

OVA を使用した CWM のインストール

ここでは、次の内容について説明します。

• OVA を使用した CWM のインストール (1ページ)

OVA を使用した CWM のインストール

Crosswork Workflow Manager 1.1 は、VMware vSphere 6.7 (およびそれ以降) 仮想化プラット フォームを使用してOVAイメージを展開することにより、ゲスト仮想マシンとしてインストールされます。

前提条件

・ed25519 SSH 公開キーと秘密キーのペア。

システム要件

最小システム要件	
サーバー	ESXi 6.7 以降のホストを使用する VMware vSphere 6.7 以降 のアカウント
СРИ	8 コア
メモリ	64 GB
ストレージ	100 GB

CWM パッケージのダウンロード

CWM 1.1 ソフトウェアパッケージを取得するには、次の手順を実行します。

- **ステップ1** シスコ ソフトウェア ダウンロード サービスに移動し、検索バーに「Crosswork Workflow Manager」と入力し、検索リストからこれを選択します。
- **ステップ2** [ソフトウェアタイプの選択 (Select a software type)]から、[Crosswork Workflow Manager ソフトウェア (Crosswork Workflow Manager Software)]を選択します。
- ステップ3 Linux 用の Crosswork Workflow Manager ソフトウェアパッケージをダウンロードします。
- ステップ4 端末で、sh コマンドを使用して、ダウンロードした .signed.bin ファイルを抽出し、証明書を検証します。 参考として、次の出力例を参照してください。

```
sh cwm-1.1.signed.bin
Unpacking...
Verifying signature...
Retrieving CA certificate from http://www.cisco.com/security/pki/certs/crcam2.cer ...
Successfully retrieved and verified crcam2.cer.
Retrieving SubCA certificate from http://www.cisco.com/security/pki/certs/innerspace.cer ...
Successfully retrieved and verified innerspace.cer.
Successfully verified root, subca and end-entity certificate chain.
Successfully fetched a public key from tailf.cer.
Successfully verified the signature of cwm-1.1.tar.gz using tailf.cer
```

cwm-1.1.tar.gzファイルおよびその他のファイルが抽出され、署名ファイルに対して検証されています。

ステップ5 cwm-1.1.tar.gz ファイルを抽出するには、ファイルをダブルクリックするか(Mac ユーザー)、gzip ユー ティリティを使用します(Linux および Windows ユーザー)。これにより、インストールに使用される CWM OVA ファイルが抽出されます。

OVA の展開と VM の起動

ダウンロードした OVA イメージを使用して仮想マシンを作成するには、次の手順を実行します。

- ステップ1 vSphere アカウントにログインします。
- **ステップ2** [ホストおよびクラスタ(Hosts and Clusters)] タブで、ホストを展開してリソースプールを選択します。

図1:

ステップ3 [アクション (Actions)]メニューをクリックし、[OVF テンプレートの展開 (Deploy OVF Template...)] を選択します。

図2:

⊘ wf-nat.lab.tail-f.com					
Summary Monitor Configure	Actions wf-nat.lab.tail-f.com				
	. 🔂 New Virtual Machine				
VMs and Templates:	New Resource Pool				
Child Resource Pools:	€ CI New vApp				
Child vApps:	Gt Deploy OVF Template				
	Resource Settings				
Resource Settings	Move To				
	Rename				
Tags	Tags & Custom Attributes 🕨 🔨				
Assigned Tag Category	Add Permission				
	Alarms ►				
	🔀 Delete				

- ステップ4 [OVF テンプレートの選択 (Select an OVF template)]ステップで、[ローカルファイル (Local file)]、 [ファイルの選択 (Select files)]の順にクリックし、CWM OVA イメージを選択します。[次へ (Next)] をクリックします。
- ステップ5 [名前とフォルダの選択(Select a name and folder)] ステップで、VM の名前を入力して場所を選択しま す。[次へ (Next)]をクリックします。
- **ステップ6** [コンピューティングリソースの選択 (Select a compute resource)] ステップで、リソースプールを選択します。[次へ (Next)] をクリックします。
- ステップ7 [詳細の確認 (Review details)]ステップで、[次へ (Next)]をクリックします。

