

ルータの基本設定

ここでは、ルータの基本設定について説明します。次の項で構成されています。

- ・デフォルト設定 (1ページ)
- ・グローバル パラメータの設定 (3ページ)
- ギガビットイーサネットインターフェイスの設定(4ページ)
- ループバックインターフェイスの設定 (5ページ)
- •MAC フィルタのハードウェア制限 (7ページ)
- モジュールインターフェイスの設定(9ページ)
- Cisco Discovery Protocol の有効化 (9ページ)
- コマンドラインアクセスの設定(9ページ)
- スタティックルートの設定(11ページ)
- ダイナミックルートの設定(13ページ)

デフォルト設定

ルータを起動すると、ルータはデフォルトのファイル名(ルータのPID)を検索します。たと えば、Cisco 4000 シリーズサービス統合型ルータは、isr 4451.cfg という名前のファイルを検索 します。Cisco 4000 シリーズ ISRは、このファイルを検索した後、標準の files-router-confg また は ciscortr.cfg を検索します。

Cisco 4000 ISR は、ブートフラッシュで isr4451.cfg ファイルを検索します。ファイルがブート フラッシュで見つからない場合、ルータは標準の router-confg と ciscortr.cfg を検索します。す べてのファイルが見つからない場合、ルータは、同じ特定の順序で、これらのファイルを保存 している可能性のある挿入済みの USB をチェックします。

(注) 挿入済みの USB に PID という名前の構成ファイルがある一方で、標準ファイルの1つがブー トフラッシュにある場合、システムは標準ファイルを検索して使用します。

初期設定を表示するには、次の例に示すように、showrunning-configコマンドを使用します。

Router# **show running-config** Building configuration...

```
Current configuration : 977 bytes
1
version 15.3
service timestamps debug datetime msec
service timestamps log datetime msec
no platform punt-keepalive disable-kernel-core
hostname Router
!
boot-start-marker
boot-end-marker
!
1
vrf definition Mgmt-intf
1
address-family ipv4
exit-address-family
1
address-family ipv6
exit-address-family
Т
!
no aaa new-model
1
ipv6 multicast rpf use-bgp
1
Т
multilink bundle-name authenticated
!
!
redundancy
mode none
!
interface GigabitEthernet0/0/0
no ip address
negotiation auto
1
interface GigabitEthernet0/0/1
no ip address
negotiation auto
!
interface GigabitEthernet0/0/2
no ip address
negotiation auto
1
interface GigabitEthernet0/0/3
no ip address
negotiation auto
interface GigabitEthernet0
vrf forwarding Mgmt-intf
no ip address
negotiation auto
!
ip forward-protocol nd
no ip http server
no ip http secure-server
1
Т
control-plane
!
```

!
line con 0
stopbits 1
line vty 0 4
login
!
!
end

グローバル パラメータの設定

ルータのグローバル パラメータを設定するには、次の手順を実行します。

手順の概要

- **1.** configure terminal
- 2. hostname name
- 3. enable secret password
- 4. no ip domain-lookup

手順の詳細

	コマンドまたはアクション	目的
ステップ1	configure terminal 例: Router> enable Router# configure terminal Router(config)#	グローバル コンフィギュレーション モードを開始 します(コンソール ポート使用時)。 次のコマンドを使用して、ルータとリモートターミ ナルを接続します。 telnet router-name or address Login: login-id Password: ******** Router> enable
ステップ2	hostname name 例: Router(config)# hostname Router	ルータ名を指定します。
ステップ3	enable secret password 例: Router(config)# enable secret cr1ny5ho	ルータへの不正なアクセスを防止するには、暗号化 パスワードを指定します。
ステップ4	no ip domain-lookup 例:	ルータが未知の単語(入力ミス)をIPアドレスに変換しないようにします。

コマンドまたはアクション	目的
Router(config)# no ip domain-lookup	グローバルパラメータコマンドの詳細については、 『Cisco IOS Release Configuration Guide』マニュアル セットを参照してください。

ギガビットイーサネットインターフェイスの設定

オンボードのギガビットイーサネットインターフェイスを手動で定義するには、グローバル コンフィギュレーションモードから開始して、次の手順を実行します。

手順の概要

- 1. interface gigabitethernet slot/bay/port
- 2. ip address ip-address mask
- **3.** ipv6 address ipv6-address/prefix
- 4. no shutdown
- 5. exit

