cisco.

Cisco Catalyst IW9165E 高耐久性アクセスポイントおよびワイ ヤレスクライアント設定ガイド、**Cisco IOS XE 17.15.x**

最終更新: 2025 年 1 月 26 日

シスコシステムズ合同会社

〒107-6227 東京都港区赤坂9-7-1 ミッドタウン・タワー http://www.cisco.com/jp お問い合わせ先:シスココンタクトセンター 0120-092-255 (フリーコール、携帯・PHS含む) 電話受付時間:平日 10:00~12:00、13:00~17:00 http://www.cisco.com/jp/go/contactcenter/

第1章

はじめに 1 アクセスポイントの概要 1 イメージの決定 3 イメージ変換の設定 4 関連資料 4

第2章 ワークグループ ブリッジ 7

概要 8 制限事項と制約事項 8 Day 0 における強力なパスワードの設定 10 WGB のコントローラ設定 11 uWGB イメージのアップグレード 12 LED パターン 13 IPアドレスの設定 14 IPv4 アドレスの設定 14 IPv6アドレスの設定 14 WGBの設定 15 SSIDの設定 15 SSID プロファイルの作成 15 ワークグループブリッジの無線インターフェイスの設定 16 Dot1X ログイン情報の設定 17 WGB 有線クライアントの認証解除 17 EAP プロファイルの設定 17

目次

端末のトラストポイントの手動登録設定 18

ワークグループブリッジのトラストポイントの自動登録設定 19

TFTP サーバーを使用した手動での証明書の登録設定 20

WGB または uWGB タイマーの設定 21

uWGBの設定 21

WGBとuWGB間の変換 22

WGB 設定のインポートとエクスポート 22

WGB および uWGB の設定の確認 22

Syslog の設定 25

HT 速度制限の設定 25

802.11v のサポート 26

補助走査の設定 27

走査専用モードの概要 27

走査専用モードの設定 27

補助走査ハンドオフモードの設定 28

デュアル無線機 WGB によるローミングの最適化 30

レイヤ2NATの設定 30

ホスト IP アドレス変換の設定例 33

ネットワークアドレス変換の設定例 35

イーサネットポートでのネイティブ VLAN の設定 35

低遅延プロファイル 36

WGBの [Optimized-Video] EDCA プロファイルの設定 37

WGBの[Optimized-Automation] EDCA プロファイルの設定 37

WGBの[customized-wmm] EDCA プロファイルの設定 38

WGB での低遅延プロファイルの設定 38

EDCA パラメータの設定(ワイヤレスコントローラ GUI) 39

EDCA パラメータの設定(ワイヤレスコントローラ CLI) 40

A-MPDUの設定 41

WGB を使った SNMP の設定と検証 41

サポートされる SNMP MIB ファイル 43

WGB CLI による SNMP の設定 49

WGB CLI による SNMP の確認 51 QoS ACL の分類とマーキングのサポート 52 概要 52 QoS と ACL に基づくトラフィックの分類 52 Quality of Service マッピングプロファイルの設定 55 WGBの Quality of Service マッピングの確認 57 パケットキャプチャ: WGB での TCP ダンプ 59 WGB での TCP ダンプ 59 WGBの有線パケットキャプチャの有効化 61 WGBの有線パケットキャプチャの無効化 64 WGBの有線パケットキャプチャの確認 64 AAA ユーザー認証のサポート 66 AAA ユーザー認証のサポートに関する情報 66 AAA サーバーの設定 66 ログインユーザーの RADIUS 認証の有効化または無効化 67 ログインユーザーの TACACS+ 認証の有効化または無効化 68 AAA 認証設定の確認 68 無線機統計コマンド 68 イベントロギング 71

第3章

Control and Provisioning of Wireless Access Points 73

概要 73

 Lightweight アクセス ポイントでの証明書プロビジョニング 74

 AP の CAPWAP 接続について 75

 リセットボタンの設定 76

 CAPWAP モードでのイーサネットポートの使用状況 76

 屋内展開の設定 77

 屋内展開の確認 77

 AP Radio Slot 78

 固定ドメインと国コードのサポート 79

 無線アンテナ配置の設定 82

目次

6G標準出力モードのAFC サポート 83

APのAFCステータスの確認 84

GNSS のサポート 84

アンテナ切断検知について 85

アンテナ切断検知の確認 85

トラブルシューティング 86

目次

はじめに

- アクセスポイントの概要(1ページ)
- •イメージの決定 (3ページ)
- •イメージ変換の設定(4ページ)
- •関連資料 (4ページ)

アクセスポイントの概要

Cisco Catalyst IW9165E 高耐久性アクセスポイントおよびワイヤレスクライアント(以下、 IW9165E)は、外部アンテナを備えた2x2 Wi-Fi 6E 設計をサポートし、移動中の車両やマシン に超高信頼ワイヤレス接続を付加する設計となっています。低消費電力、堅牢な IP30 設計、 小型フォームファクタにより、Catalyst IW9165E は産業資産に非常に簡単に統合できます。

IW9165Eは、移動する車両やマシンに超高信頼ワイヤレス接続を付加するように設計されてい ます。IW9165Eは、Cisco Unified Industrial Wireless (UIW) ソフトウェアリリース 17.12.1 以降、 Cisco Ultra-Reliable Wireless Backhaul (Cisco URWB) として動作できます。これにより、シー ムレスなハンドオフが可能になり、高可用性、低遅延、ゼロパケット損失が実現します。

IW9165E は、Cisco Unified Industrial Wireless ソフトウェアリリース 17.13.1 以降、シスコのア クセスポイントインフラストラクチャに接続できるワークグループブリッジ(WGB)モード と、サードパーティのアクセスポイントインフラストラクチャに接続できるユニバーサル WGB(uWGB)モードのWi-Fiクライアントとしても動作できます。どちらのモードも、WGB の背後にある有線クライアントをインフラストラクチャ側のアクセスポイントにブリッジする のに役立ちます。

Catalyst IW9167E は、Cisco Unified Industrial Wireless ソフトウェアリリース 17.14.1 以降、 Lightweight AP(Control And Provisioning of Wireless Access Points(CAPWAP))モード、超高 信頼ワイヤレスバックホール(URWB)モード、または WGB モードで動作できます。

IW9165Eには、ハードウェアを変更することなく、CAPWAP、WGB、またはURWBモードで IW9165Eを動作させるためにソフトウェアを更新するだけで、イメージを切り替えるオプショ ンがあります。