- ステップ8 [ストレージの選択 (Select storage)]ステップで、[仮想ディスクフォーマットの選択 (Select virtual disk format)]を[シンプロビジョニング (Thin provision)]に設定し、ストレージを選択して、[次へ (Next)] をクリックします。
- ステップ9 [ネットワークの選択 (Select network)]ステップで、コントロールプレーンとノースバウンドの宛先ネットワークを選択する必要があります。
 - a) [コントロールプレーン (Control Plane)]: [プライベートネットワーク (PrivateNetwork)]を選択し ます。選択できない場合は、[VMネットワーク (VM Network)]を選択します。
 - (注) コントロールプレーンの設定は、HA クラスタのセットアップの場合にのみ必要です。単一 ノードのセットアップでは、コントロールプレーンの設定を指定する必要がありますが、必 須ではなく、制御ネットワークに接続されている他のデバイスと競合しないようにする必要 があります。
 - b) [ノースバウンド(Northbound)]: [VMネットワーク(VM Network)]を選択します。
 - c) [次へ (Next)]をクリックします。
- **ステップ10** [テンプレートのカスタマイズ (Customize template)] ステップで、次の選択されたプロパティを指定します。
 - a) [インスタンスのホスト名(Instance Hostname)]: インスタンスの名前を入力します。
 - b) [SSH 公開キー (SSH Public Key)]: VM へのコマンドラインアクセスに使用される ed25519 SSH 公開キーを指定します。
 - c) [ノード名(Node Name)]: インストールノードの名前を指定します。
 - (注) 単一ノード設定の場合、ノード名を変更することは推奨されません。変更する場合は、次の [ゾーンAノード名(Zone-A Node Name)]と一致している必要があることに注意してくだ さい。
 - d) [コントロールプレーンノード数 (Control Plane Node Count)]: HA クラスタセットアップの場合に のみ、1 以上に変更します。CWM バージョン 1.1 ではサポートされていません。
 - e) [コントロールプレーン IP (IP サブネット) (Control Plane IP (ip subnet))]: コントロールプレー ンのネットワークアドレスを指定します。このアドレスは、制御ネットワーク内の他のデバイスと 競合するこはできません。ただし、単一ノードのセットアップでは必須ではありません。デフォル トのサブネットマスクは /24 であることに注意してください。ネットワーク設定に該当する場合 は、カスタムサブネットマスク値を追加できます。
 - f) [イニシエータ IP(Initiator IP)]: スターターノードのイニシエータ IP を設定します。単一ノード セットアップでは、[コントロールプレーン IP(Control Plane IP)]*と同じアドレスです。

図 3:			
Deploy OVF Template	Customize te Customize the deploym		
1 Select an OVF template	✓ General		
2 Select a name and folder	Instance Hostnam		
3 Select a compute resource	SSH Public Key		
	✓ Node Config		
4 Review details	Node Name		
5 Select storage	Data Volume Size		
6 Select networks	Cluster Join Toke		
	Control Plane No		
7 Customize template	Control Plane IP (
8 Ready to complete	Initiator IP		

- [IP (IP サブネット) DHCP を使用していない場合 (IP (ip subnet) if not using DHCP)]: ノードの g) ネットワークアドレスを指定します。デフォルトのサブネットマスクは/24であることに注意して ください。ネットワーク設定に該当する場合は、カスタムサブネットマスク値を追加できます。
- [ゲートウェイ DHCP を使用していない場合(Gateway if not using DHCP)]: ゲートウェイアド h) レスを指定します。デフォルトでは、192.168.1.1です。
- [DNS]: DNS のアドレスを指定します。デフォルトでは 8.8.8.8 ですが、ローカル DNS を使用す i) ることもできます。

- j) [ノースバウンド仮想IP (Northbound Virtual IP)]: アクティブなクラスタノードのネットワークア ドレスを指定します。単一ノードのセットアップでも、このアドレスは必須です。このアドレスで HTTP サービスが機能するためです。
- k) [ゾーンAノード名(Zone-A Node Name)]: ゾーンAノードの名前を指定します。上記の[ノード 名(Node Name)]と一致する必要があることに注意してください。
- [ゾーンBノード名(Zone-B Node Name)]: ゾーンBノードの名前を指定します。単一ノード設定の場合、これは必須ではないため、変更しないでください。
- m) [ゾーンCノード名(アービトレータ) (Zone-C Node Name (Arbitrator))]: ゾーンCアービトレー タノードの名前を指定します。単一ノード設定の場合、これは必須ではないため、変更しないでく ださい。
- n) [次へ (Next)]をクリックします。

