

MPLS を介した IPv6 VPN プロバイダー エッジ (6VPE) の設定

• 6VPE の設定 (1ページ)

6VPE の設定

次の項では、スイッチでの 6VPE の設定について説明します。

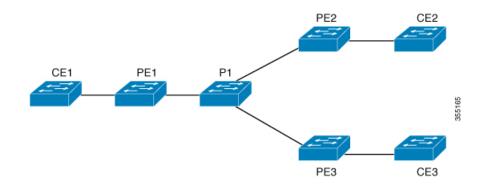
6VPE の制約事項

- Inter-AS および Carrier Supporting Carrier (CSC) はサポートされていません。
- VRF ルートリーキングはサポートされていません。
- eBGP は CE-PE としてサポートされていません。
- EIGRP、OSPFv3、RIP、ISIS、スタティックルートは、CE-PE としてサポートされています。
- ・サポートされているMPLSラベル割り当てモードはVRF単位とプレフィックス単位です。 プレフィックス単位がデフォルトのモードです。
- IP フラグメンテーションは、レイヤ 3 VPN の Per-Prefix モードではサポートされていません。
- DHCPv6 は、ポート単位の信頼が有効になっている 6VPE トポロジではサポートされません。

6VPE について

6VPE は IPv4 バックボーンを使用して VPN IPv6 サービスを提供するメカニズムです。使用可能な IPv4 MPLS バックボーンを利用することで、MPLS コア内でのデュアルスタッキングが不要になります。つまり、運用コストを節減し、6PEアプローチのセキュリティ上の制限に対処

します。6VPE は、通常の IPv4 MPLS-VPN プロバイダー エッジとほぼ同じですが、VRF 内に IPv6 サポートが追加されています。これは、VPN メンバー デバイス用に、論理的に分割され たルーティング テーブル エントリを提供します。


MPLS ベースの 6VPE ネットワークのコンポーネント

- VPN ルート ターゲット コミュニティ: VPN コミュニティのその他すべてのメンバのリスト。
- VPN コミュニティ PE ルータのマルチプロトコル BGP(MP-BGP)ピアリング: VPN コミュニティのすべてのメンバに VRF 到達可能性情報を伝播します。
- MPLS 転送: VPN サービスプロバイダーネットワークのすべての VPN コミュニティメン バ間にすべてのトラフィックを転送します。

MPLS VPN モデルでは共通のルーティング テーブルを共有するサイトの集合として VPN が定義されます。カスタマー サイトは 1 つ以上のインターフェイスでサービス プロバイダー ネットワークに接続され、サービス プロバイダーは、VRF テーブルと呼ばれる VPN ルーティング テーブルと各インターフェイスを関連付けます。