CAPWAP モードでは、アクセスポイントは次のモードで動作可能です。

- ローカルモード: これは AP のデフォルトモードです。このモードでは、AP はクライアントにサービスを提供します。ローカルモードでは、AP は、コントローラ接続用に2つのCAPWAPトンネルを作成します。1つは管理用で、他方はデータトラフィック用です。これは中央スイッチングと呼ばれます。データトラフィックが AP からコントローラにスイッチング(ブリッジ)されるためです。
- FlexConnectモード: FlexConnectモードでは、データトラフィックはローカルにスイッチングされ、コントローラには送信されません。このモードでは、シスコの AP は自律 AP のように動作しますが、コントローラによって管理されます。このモードの場合、コントローラへの接続が失われても、AP は機能し続けます。
- Fabric モード:ファブリックモードの AP には、AP が接続されているファブリックエッジへの VxLAN トンネル (アクセストンネル) が構築されます。AP が拡張ノード (EN) またはポリシー拡張ノード (PEN) に接続されている場合。アクセストンネルは、アクセスポイント (AP) と、拡張ノードがアップリンクされている各ファブリックエッジとの間に構築されます。AP とファブリックエッジ間の VxLAN トンネルは、アクセスポイントまでセグメンテーションを維持するためのものです。アクセスポイントは、ファブリックエッジへの VxLAN トンネルに SGT タグを挿入します。
- Sniffer モード: ワイヤレススニファモードでは、AP は指定されたチャンネルで無線のスニッフィングを開始します。APは、指定されたチャネル上のすべてのパケットを取得し、AiroPeek または Wireshark (IEEE 802.11 無線 LAN のパケットアナライザ)を実行するリモートマシンに転送します。これには、タイムスタンプ、信号強度、パケットサイズなどの情報が含まれます。

- (注) スニファモードでは、データの送信先サーバーが、ワイヤレスコントローラ管理 VLAN と同じ VLAN 上にあることが必要です。
 それ以外の場合は、エラーメッセージが表示されます。
 - Monitor モード:モニターモードでは、AP がクライアントとインフラストラクチャ間の データトラフィックの処理から除外されます。APは、ロケーションベースのサービス (LBS)、不正AP検出、および侵入検知システム(IDS)の専用センサーとして機能しま す。APがモニターモードの場合、APは電波をアクティブにモニタリングし、通常はクラ イアントにサービスを提供しません。
 - Site Survey モード: AP GUI が有効になり、サイト調査の RF パラメータの設定に使用されます。詳細については、『Cisco Catalyst 9800 Series Wireless Controller Software Configuration Guide』の「Access Points Survey Mode」のセクションを参照してください。

サポートされない機能

- •2.4G 無線機はサポートされません。
- ・走査用無線機はサポートされません。

ワイヤレスコントローラでの AP の設定方法について詳しくは、『Cisco Catalyst 9800 シリーズ ワイヤレス コントローラ ソフトウェア コンフィギュレーション ガイド』を参照してくださ い。

イメージの決定

ソフトウェアイメージは、IW9165Eの同じパーティション上の異なるフォルダに保存されます。

AP が稼働しているモード(CAPWAP、Cisco URWB、または WGB/uWGB)に応じて、起動に 使用するイメージを選択する必要があります。次の表に、各モードのソフトウェアイメージを 示します。

表 1: IW9165E ソフトウェアイメージ

IW9165E のモード	ソフトウェア イメージ
CAPWAP	ap1g6b-k9w8-xxx.tar
URWB	Unified Industrial Wireless イメージ
WGB/uWGB	артдош-кэст-хххлаг

IW9165E が実行しているイメージを判別するには、show version コマンドを使用します。

次の例に示すように、show version の出力に Cisco AP Software, (ap1g6b) と表示された場合は、AP が CAPWAP モードをサポートする CAPWAP イメージ ap1g6b-k9w8-xxx.tar を実行していることを意味します。

Cisco AP Software, (**ap1g6b**), C9165, RELEASE SOFTWARE Technical Support: http://www.cisco.com/techsupport Copyright (c) 1986-2024 by Cisco Systems, Inc. Compiled Tue Feb 20 23:04:29 GMT 2024

次の例に示すように、show versionの出力に Cisco AP Software (ap1g6m) と表示された場合は、APがURWBモードまたはWGB/uWGBをサポートする ap1g6m-k9c1-xxx.tarイメージを実行していることを意味します。

Cisco AP Software, (**ap1g6m**), C9165, RELEASE SOFTWARE Technical Support: http://www.cisco.com/techsupport Copyright (c) 1986-2024 by Cisco Systems, Inc. Compiled Tue Feb 20 23:04:29 GMT 2024

Catalyst IW9165E Lightweight アクセスポイントは、CAPWAP、URWB、WGB など、単一のハー ドウェアプラットフォームで3つのワイヤレステクノロジーをサポートします。Catalyst IW9165E には、ハードウェアを変更することなく、CAPWAP、WGB、または URWB モードで Catalyst IW9165Eを動作させるためにソフトウェアを更新するだけで、イメージを切り替えるオプショ ンがあります。

イメージ変換の設定

IW9165E アクセスポイントを Wi-Fi モード (CAPWAP AP) または URWB モードまたは WGB モードに変換するには、次の手順を実行します。

 CAPWAP から URWB モードに、または WGB/uWGB から URWB モードに変換するには、 次のCLI コマンドを使用します。続いてアクセスポイントが再起動され、URWB モードで 起動します。

configure boot mode urwb

2. URWB から CAPWAP モードに、または WGB/uWGB から CAPWAP モードに変換するに は、次の CLI コマンドを使用します。続いてアクセスポイントが再起動され、CAPWAP モードで起動します。

configure boot mode capwap

3. CAPWAP から WGB/uWGB モードに、または URWB から WGB/uWGB モードに変換する には、次の CLI コマンドを使用します。

configure boot mode wgb

(注)

イメージを変換すると、工場出荷時の状態への完全なリセットが実行され、設定とデータが完 全に削除されます。

関連資料

Cisco Catalyst IW9165 高耐久性シリーズのすべてのサポート情報を確認するには、 https://www.cisco.com/content/en/us/support/wireless/catalyst-iw9165-rugged-series/series.html [英語] を参照してください。

サポートページで提供されるドキュメントに加えて、以下のガイドの参照が必要になります。

- IW9165E ハードウェアの詳細については、『Cisco Catalyst IW9165E 高耐久性アクセスポ イントおよびワイヤレスクライアント ハードウェア設置ガイド』を参照してください。
- AP の機能および仕様をすべて網羅したリストは、『Cisco Catalyst IW9165 シリーズデー タシート』に記載されています。

・Cisco URWB モード設定の詳細については、関連するドキュメントを参照してください。

https://www.cisco.com/content/en/us/support/wireless/catalyst-iw9165-rugged-series/series.html。

Cisco Catalyst 9800 シリーズワイヤレスコントローラの設定方法について詳しくは、『Cisco Catalyst 9800 シリーズワイヤレスコントローラ ソフトウェア コンフィギュレーション ガイド』を参照してください。

ワークグループ ブリッジ

- 概要 (8ページ)
- 制限事項と制約事項(8ページ)
- Day 0 における強力なパスワードの設定 (10 ページ)
- WGB のコントローラ設定 (11 ページ)
- uWGB イメージのアップグレード (12 ページ)
- LED パターン (13 ページ)
- IP アドレスの設定 (14ページ)
- •WGBの設定 (15ページ)
- •uWGBの設定 (21ページ)
- WGB と uWGB 間の変換 (22 ページ)
- •WGB 設定のインポートとエクスポート (22 ページ)
- WGB および uWGB の設定の確認 (22 ページ)
- Syslog の設定 (25 ページ)
- •HT 速度制限の設定 (25 ページ)
- 802.11v のサポート (26 ページ)
- •補助走査の設定(27ページ)
- レイヤ 2 NAT の設定 (30 ページ)
- •イーサネットポートでのネイティブ VLAN の設定 (35ページ)
- ・低遅延プロファイル (36ページ)
- WGB を使った SNMP の設定と検証 (41 ページ)
- QoS ACL の分類とマーキングのサポート (52 ページ)
- •パケットキャプチャ: WGB での TCP ダンプ (59 ページ)
- AAA ユーザー認証のサポート (66 ページ)
- 無線機統計コマンド(68ページ)
- •イベントロギング (71ページ)