図 4:

- **ステップ11** [準備完了(Ready to Complete)] ページで [終了(Finish)] をクリックします。展開には数分かかる場合 があります。
- ステップ12 [リソースプール (Resource pool)]リストから、新しく作成した仮想マシンを選択し、[電源オン (Power on)]アイコンをクリックします。

図 5:

	cwmEF	-T1-1.1-	nat13		\$ I	ΑCTIO		
	Summary	Monitor	Configure	Permissio	ns Data	stores		
	Settings		vApp Options are enabled					
			Product name					
vApp Options								
			IP Allocation					
			> Authoring					
		> Deployment						
			OVF Settin	gs VIEV	V OVF ENVIR	ONMENT		

(注) VM の電源が正常にオンにならない場合は、NxF が原因で断続的なインフラストラクチャエラー が発生している可能性があります。回避策として、既存の VM を削除し、新しい VM に OVA を 再展開します。

インストールの確認とユーザーの作成

CWMUIに初めてログインするためのプラットフォームユーザーアカウントを作成する前に、 インストールが正常に完了し、システムが稼働しているかどうかを確認します。

ステップ1 コマンドラインターミナルを使用して、SSH でゲスト OS の NxF にログインします。

ssh -o UserKnownHostsFile=/dev/null -p 22 nxf@<virtual IP address>

(注) デフォルトでは、仮想 IP アドレスは [IP (IP サブネット) - DHCP を使用していない場合 (IP (ip subnet) - if not using DHCP)]で設定したアドレスです。vCenter のセットアップ方法に応じて、特定のポートとともにリソースプールアドレスを指定できます。不明な点がある場合は、ネットワーク管理者に確認してください。

オプション:初めてログインする場合は、秘密キーのパス名を入力します。

ssh -i <ed25519 ssh private key name and location> nxf@<virtual IP address>

(注) SSH のデフォルトポートは 22 です。必要に応じてカスタムポートに変更してください。

ステップ2 NxF ブートログを確認します。

sudo journalctl -u nxf-boot

(注) インストールが完了するまで数分かかる場合があることに注意してください。表示される NxF ログの下部で、[NXF:マシンのセットアップ完了(NXF: Done setup up machine)]メッセージを探します。ログで問題がレポートされた場合は、CWM の再インストールを検討してください。

ステップ3 すべての Kubernetes ポッドが稼働しているかどうかを確認します。

kubectl get pods -A

これにより、次のようなステータスとともにポッドのリストが表示されます。

NAMESPACE	NAME	READY	STATUS	RESTARTS
AGE				
kube-flannel 7m35s	kube-flannel-ds-vh4js	1/1	Running	0
kube-system 7m35s	coredns-9mnzv	1/1	Running	0
kube-system 7m44s	etcd-nodel	1/1	Running	0
kube-system 7m50s	kube-apiserver-node1	1/1	Running	0
kube-system 7m50s	kube-controller-manager-node1	1/1	Running	0
kube-system 7m35s	kube-proxy-6hwg9	1/1	Running	0
kube-system 7m42s	kube-scheduler-node1	1/1	Running	0
local-path-storage 7m34s	local-path-provisioner-54c455f95-mbhc9	1/1	Running	0
nxf-system 6m25s	authenticator-f74c7c87f-m8p4x	2/2	Running	0
nxf-system 6m27s	controller-76686f8f5f-gpqvc	2/2	Running	0
nxf-system	ingress-ports-nodel-zchwz	1/1	Running	0

