAC address 13. eth.ig IG bit of ethernet destination address (broadcast/multicast) 14. eth.src Ethernet source MAC address 15. eth.type Ethernet type 16. gre Is this a GRE packet 17. icmp Is this a ICMP packet 18. icmp.code ICMP code 19. icmp.type ICMP type 20. icmpv6 Is this a ICMPv6 packet 21. icmpv6.code ICMPv6 code 22. icmpv6.type ICMPv6 type 23. ip Does the packet have an IPv4 header 24. ip.addr IPv4 source or destination IP address 25. ip.dst IPv4 destination IP address 26. ip.flags.df IPv4 dont fragment flag 27. ip.flags.mf IPv4 more fragments flag 28. ip.frag_offset IPv4 fragment offset 29. ip.proto Protocol used in datagram 30. ip.src IPv4 source IP address 31. ip.ttl IPv4 time to live 32. ipv6 Does the packet have an IPv4 header 33. ipv6.addr IPv6 source or destination IP address 34. ipv6.dst IPv6 destination IP address 35. ipv6.hlim IPv6 hop limit 36. ipv6.nxt IPv6 next header 37. ipv6.plen IPv6 payload length 38. ipv6.src IPv6 source IP address 39. stp Is this a STP packet 40. tcp Does the packet have a TCP header 41. tcp.dstport TCP destination port 42. tcp.port TCP source OR destination port 43. tcp.srcport TCP source port 44. udp Does the packet have a UDP header 45. udp.dstport UDP destination port 46. udp.port UDP source OR destination port 47. udp.srcport UDP source port 48. vlan.id Vlan ID (dot1q or qinq only) 49. vxlan Is this a VXLAN packet C9300#show platform software fed switch active punt packet-capture display-filter arp brief Punt packet capturing: disabled. Buffer wrapping: disabled Total captured so far: 55 packets. Capture capacity : 16384 packets ------ Punt Packet Number: 1, Timestamp: 2023/05/04 00:17:41.709 ------ interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: 0x0000000a] metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100 ------ Punt Packet Number: 2, Timestamp: 2023/05/04 00:17:41.909 ------ interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: 0x0000000a] metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100
<snip>
I filtri possono essere applicati anche come filtri di acquisizione.
C9300#show platform software fed switch active punt packet-capture set-filter arp <-- Most common Wireshark filters are supported. For multi-worded filters, use "" ("ip.src==192.168.1.1"). Filter setup successful. Captured packets will be cleared C9300#$e fed switch active punt packet-capture status Punt packet capturing: disabled. Buffer wrapping: disabled Total captured so far: 0 packets. Capture capacity : 16384 packets Capture filter : "arp"
Il traffico che viene inoltrato a un IP locale su uno switch viene puntato nella coda Forus (letteralmente "per noi"). L'incremento rilevato nella coda Forus CoPP si riferisce ai pacchetti ignorati destinati allo switch locale. Si tratta di un'operazione relativamente semplice e concettuale.
In alcune condizioni, tuttavia, il traffico destinato localmente potrebbe non essere correttamente correlato alle cadute dei Forus.
Con un sufficiente flusso di traffico basato sulla CPU, il percorso punt diventa sovraccarico oltre la capacità del CoPP di stabilire la priorità del traffico da controllare. Il traffico viene sorvegliato "in modo silenzioso" su base "first-in" e "first-out".
In questo scenario, si vede la prova di policing control-plane in grandi volumi, ma il tipo di traffico di interesse (Forus in questo esempio) non necessariamente aumenta attivamente.
In sintesi, se il volume del traffico basato sulla CPU è eccezionalmente elevato, come dimostrato dal policing CoPP attivo e dimostrato con l'acquisizione di pacchetti o il debug del punt FED, è possibile che si verifichi una perdita non allineata alla coda su cui si sta eseguendo la risoluzione dei problemi. In questo scenario, determinare il motivo per cui è presente una quantità eccessiva di traffico basato sulla CPU e adottare misure per alleggerire il carico sul control plane.
Il protocollo CoPP sugli switch Catalyst serie 9000 è organizzato in 32 code hardware. Queste 32 code hardware sono allineate a 20 indici dei singoli policer. Ogni indice del policer è correlato a una o più code hardware.
Dal punto di vista funzionale, questo significa che più classi di traffico condividono un indice di un policer e sono soggette a un valore di policer aggregato comune.
Un problema comune rilevato sugli switch con gli agenti di inoltro DHCP abilitati comporta una risposta DHCP lenta. I client sono in grado di ottenere gli indirizzi IP in modo sporadico, ma sono necessari diversi tentativi per completare l'operazione e alcuni client scadono.
La coda di reindirizzamento ICMP e la coda Broadcast condividono un indice policer, quindi un elevato volume di traffico ricevuto e indirizzato dalla stessa interfaccia virtuale dello switch (SVI) influisce sulle applicazioni che si basano sul traffico broadcast. Ciò è particolarmente evidente quando lo switch funge da agente di inoltro.
Questo documento offre una spiegazione dettagliata del concetto e del modo per mitigare i problemi: Risoluzione dei problemi DHCP sugli agenti di inoltro DHCP Catalyst 9000
Configurazione dell'acquisizione di pacchetti CPU FED sugli switch Catalyst 9000
Switch Catalyst 9300: configurazione di Control Plane Policing
Funzionamento e risoluzione dei problemi di snooping DHCP sugli switch Catalyst 9000
Revisione | Data di pubblicazione | Commenti |
---|---|---|
1.0 |
02-Apr-2024 |
Versione iniziale |