FDMによって管理されるFTD上のIP SLAを使用 したECMPの構成

内容
<u>はじめに</u>
<u>前提条件</u>
<u>要件</u>
<u>使用するコンポーネント</u>
<u>背景説明</u>
<u>設定</u>
<u>ネットワーク図</u>
<u>コンフィギュレーション</u>
<u>ステップ 0:インターフェイス/オブジェクトの事前設定</u>
<u>ステップ1:ECMPゾーンの設定</u>
<u>ステップ2:IP SLAオブジェクトの設定</u>
<u>ステップ3:ルートトラックを使用したスタティックルートの設定</u>
<u>確認</u>
<u>ロード バランシング</u>
<u>失われたルート</u>
トラブルシュート
<u>関連情報</u>

はじめに

このドキュメントでは、FDMによって管理されるFTDでIP SLAとともにECMPを設定する方法に ついて説明します。

前提条件

要件

次の項目に関する知識があることが推奨されます。

- ・ Cisco Secure Firewall Threat Defense(FTD)のECMP設定
- ・ Cisco Secure Firewall Threat Defense(FTD)のIP SLA設定
- Cisco Secure Firewall Device Manager(FDM)

使用するコンポーネント

このドキュメントの情報は、このソフトウェアとハードウェアのバージョンに基づいています。

• Cisco FTDバージョン7.4.1 (ビルド172)

このドキュメントの情報は、特定のラボ環境にあるデバイスに基づいて作成されました。このド キュメントで使用するすべてのデバイスは、クリアな(デフォルト)設定で作業を開始していま す。本稼働中のネットワークでは、各コマンドによって起こる可能性がある影響を十分確認して ください。

背景説明

このドキュメントでは、Cisco FDMによって管理されるCisco FTDでEqual-Cost Multi-Path(ECMP)をInternet Protocol Service Level Agreement(IP SLA)とともに設定する方法について 説明します。 ECMPを使用すると、FTDでインターフェイスをグループ化し、複数のインターフ ェイス間でトラフィックのロードバランシングを行うことができます。 IP SLAは、通常のパケッ トの交換を通じてエンドツーエンドの接続を監視するメカニズムです。ECMPとともに、IP SLAを実装して、ネクストホップの可用性を確保できます。 この例では、ECMPを使用して、 2つのインターネットサービスプロバイダー(ISP)回線に均等にパケットを配信します。同時に、 IP SLAは接続を追跡し、障害発生時に利用可能な任意の回線へのシームレスな移行を保証します。

このドキュメントに関する特定の要件は次のとおりです。

- 管理者権限を持つユーザアカウントでデバイスにアクセスする
- Cisco Secure Firewall Threat Defenseバージョン7.1以降

設定

ネットワーク図

この例では、Cisco FTDに2つの外部インターフェイス、outside1(外部インターフェイス)と outside2があります。それぞれがISPゲートウェイに接続し、outside1とoutside2はoutsideという 名前の同じECMPゾーンに属しています。

内部ネットワークからのトラフィックはFTD経由でルーティングされ、2つのISP経由でインター ネットにロードバランシングされます。

同時に、FTDはIP SLAを使用して各ISPゲートウェイへの接続を監視します。いずれかのISP回線 で障害が発生した場合、FTDは他のISPゲートウェイにフェールオーバーして、ビジネスの継続性 を維持します。

ネットワーク図

コンフィギュレーション

ステップ0:インターフェイス/オブジェクトの事前設定

FDM Web GUIにログインし、Deviceをクリックし、次にInterfaces(インターフェイス)の要約 のリンクをクリックします。 Interfaces リストには、使用可能なインターフェイス、その名前、 アドレス、および状態が表示されます。

FDMデバイス・インタフェース

編集する物理インターフェイスの編集アイコン(

)をクリックします。 この例では、GigabitEthernet0/1です。

Firewall Device Manager Monitoring Po	icies Objects	Device: firepov	ver	⊘ 🖨	۲	?	:	admin Administrator	~ cisco	SECURE
Device Summary Interfaces										
Cisco Firepower Threat Defense for KVM										
9 Interfaces					Ţ B	iter				+
NAME	LOGICAL NAME	STATUS M	DO E IP ADD RE	55	STAN	D BY AD DRES	s	MONI TOR F OF	RHA	ACTIONS
> GlgabitEthernet0/0	outside	Re	outed					Enabled		
> GigabitEthernet0/1	outside 1	• •	outed 10.1.1.1	Static				Enabled		Q.