手順の詳細

	コマンドまたはアクション	目的
ステップ1	interface gigabitethernet slot/bay/port 例:	ルータ上で ギガビット イーサネット インターフェ イスのコンフィギュレーション モードを開始しま す。
	Router(config)# interface gigabitethernet 0/0/1	
ステップ2	ip address <i>ip-address mask</i> 例: Router(config-if)# ip address 192.168.12.2 255.255.255.0	指定したギガビット イーサネット インターフェイ スのIPアドレスとサブネットマスクを設定します。 IPv4アドレスを設定する場合は、このステップを使 用します。
ステップ3	<pre>ipv6 address ipv6-address/prefix 例: Router(config-if)# ipv6 address 2001.db8::ffff:1/128</pre>	指定したギガビット イーサネット インターフェイ スの IPv6 アドレスとプレフィクスを設定します。 IPv6 アドレスを設定する場合は、ステップ2の代わ りにこのステップを使用します。
ステップ4	no shutdown 例: Router(config-if)# no shutdown	ギガビットイーサネットインターフェイスをイネー ブルにし、その状態を管理上のダウンから管理上の アップに変更します。

	コマンドまたはアクション	目的
ステップ5	exit	ギガビットイーサネットインターフェイスのコン
	例:	フィギュレーションモードを終了して、特権 EXEC モードに戻ります。
	Router(config-if)# exit	

ループバック インターフェイスの設定

始める前に

ループバック インターフェイスは、スタティック IP アドレスのプレースホルダーとして機能 し、デフォルトのルーティング情報を提供します。

ループバックインターフェイスを設定するには、次の手順を実行します。

手順の概要

- **1. interface** *type number*
- **2.** (オプション1) ip address *ip*-address mask
- **3.** (オプション2) **ipv6** address *ipv6-address/prefix*
- 4. exit

手順の詳細

	コマンドまたはアクション	目的	
ステップ1	interface type number	ループバックインターフェイスのコンフィギュレー	
	例:	ション モードを開始します。	
	Router(config)# interface Loopback 0		
ステップ2	(オプション1) ip address <i>ip-address mask</i>	ループバック インターフェイスの IP アドレスとサ	
	例:	ブネットマスクを設定します。IPv6アドレスを設定	
		9 つ場合は、次に説明9 つ IPV0 address inv6-address/nrefix コマンドを使用します	
	Router(config-if)# ip address 10.108.1.1 255.255.255.0	ipvo uuressiprejta = v v + e (C/II O &) o	
ステップ3	(オプション2) ipv6 address ipv6-address/prefix	ループバックインターフェイスの IPv6 アドレスと	
	例:	プレフィクスを設定します。	
	Router(config-if)# 2001:db8::ffff:1/128		

	コマンドまたはアクション	目的
ステップ4	exit	ループバックインターフェイスのコンフィギュレー
	例:	ション モードを終了します。続いて、グローバル コンフィギュレーション モードに戻ります。
	Router(config-if)# exit	

例

ループバック インターフェイス設定の確認

このコンフィギュレーション例のループバックインターフェイスは、仮想テンプレートインターフェイス上のNATをサポートするために使用されています。この設定例は、スタティックIPアドレスとして機能するIPアドレス192.0.2.0/24のギガビットイーサネットインターフェイス上に設定されるループバックインターフェイスを示しています。ループバックインターフェイスは、ネゴシエートされたIPアドレスを持つvirtual-template1に紐付けられます。

```
!
interface loopback 0
ip address 192.0.2.0 255.255.255.0 (static IP address)
ip nat outside
!
interface Virtual-Template1
ip unnumbered loopback0
no ip directed-broadcast
ip nat outside
```

show interface loopback コマンドを入力します。次の例のような出力が表示されます。

```
Router# show interface loopback 0
Loopback0 is up, line protocol is up
 Hardware is Loopback
  Internet address is 203.0.113.1/24
  MTU 1514 bytes, BW 8000000 Kbit, DLY 5000 usec,
     reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation LOOPBACK, loopback not set
  Last input never, output never, output hang never
  Last clearing of "show interface" counters never
  Queueing strategy: fifo
  Output queue 0/0, 0 drops; input queue 0/75, 0 drops
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     0 packets input, 0 bytes, 0 no buffer
     Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
     0 packets output, 0 bytes, 0 underruns
     0 output errors, 0 collisions, 0 interface resets
     0 output buffer failures, 0 output buffers swapped out
```

