Frame Relay back-to-back

Sommario

Introduzione

Prerequisiti

Requisiti

Componenti usati

Convenzioni

Configurazione

Esempio di rete

Configurazioni

Verifica

Comandi show

Risoluzione dei problemi

Informazioni correlate

Introduzione

Questo documento rappresenta una configurazione di esempio per configurare due router Cisco back-to-back con l'incapsulamento Frame Relay (FR). I router sono collegati mediante apparecchiature di comunicazione dati (DCE) e un cavo seriale per apparecchiature terminali dati (DTE). Le impostazioni di backup sono utili negli ambienti di test. In questo documento viene descritto il metodo più semplice e preferito per la configurazione delle operazioni di backup.

Uno switch FR o un dispositivo DCE viene utilizzato tra router FR per fornire messaggi di stato LMI (Local Management Interface). Poiché in uno scenario back-to-back non è presente alcuno switch, l'elaborazione LMI è disabilitata su entrambi i router.

Èinoltre possibile configurare una configurazione back-to-back con un router che fornisce aggiornamenti dello stato LMI per l'altro router. Tuttavia, tale configurazione è necessaria solo se i messaggi di debug LMI devono essere controllati in una configurazione back-to-back. In questo caso, l'elaborazione LMI non è disabilitata e un lato funziona come <u>switch FR ibrido</u> rispondendo allo stato LMI enq. Per ulteriori informazioni su questa configurazione, vedere <u>"Switching ibrido back-to-back Frame Relay".</u>

Nella configurazione di esempio, il router collegato al cavo DCE deve fornire la funzione di clock. Router1 fornisce l'orologio a 64 kbps (**velocità di clock 64000**).

Prerequisiti

Requisiti

Nessun requisito specifico previsto per questo documento.

Componenti usati

Per implementare questa configurazione, sono necessari i seguenti componenti hardware e software:

- Software Cisco IOS® versione 11.2 e successive con supporto per l'incapsulamento RF.
- Due router, ciascuno con un'interfaccia che supporta l'incapsulamento RF.

Nota: le informazioni discusse in questo documento fanno riferimento a un ambiente lab isolato. Prima di usare un comando, accertarsi di averne compreso l'impatto potenziale sulla rete.

Questa configurazione è stata sviluppata e testata utilizzando le versioni software e hardware riportate di seguito.

- Cisco IOS Software Release 12.1(2).
- Cisco 1604 router.

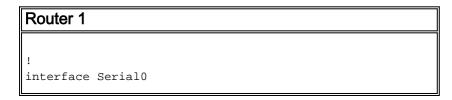
Convenzioni

Per ulteriori informazioni sulle convenzioni usate, consultare il documento <u>Cisco sulle convenzioni</u> nei suggerimenti tecnici.

Configurazione

In questa sezione vengono presentate le informazioni necessarie per configurare le funzionalità descritte più avanti nel documento.

Nota: per ulteriori informazioni sui comandi menzionati in questo documento, usare lo <u>strumento di ricerca dei comandi</u> (solo utenti <u>registrati</u>).


Esempio di rete

Questo documento utilizza le impostazioni di rete mostrate nel diagramma sottostante.

Configurazioni

Questo documento utilizza le configurazioni mostrate di seguito.


```
no ip address
encapsulation frame-
relay
no keepalive
!--- This command disables LMI processing. clock rate
64000 ! interface Serial0.1
!--- A point-to-point subinterface has been created. ip
address 172.16.120.105 255.255.255.0 frame-relay
interface-dlci 101
!--- DLCI 101 has been assigned to this interface !
Router 2
interface Serial0
no ip address
encapsulation frame-
relav
no keepalive
!--- This command disables LMI processing. ! interface
Serial0.1
point-to-point
!--- A point-to-point subinterface has been created. ip
address 172.16.120.120 255.255.255.0 frame-relay
interface-dlci 101
!--- DLCI 101 has been assigned to this interface !
```

Verifica

La configurazione precedente disabilita l'elaborazione LMI su entrambi i router quando viene emesso il comando **no keepalive**. Poiché i messaggi LMI non vengono scambiati, le interfacce rimangono attive/attive a meno che non si perda la temporizzazione sul lato del cavo DTE o sul terminale dati pronto (DTR) e l'opzione Request To Send (RTS) non venga persa sul lato del cavo DCE. Le istruzioni di mapping RF non sono necessarie perché sono state configurate sottointerfacce point-to-point. Gli identificatori di raccolta del collegamento dati (DLCI) specificati con il comando **frame-relay interface-dlci** devono corrispondere.

Quando un DLCI viene assegnato a una sottointerfaccia, viene creata una mappa dei frame per la sottointerfaccia.

- no keepalive: disabilita il meccanismo LMI per le linee seriali che usano l'incapsulamento RF.
- frame-relay interface-dlci: assegna un DLCI a una sottointerfaccia FR specificata.

Èpossibile configurare le istruzioni della mappa RF sull'interfaccia principale se non si desidera utilizzare le sottointerfacce point-to-point. Finché le istruzioni della mappa FR sono corrette e hanno DLCI corrispondenti configurati, la connettività verrà mantenuta.

Comandi show

Le informazioni contenute in questa sezione permettono di verificare che la configurazione funzioni correttamente.

Alcuni comandi **show** sono supportati dallo strumento Output Interpreter, che consente di visualizzare un'analisi dell'output del comando **show**.

- show frame-relay map: visualizza le voci delle mappe e le informazioni sulle connessioni.
- show frame-relay pvc: visualizza le statistiche sui PVC (Permanent Virtual Circuit) per le interfacce RF.

Quando un'istruzione map FR è configurata correttamente, l'output di un comando **show framerelay map** deve essere simile all'output ottenuto dal router1 riportato di seguito.

```
Router1#show frame map
    Serial0.1 (up): point-to-point dlci, dlci
    101(0x65,0x1850), broadcast
    Router1#
```

Poiché l'elaborazione LMI è stata disabilitata, il router non può determinare lo stato dei PVC dai messaggi di stato LMI. I PVC possono essere definiti solo in modo statico.

```
Router1#show frame pvc
   PVC Statistics for interface SerialO (Frame Relay
DTE)
   DLCI = 101, DLCI USAGE = LOCAL, PVC STATUS = STATIC,
INTERFACE = Serial0.1
     input pkts 98
                           output pkts 52
in bytes 25879
                          dropped pkts 0
    out bytes 12160
in FECN pkts 0
    in BECN pkts 0
                          out FECN pkts 0
out BECN pkts 0
    in DE pkts 0
                           out DE pkts 0
     out bcast pkts 37 out bcast bytes 10600
     PVC create time 00:57:07, last time PVC status
changed 00:46:13
```

se il dispositivo Cisco restituisce i risultati dei comandi **show frame-relay map** e **show frame-relay pvc**, è possibile usare per visualizzare i potenziali errori e correggerli. Per utilizzare è necessario essere un utente <u>registrato</u>, aver eseguito l'accesso e avere JavaScript abilitato.

Risoluzione dei problemi

Al momento non sono disponibili informazioni specifiche per la risoluzione dei problemi di questa configurazione.

Informazioni correlate

- Pagine di supporto per la tecnologia WAN
- Supporto tecnico Cisco Systems