ステップ0インターフェイスGi0/1

Edit Physical Interface ウィンドウで、次の操作を行います。

1. Interface Name を設定します。この例では、outside1 です。

- 2. Statusスライダを有効に設定します(
-)。
- 3. IPv4 Addressタブをクリックして、IPv4アドレスを設定します。この例では、10.1.1.1/24で す。
- 4. [OK] をクリックします。

GigabitEthernet0/1 Edit Physical Interface		0 ×
Interface Name	Mode	Status
outside1	Routed ~	
Most features work with named interfaces only, although some require unnamed interfaces.		
Description		
		4
		111.
IPv4 Address IPv6 Address Advanced		
_		
Туре		
Static V		
IP Address and Subnet Mask		
10 1 1 1 / 255 255 255 0		
10.1.1.1		
e.g. 192.108.0.10/17 of 192.108.0.10/200.200.128.0		
Standby IP Address and Subnet Mask		
1		
e.g. 192.168.5.16		
	CANCEL	ок

ステップ0インターフェイスGi0/1の編集

注:ECMPゾーンに関連付けることができるのは、ルーテッドインターフェイスだけです。

同様の手順を繰り返して、セカンダリISP接続のインターフェイスを設定します。この例では、 物理インターフェイスはGigabitEthernet0/2です。Edit Physical Interface ウィンドウで、次の操作 を行います。

- 1. Interface Name(この例ではoutside2)を設定します。
- 2. Status スライダを有効な設定(

)に設定します。

- 3. IPv4 Addressタブをクリックして、IPv4アドレス(この例では10.1.2.1/24)を設定します。
- 4. [OK] をクリックします。

GigabitEthernet0/2 Edit Physical Interface		0 ×
Interface Name outside2 Most features work with named interfaces only, although some require unnamed interfaces.	Mode Routed V	Status
Description		
I		h.
IPv4 Address IPv6 Address Advanced		
Type Static V		
IP Address and Subnet Mask		
10.1.2.1 / 24		
e.g. 192.168.5.15/17 or 192.168.5.15/255.255.128.0		
e.g. 192.168.5.16		
	CANCEL	ок

ステップ0インターフェイスGi0/2の編集

同様の手順を繰り返して、内部接続のインターフェイスを設定します。この例では、物理インターフェイスはGigabitEthernet0/3です。Edit Physical Interface ウィンドウで、次の操作を行います。

- 1. Interface Name(この例ではinside)を設定します。
- 2. Status スライダを有効な設定(

)に設定します。

- 3. IPv4 Addressタブをクリックして、IPv4アドレス(この例では10.1.3.1/24)を設定します。
- 4. [OK] をクリックします。

GigabitEthernet0/3 Edit Physical Interface		0 ×
	L	
Interface Name	Mode	Status
inside	Routed ~	
Most features work with named interfaces only, although some require unnamed interfaces.		
Description		
IPv4 Address IPv6 Address Advanced		14.
Type Static V		
IP Address and Subnet Mask		
10.1.3.1 / 24		
e.g. 192.168.5.15/17 or 192.168.5.15/255.255.128.0		
Standby IP Address and Subnet Mask		
1		
e.g. 192.168.5.16		
	CANCEL	ок

ステップ0インターフェイスGi0/3の編集

Objects > Object Types > Networksの順に移動し、追加アイコン(

)をクリックして新しいオブジェクトを追加します。

Firewall Device Ma	nager 🕎 Monitoring P	Ø ₩ Policies Objects	Device: firepower	(>) (admin Administrator	cisco SECURE
Object Types 🛛 🔶	Network Object	ts and Groups			
C Networks	8 objects			Y Filter	+ 🔊
🔄 Ports				Preset filters: <u>Dystem defined</u> , User defined	
G Security Zones	# NAME			VALUE	ACTIONS
Application Filters	1 IPv4-Private-All-F	RFC1918	Group	IPv4-Private-10.0.0.0-8, IPv4-Private-172.16.0.0-12, IPv4-Private- 192.168.0.0-16	
C ² URLs	2 IPv4-Private-10.0	0.0.0-8	NETWORK	10.0.0/8	
Geolocations	3 IPv4-Private-172	.16.0.0-12	NETWORK	172.16.0.0/12	
Suslag Servers	4 IPv4-Private-192	.168.0.0-16	NETWORK	192.168.0.0/16	
	5 any-ipv4		NETWORK	0.0.0/0	
KE Policies	s any-ipv6		NETWORK	::/0	