または、次の例に示すように、**ping** コマンドを使用してループバックインターフェイ スを確認します。

Router# **ping 192.0.2.0** Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 192.0.2.0, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms

MAC フィルタのハードウェア制限

ここでは、Cisco 4000 シリーズ ISR でサポートされている仮想 MAC アドレスの数と分布について説明します。仮想 MAC アドレスフィルタは、次のインターフェイスでサポートされています。

- GigabitEthernet インターフェイスの MAC フィルタ
- TenGigabitEthernet インターフェイスの MAC フィルタ

GigabitEthernet インターフェイスの MAC アドレスフィルタ

このデバイスは、32のMACアドレスフィルタのセットをサポートしています。これらのフィ ルタは、4 つの GE ポートで使用できます。4 つの GE ポートのそれぞれが、プライマリ MAC アドレス(BIA)用に1つのエントリを予約します。残りの28のMACフィルタは、Hot Standby Router Protocol(HSRP)などの機能に使用できます。

(注) 各ポートは、使用可能な機能フィルタをいくつでも使用できます。1つのポートで最大28の機能フィルタを使用できます。4つのGEポートのすべてが均等にフィルタを使用する場合、各ポートは最大7つのフィルタを持つことができます。

TenGigabitEthernet インターフェイスの MAC アドレスフィルタ

このデバイスは、32のMACアドレスフィルタのセットをサポートしています。これらのフィ ルタは、2つの10GEポートで使用できます。10GEポートのそれぞれが、プライマリMACア ドレス(BIA)用に1つのエントリを予約します。残りの30のMACフィルタは、HSRPなど の機能に使用できます。

(注) 各ポートは、使用可能な機能フィルタをいくつでも使用できます。1つのポートで最大30の機能フィルタを使用できます。両方のGEポートが均等にフィルタを使用する場合、各ポートは最大15のフィルタを持つことができます。

MAC フィルタの配布

次の表に、Cisco 4000 シリーズ ISR の MAC フィルタの配布を示します。

表 1: Cisco 4461 ISR の MAC フィルタの配布

インターフェ イス	フィルタの総 数		プライマリ MAC アドレス (BIA)		機能フィルタ
Gigabit0/0/0	32	=	1	+	28
Gigabit0/0/1			1		
Gigabit0/0/2			1		
Gigabit0/0/3			1		
TenGigabit0/0/0	32	=	1	+	30
TenGigabit0/0/1			1		

表 2: Cisco 4451 および 4431 ISR ギガビット イーサネット インターフェイスの MAC フィルタの配布

インターフェ イス	フィルタの総 数		プライマリ MAC アドレス (BIA)		機能フィルタ
Gigabit0/0/0	32	=	1	+	28
Gigabit0/0/1			1		
Gigabit0/0/2			1		
Gigabit0/0/3			1		

表 3: Cisco 4351 および 4331 ISR の MAC フィルタの配布

インターフェ イス	フィルタの総 数		プライマリ MAC アドレス (BIA)		機能フィルタ
Gigabit0/0/0	16	=	1	+	15
Gigabit0/0/1	16		1		15
Gigabit0/0/2	16		1		15

表 4: Cisco 4321 および 4221 ISRの MAC フィルタの配布

インターフェ イス	フィルタの総 数		プライマリ MAC アドレス (BIA)		機能フィルタ
Gigabit0/0/0	16	=	1	+	15

インターフェ イス	フィルタの総 数		プライマリ MAC アドレス (BIA)		機能フィルタ
Gigabit0/0/1	16	=	1	+	15

モジュール インターフェイスの設定

サービスモジュールの設定の詳細については、『Cisco SM-1T3/E3 Service Module Configuration Guide』の「Service Module Management」の項の「Service Modules」を参照してください。

Cisco Discovery Protocolの有効化

ルータでは、Cisco Discovery Protocol (CDP) がデフォルトで有効に設定されています。

(注) Cisco アグリゲーション サービス ルータまたは Cisco CSR 1000v では、CDP はデフォルトでイ ネーブルに設定されていません。

CDPの使用法の詳細については、『Cisco Discovery Protocol Configuration Guide, Cisco IOS XE Release 3S』を参照してください。