概要

ワークグループ ブリッジ モード

ワークグループブリッジ(WGB)は、アクセスポイント(AP)のモードであり、有線クライ アントへのワイヤレス接続を提供します。これらのクライアントは、WGBAPのイーサネット ポートに接続されます。WGBは、有線ネットワークと単一のワイヤレスセグメント間のブリッ ジのように機能します。この機能を果たすため、WGBはイーサネット上の有線クライアント のMACアドレスを学習します。WGBは、Internet Access Point Protocol(IAPP)メッセージン グを使用し、インフラストラクチャAPを介してこれらの識別子をワイヤレスLANコントロー ラ(WLC)と共有します。WGBはルートAPへの単一のワイヤレス接続を確立し、ルートAP はWGBをワイヤレスクライアントとして扱います。

ユニバーサル ワークグループ ブリッジ モード

ユニバーサル ワークグループ ブリッジ (uWGB) モードは、WGB 機能を補完するモードで す。uWGB モードは、uWGB に接続された有線クライアントとワイヤレス インフラストラク チャ間のワイヤレスブリッジとして機能します。このインフラストラクチャには、シスコとシ スコ以外のワイヤレスネットワークが含まれます。ワイヤレスインターフェイスの1つは、ア クセスポイントとの接続に使用されます。無線機 MAC は、AP とのアソシエーションに使用 されます。

図 1:WGBの例

Cisco Unified Industrial Wireless ソフトウェアリリース 17.13.1 以降、WGB は Cisco Catalyst IW9165E 高耐久性アクセスポイントおよびワイヤレスクライアントでサポートされます。

制限事項と制約事項

ここでは、WGB および uWGB モードの制限事項について説明します。

- WGBはCiscoLightweightアクセスポイントとのみアソシエートできます。uWGBは、サードパーティのアクセスポイントとのみアソシエートできます。
- ・速度とデュプレックスは、ローカルに接続されたエンドポイントの機能に応じて自動的に ネゴシエートされ、APの有線0および有線1インターフェイスで手動で設定することは できません。
- ・有線およびワイヤレスのネットワークの切り替えでループを検出し、防止するため、VLAN ごとのスキャンツリー(PVST)とパケットが使用されます。WGBはSTPパケットを透 過的にブリッジします。WGBは2つの有線セグメント間でのSTPパケットをブリッジで きます。有線セグメント内のSTPの設定が誤っていたり、整合性がない場合は、アクセス ポイントまたはWGBに接続されたスイッチによって、WGBワイヤレスリンクがブロッ クされる可能性があります。これにより、STPが有線ネットワーク内のスイッチポートを ブロックし始めるため、WGBがAPから切断されるか、またはコントローラへのAPの接 続解除がドロップされ、有線クライアントがIPアドレスを受信しなくなる場合がありま す。管理者がWGBで有線セグメント間のSTPのブリッジを無効にする必要がある場合、 ワイヤレスネットワーク内の直接接続されているスイッチ上でSTPを無効にすることを 推奨します。
- ・次の機能をWGBと使用することはサポートされていません。
 - •アイドルタイムアウト
 - •Web 認証
- レイヤ3のローミングでは、WGBが別のコントローラ(外部コントローラなどに)にロー ミングした後で、有線クライアントをそのWGBネットワークに接続すると、有線クライ アントのIPアドレスはアンカーコントローラにのみ表示され、外部コントローラには表 示されません。
- コントローラから WGB レコードの認証を解除すると、すべての WGB 有線クライアントのエントリも削除されます。
- ・次の機能は、WGBに接続された有線クライアントにはサポートされていません。
 - •MACフィルタリング
 - ・リンクテスト
 - •アイドルタイムアウト
- Adaptive 802.11r 向けに設定された WLAN との WGB のアソシエーションはサポートされ ません。
- •WGBは、IPv4が有効になっている場合にのみ IPv6をサポートします。ただし、WGB 有 線クライアントの IPv6 トラフィックへの影響はありません。
- WGBのアップリンクアソシエーションが完了すると、WGB管理 IPv6 は機能しません。 アソシエーションが成功すると、WGBは IPv6 アドレスを取得できます。ただし、IPv6 ping は WGB から、あるいは WGB へは受け渡されません。ワイヤレスまたは有線クライ アントから WGB管理 IPv6への SSH は機能していません。ピン可能な問題の回避策とし

て、IPv6 がすでに有効になっていて、IPv6 アドレスが割り当て済みであっても、IPv6 を 再度有効にします。

- ・uWGB モードは、TFTP も SFTP もサポートしていません。ソフトウェアアップグレードは、WGB モードから実行する必要があります。詳細については、uWGB イメージのアップグレード(12ページ)を参照してください。
- Cisco Unified Industrial Wireless ソフトウェアリリース 17.13.1 以降、uWGB モードの AP は SSHによる管理をサポートし、有線クライアントが検出されない場合はイメージのアップ グレードを実装できます。
 - ・有線クライアントが検出されると、uWGBモードのAPがuWGB状態に変わり、AP を管理できなくなります。
 - ・有線クライアントが検出されない場合、uWGBモードのAPはWGB状態に変わり、
 APを管理できます。

DayOにおける強力なパスワードの設定

初回ログイン後にWGB/uWGBに強力なパスワードを設定する必要があります。ユーザー名と 強力なパスワードは次のルールに従う必要があります。

- 1. ユーザー名の長さは1~32文字です。
- 2. パスワードの長さは8~120文字です。
- 3. パスワードには、少なくとも1つの大文字、1つの小文字、1つの数字、および1つの句 読点を含める必要があります。
- パスワードには英数字と特殊文字(33~126のASCII 10 進コード)を含めることができ ますが、次の特殊文字は使用できません。"(二重引用符)、'(一重引用符)、?(疑問 符)
- 5. パスワードには、3つの連続した順番の文字を含めることはできません。
- 6. パスワードには、同じ文字を3回連続して含めることはできません。
- 7. ユーザー名と同じ文字列や、ユーザー名を逆にした文字列はパスワードに使用できません。
- 8. 新しいパスワードは、現在のパスワードと4文字以上異なる必要があります。

たとえば、デフォルトのログイン情報は次のとおりです。

- ユーザー名:Cisco
- •パスワード: Cisco
- •イネーブルパスワード: Cisco

このログイン情報を、次の強力なパスワードを使って再設定します。

- ユーザー名: demouser
- パスワード: DemoP@ssw0rd
- •イネーブルパスワード: DemoE^aP@ssw0rd

```
User Access Verification
Username: Cisco
Password: Cisco
```

% First Login: Please Reset Credentials

Current Password:Cisco Current Enable Password:Cisco New User Name:demouser New Password:DemoP@ssw0rd Confirm New Password:DemoE^aP@ssw0rd New Enable Password:DemoE^aP@ssw0rd Confirm New Enable Password:DemoE^aP@ssw0rd

% Credentials changed, please re-login

[*04/18/2023 23:53:44.8926] chpasswd: password for user changed [*04/18/2023 23:53:44.9074] [*04/18/2023 23:53:44.9074] Management user configuration saved successfully [*04/18/2023 23:53:44.9074]

```
User Access Verification
Username: demouser
Password: DemoP@ssw0rd
APFC58.9A15.C808>enable
Password:DemoE^aP@ssw0rd
APFC58.9A15.C808#
```