ステップ0オブジェクト1

Add Network Object ウィンドウで、最初のISPゲートウェイを設定します。

- 1. オブジェクトのName(この例ではgw-outside1)を設定します。
- 2. オブジェクトのタイプ(この例ではホスト)を選択します。
- 3. ホスト(この例では10.1.1.2)のIPアドレスを設定します。
- 4. [OK] をクリックします。

Add Network Object

Name gw-outside1	
Description	
	1
Type O Network Host FQDN Ra	inge
Host 10.1.1.2	
e.g. 192.168.2.1 or 2001:DB8::0DB8:800:200C:417A	
	CANCEL

8 ×

ステップ0オブジェクト2

同様の手順を繰り返して、2番目のISPゲートウェイに別のネットワークオブジェクトを設定しま す。

- 1. オブジェクトの名前を設定します。この例では、gw-outside2です。
- 2. オブジェクトのタイプ(この例ではホスト)を選択します。
- 3. ホスト(この例では10.1.2.2)のIPアドレスを設定します。
- 4. [OK] をクリックします。

Add Network Object

Name gw-outside2
Description
Type Network Host FQDN Range
Host
10.1.2µ2
e.g. 192.168.2.1 or 2001:DB8::0DB8:800:200C:417A
CANCEL

ステップ0オブジェクト3

注:トラフィックを許可するには、アクセスコントロールポリシーをFTDで設定する必要 があります。この部分はこのドキュメントでは扱いません。

ステップ1:ECMPゾーンの設定

Device に移動し、Routing の概要にあるリンクをクリックします。

仮想ルータを有効にした場合、スタティックルートを設定するルータの表示アイコン()をクリックします。この場合、仮想ルータは有効になっていません。

ステップ1 ECMPゾーン1

ECMP Traffic Zonesタブをクリックし、次に追加アイコン()をクリックして新しいゾーンを追加します。

Firewall Device Manager	Monitoring	© Policies	∰≣ Objects	Device: firepower	(Σ)		:	admin Administrator	, v	cisco SECURE
Device Summary Routing										
Add Multiple Virtual Routers						~	>_ Com	imands v	ф В	GP Global Settings
Static Routing BGP OSPF E	BIGRP E	CMP Traffic Zon	es							
1 object						Y Filter				+

Add ECMP Traffic Zone ウィンドウで、次の操作を行います。

1. ECMPゾーンの名前(オプション)と説明(オプション)を設定します。

ステップ1 ECMPゾーン2

2. 追加アイコン(

)をクリックして、ゾーンに含める最大8つのインターフェイスを選択します。この例では、 ECMP名はOutsideであり、インターフェイスoutside1とoutside2がゾーンに追加されます。 3. [OK] をクリックします。

Add ECMP Traffic Zone

Keep the member interfaces of a ECMP traffic zone in the same security zone to prevent different access rules being applied to those interfaces.

0 ×

Name	
Outside	
Description	
	11.
Interfaces	
 Inside (Glgab/tEthernet0/3) 	0
> management (Management0/0)	ANCEL OK
> outside (GigabitEthernet0/0)	0
Outside1 (GigabitEthernet0/1)	
Outside 2 (GigabitEthernet0/2)	6 <u> </u>
	INSIDE HOST
2 item(s) selected	ADD ECMP TRAFFIC ZONE
Steate new Subinterface CANCEL	ОК

ステップ1 ECMPゾーン3

インターフェイスoutside1 と outside2 の両方がECMPゾーン outside に正常に追加されました。

Device Summary Routing				
Add Multiple Virtual Routers		~	>_ Commands ~	BGP Global Settings
Static Routing BGP OSPF EIGRP ECM	P Traffic Zones			
1 object		T Filter		+
1 object NAME	INTERF ACES	T Filter		+ Actions
1 object NAME Outside	INTERFACES outside1 (GigabitEthernet0/1) outside2 (GigabitEthernet0/2)	T Filter		+ ACTIONS

ステップ1 ECMPゾーン4

注:ECMPルーティングトラフィックゾーンは、セキュリティゾーンとは無関係です。 outside1およびoutside2インターフェイスを含むセキュリティゾーンを作成しても、 ECMPルーティングの目的でトラフィックゾーンは実装されません。 各ゲートウェイへの接続を監視するために使用するSLAオブジェクトを定義するには、Objects >