コマンドライン アクセスの設定

ルータへのアクセスを制御するパラメータを設定するには、次の手順を実行します。

- **1.** line [aux | console | tty | vty] line-number
- 2. password password
- 3. login
- 4. exec-timeout minutes [seconds]
- 5. exit
- 6. line [aux | console | tty | vty] line-number
- 7. password password
- 8. login
- 9. end

I

手順の詳細

	コマンドまたはアクション	目的
ステップ1	line [aux console tty vty] line-number 例:	回線コンフィギュレーションモードを開始します。 続いて、回線のタイプを指定します。
	Router(config)# line console 0	ここに示す例では、アクセス用のコンソール端末を 指定します。
ステップ 2	password password 例:	コンソール端末回線に固有のパスワードを指定しま す。
	Router(config-line)# password 5dr4Hepw3	
ステップ3	login 例:	端末セッションログイン時のパスワードチェックを 有効にします。
	Router(config-line)# login	
ステップ4	exec-timeout minutes [seconds] 例: Router(config-line)# exec-timeout 5 30 Router(config-line)#	ユーザ入力が検出されるまで EXEC コマンドイン タープリタが待機する間隔を設定します。デフォル トは10分です。任意指定で、間隔値に秒数を追加 します。 ここに示す例は、5分30秒のタイムアウトを示して います。「00」のタイムアウトを入力すると、タイ ムアウトが発生しません。
ステップ5	exit 例: Router(config-line)# exit	回線コンフィギュレーションモードを終了して、グ ローバル コンフィギュレーション モードを再開し ます。
ステップ6	<pre>line [aux console tty vty] line-number 例: Router(config)# line vty 0 4 Router(config-line)#</pre>	リモート コンソール アクセス用の仮想端末を指定 します。
ステップ 1	password password 例: Router(config-line)# password aldf2ad1	仮想端末回線に固有のパスワードを指定します。
ステップ8	login 例: Router(config-line)# login	仮想端末セッションログイン時のパスワードチェッ クを有効にします。

	コマンドまたはアクション	目的
ステップ 9	end	回線コンフィギュレーションモードを終了します。
	例:	続いて、特権 EXEC モードに戻ります。
	Router(config-line)# end	

例

次の設定は、コマンドラインアクセス コマンドを示します。

default と示されているコマンドは、入力する必要はありません。これらのコマンド は、show running-config コマンドの使用時に、生成されたコンフィギュレーション ファイルに自動的に示されます。

```
!
line console 0
exec-timeout 10 0
password 4youreyesonly
login
transport input none (default)
stopbits 1 (default)
line vty 0 4
password secret
login
!
```

スタティック ルートの設定

スタティック ルートは、ネットワークを介した固定ルーティング パスを提供します。これら は、ルータ上で手動で設定されます。ネットワークトポロジが変更された場合には、スタティッ ク ルートを新しいルートに更新する必要があります。スタティック ルートは、ルーティング プロトコルによって再配信される場合を除き、プライベート ルートです。

スタティックルートを設定するには、次の手順を実行します。

- **1.** $(\forall \forall \forall \exists \lor 1)$ **ip route** prefix mask {*ip-address* | *interface-type interface-number* [*ip-address*]}
- **2.** $(\forall \forall \forall \exists \lor 2)$ **ipv6 route** *prefix/mask* {*ipv6-address* | *interface-type interface-number* [*ipv6-address*]}
- **3**. end

手順の詳細

	コマンドまたはアクション	目的
ステップ1	(オプション1) ip route prefix mask {ip-address interface-type interface-number [ip-address]} 例: Router(config)# ip route 192.168.1.0 255.255.0.0 10.10.10.2	IP パケットのスタティック ルートを指定します。 (IPv6 アドレスを設定する場合は、次に説明する ipv6 address コマンドを使用してください)。
ステップ2	(オプション2) ipv6 route prefix/mask {ipv6-address interface-type interface-number [ipv6-address]} 例: Router(config)# ipv6 route 2001:db8:2::/64	IP パケットのスタティック ルートを指定します。
ステップ3	end 例: Router(config)# end	グローバル コンフィギュレーション モードを終了 し、特権 EXEC モードを開始します。