(注)

) 上記の例では、デモンストレーションのためにすべてのパスワードがプレーンテキストで表示 されています。実際には、アスタリスク(*)で隠されています。

WGB のコントローラ設定

WGBをワイヤレスネットワークに接続するには、コントローラのWLANおよび関連するポリ シープロファイルで特定の設定を行う必要があります。

Cisco Client Extensions オプションを設定し、WLAN で Aironet IE のサポートを設定するには、 次の手順を実行します。

1. WLAN コンフィギュレーション サブモードを開始します。profile-name は設定されている WLAN のプロファイル名です。

#wlan profile-name

2. Cisco Client Extensions オプションを設定し、WLAN で Aironet IE のサポートを設定します。

	#ccx aironet-iesupport
(注)	この設定がないと、WGB は AP にアソシエートできません。
W	LAN ポリシープロファイルを設定するには、次の手順を実行します。
1.	ワイヤレス ポリシー コンフィギュレーション モードを開始します。
	#wireless profile policy profile-policy
2.	VLAN にプロファイル ポリシーを割り当てます。
	# vlan vlan-id
3.	WGB VLAN クライアントのサポートを設定します。
	#wgb vlan
,	

uWGB イメージのアップグレード

uWGB モードは、TFTP も SFTP もサポートしていません。ソフトウェアアップグレードを実行するには、次の手順に従います。

手順

ステップ1 TFTP または SFTP サーバーを uWGB の有線 0 ポートに接続します。

ステップ2 無線インターフェイスを [Administratively Down] 状態にします。

configure Dot11Radio *slot_id* disable

例:

#configure Dot11Radio 1 disable

ステップ3 uWGB を WGB モードに変換します。

configure Dot11Radio slot_id mode wgb ssid-profile ssid_profile_name

例:

#configure Dot11Radio 1 mode wgb ssid-profile a_uwgb_demo_ssid

```
This command will reboot with downloaded configs. Are you sure you want continue? <\!confirm\!>
```

(注)

ssid_profile_name には、ユーザーが設定した既存の SSID プロファイルを指定できます。

ステップ4 再起動後、WGB に静的 IP アドレスを割り当てます。

configure ap address ipv4 static IPv4_address netmask Gateway_IPv4_address

例:

#configure ap address ipv4 static 192.168.1.101 255.255.255.0 192.168.1.1

ステップ5 ICMP ping で動作を確認します。

ping server_IP

例:

#ping 192.168.1.20
Sending 5, 100-byte ICMP Echos to 192.168.1.20, timeout is 2 seconds
PING 192.168.1.20
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0.858/0.932/1.001 ms

ステップ6 ソフトウェアをアップグレードします。

archive download/reload <tftp | sftp | http>://server_ip/file_path

ステップ7 WGB を uWGB に戻します。

configure Dot11Radio *slot_id* **mode uwgb** *wired_client_mac_addr* **ssid-profile** *ssid_profile_name*

例:

#configure Dot11Radio 1 mode uwgb 00b4.9e00.a891 ssid-profile a_uwgb_demo_ssid

LED パターン

次の図に示すように、APの前面パネルには、システムステータス LED と RSSI LED の 2 つの LED があります。

図 2:IW9165Eの LED

1	システム ステータス LED	2	RSSI ステータス LED
	 WGBのアソシエーションが解除 された状態では、システム LED は赤色に点滅します。 WGBと親APとのアソシエーションが成立すると、システム LED は緑色に点灯します。 		 RSSI が -71dBm 以上の場合、RSSI LED は緑色に点灯します。 RSSI が -81 dBm 以上 -70 dBm 未 満の場合、RSSI LED は緑色に点 滅します。 RSSI が -81 dBm より大きく -95 dBm 未満の場合、RSSI LED は黄 色に点灯します。 それ以外の場合は消灯します。

IP アドレスの設定

IPv4 アドレスの設定

次のコマンドを入力して、APの IPv4 アドレスを設定します。

• DHCP によって IPv4 アドレスを設定するには、次のコマンドを使用します。

#configure ap address ipv4 dhcp

•静的 IPv4 アドレスを設定するには、次のコマンドを使用します。これにより、アップリンク接続なしで有線インターフェイスを介してデバイスを管理できます。

#configure ap address ipv4 static ipv4_addr netmask gateway

・現在の IP アドレス設定を表示するには、次のコマンドを使用します。

#show ip interface brief

IPv6 アドレスの設定

次のコマンドを入力して、APの IPv6 アドレスを設定します。

•静的 IPv6 アドレスを設定するには、次のコマンドを使用します。これにより、アップリンク接続なしで有線インターフェイスを介してデバイスを管理できます。

#configure ap address ipv6 static ipv6_addr prefixlen [gateway]

• #configure ap address ipv6 auto-config {enable|disable}

- (注) configure ap address ipv6 auto-config enable コマンドは、IPv6 SLAAC を有効にするように設計されています。ただし、SLAAC は cos WGB には適用されません。この CLI は、SLAAC の代わり に DHCPv6 を使用して IPv6 アドレスを設定します。
 - DHCP によって IPv6 アドレスを設定するには、次のコマンドを使用します。
 #configure ap address ipv6 dhcp
 - ・現在の IP アドレス設定を表示するには、次のコマンドを使用します。

#show ipv6 interface brief

WGB の設定

一般的な WGB の設定には、次の手順が含まれます。

- 1. SSID プロファイルを作成します。
- 2. 無線機をワークグループとして設定し、SSID プロファイルを無線に関連付けます。
- 3. 無線機をオンにします。

WGB アップリンクは、次のようなさまざまなセキュリティ方式をサポートしています。

- •オープン(非セキュア)
- PSK
- Dot1x (LEAP, PEAP, FAST-EAP, TLS)

次に、Dot1x FAST-EAP の設定例を示します。

configure dot1x credential demo-cred username demouser1 password Dem0Pass!@
configure eap-profile demo-eap-profile dot1x-credential demo-cred
configure eap-profile demo-eap-profile method fast
configure ssid-profile demo-FAST ssid demo-fast authentication eap profile demo-eap-profile
key-management wpa2
configure dot11radio 1 mode wgb ssid-profile demo-FAST
configure dot11radio 1 enable

以下の項で、WGB の設定について詳しく説明します。

SSID の設定

SSIDの設定は、次の2つの部分で構成されます。

SSID プロファイルの作成

SSID プロファイルの認証プロトコルとして、次のいずれかを選択します。

オープン認証による SSID プロファイルの設定

オープン認証を使用して SSID プロファイルを設定するには、次のコマンドを使用します。

configure ssid-profile ssid-profile-name ssid radio-serv-name authentication open

PSK 認証による SSID プロファイルの設定

PSK WPA2 認証を使用して SSID プロファイルを設定するには、次のコマンドを使用します。

configure ssid-profile *ssid-profile-name* ssid *SSID_name* authentication psk *preshared-key* key-management wpa2

PSK Dot11r 認証を使用して SSID プロファイルを設定するには、次のコマンドを使用します。

configure ssid-profile ssid-profile-name ssid SSID_name authentication psk preshared-key key-management dot11r