Object Types > SLA Monitorsの順に選択し、追加アイコン()をクリックして、最初のISP接続の新しいSLAモニタを追加します。

Firewall Device Manager Monitoring Polic	ies Objects	Device: firepower	admin Administrator	 diality SECURE
Object Types · SLA Monitors				
C Networks		Ŧ	Filter	+
S Ports	MONITORED ADORE SS	TARGET INTERFACE		ACTIONS
G Security Zones				
🐔 Application Filters		There are no SLA Monitors yet.		
c ^o URLs		Start by creating the first SLA Monitor.		
Geolocations		CREATE SLA MONITOR		
Syslog Servers				
📌 IKE Policies				
🐴 IPSec Proposals				
Secure Client Profiles				
Es Identity Sources				
1 Users				
🙊 Certificates				
🔒 Secret Keys				
DNS Groups				
Tg Event List Filters				
🕫 SLA Monitors				

ステップ2 IP SLA1

Add SLA Monitor Object ウィンドウで、次の操作を行います。

- 1. SLAモニタオブジェクトの名前(デフォルト)とオプションで説明(この例ではslaoutside1)を設定します。
- 2. モニタアドレス(この場合はgw-outside1)(最初のISPゲートウェイ)を設定します。
- 3. モニタアドレスに到達可能なターゲットインターフェイス(TUI)を設定します。この例では、outside1です。
- 4. さらに、Timeout とThreshold を調整することもできます。[OK] をクリックします。

Add SLA Monitor Object

Name			
sla-outside1			
Description			
			h.
Monitor Address			
gw-outside1			~
Target Interface	hernet0/1)		~
IP ICMP ECHO OPTIONS			
Following propertie	es have following correlation	n: Threshold ≤ Timeout ≤ Frequenc	W.
Threshold		Timeout	
5000	milliseconds	5000	milliseconds
0 - 2147483647		0 - 604800000	
Frequency			
60000	milliseconds		
1000 - 604800000, multi	ple of 1000		
Type of Service	Number of Packets	Data Size	
0	1	28	bytes
0 - 255	0 - 100	0 - 16384	
		CANCEL	ок

0>

同様の手順を繰り返し、2番目のISP接続に別のSLAモニタオブジェクトを設定します。Add SLA Monitor Objectウィンドウで、次の操作を実行します。

- 1. SLAモニタオブジェクトの名前(デフォルト)とオプションで説明(この例ではslaoutside2)を設定します。
- 2. モニタアドレスを設定します。この例では、gw-outside2(2番目のISPゲートウェイ)です。
- 3. モニタアドレスに到達可能なターゲットインターフェイス(TUI)を設定します。この場合は outside2です。
- 4. また、Timeout とThresholdを調整することもできます。[OK] をクリックします。

Add SLA Monitor Object

Name			
sla-outside2			
Description			
			14.
Monitor Address			
gw-outside2			~
Target Interface			
outside2 (GigabitEth	ernet0/2)		~
IP ICMP ECHO OPTIONS			
Following properties	s have following correlation	: Threshold ≤ Timeout ≤ Frequen	ay
Threshold		Timeout	
5000	milliseconds	5000	milliseconds
0 - 2147483647		0 - 604800000	
Frequency			
60000	milliseconds		
1000 - 604800000, multi	ple of 1000		
Type of Service	Number of Packets	Data Size	
0	1	28	bytes
0 - 255	0 - 100	0 - 16384	
		CANCEL	ок

0 X

ステップ3:ルートトラックを使用したスタティックルートの設定

Device に移動し、Routing の概要にあるリンクをクリックします。

Firewall Device Manag	ger Monito	ing Policies Objects	Device: firepow	ver (>_) 🖨 🙆 ?	admin Carling Administrator
Model Cisco Firepo	ower Threat Defen	Software VDB se for KVM 7.4.1-172 376.0	Intrusion Rule Up 20231011-1536	late Cloud Services	High Aved Register Not Cor	aliability 🕢 CONFIGURE
	দি inside Net	Cisco Firepower Threat De 0/0 0/1 0/2 0 0 0 0 0 0 0 0	0/2 /2 0/4 0/5 0/6 0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	NGMT	ISP/WAN/Gateway	Internet DNS Server ONTP Server NTP Server
Interfaces Management: Merged (1) Enabled 4 of 9 View All Interfaces	>	Routing 2 static routes View Configuration	>	Updates Geolocation, Rule, V Security Intelligence View Configuration	/DB, System Upgrade, Feeds	System Settings Management Access Logging Settings DHCP Server / Relay DDNS Service DNS Service