例

設定の確認

次の設定例は、宛先 IP アドレスが 192.168.1.0、サブネット マスクが 255.255.255.0 の すべての IP パケットを、IP アドレス 10.10.10.2 の他の装置に対して、ギガビットイン ターフェイス上からスタティックルートで送信します。具体的には、パケットが設定 済みの PVC に送信されます。

default と示されているコマンドは、入力する必要はありません。このコマンドは、 running-config コマンドの使用時に、生成されたコンフィギュレーション ファイルに 自動的に示されます。

```
!
ip classless (default)
ip route 192.168.1.0 255.255.255.0
```

スタティック ルートが正しく設定されていることを確認するには、show ip route コマンド(または show ipv6 route コマンド)を入力し、文字 S で示されるスタティック ルートを見つけます。

IPv4 アドレスを使用する場合は、次のような確認用の出力が表示されます。

```
Router# show ip route
```

```
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
```

```
E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
      ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
    10.10.10.2/24 is subnetted, 1 subnets
С
       10.10.10.2 is directly connected, Loopback0
S*
    0.0.0/0 is directly connected, FastEthernet0
IPv6 アドレスを使用する場合は、次のような確認用の出力が表示されます。
Router# show ipv6 route
IPv6 Routing Table - default - 5 entries
Codes: C - Connected, L - Local, S - Static, U - Per-user Static route
       B - BGP, R - RIP, H - NHRP, I1 - ISIS L1
       I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary, D - EIGRP
      EX - EIGRP external, ND - ND Default, NDp - ND Prefix, DCE -
Destination
      NDr - Redirect, O - OSPF Intra, OI - OSPF Inter, OE1 - OSPF ext 1
       OE2 - OSPF ext 2, ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
       ls - LISP site, ld - LISP dyn-EID, a - Application
  2001:DB8:3::/64 [0/0]
С
      via GigabitEthernet0/0/2, directly connected
S
  2001:DB8:2::/64 [1/0]
       via 2001:DB8:3::1
```

ダイナミック ルートの設定

ダイナミックルーティングでは、ネットワークトラフィックまたはトポロジに基づいて、ネットワーク プロトコルがパスを自動調整します。ダイナミックルーティングの変更は、ネットワーク上の他のルータにも反映されます。

ルータは、ルーティング情報プロトコル (RIP) または Enhanced Interior Gateway Routing Protocol (EIGRP) などの IP ルーティング プロトコルを使用して、ルートを動的に学習できます。

- Routing Information Protocol の設定 (13 ページ)
- Enhanced Interior Gateway Routing Protocol の設定 (16 ページ)

Routing Information Protocol の設定

ルータの RIP を設定するには、次の手順を実行します。

- 1. router rip
- **2.** version $\{1 \mid 2\}$
- **3. network** *ip-address*
- 4. no auto-summary

5. end

手順の詳細

	コマンドまたはアクション	目的
ステップ1	router rip 例:	ルータ コンフィギュレーション モードを開始しま す。続いて、ルータの RIP を有効にします。
	Router(config)# router rip	
ステップ2	version {1 2}	RIP version 1 または2の使用を指定します。
	例:	
	Router(config-router)# version 2	
ステップ3	network ip-address	直接接続しているネットワークの各アドレスを使用
	例:	して、RIPを適用するネットワーク リストを指定し ます。
	Router(config-router)# network 192.168.1.1 Router(config-router)# network 10.10.7.1	
ステップ4	no auto-summary	ネットワークレベルルートへのサブネットルートの
	例:	目動サマフイスを無効にします。これにより、サフ プレフィックスルーティング情報がクラスフルネッ
	Router(config-router)# no auto-summary	トワーク境界を越えて送信されます。
ステップ5	end	ルータコンフィギュレーションモードを終了して、
	例:	狩稚 EXEC モードを開始します。
	Router(config-router)# end	

