

Firepower Threat Defense のインターフェイ スの概要

FTD デバイスには、種々のモードで設定できるデータインターフェイス、および管理/診断インターフェイスが組み込まれています。

- ・管理/診断インターフェイス (1ページ)
- インターフェイスモードとタイプ (2ページ)
- •セキュリティゾーンとインターフェイスグループ (4ページ)
- Auto-MDI/MDIX 機能 (4 ページ)
- ・インターフェイスのデフォルト設定(4ページ)
- ・物理インターフェイスの有効化およびイーサネット設定の構成 (5ページ)
- インターフェイスの変更と Firepower Management Center の同期 (7ページ)

管理/診断インターフェイス

物理的な管理インターフェイスは、診断論理インターフェイスと管理論理インターフェイスの 間で共有できます。

管理インターフェイス

管理論理インターフェイスはデバイスの他のインターフェイスから切り離されています。これ は、Firepower Management Center にデバイスを設定し、登録するために使用されます。また、 固有の IP アドレスとスタティック ルーティングを使用します。管理インターフェイスを設定 するには、CLI で configure network コマンドを使用します。管理インターフェイスを Firepower Management Center に追加した後にその IP アドレスを CLI で変更した場合、Firepower Management Center での IP アドレスを [デバイス (Devices)]>[デバイス管理 (Device Management)]>[デ バイス (Devices)]> [管理 (Management)] 領域で一致させることができます。

診断インターフェイス

診断論理インターフェイスは残りのデータインターフェイスとともに、[デバイス (Devices)]> [デバイス管理 (Device Management)]>[インターフェイス (Interfaces)] 画面で設定できま す。診断インターフェイスの使用はオプションです(シナリオについては、ルーテッドモード およびトランスペアレントモードの展開を参照)。診断インターフェイスは管理トラフィック のみを許可し、トラフィックのスルーは許可しません。これはSSHをサポートしません。デー タインターフェイスまたは管理インターフェイスのみに SSH を使用できます。診断インター フェイスは、SNMP や syslog のモニタリングに役立ちます。

インターフェイス モードとタイプ

通常のファイアウォール モードと IPS 専用モードの2つのモードで FTD インターフェイスを 展開できます。同じデバイスにファイアウォールインターフェイスと IPS 専用インターフェイ スの両方を含めることができます。

通常のファイアウォール モード

ファイアウォールモードのインターフェイスでは、トラフィックが、フローの維持、IP レイ ヤおよび TCP レイヤの両方でのフロー状態の追跡、IP 最適化、TCP の正規化などのファイア ウォール機能の対象となります。オプションで、セキュリティポリシーに従ってこのトラフィッ クに IPS 機能を設定することもできます。

設定できるファイアウォール インターフェイスのタイプは、ルーテッド モードとトランスペ アレントモードのどちらのファイアウォールモードがそのデバイスに設定されているかによっ て異なります。詳細については、Firepower Threat Defense 用のトランスペアレントまたはルー テッドファイアウォール モードを参照してください。

- ルーテッドモードインターフェイス(ルーテッドファイアウォールモードのみ):ルー ティングを行う各インターフェイスは異なるサブネット上にあります。
- ・ブリッジグループインターフェイス(ルーテッドおよびトランスペアレントファイア ウォールモード):複数のインターフェイスをネットワーク上でグループ化することがで き、Firepower Threat Defense デバイスはブリッジング技術を使用してインターフェイス間 のトラフィックを通過させることができます。各ブリッジグループには、ネットワーク上 でIPアドレスが割り当てられるブリッジ仮想インターフェイス(BVI)が含まれます。 ルーテッドモードでは、Firepower Threat Defense デバイスは BVI と通常のルーテッドイ ンターフェイス間をルーティングします。トランスペアレントモードでは、各ブリッジグ ループは分離されていて、相互通信できません。

IPS 専用モード

IPS専用モードのインターフェイスは、多数のファイアウォールのチェックをバイパスし、IPS セキュリティポリシーのみをサポートします。別のファイアウォールがこれらのインターフェ イスを保護していて、ファイアウォール機能のオーバーヘッドを避けたい場合、IPS専用のイ ンターフェイスを実装することがあります。

(注) ファイアウォールモードは通常のファイアウォールインターフェイスのみに影響し、インラインセットやパッシブインターフェイスなどのIPS専用インターフェイスには影響しません。
IPS専用インターフェイスはどちらのファイアウォールモードでも使用できます。