ステップ3:Route1

Static Routing ページで、addアイコン(

)をクリックして、最初のISPリンクの新しいスタティックルートを追加します。

Add Static Route ウィンドウで、次の手順を実行します。

- 1. ルートの名前(オプション)と説明(オプション)を設定します。この例では、 route_outside1です。
- Interfaceドロップダウンリストから、トラフィックを送信するインターフェイスを選択します。ゲートウェイアドレスは、インターフェイスを介してアクセス可能である必要があります。この例では、outside1(GigabitEthernet0/1)です。
- 3. 宛先ネットワークを識別するネットワーク、またはこのルートでゲートウェイを使用するホ ストを選択します。この例では、事前定義されたany-ipv4です。
- 4. Gatewayドロップダウンリストから、ゲートウェイのIPアドレスを識別するネットワークオ

ブジェクトを選択します。トラフィックはこのアドレスに送信されます。この例では、gwoutside1(最初のISPゲートウェイ)です。

- 5. ルートのメトリックを1~254の間で設定します。この例では、1です。
- 6. SLAモニタドロップダウンリストから、SLAモニタオブジェクトを選択します。この例では、sla-outside1です。
- 7. [OK] をクリックします。

Add Static Route

Name			
route_outside1			
Description			
			h.
Interface			
outside1 (GigabitEthernet0/1)			~
Protocol			
IPv4 IPv6			
+			
any-Ipv4			
Gateway	М	etric	_
gw-outside1	~	1	
SLA Monitor Applicate only for IPv4 Protocol type			
sla-outside1			~
	CANCEL	ок	

ステップ3 Route2

同様の手順を繰り返して、2番目のISP接続に別のスタティックルートを設定します(Add Static Routeウィンドウ)。

- 1. ルートの名前(オプション)と説明(オプション)を設定します。この例では、 route_outside2です。
- Interfaceドロップダウンリストから、トラフィックを送信するインターフェイスを選択します。ゲートウェイアドレスは、インターフェイスを介してアクセス可能である必要があります。この例では、outside2(GigabitEthernet0/2)です。
- 3. 宛先ネットワークを識別するネットワーク、またはこのルートでゲートウェイを使用するホ ストを選択します。この例では、事前定義されたany-ipv4です。
- 4. Gatewayドロップダウンリストから、ゲートウェイのIPアドレスを識別するネットワークオ ブジェクトを選択します。トラフィックはこのアドレスに送信されます。 この例では、 gw-outside2 (2番目のISPゲートウェイ)です。
- 5. ルートのメトリックを1~254の間で設定します。この例では、1です。
- 6. SLAモニタドロップダウンリストから、SLAモニタオブジェクトを選択します。このシナリ オでは、sla-outside2です。
- 7. [OK] をクリックします。

Add Static Route

Name		
route_outside2		
Description		
		h.
Interface		
outside2 (GigabitEthernet0/2)		~
Protocol		
IPv4 IPv6		
Networks		
+		
any-lpv4		
Gateway		Metric
gw-outside2	~	1
SLA Monitor Applicable only for IPv4 Protocol type		
sla-outside2		~
	CANCEL	ок

ルートトラックを持つoutside1 インターフェイスとoutside2 インターフェイスを経由する2つの ルートがあります。

Device Summary Routing							
Add Multiple Virtual Routers					>_ Commands ~	BGP Glo	bal Settings
Static Routing BGP OSPF EIGR	ECMP Traffic Zones						
2 routes				T R	ter		+
# NAME	INTERFACE	IP TYPE	NETWORKS	GATE WAY I P	SLA MONITOR	METRIC	ACTIONS
NAME 1 route_outside1	INTERFACE outside1	IP TYPE	NETWORKS 0.0.0.0/0	GATE WAY IP	SLA MONITOR	метяс	ACTIONS

ステップ3 Route4

FTDに変更を導入します。

確認

FTDのCLIにログインし、コマンド show zone を実行して、各ゾーンの一部であるインターフェイスを含む、ECMPト ラフィックゾーンに関する情報を確認します。

<#root>

> show zone Zone:

Outside

ecmp Security-level: 0

Zone member(s): 2

outside2 GigabitEthernet0/2

outside1 GigabitEthernet0/1

show running-config route コマンドを実行して、ルーティング設定に関する実行コンフィギュレーションを確認します。この場合、ルートトラックのある2つのスタティックルートがあります。

<#root>

> show running-config route

route outside1 0.0.0.0 0.0.0.0 10.1.1.2 1 track 1

route outside2 0.0.0.0 0.0.0.0 10.1.2.2 1 track 2

show route コマンドを実行してルーティングテーブルを確認します。この場合、インターフェイスoutside1とoutside2を介して等コ ストの2つのデフォルトルートがあり、トラフィックを2つのISP回線間で分散できます。