PSK Dot11w認証を使用して SSID プロファイルを設定するには、次のコマンドを使用します。

configure ssid-profile *ssid-profile-name* ssid *SSID_name* authentication psk *preshared-key* key-management dot11w

Dot1x 認証による SSID プロファイルの設定

Dot1x 認証を使用して SSID プロファイルを設定するには、次のコマンドを使用します。

configure ssid-profile *ssid-profile-name* ssid *radio-serv-name* authentication eap profile eap-profile-name key-management { dot11r | wpa2 | dot11w { optional | required } }

次に、Dot1x EAP-PEAP 認証を使用した SSID プロファイルの設定例を示します。

```
configure dot1x credential c1 username wgbusr password cisco123456
configure eap-profile p1 dot1x-credential c1
configure eap-profile p1 method peap
configure ssid-profile iot-peap ssid iot-peap authentication eap profile p1 key-management
wpa2
```

ワークグループブリッジの無線インターフェイスの設定

IW9165Eには2.4 GHz 無線機がありません。スロット1 (dot11radio 1)のみをアップリンクとして設定し、WGBモードで動作させることができます。

 次のコマンドを入力して、無線インターフェイスにWGBSSIDプロファイルをマッピング します。

#configure dot11radio 1 mode wgb ssid-profile ssid-profile-name

例

#configure dot11radio 1 mode wgb ssid-profile psk_ssid

・次のコマンドを入力して、無線インターフェイスを設定します。

configure dot11radio 1 { enable | disable }

例

```
#configure dot11radio 1 disable
```

Dot1X ログイン情報の設定

次のコマンドを入力して、dot1x ログイン情報を設定します。 # configure dot1x credential *profile-name* username *name* password *pwd* 次のコマンドを入力して、WGB EAP dot1x プロファイルの概要を表示します。 # show wgb eap dot1x credential profile

WGB 有線クライアントの認証解除

このコマンドを入力して、WGB 有線クライアントの認証を解除します。 # clear wgb client {all |single mac-addr}

EAP プロファイルの設定

EAP プロファイルを設定するには、次の手順を実行します。

- 1. dot1x ログイン情報プロファイルを EAP プロファイルにバインドします。
- 2. EAP プロファイルを SSID プロファイルにバインドします。
- 3. SSID プロファイルを無線機にバインドします。

手順

ステップ1 次のコマンドを入力して、EAP プロファイルの方式タイプを設定します。

configure eap-profile profile-namemethod {fast | leap | peap | tls}

ステップ2 次のコマンドを入力して、TLS 用の CA トラストポイントを接続します。デフォルトプロファイルでは、 WGB は認証に内部 MIC 証明書を使用します。

configure eap-profile profile-name trustpoint { default | name trustpoint-name }

ステップ3 次のコマンドを入力して、dot1x-credential プロファイルをバインドします。

configure eap-profile profile-name dot1x-credential profile-name

ステップ4 [オプション] 次のコマンドを入力して、EAP プロファイルを削除します。

configure eap-profile profile-namedelete

ステップ5 次のコマンドを入力して、EAP プロファイルと dot1x プロファイルの概要を表示します。 # show wgb eap profile all

端末のトラストポイントの手動登録設定

手順

ステップ1 次のコマンドを入力して、WGB にトラストポイントを作成します。

configure crypto pki trustpoint ca-server-name enrollment terminal

ステップ2 次のコマンドを入力して、トラストポイントを手動で認証します。

configure crypto pki trustpoint ca-server-name authenticate

Base 64 でエンコードされた CA 証明書を入力し、新しい行に quit と入力して証明書を終了します。

(注)

中間証明書を使用する場合、ユーザーはトラストポイントに完全な証明書チェーンをインポートする必要 があります。

例:

#configure crypto pki trustpoint demotp authenticate

Enter the base 64 encoded CA certificate.And end with the word "quit" on a line by itself....

```
-----BEGIN CERTIFICATE-----
[base64 encoded root CA certificate]
-----END CERTIFICATE-----
[base64 encoded intermediate CA certificate]
-----END CERTIFICATE-----
quit
```

ステップ3 次のコマンドを入力して、秘密鍵のサイズを設定します。

configure crypto pki trustpoint ca-server-name key-size key-length

ステップ4 次のコマンドを入力して、サブジェクト名を設定します。

configure crypto pki trustpoint ca-server-name subject-name name [Optional] 2ltr-country-code state-name locality org-name org-unit email

ステップ5 次のコマンドを入力して、秘密鍵と証明書署名要求(CSR)を生成します。

configure crypto pki trustpoint ca-server-name enroll

CA サーバーの CSR 出力を使用して、デジタル署名付き証明書を作成します。

ステップ6 次のコマンドを入力して、WGB に署名付き証明書をインポートします。

configure crypto pki trustpoint ca-server-name import certificate

Base 64 でエンコードされた CA 証明書を入力し、新しい行に quit と入力して証明書を終了します。

ステップ7 [オプション] 次のコマンドを入力して、トラストポイントを削除します。

configure crypto pki trustpoint trustpoint-name delete

ステップ8 次のコマンドを入力して、トラストポイントの概要を表示します。

show crypto pki trustpoint

ステップ9 次のコマンドを入力して、トラストポイント用に作成された証明書の内容を表示します。

show crypto pki trustpoint trustpoint-name certificate

ワークグループブリッジのトラストポイントの自動登録設定

Ŧ	加百
┯	川 只

ステップ1	次のコマンドを入力して、サーバー URL を使用して WGB にトラストポイントを登録します。
	# configure crypto pki trustpoint ca-server-name enrollment url ca-server-url

ステップ2 次のコマンドを入力して、トラストポイントを認証します。 # configure crypto pki trustpoint *ca-server-name* authenticate このコマンドは、CA サーバーから CA 証明書を自動的に取得します。

ステップ3 次のコマンドを入力して、秘密鍵のサイズを設定します。

configure crypto pki trustpoint ca-server-name key-size key-length

ステップ4 次のコマンドを入力して、サブジェクト名を設定します。

configure crypto pki trustpoint ca-server-name subject-name name [Optional] 2ltr-country-code state-name locality org-name org-unit email

ステップ5 次のコマンドを入力して、トラストポイントを登録します。

configure crypto pki trustpoint ca-server-name enroll

CA サーバーのデジタル署名付き証明書を要求します。

- ステップ6 次のコマンドを入力して、自動登録を有効にします。
 # configure crypto pki trustpoint *ca-server-name* auto-enroll enable *renew-percentage* コマンドで disable 構文を使用することで、自動登録を無効にできます。
- **ステップ7** [オプション] 次のコマンドを入力して、トラストポイントを削除します。

configure crypto pki trustpoint trustpoint-name delete

ステップ8 次のコマンドを入力して、トラストポイントの概要を表示します。

show crypto pki trustpoint

ステップ9 次のコマンドを入力して、トラストポイント用に作成された証明書の内容を表示します。

show crypto pki trustpoint trustpoint-name certificate

ステップ10 次のコマンドを入力して、PKIタイマー情報を表示します。

show crypto pki timers

TFTP サーバーを使用した手動での証明書の登録設定

手順

ステップ1 次のコマンドを入力して、WGBのトラストポイントのCA証明書とクライアント証明書を取得するための 登録方式を指定します。

configure crypto pki trustpoint ca-server-name enrollment tftp tftp-addr/file-name