例

設定の確認

次の設定例は、IP ネットワーク 10.0.0.0 および 192.168.1.0 でイネーブルにされる RIP version 2 を示します。この設定を表示するには、特権 EXEC モードで show running-config コマンドを使用します。

```
!
Router# show running-config
Building configuration...
Current configuration : 1616 bytes
!
! Last configuration change at 03:17:14 EST Thu Sep 6 2012
!
version 15.3
service timestamps debug datetime msec
```

```
service timestamps log datetime msec
no platform punt-keepalive disable-kernel-core
1
hostname Router
1
boot-start-marker
boot-end-marker
1
!
vrf definition Mgmt-intf
!
address-family ipv4
 exit-address-family
 1
 address-family ipv6
exit-address-family
!
enable password cisco
1
no aaa new-model
!
transport-map type console consolehandler
banner wait ^C
Waiting for IOS vty line
^C
banner diagnostic ^C
Welcome to diag mode
^C
!
clock timezone EST -4 0
!
!
ip domain name cisco.com
ip name-server vrf Mgmt-intf 203.0.113.1
ip name-server vrf Mgmt-intf 203.0.113.129
!
ipv6 multicast rpf use-bgp
1
!
multilink bundle-name authenticated
1
redundancy
mode none
1
ip ftp source-interface GigabitEthernet0
ip tftp source-interface GigabitEthernet0
!
1
interface GigabitEthernet0/0/0
no ip address
negotiation auto
1
interface GigabitEthernet0/0/1
no ip address
negotiation auto
!
interface GigabitEthernet0/0/2
no ip address
negotiation auto
1
interface GigabitEthernet0/0/3
```

```
no ip address
negotiation auto
1
interface GigabitEthernet0
vrf forwarding Mgmt-intf
ip address 172.18.77.212 255.255.255.240
 negotiation auto
1
ip forward-protocol nd
!
no ip http server
no ip http secure-server
ip route vrf Mgmt-intf 0.0.0.0 0.0.0.0 172.18.77.209
1
control-plane
1
1
line con 0
stopbits 1
line aux 0
stopbits 1
line vty 0 4
password cisco
login
T.
transport type console 0 input consolehandler
1
ntp server vrf Mgmt-intf 10.81.254.131
1
end
RIP が正しく設定されていることを確認するには、show ip route コマンドを入力し、
文字 R で示される RIP ルートを見つけます。次の例のような出力が表示されます。
```

```
Router# show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
10.0.0.0/24 is subnetted, 1 subnets
```

```
C 10.108.1.0 is directly connected, Loopback0
R 10.0.0.0/8 [120/1] via 10.2.2.1, 00:00:02, Ethernet0/0/0
```

Enhanced Interior Gateway Routing Protocol の設定

拡張インテリア ゲートウェイ ルーティング プロトコル(EIGRP)を設定するには、次の手順 を実行します。

- 1. router eigrp as-number
- 2. network ip-address
- 3. end

手順の詳細

	コマンドまたはアクション	目的
ステップ1	router eigrp as-number 例: Router(config)# router eigrp 109	ルータコンフィギュレーションモードを開始して、 ルータ上でEIGRPをイネーブルにします。自律シス テム(AS)番号は、他のEIGRPルータへのルート を識別します。また、EIGRP情報のタグ付けに使用 されます。
ステップ2	network <i>ip-address</i> 例: Router(config)# network 192.168.1.0 Router(config)# network 10.10.12.115	EIGRPを適用するネットワークのリストを指定しま す(直接接続されているネットワークのIPアドレス を使用)。
ステップ3	end 例: Router(config-router)# end	ルータコンフィギュレーションモードを終了して、 特権 EXEC モードを開始します。

例

設定の確認

次の設定例は、IP ネットワーク 192.168.1.0 および 10.10.12.115 でイネーブルにされる EIGRP ルーティング プロトコルを示します。EIGRP の自律システム番号として、109 が割り当てられています。この設定を表示するには、show running-config コマンドを 使用します。

Router# show running-config

```
.
!
router eigrp 109
network 192.168.1.0
network 10.10.12.115
!
.
```

IP EIGRP が正しく設定されたかどうかを確認するには、show ip route コマンドを入力 し、文字Dで示される EIGRP ルートを探します。次のような確認用の出力が表示され ます。

```
Router# show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
```

ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route Gateway of last resort is not set 10.0.0.0/24 is subnetted, 1 subnets C 10.108.1.0 is directly connected, Loopback0 D 10.0.0.0/8 [90/409600] via 10.2.2.1, 00:00:02, Ethernet0/0 翻訳について

このドキュメントは、米国シスコ発行ドキュメントの参考和訳です。リンク情報につきましては 、日本語版掲載時点で、英語版にアップデートがあり、リンク先のページが移動/変更されている 場合がありますことをご了承ください。あくまでも参考和訳となりますので、正式な内容につい ては米国サイトのドキュメントを参照ください。