<#root>

> show route

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, V - VPN i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route, + - replicated route SI - Static InterVRF, BI - BGP InterVRF Gateway of last resort is 10.1.2.2 to network 0.0.0

S* 0.0.0.0 0.0.0.0 [1/0] via 10.1.2.2, outside2

[1/0] via 10.1.1.2, outside1

C 10.1.1.0 255.255.255.0 is directly connected, outside1 L 10.1.1.1 255.255.255.255 is directly connected, outside1 C 10.1.2.0 255.255.255.0 is directly connected, outside2 L 10.1.2.1 255.255.255.255 is directly connected, outside2 C 10.1.3.0 255.255.255.0 is directly connected, inside L 10.1.3.1 255.255.255.255 is directly connected, inside

show sla monitor configuration コマンドを実行して、SLAモニタの設定を確認します。

<#root>

> show sla monitor configuration SA Agent, Infrastructure Engine-II Entry number: 1037119999 Owner: Tag:

Type of operation to perform: echo

Target address: 10.1.1.2

Interface: outside1

Number of packets: 1 Request size (ARR data portion): 28 Operation timeout (milliseconds): 5000 Type Of Service parameters: 0x0 Verify data: No Operation frequency (seconds): 60 Next Scheduled Start Time: Start Time already passed Group Scheduled : FALSE Life (seconds): Forever Entry Ageout (seconds): never Recurring (Starting Everyday): FALSE Status of entry (SNMP RowStatus): Active Enhanced History:

Entry number: 1631063762 Owner: Tag:

Type of operation to perform: echo

Target address: 10.1.2.2

Interface: outside2

Number of packets: 1 Request size (ARR data portion): 28 Operation timeout (milliseconds): 5000 Type Of Service parameters: 0x0 Verify data: No Operation frequency (seconds): 60 Next Scheduled Start Time: Start Time already passed Group Scheduled : FALSE Life (seconds): Forever Entry Ageout (seconds): never Recurring (Starting Everyday): FALSE Status of entry (SNMP RowStatus): Active Enhanced History:

show sla monitor operational-state コマンドを実行して、SLAモニタの状態を確認します。この場合、コマンド出力に「Timeout occurred: FALSE」と表示されていれば、ゲートウェイへのICMPエコーが応答しているため、ターゲットインターフェイスを経由 するデフォルトルートがアクティブで、ルーティングテーブルに格納されていることを示しています。

<#root>

> show sla monitor operational-state
Entry number: 1037119999
Modification time: 04:14:32.771 UTC Tue Jan 30 2024
Number of Octets Used by this Entry: 2056
Number of operations attempted: 79
Number of operations skipped: 0
Current seconds left in Life: Forever

Operational state of entry: Active Last time this entry was reset: Never Connection loss occurred: FALSE

Timeout occurred: FALSE

Over thresholds occurred: FALSE Latest RTT (milliseconds): 1 Latest operation start time: 05:32:32.791 UTC Tue Jan 30 2024 Latest operation return code: OK RTT Values: RTTAvg: 1 RTTMin: 1 RTTMax: 1 NumOfRTT: 1 RTTSum: 1 RTTSum2: 1

Entry number: 1631063762 Modification time: 04:14:32.771 UTC Tue Jan 30 2024 Number of Octets Used by this Entry: 2056 Number of operations attempted: 79 Number of operations skipped: 0 Current seconds left in Life: Forever Operational state of entry: Active Last time this entry was reset: Never Connection loss occurred: FALSE

Timeout occurred: FALSE

Over thresholds occurred: FALSE Latest RTT (milliseconds): 1 Latest operation start time: 05:32:32.791 UTC Tue Jan 30 2024 Latest operation return code: OK RTT Values: RTTAvg: 1 RTTMin: 1 RTTMax: 1 NumOfRTT: 1 RTTSum: 1 RTTSum2: 1

ロード バランシング

FTDを介した最初のトラフィックにより、ECMPゾーンのゲートウェイ間でECMPロードバランシングがトラフィックを処理する かどうかを確認します。この場合、Test-PC-1(10.1.3.2)とTest-PC-2(10.1.3.4)からInternet-Host(10.1.5.2)に向けてSSH接続を開始し、 コマンド show conn を実行して、トラフィックが2つのISPリンク間でロードバランスされていることを確認します。Test-PC-1(10.1.3.2)はインターフェイスoutside1を経由し、Test-PC 2を経由します。