ステップ2 次のコマンドを入力して、トラストポイントを手動で認証します。

configure crypto pki trustpoint ca-server-name authenticate

指定された TFTP サーバーから CA 証明書を取得して認証します。ファイル指定が含まれている場合は、 WGB は指定されたファイル名に「.ca」という拡張子を付加します。

ステップ3 次のコマンドを入力して、秘密鍵のサイズを設定します。

configure crypto pki trustpoint ca-server-name key-size key-length

ステップ4 次のコマンドを入力して、サブジェクト名を設定します。

configure crypto pki trustpoint ca-server-name subject-name name [Optional] 2ltr-country-code state-name locality org-name org-unit email

ステップ5 次のコマンドを入力して、秘密鍵と証明書署名要求(CSR)を生成します。

configure crypto pki trustpoint ca-server-name enroll

証明書要求を生成し、この要求をTFTPサーバーに書き込みます。書き込まれるファイル名には「.req」という拡張子が付加されます。

ステップ6 次のコマンドを入力して、WGB に署名付き証明書をインポートします。

configure crypto pki trustpoint ca-server-name import certificate

許可された証明書を取得するコンソール端末で、TFTP によって証明書をインポートします。WGB は、同 じファイル名とファイル名に「.crt」拡張子を付けたものを使用して、TFTP を使用して付与された証明書 の取得を試行します。

ステップ1 次のコマンドを入力して、トラストポイントの概要を表示します。

show crypto pki trustpoint

ステップ8 次のコマンドを入力して、トラストポイント用に作成された証明書の内容を表示します。

show crypto pki trustpoint trustpoint-name certificate

WGB または uWGB タイマーの設定

タイマー設定 CLIは、WGBとuWGBで共通です。タイマーを設定するには、次のコマンドを 使用します。

・次のコマンドを入力して、WGBアソシエーション応答のタイムアウトを設定します。

configure wgb association response timeout response-millisecs

デフォルト値は100ミリ秒です。有効な範囲は100~5000ミリ秒です。

・次のコマンドを入力して、WGB 認証応答のタイムアウトを設定します。

configure wgb authentication response timeout response-millisecs

デフォルト値は100ミリ秒です。有効な範囲は100~5000ミリ秒です。

・次のコマンドを入力して、WGB EAP タイムアウトを設定します。

configure wgb eap timeout timeout-secs

デフォルト値は3秒です。有効な範囲は、2~60秒です。

次のコマンドを入力して、WGBブリッジクライアント応答のタイムアウトを設定します。
 # configure wgb bridge client timeout timeout-secs

デフォルトのタイムアウト値は300秒です。有効な範囲は10~1000000秒です。

uWGB の設定

ユニバーサル WGB は、アップリンク無線機 MAC アドレスを使用してシスコ以外のアクセス ポイントと相互運用できます。このため、ユニバーサル ワークグループ ブリッジのロールは 1 つの有線クライアントのみをサポートします。

WGB 設定のほとんどが uWGB に適用されます。唯一の違いは、次のコマンドを使用して有線 クライアントの MAC アドレスを設定することです。

configure dot11 <slot_id> mode uwgb <uwgb_wired_client_mac_address> ssid-profile <ssid-profile>

次に、Dot1x FAST-EAP の設定例を示します。

configure dot1x credential demo-cred username demouser1 password Dem0Pass!@
configure eap-profile demo-eap-profile dot1x-credential demo-cred
configure eap-profile demo-eap-profile method fast
configure ssid-profile demo-FAST ssid demo-fast authentication eap profile demo-eap-profile
key-management wpa2
configure dot11radio 1 mode uwgb fc58.220a.0704 ssid-profile demo-FAST
configure dot11radio 1 enable

以下の項で、uWGBの設定について詳しく説明します。

- •SSID の設定
- Dot1X ログイン情報の設定
- EAP プロファイルの設定
- ・端末のトラストポイントの手動登録設定
- ワークグループブリッジのトラストポイントの自動登録設定
- •TFTP サーバーを使用した手動での証明書の登録設定
- •WGB または uWGB タイマーの設定

WGB と uWGB 間の変換

WGBからuWGBに変換するには、次のコマンドを使用します。

#configure dot11radio <radio_slot_id> mode uwgb <WIRED_CLIENT_MAC> ssid-profile
<SSID_PROFILE_NAME>

uWGB から WGB に変換するには、次のコマンドを使用します。この変換を行うと、AP が再 起動されます。

#configure Dot11Radio 1 mode wgb ssid-profile <SSID PROFILE NAME>

This command will reboot with downloaded configs. Are you sure you want continue? [confirm]

WGB 設定のインポートとエクスポート

既存の WGB の稼働中の設定をサーバーにアップロードしてから、新たに展開した WGB にダウンロードします。

設定をサーバーにアップロードするには、次のコマンドを使用します。

#copy configuration upload <sftp:|tftp:> ip-address [directory] [file-name]

展開内のすべての WGB にサンプル設定をダウンロードするには、次のコマンドを使用します。

#copy configuration download <sftp:|tftp:> ip-address [directory] [file-name]

copy configuration download コマンドを実行すると、実行後にアクセスポイントが再起動しま す。インポートされた設定は、再起動後に有効になります。

WGB および uWGB の設定の確認

show run コマンドを使用して、AP が WGB モードか uWGB モードかを確認します。

• WGB :

#show run AP Name AP Mode CDP State Watchdog monitoring SSH State AP Username Session Timeout	: APFC58.9A15.C808 : WorkGroupBridge : Enabled : Enabled : Disabled : admin : 300	
Radio and WLAN-Profi	le mapping:-	
Radio ID Radio Mo Authentica	ode SSID-Profile ation	SSID
1 WGB OPEN	myssid	demo
Radio configurations	s : -	
Radio Id Admin state Mode Radio Id Admin state Mode Dot11 type Radio Id Admin state Mode	: NA : NA : NA : 1 : DISABLED : WGB : 11ax : NA : NA : NA	
• uWGB :		
#show run AP Name AP Mode CDP State Watchdog monitoring SSH State AP Username Session Timeout	: APFC58.9A15.C808 : WorkGroupBridge : Enabled : Enabled : Disabled : admin : 300	
Radio and WLAN-Profi	le mapping:-	
Radio ID Radio Mo Authentica	ode SSID-Profile ation	SSID
1 UWGB OPEN	myssid	demo
Radio configurations	3:-	
Radio Id Admin state Mode Radio Id Admin state Mode	: NA : NA : NA : 1 : DISABLED : UWGB	

Uclient mac	: 0009.0001.0001
Current state	: WGB
UClient timeout	: 0 Sec
Dot11 type	: 11ax
Radio Id	: NA
Admin state	: NA
Mode	: NA

show wgb dot11 associations コマンドを使用して、WGB および uWGB の設定を確認します。

• WGB :

```
#show wgb dot11 associations
Uplink Radio ID : 1
Uplink Radio MAC : 00:99:9A:15:B4:91
SSID Name : roam-m44-open
Parent AP Name : APFC58.9A15.C964
Parent AP MAC : 00:99:9A:15:DE:4C
Uplink State : CONNECTED
Auth Type : OPEN
Dot11 type : 11ax
Channel : 100
Bandwidth : 20 MHz
Current Datarate (Tx/Rx) : 86/86 Mbps
Max Datarate : 143 Mbps
RSSI : 53
IP : 192.168.1.101/24
Default Gateway : 192.168.1.1
IPV6 : ::/128
Assoc timeout : 100 Msec
Auth timeout : 100 Msec
Dhcp timeout : 60 Sec
```