IPS 専用インターフェイスは以下のタイプとして展開できます。

 インラインセット、タップモードのオプションあり:インラインセットは「Bump In The Wire」のように動作し、2つのインターフェイスを一緒にバインドし、既存のネットワー クに組み込みます。この機能によって、隣接するネットワークデバイスの設定がなくて も、任意のネットワーク環境にシステムをインストールすることができます。インライン インターフェイスはすべてのトラフィックを無条件に受信しますが、これらのインター フェイスで受信されたすべてのトラフィックは、明示的にドロップされない限り、インラ インセットの外部に再送信されます。

タップモードの場合、デバイスはインラインで展開されますが、パケットがデバイスを通 過する代わりに各パケットのコピーがデバイスに送信され、ネットワークトラフィック フローは影響を受けません。ただし、これらのタイプのルールでは、トリガーされた侵入 イベントが生成され、侵入イベントのテーブルビューには、トリガーの原因となったパ ケットがインライン展開でドロップされたことが示されます。インライン展開されたデバ イスでタップモードを使用することには、利点があります。たとえば、デバイスがインラ インであるかのようにデバイスとネットワーク間の配線をセットアップし、デバイスで生 成される侵入イベントのタイプを分析することができます。その結果に基づいて、効率性 に影響を与えることなく最適なネットワーク保護を提供するように、侵入ポリシーを変更 してドロップルールを追加できます。デバイスをインラインで展開する準備ができたら、 タップモードを無効にして、デバイスとネットワークの間の配線を再びセットアップする ことなく、不審なトラフィックをドロップし始めることができます。

 (注) 「透過インライン セット」としてインライン セットに馴染みが ある人もいますが、インラインインターフェイスのタイプはトラ ンスペアレント ファイアウォール モードやファイアウォール タ イプのインターフェイスとは無関係です。

 パッシブまたは ERSPAN パッシブ:パッシブ インターフェイスは、スイッチ SPAN また はミラーポートを使用してネットワークを流れるトラフィックをモニタします。SPANま たはミラーポートでは、スイッチ上の他のポートからトラフィックをモニタします。この 機能により、ネットワークトラフィックのフローに含まれなくても、ネットワークでの システムの可視性が備わります。パッシブ展開で構成されたシステムでは、特定のアク ション (トラフィックのブロッキングやシェーピングなど)を実行することができませ ん。パッシブインターフェイスはすべてのトラフィックを無条件で受信します。このイン ターフェイスで受信されたトラフィックは再送されません。Encapsulated Remote Switched Port Analyzer (ERSPAN) インターフェイスは、複数のスイッチに分散された送信元ポー トからのトラフィックをモニタし、GRE を使用してトラフィックをカプセル化します。 ERSPAN インターフェイスは、デバイスがルーテッドファイアウォール モードになって いる場合にのみ許可されます。

セキュリティ ゾーンとインターフェイス グループ

各インターフェイスは、セキュリティゾーンおよび/またはインターフェイスグループに割り 当てる必要があります。その上で、ゾーンまたはグループに基づいてセキュリティポリシーを 適用します。たとえば、内部インターフェイスを内部ゾーンに割り当て、外部インターフェイ スを外部ゾーンに割り当てることができます。また、たとえば、トラフィックが内部から外部 に移動できるようにアクセスコントロールポリシーを設定することはできますが、外部から 内部に向けては設定できません。ポリシーによっては、セキュリティゾーンだけをサポート する場合も、ゾーンとグループの両方をサポートする場合もあります。詳細については、イン ターフェイスオブジェクト:インターフェイスグループとセキュリティゾーンを参照してく ださい。セキュリティゾーンおよびインターフェイスグループは、[オブジェクト (Objects)] ページで作成できます。また、インターフェイスを設定する際にゾーンを追加することもでき ます。インターフェイスは、そのインターフェイスに適切なタイプのゾーン (パッシブ、イン ライン、ルーテッド、スイッチドゾーンタイプ)にのみ追加できます。