	4				
nxf-sys	4ml/s stem	ingress-proxy-bcb8c9fff-lzm9p	1/1	Running	0
nxf-sys	om235 stem 7m34s	kafka-0	1/1	Running	0
nxf-sys	5tem 6m33s	loki-0	3/3	Running	0
nxf-sys	stem 6m30s	metrics-5qnzb	2/2	Running	0
nxf-sys	stem 7m34s	minio-0	2/2	Running	0
nxf-sys	stem 6m59s	postgres-0	2/2	Running	0
nxf-sys	stem 6m33s	promtail-t7dp4	1/1	Running	0
nxf-sys	stem 7m2s	registry-5486f46b54-c6tf9	2/2	Running	0
nxf-sys	stem 6m12s	vip-nodel	1/1	Running	0
zone-a ago)	4m16s	cwm-api-service-67bd9db5c7-vfszs	2/2	Running	2 (3m37s
zone-a ago)	4m15s	cwm-dsl-service-/ffd69/5ff-wlrwt	2/2	Running	4 (3m21s
zone-a ago)	4m15s	cwm-engine-frontend-6754445fc-67t5h	2/2	Running	2 (3m52s
zone-a ago)	4ml4s	cwm-engine-history-c4dfffddd-t2fgv	2/2	Running	I (2m35s
zone-a ago)	4m14s	cwm-engine-nistory-c4aiiiaaa-wr5v2	2/2	Running	2 (3m51s
zone-a 4n	n14s	cwm-engine-nistory-c4aiiiaaa-zz/4q	2/2	Running	4 (48s ago)
ago)	4m14s	cwm-engine-matching-/sataissat-qswg2	2/2	Running	2 (311465
zone-a	4m13s		2/2	Running	0
zone-a	4ml3s	cwm-engine-worker-saybabcaab-ns2ch	2/2	Running	0
zone-a	4m12s	Cwm-event-manager-sbysbb4ydb-gw%gs	2/2	Running	1 (2=20=
ago)	4m12s	cwm-prugrn-manager-/61/98446C-qgx2/	2/2	Running	1 (2m295
zone-a	4mlls		2/2	Kunning	U
zone-a ago)	4ml0s	cwm-worker-manager-/bd8/95b56-14czp	2/2	Running	1 (112s
zone-a	4m10s	TOGCIT-DIACCAC2A2-Id/MW	212	Kunning	U

(注) システムがすべてのポッドを実行するまでに数分かかる場合があることに注意してください。いず れかのポッドのステータスがRunning以外の場合は、kubectl delete pod <pod_name> -n <namespace> コマンドを使用して再起動することを検討してください。

UI ログイン用のユーザーの作成

VM へのコマンドラインアクセスを使用して、CWM プラットフォームのユーザーアカウント を作成できます。その方法を次に説明します。 ステップ1 コマンドラインターミナルを使用して、SSH でゲスト OS の NxF にログインします。
 ssh -o UserKnownHostsFile=/dev/null -p 22 nxf@<virtual_IP_address>
 オプション:初めてログインする場合は、秘密キーのパス名を入力します。
 ssh -i <ed25519_ssh_private_key_name_and_location> nxf@<virtual_IP_address>
 (注) SSH のデフォルトポートは 22 です。必要に応じてカスタムポートに変更してください。

ステップ2 ユーザーとパスワードを作成するには、次のコマンドを実行します。

a) まず、パスワードの最小複雑度を設定します(デフォルトは3で、0は複雑度が無効です)。 sedo security password-policy set --min-complexity-score 1

b) 次に、ユーザーアカウントとパスワードを作成します。

echo -en 'Password123!' | sedo security user add --password-stdin \ --access permission/admin --access permission/super-admin \ --access permission/user --display-name Tester test

- c) 必要に応じて、テストユーザーのパスワード変更要件を無効にします。
 sedo security user set test --must-change-password=false
- ステップ3 CWM UI を表示するには、ノースバウンド IP とデフォルトのポート 8443 用に選択したアドレスに移動します。例: https://192.168.1.233:8443/
- ステップ4 test ユーザー名とパスワードを使用してログインします。

I

翻訳について

このドキュメントは、米国シスコ発行ドキュメントの参考和訳です。リンク情報につきましては 、日本語版掲載時点で、英語版にアップデートがあり、リンク先のページが移動/変更されている 場合がありますことをご了承ください。あくまでも参考和訳となりますので、正式な内容につい ては米国サイトのドキュメントを参照ください。