• uWGB :

#show wgb dot11 associations

Uplink Radio ID : 1 Uplink Radio MAC : 00:09:00:01:00:01 SSID Name : roam-m44-open Parent AP MAC : FC:58:9A:15:DE:4C Uplink State : CONNECTED Auth Type : OPEN Uclient mac : 00:09:00:01:00:01 Current state : UWGB Uclient timeout : 60 Sec Dotl1 type : 11ax Channel : 36 Bandwidth : 20 MHz Current Datarate (Tx/Rx) : 77/0 Mbps Max Datarate : 143 Mbps RSSI : 60 IP : 0.0.0.0 IPV6 : ::/128 Assoc timeout : 100 Msec Auth timeout : 100 Msec Dhcp timeout : 60 Sec

24

Syslog の設定

Syslogは、デバイスがイベントデータログを中央に送信して保存するために使用する一般的な プロトコルです。現在、UDPモードのみがサポートされています。WGBでデバッグコマンド が有効になっている場合には、追加のデバッグログが収集されます。収集され Syslogサーバー に送信されるログはすべて、「kernel」ファシリティおよび「warning」レベルとなります。

- ・WGB syslog を有効にするには、次のコマンドを使用します。
- # logging host enable <server_ip> UDP
- •WGB syslog を無効にする(デフォルト)には、次のコマンドを使用します。
- # logging host enable 0.0.0.0 UDP
- ・現在の syslog 設定を表示するには、次のコマンドを使用します。
- # show running-config

HT 速度制限の設定

WGBがフィールドを移動する展開では、高スループット(HT)変調および符号化方式(MCS) を使用して伝送レート制限を手動で設定できます。

次に、802.11nHTm4.m5.レートで送信するように設定する場合のWGBの設定例を示します。

Config dot11radio [1|2] 802.11ax disable

Config dot11radio [1|2] 802.11ac disable

Config dot11radio [1|2] speed ht-mcs m4. m5.

(注) WGB では、レガシーレートの設定もサポートされます。

Config dot11radio [1|2] speed legacy-rate basic-6.0 9.0 12.0 18.0 24.0

レガシーレートは、802.11 管理フレームと制御フレームで使用されます。WGB レガシーレートは、AP のレガシーレートに一致するか、少なくともこれら2つのレートが重複している必要があります。そうでない場合には、レートの不一致が原因で WGB アソシエーションが拒否されます。

WGB Tx MCS レートを確認するには、debug wgb dot11 rate コマンドを使用します。次に、このコマンドの出力例を示します。

WGB1#debug	wgb dotll rate								
*10/14/2023	03:16:08.6175]								
*10/14/2023	03:16:08.6175]	MAC	Tx-Pkts	Rx-Pkts	Tx-Rate(Mbps)	Rx-Rate(Mbps)	RSSI	Tx-Retries	
*10/14/2023	03:16:08.6175]	24:16:1B:F8:02:6E			HT-20,1SS,MCS5,(52)	HT-20,1SS,MCS5,SGI(57)	-70		
WGB1#[*10/1	4/2023 03:16:09	.6179] 24:16:1B:F8:02	:6E	330	HT-20,1SS,MCS5,(52)	HT-20,1SS,MCS5,SGI	(57)	-71	
*10/14/2023	03:16:10.6183]	24:16:1B:F8:02:6E	332		HT-20,1SS,MCS5,(52)	HT-20,1SS,MCS5,SGI(57)	-71		
*10/14/2023	03:16:11.6187]	24:16:1B:F8:02:6E	327		HT-20,1SS,MCS5,(52)	HT-20,1SS,MCS5,SGI(57)	-71	18	
*10/14/2023	03:16:12.6190]	24:16:1B:F8:02:6E	330		HT-20,1SS,MCS5,(52)	HT-20,1SS,MCS5,SGI(57)	-70		
*10/14/2023	03:16:13.6194]	24:16:1B:F8:02:6E	333		HT-20,1SS,MCS5,(52)	HT-20,1SS,MCS5,SGI(57)		21	
*10/14/2023	03:16:14.6198]	24:16:1B:F8:02:6E	331		HT-20,1SS,MCS5,(52)	HT-20,1SS,MCS5,SGI(57)	-70	16	
*10/14/2023	03:16:15.6202]	24:16:1B:F8:02:6E	328		HT-20,1SS,MCS5,(52)	HT-20,1SS,MCS5,SGI(57)	-70	24	
*10/14/2023	03:16:16.6206]	24:16:1B:F8:02:6E	330		HT-20,1SS,MCS5,(52)	HT-20,1SS,MCS5,SGI(57)	-70	21	
*10/14/2023	03:16:17.6210]	24:16:1B:F8:02:6E	332		HT-20,1SS,MCS5,(52)	HT-20,1SS,MCS5,SGI(57)	-70		
*10/14/2023	03:16:18.6214]	24:16:1B:F8:02:6E	327		HT-20,1SS,MCS5,(52)	HT-20,1SS,MCS5,SGI(57)	-71		
*10/14/2023	03:16:19.6218]	24:16:1B:F8:02:6E	333		HT-20,1SS,MCS5,(52)	HT-20,1SS,MCS5,SGI(57)	-71	18	
*10/14/2023	03:16:20.6221]	24:16:1B:F8:02:6E	330		HT-20,1SS,MCS5,(52)	HT-20,1SS,MCS5,SGI(57)	-71		
*10/14/2023	03:16:21.62587	24:16:1B:F8:02:6E	328	3	HT-20,1SS,MCS5,(52)	HT-20,1SS,MCS5,SGI(57)	-70	16	

802.11v のサポート

802.11vは、IEEE 802.11標準ファミリのワイヤレスネットワーク管理の標準規格です。802.11v の機能拡張の1つは、WLANが関連付けられたクライアントに要求を送信し、クライアントが より適切なアソシエート先 AP を選択できるように助言するネットワーク支援型ローミングで す。これは、ロードバランシングと、接続が不安定なクライアントの管理の両方に役立ちま す。

WGBに 802.11v のサポートを追加することで、WGB はアソシエーションが解除される前に切断が迫っていることを認識し、自発的にローミングを開始し、ネイバー AP のリストから適切な AP を選択できます。WGB は最新のネイバー AP を定期的にクエリし、次のローミング時に 最適な AP に関連付けることができます。

ネイバー AP のチャンネル情報は Basic Service Set (BSS) 移行要求フレームに含まれるため、 複数のチャンネルを展開する場合は、ネイバー AP のチャンネルのみを走査することでローミ ング遅延を低減できます。

ワイヤレスコントローラは、AP側のロードバランス、RSSI、およびデータレートに基づいて クライアントのアソシエーションを解除できます。このアソシエーションの解除は、発生する 前に802.11vクライアントに通知できます。ワイヤレスコントローラは、一定期間(設定可能) 内にクライアントと別の AP との再アソシエーションが成立しない場合、一定期間経過後にク ライアントとのアソシエーションを解除できます。ネットワーク支援型ローミングによるクラ イアントのアソシエーション解除を有効にするには、ワイヤレスコントローラからアソシエー ション解除通知設定をオンにします。BSS 移行管理要求フレーム内のオプションフィールド ([disassociation imminent])がこれに相当します。