診断/管理インターフェイスは、ゾーンまたはインターフェイス グループには属しません。

Auto-MDI/MDIX 機能

RJ-45 インターフェイスでは、デフォルトの自動ネゴシエーション設定に Auto-MDI/MDIX 機 能も含まれています。Auto-MDI/MDIX は、オートネゴシエーション フェーズでストレート ケーブルを検出すると、内部クロスオーバーを実行することでクロスケーブルによる接続を不 要にします。インターフェイスの Auto-MDI/MDIX を有効にするには、速度とデュプレックス のいずれかをオートネゴシエーションに設定する必要があります。速度とデュプレックスの両 方に明示的に固定値を指定すると、両方の設定でオートネゴシエーションが無効にされ、 Auto-MDI/MDIX も無効になります。ギガビット イーサネットの速度と二重通信をそれぞれ 1000 と全二重に設定すると、インターフェイスでは常にオートネゴシエーションが実行される ため、Auto-MDI/MDIX は常に有効になり、無効にできません。

インターフェイスのデフォルト設定

この項では、インターフェイスのデフォルト設定を示します。

インターフェイスのデフォルトの状態

インターフェイスの状態は、タイプによって異なります。

• 物理インターフェイス:ディセーブル。初期セットアップで有効になる診断インターフェ イスは例外です。

- ・冗長インターフェイス:イネーブル。ただし、トラフィックが冗長インターフェイスを通 過するためには、メンバ物理インターフェイスもイネーブルになっている必要があります。
- VLANサブインターフェイス:イネーブル。ただし、トラフィックがサブインターフェイスを通過するためには、物理インターフェイスもイネーブルになっている必要があります。
- EtherChannelポートチャネルインターフェイス(ASAモデル): 有効。ただし、トラフィックが EtherChannel を通過するためには、チャネルグループ物理インターフェイスもイネーブルになっている必要があります。
- EtherChannel ポートチャネル インターフェイス(Firepower モデル): 無効。

(注) Firepower 4100/9300 の場合、管理上、シャーシおよび FMC の両方で、インターフェイスを有効および無効にできます。インターフェイスを動作させるには、両方のオペレーティングシステムで、インターフェイスを有効にする必要があります。インターフェイスの状態は個別に制御されるので、シャーシと FMC の間の不一致が生じることがあります。

デフォルトの速度および二重通信

デフォルトでは、銅線(RJ-45)インターフェイスの速度とデュプレックスは、オートネゴシ エーションに設定されます。

物理インターフェイスの有効化およびイーサネット設定 の構成

スマート ライセ	従来のライセンス	サポートされるデ	サポートされるド	アクセス
ンス		バイス	メイン	(Access)
任意(Any)	該当なし	FTD	任意(Any)	Admin Access Admin Network Admin

ここでは、次の方法について説明します。

- 物理インターフェイスを有効にします。デフォルトでは、物理インターフェイスは無効になっています(診断インターフェイスを除く)。
- 特定の速度と二重通信を設定します。デフォルトでは、速度とデュプレックスは[自動 (Auto)]に設定されます。

この手順は、インターフェイス設定のごく一部にすぎません。この時点では、他のパラメータ を設定しないようにします。たとえば、EtherChannel または冗長インターフェイスの一部とし て使用するインターフェイスには名前を付けることはできません。

(注) Firepower 4100/9300 の場合、FXOS の基本インターフェイスの設定を行います。詳細について は、物理インターフェイスの設定を参照してください。

始める前に

FMC に追加した後、デバイスの物理インターフェイスを変更した場合、[インターフェイス (Interfaces)]タブの左上にある[デバイスからのインターフェイスの同期(Sync Interfaces from device)]ボタンをクリックしてそのインターフェイス リストを更新する必要があります。

手順

- ステップ1 [Devices] > [Device Management] の順に選択し、FTD デバイスの編集アイコン (✓) をクリックします。デフォルトで [インターフェイス (Interfaces)] タブが選択されています。
- **ステップ2**編集するインターフェイスの編集アイコン (*2*)をクリックします。
- ステップ3 [有効(Enabled)] チェックボックスをオンにして、インターフェイスを有効化します。
- **ステップ4** (任意) [説明(Description)] フィールドに説明を追加します。