6VPE の設定例

図 1:6VPE トポロジ

PE の設定		

PE の設定

```
vrf definition 6VPE-1
rd 65001:11
route-target export 1:1
route-target import 1:1
address-family ipv4
exit-address-family
address-family ipv6
exit-address-family
interface TenGigabitEthernet1/0/38
no switchport
vrf forwarding 6VPE-1
ip address 10.3.1.1 255.255.255.0
ip ospf 2 area 0
ipv6 address 10:111:111:111::1/64
ipv6 enable
ospfv3 1 ipv6 area 0
router ospf 2 vrf 6VPE-1
router-id 1.1.11.11
redistribute bgp 65001 subnets
router ospfv3 1
nsr
graceful-restart
address-family ipv6 unicast vrf 6VPE-1
redistribute bgp 65001
exit-address-family
router bgp 65001
bgp router-id interface Loopback1
bgp log-neighbor-changes
bgp graceful-restart
neighbor 33.33.33.33 remote-as 65001
neighbor 33.33.33.33 update-source Loopback1
address-family ipv4 vrf 6VPE-1
 redistribute ospf 2 match internal external 1 external 2
exit-address-family
address-family ipv6 vrf 6VPE-1
 redistribute ospf 1 match internal external 1 external 2 include-connected
exit-address-family
address-family vpnv4
neighbor 33.33.33 activate
neighbor 33.33.33.33 send-community both
neighbor 44.44.44.44 activate
neighbor 44.44.44.44 send-community both
neighbor 55.55.55.55 activate
neighbor 55.55.55.55 send-community both
exit-address-family
address-family vpnv6
neighbor 33.33.33.33 activate
neighbor 33.33.33 send-community both
neighbor 44.44.44 activate
neighbor 44.44.44.44 send-community both
neighbor 55.55.55.55 activate
```

```
PE の設定
neighbor 55.55.55.55 send-community both
exit-address-family
次に、show mpls forwarding-table vrf の出力例を示します。
Local Outgoing Prefix Bytes Label Outgoing Next Hop
Label Label or Tunnel Id Switched interface
29 No Label A:A:A:565::/64[V] \ 0 aggregate/VRF601
32 No Label A:B5:1:5::/64[V] 2474160 V1601 FE80::200:7BFF:FE62:2636
33 No Label A:B5:1:4::/64[V] 2477978 V1601 FE80::200:7BFF:FE62:2636
35 No Label A:B5:1:3::/64[V] 2477442 V1601 FE80::200:7BFF:FE62:2636
36 No Label A:B5:1:2::/64[V] 2476906 V1601 FE80::200:7BFF:FE62:2636
37 No Label A:B5:1:1::/64[V] 2476370 V1601 FE80::200:7BFF:FE62:2636
次に、show vrf counter コマンドの出力例を示します。
Maximum number of VRFs supported: 256
Maximum number of IPv4 VRFs supported: 256
Maximum number of IPv6 VRFs supported: 256
Maximum number of platform iVRFs supported: 10
Current number of VRFs: 127
Current number of IPv4 VRFs: 6
Current number of IPv6 VRFs: 127
Current number of VRFs in delete state: 0
Current number of platform iVRFs: 1
次に、show ipv6 route vrf コマンドの出力例を示します。
IPv6 Routing Table - VRF1 - 8 entries Codes: C - Connected, L - Local,
 S - Static, U - Per-user Static route B - BGP, R - RIP, I1 - ISIS L1,
I2 - ISIS L2 IA - ISIS interarea, IS - ISIS summary, D - EIGRP, EX -
EIGRP external ND - ND Default, NDp - ND Prefix, DCE - Destination, NDr
 - Redirect RL - RPL, O - OSPF Intra, OI - OSPF Inter, OE1 - OSPF ext
1 OE2 - OSPF ext 2, ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2 la -
LISP alt, lr - LISP site-registrations, ld - LISP dyn-eid lA - LISP
away
B 1:1:1:1:1/128 [200/1] via 1.1.1.11%default, indirectly connected
O 2:2:2:2:2/128 [110/1] via FE80::A2E0:AFFF:FE30:3E40,
TenGigabitEthernet1/0/7
B 3:3:3:3:3/128 [200/1] via 3.3.3.33%default, indirectly connected
B 10:1:1:1::/64 [200/0] via 1.1.1.11%default, indirectly connected
C 10:2:2::/64 [0/0] via TenGigabitEthernet1/0/7, directly connected
L 10:2:2:2::1/128 [0/0] via TenGigabitEthernet1/0/7, receive
B 10:3:3::/64 [200/0] via 3.3.3.3%default, indirectly connected
```

L FF00::/8 [0/0] via Null0, receive

MPLS を介した IPv6 VPN プロバイダーエッジ (6VPE) の機能履歴

次の表に、このモジュールで説明する機能のリリースおよび関連情報を示します。

これらの機能は、特に明記されていない限り、導入されたリリース以降のすべてのリリースで使用できます。

リリース	機能	機能情報
Cisco IOS XE Everest 16.6.1	MPLS を介した IPv6 VPN プロバイダー エッジ(6VPE)	MPLS を介した IPv6 VPN プロバイダーエッジ (6VPE) は IPv4 バック ボーンを使用して VPN IPv6 サービスを提供するメ カニズムです。使用可能な IPv4 MPLS バックボーンを 利用することで、MPLS コ ア内でのデュアルスタッキ ングが不要になります。

Cisco Feature Navigator を使用すると、プラットフォームおよびソフトウェアイメージのサポート情報を検索できます。Cisco Feature Navigator には、http://www.cisco.com/go/cfn [英語] からアクセスします。

翻訳について

このドキュメントは、米国シスコ発行ドキュメントの参考和訳です。リンク情報につきましては、日本語版掲載時点で、英語版にアップデートがあり、リンク先のページが移動/変更されている場合がありますことをご了承ください。あくまでも参考和訳となりますので、正式な内容については米国サイトのドキュメントを参照ください。