<#root>

> show conn 4 in use, 14 most used Inspect Snort: preserve-connection: 2 enabled, 0 in effect, 12 most enabled, 0 most in effect

TCP inside 10.1.3.4:41652 outside2 10.1.5.2:22, idle 0:02:10, bytes 5276, flags UIO N1

TCP inside 10.1.3.2:57484 outside1 10.1.5.2:22, idle 0:00:04, bytes 5276, flags UIO N1

注:トラフィックは、送信元と宛先のIPアドレス、着信インターフェイス、プロトコル、送信元と宛先ポートをハッシ ュするアルゴリズムに基づいて、指定されたゲートウェイ間でロードバランシングされます。テストを実行すると、シ ミュレートするトラフィックは、ハッシュアルゴリズムのために同じゲートウェイにルーティングできます。これは予 想され、ハッシュ結果を変更するために6つのタプル(送信元IP、宛先IP、着信インターフェイス、プロトコル、送信 元ポート、宛先ポート)間での値を変更します。

失われたルート

最初のISPゲートウェイへのリンクがダウンしている場合は、シミュレートする最初のゲートウェイルータをシャットダウンしま す。FTDがSLAモニタオブジェクトで指定されたしきい値タイマー内に最初のISPゲートウェイからエコー応答を受信しない場合 、ホストは到達不能と見なされ、ダウンとしてマークされます。最初のゲートウェイへのトラッキング対象ルートもルーティング テーブルから削除されます。 show sla monitor operational-state コマンドを実行して、SLAモニタの現在の状態を確認します。この場合、コマンド出力に「 Timeout occurred: True」と表示されていれば、最初のISPゲートウェイへのICMPエコーが応答していないことを示しています。

<#root>

> show sla monitor operational-state
Entry number: 1037119999
Modification time: 04:14:32.771 UTC Tue Jan 30 2024
Number of Octets Used by this Entry: 2056
Number of operations attempted: 121
Number of operations skipped: 0
Current seconds left in Life: Forever
Operational state of entry: Active
Last time this entry was reset: Never
Connection loss occurred: FALSE

Timeout occurred: TRUE

Over thresholds occurred: FALSE Latest RTT (milliseconds): NoConnection/Busy/Timeout Latest operation start time: 06:14:32.801 UTC Tue Jan 30 2024 Latest operation return code: Timeout RTT Values: RTTAvg: 0 RTTMin: 0 RTTMax: 0 NumOfRTT: 0 RTTSum: 0 RTTSum2: 0

Entry number: 1631063762 Modification time: 04:14:32.771 UTC Tue Jan 30 2024 Number of Octets Used by this Entry: 2056 Number of operations attempted: 121 Number of operations skipped: 0 Current seconds left in Life: Forever Operational state of entry: Active Last time this entry was reset: Never Connection loss occurred: FALSE

Timeout occurred: FALSE

Over thresholds occurred: FALSE Latest RTT (milliseconds): 1 Latest operation start time: 06:14:32.802 UTC Tue Jan 30 2024 Latest operation return code: OK RTT Values: RTTAvg: 1 RTTMin: 1 RTTMax: 1 NumOfRTT: 1 RTTSum: 1 RTTSum2: 1

show route コマンドを実行して現在のルーティングテーブルをチェックします。インターフェイスoutside1を経由した最初のISPゲートウェイへのルートが削除され、インターフェイスoutside2を経由した2番目のISPゲートウェイへのアクティブなデフォルトルートが1つしかありません。

<#root>

> show route

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, V - VPN i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route, + - replicated route SI - Static InterVRF, BI - BGP InterVRF Gateway of last resort is 10.1.2.2 to network 0.0.0.0

S* 0.0.0.0 0.0.0.0 [1/0] via 10.1.2.2, outside2

C 10.1.1.0 255.255.255.0 is directly connected, outside1 L 10.1.1.1 255.255.255.255 is directly connected, outside1 C 10.1.2.0 255.255.255.0 is directly connected, outside2 L 10.1.2.1 255.255.255.255 is directly connected, outside2 C 10.1.3.0 255.255.255.0 is directly connected, inside L 10.1.3.1 255.255.255.255 is directly connected, inside

show conn コマンドを実行すると、2つの接続がまだアップしていることがわかります。SSHセッションは、中断することなく、 Test-PC-1(10.1.3.2)およびTest-PC-2(10.1.3.4)でもアクティブです。