説明は200文字以内で、改行を入れずに1行で入力します。

- **ステップ5** (任意) [ハードウェア構成(Hardware Configuration)] タブをクリックして、デュプレックス と速度を設定します。
 - 「デュプレックス (Duplex)]: [全(Full)]、[半(Half)]、または[自動(Auto)]を選択 します。[自動(Auto)]は、インターフェイスによってサポートされる場合のみデフォル トとなります。たとえば、Firepower 2100 シリーズの SFP インターフェイスでは[自動 (Auto)]を選択できません。
 - 「速度(Speed)]:[10]、[100]、[1000]、または[自動(Auto)]を選択します。デフォルトは[自動(Auto)]です。インターフェイスのタイプによって、選択可能なオプションが制限されます。たとえば、Firepower 2100 シリーズデバイスでは、GigabitEthernet ポートでは10、100、1000(1Gbps)、SFP ポートでは1000または10000(10 Gbps)を選択できます。Firepower 2100 シリーズデバイスの SFP インターフェイスは、[自動(Auto)]をサポートしていないことに注意してください。

ステップ6[モード(Mode)]ドロップダウンリストで、次のいずれかを選択します。

 [なし(None)]: この設定を通常のファイアウォールインターフェイスおよびインライン セットに選択します。他の設定に基づいて[ルーテッド(Routed)]、[スイッチド (Switched)]、または[インライン(Inline)]にモードが自動的に変更されます。

- [パッシブ(Passive)]: この設定を IPS 専用インターフェイスに選択します。
- •[Erspan]: この設定を Erspan パッシブ IPS 専用インターフェイスに選択します。
- **ステップ7** [OK] をクリックします。
- ステップ8 [保存 (Save)]をクリックします。

これで、[展開(Deploy)]をクリックし、割り当てたデバイスにポリシーを展開できます。変 更はポリシーを導入するまで有効になりません。

インターフェイスの変更と Firepower Management Center の同期

スマート ライセ	従来のライセンス	サポートされるデ	サポートされるド	アクセス
ンス		バイス	メイン	(Access)
任意 (Any)	該当なし	FTD	任意(Any)	Admin Access Admin Network Admin

デバイスのインターフェイスの設定を変更することによって FMC とデバイスが同期しなくなる可能性があります。FMC は次の方法のいずれかでインターフェイスの変更を検出できます。

- デバイスから送信されたイベント
- ・からの展開の同期 FMC

展開を試行したときに FMC がインターフェイスを検出すると、その展開は失敗します。 最初にインターフェイスの変更を承認する必要があります。

• 手動同期

FMC が変更を検出すると、[インターフェイス (Interface)]タブの各インターフェイスアイコンの左側にステータスアイコン ([削除済み (removed)]、[変更済み (changed)]、または[追加済み (added)]) が表示されます。

新しいインターフェイスを追加したり、未使用のインターフェイスを削除したりしても、FTD の設定に与える影響は最小限です。ただし、セキュリティポリシーで使用されているインター フェイスを削除すると、設定に影響を与えます。インターフェイスは、アクセス ルール、 NAT、SSL、アイデンティティルール、VPN、DHCP サーバなど、FTD の設定における多くの 場所で直接参照されている可能性があります。インターフェイスを削除すると、そのインター フェイスに関連付けられている設定がすべて削除されます。セキュリティゾーンを参照するポ リシーは影響を受けません。また、論理デバイスに影響を与えず、かつ FMC での同期を必要 とせずに、割り当てられた EtherChannel のメンバーシップを編集できます。 この手順では、必要に応じてデバイスの変更を手動で同期する方法と、検出された変更を保存 する方法について説明します。デバイスの変更が一時的なものである場合は、その変更をFMC に保存する必要はありません。デバイスが安定するまで待機してから再同期します。

手順

- **ステップ1** [Devices] > [Device Management] の順に選択し、FTD デバイスの編集アイコン (✓)をクリックします。デフォルトで [インターフェイス (Interfaces)] タブが選択されています。
- ステップ2 必要に応じて、[インターフェイス (Interfaces)] タブの左上にある [デバイスの同期 (Sync Device)] ボタンをクリックします。
- **ステップ3**変更が検出されると、インターフェイス設定が変更されたことを示す赤色のバナーが[インター フェイス(Interfaces)]タブに表示されます。[クリックして詳細を表示(Click to know more)] リンクをクリックしてインターフェイスの変更内容を表示します。
- **ステップ4**[変更の検証(Validate Changes)]をクリックし、インターフェイスが変更されてもポリシーが 機能していることを確認します。

エラーがある場合は、ポリシーを変更して検証に戻る必要があります。

ステップ5 [保存 (Save)] をクリックします。

これで、[展開(Deploy)]をクリックし、割り当てたデバイスにポリシーを展開できます。変更はポリシーを導入するまで有効になりません。