<#root>

> show conn 4 in use, 14 most used Inspect Snort: preserve-connection: 2 enabled, 0 in effect, 12 most enabled, 0 most in effect

TCP inside 10.1.3.4:41652 outside2 10.1.5.2:22, idle 0:19:29, bytes 5276, flags UIO N1

TCP inside 10.1.3.2:57484 outside1 10.1.5.2:22, idle 0:17:22, bytes 5276, flags UIO N1

注:Test-PC-1(10.1.3.2)からのshow connの出力では、インターフェイスoutside1を経由するデフォルトルートはルーティ ングテーブルから削除されているにもかかわらず、SSHセッションはインターフェイスoutside1を経由しています。これ は予期された動作であり、設計上、実際のトラフィックはインターフェイスoutside2を経由します。Test-PC-1(10.1.3.2)からInternet-Host(10.1.5.2)への新しい接続を開始すると、すべてのトラフィックがインターフェイスoutside2を 通過していることがわかります。

トラブルシュート

ルーティングテーブルの変更を検証するには、 debug ip routingコマンドを実行します。

この例では、最初のISPゲートウェイへのリンクがダウンすると、インターフェイスoutside1を経由するルートがルーティングテー

ブルから削除されます。

<#root>

> debug ip routingIP routing debugging is on

RT:

ip_route_delete 0.0.0.0 0.0.0.0 via 10.1.1.2, outside1

ha_cluster_synced 0 routetype 0

RT: del 0.0.0.0 via 10.1.1.2, static metric [1/0]NP-route: Delete-Output 0.0.0.0/0 hop_count:1 , via 0.0

RT(mgmt-only):

NP-route: Update-Output 0.0.0.0/0 hop_count:1 , via 10.1.2.2, outside2

NP-route: Update-Input 0.0.0.0/0 hop_count:1 Distance:1 Flags:0X0 , via 10.1.2.2, outside2

show route コマンドを実行して、現在のルーティングテーブルを確認します。

<#root>

> show route

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, V - VPN i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route, + - replicated route SI - Static InterVRF, BI - BGP InterVRF Gateway of last resort is 10.1.2.2 to network 0.0.0

S* 0.0.0.0 0.0.0.0 [1/0] via 10.1.2.2, outside2

C 10.1.1.0 255.255.255.0 is directly connected, outside1 L 10.1.1.1 255.255.255.255 is directly connected, outside1 C 10.1.2.0 255.255.255.0 is directly connected, outside2 L 10.1.2.1 255.255.255.255 is directly connected, outside2 C 10.1.3.0 255.255.255.0 is directly connected, inside L 10.1.3.1 255.255.255.255 is directly connected, inside

加されます。

<#root>

> debug ip routingIP routing debugging is on

RT(mgmt-only):

NP-route: Update-Output 0.0.0.0/0 hop_count:1 , via 10.1.2.2, outside2

NP-route: Update-Output 0.0.0.0/0 hop_count:1 , via 10.1.1.2, outside2

NP-route: Update-Input 0.0.0.0/0 hop_count:2 Distance:1 Flags:0X0 , via 10.1.2.2, outside2 via 10.1.1.2, outside1

show route コマンドを実行して、現在のルーティングテーブルを確認します。

> show route

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, V - VPN i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route, + - replicated route SI - Static InterVRF, BI - BGP InterVRF Gateway of last resort is 10.1.2.2 to network 0.0.0

S* 0.0.0 0.0.0 [1/0] via 10.1.2.2, outside2
[1/0] via 10.1.1.2, outside1
C 10.1.1.0 255.255.255.0 is directly connected, outside1
L 10.1.1.1 255.255.255.255 is directly connected, outside2
C 10.1.2.0 255.255.255.255 is directly connected, outside2
L 10.1.2.1 255.255.255.255 is directly connected, outside2
C 10.1.3.0 255.255.255.0 is directly connected, inside
L 10.1.3.1 255.255.255.255 is directly connected, inside

関連情報

<u>シスコのテクニカルサポートとダウンロード</u>

翻訳について

シスコは世界中のユーザにそれぞれの言語でサポート コンテンツを提供するために、機械と人に よる翻訳を組み合わせて、本ドキュメントを翻訳しています。ただし、最高度の機械翻訳であっ ても、専門家による翻訳のような正確性は確保されません。シスコは、これら翻訳の正確性につ いて法的責任を負いません。原典である英語版(リンクからアクセス可能)もあわせて参照する ことを推奨します。