ワイヤレスコントローラでの 802.11v 設定の詳細については、https://www.cisco.com/c/en/us/td/ docs/wireless/controller/9800/17-13/config-guide/b_wl_17_13_cg/m_802_11v_ewlc.htmlを参照してく ださい。

WGB で 802.11v のサポートを設定するには、次のコマンドを使用します。

•WGB で 802.11v のサポートを有効または無効にするには、次のコマンドを使用します。 802.11vのサポートを有効にすると、WGBはネイバーリストから学習したチャンネルのみ を走査します。

configure wgb mobile station interface dot11Radio <radio_slot_id> dot11v-bss-transition
[enable|disable]

• WGB が親 AP に BSS 移行クエリメッセージを送信する時間の間隔を設定するには、次の コマンドを使用します。明示的に設定されていない場合、デフォルト値は 10 秒です。タ イマーは秒単位で設定します。

configure wgb neighborlist-update-interval <1 \sim 900>

• 関連付けられた AP から受信したネイバーリストを確認するには、次のコマンドを使用します。

show wgb dot11v bss-transition neighbour

• dotl1v ネイバーのチャンネルリスト、走査済みの補助無線機、走査済みの残存チャンネル を確認するには、次のコマンドを使用します。

show wgb dot11v bss-transition channel

・ネイバーリストをクリアしてエラー状態を回復するには、次のコマンドを使用します。

clear wgb dot11v bss-transition neighbor

補助走査の設定

補助走査モードは、ローミング性能の向上を目的に、WGB 無線機2(5 GHz)で走査専用モードまたはハンドオフモードのいずれかに設定できます。

走査専用モードの概要

- AP は無線機に、クライアント接続の提供のためではなく、走査を目的とした動作のみを 許可します。
- AP はワイヤレス環境を継続的に走査して、ネットワーク性能、干渉、不正デバイス、およびその他の重要な計量値に関するデータを収集します。

走査専用モードの設定

スロット2の無線機が走査専用モードに設定されている場合、スロット1(5G)の無線機は常 にアップリンクとして選択されます。スロット2(5G)無線機は、チャンネルリストに基づい て設定された SSID を継続的に走査します。デフォルトでは、チャンネルリストには、(規制 ドメインに基づき)サポートされているすべての5Gチャンネルが含まれます。走査リストは、 手動で設定することも、802.11vによって学習させることもできます。

ローミングが発動すると、アルゴリズムによって走査表から候補が検索され、表が空でなけれ ば走査段階は飛ばされます。その後、WGBがその候補 APとのアソシエーションを行います。

走査専用モードを設定するには、次のコマンドを使用します。

configure dot11Radio 2 mode scan only

チャンネルリストを手動で設定するには、次のコマンドを使用します。

configure wgb mobile station interface dot11Radio 1 scan <channel> [add|delete]

デフォルトでは、走査表の候補 AP エントリは 1200 ミリ秒でエージアウトします。次のコマ ンドを使用して、このタイマーを調整できます。

#configure wgb scan radio 2 timeout

<1 ~ 5000> AP 走査の有効期限

```
(注)
```

AP 選択アルゴリズムにより、走査表から最適な RSSI を持つ候補が選択されます。この RSSI 値が古い値になっている場合があります。この場合には、ローミングで障害が発生する可能性 があります。

show wgb scan コマンドを使用して、走査表を確認します。

#show wgb scan Best AP expire time: 5000 ms

*********** [AP List	.]****	********	*
BSSID	RSSI	CHANNEL	Time
FC:58:9A:15:E2:4F	84	136	1531
FC:58:9A:15:DE:4F	37	136	41
********** [Best AP]*****	*********	*
BSSID	RSSI	CHANNEL	Time
FC:58:9A:15:DE:4F	37	136	41

補助走査ハンドオフモードの設定

スロット2の無線機がハンドオフモードに設定されている場合、無線機1と無線機2の両方が アップリンクの候補となります。一方の無線機がワイヤレスアップリンクを維持している間 に、もう一方の無線機がチャンネルの走査を継続します。走査リストは、手動で設定すること も、802.11vによって学習させることもできます。

無線機2は無線機1と同じMACアドレスを共有し、走査機能、アソシエーション、および データ伝送をサポートします。どちらの無線機も、[serving]または[scanning]ロールで動作で きます。ローミングが発動すると、アルゴリズムによって走査データベース(内部の表)が検 索され、最適な候補APを選択して接続が確立されます。無線機のロールとトラフィックは、 各ローミングの後にスロット1とスロット2の間で動的に切り替わります。WGBは常に、 [scanning]ロールで動作している無線機を使用して、新しいAPへのローミングアソシエーショ ンを完了します。この設定により、ローミング中断時間を20~50ミリ秒に改善できます。

次の表に、IW9165E での補助走査ハンドオフ無線機モードの設定例を示します。

スロット0 (2.4G)	スロット1(5G)	スロット2(5Gのみ)	スロット 3 (走査用無 線機)
該当なし	WGB	走査ハンドオフ	該当なし

次の表では、さまざまなメカニズムでのローミング瞬断時間(3 チャンネルの場合)を比較します。

ローミング瞬断時間	通常のチャンネル設定	補助走査のみ	補助走査ハンドオフ
走査	(40+20)*3=180 ミリ秒	0+40 ミリ秒	0ミリ秒
アソシエーション	30~80ミリ秒	30~80ミリ秒	20~50ミリ秒
合計	~210ミリ秒	70~120ミリ秒	20~50ミリ秒

WGB スロット2の無線機を補助走査モードに設定するには、次のコマンドを使用します。

configure dot11Radio 2 mode scan handoff

show run コマンドを使用して、設定を確認します。

#show run

• • •		
Radio Id	:	1
Admin state	:	ENABLED
Mode	:	WGB
Spatial Stream	:	1
Guard Interval	:	800 ns
Dot11 type	:	11n
11v BSS-Neighbor	:	Disabled
A-MPDU priority	:	0x3f
A-MPDU subframe number	:	12
RTS Protection	:	2347(default)
Rx-SOP Threshold	:	AUTO
Radio profile	:	Default
Encryption mode	:	AES128
Radio Id	:	2
Admin state	:	ENABLED
Mode	:	SCAN - Handoff
Spatial Stream	:	1
Guard Interval	:	800 ns
Dot11 type	:	11n
11v BSS-Neighbor	:	Disabled
A-MPDU priority	:	0x3f
A-MPDU subframe number	:	12
RTS Protection	:	2347(default)
Rx-SOP Threshold	:	AUTO
Radio profile	:	Default

各無線機の現在のロールと補助走査の結果を表示するには、show wgb scan コマンドを使用します。

APFC58.9A15.C808**#show wgb scan** Best AP expire time: 2500 ms

Aux Scanning Radio Results (slot 2) ***********[AP List]************** RSSI CHANNEL Time BSSID 153 FC:58:9A:15:DE:4E 54 57 FC:58:9A:15:DE:4E 54 FC:58:9A:15:E2:4E 71 153 64 **********[Best AP]**************** BSSID RSSI CHANNEL Time FC:58:9A:15:DE:4E 54 153 57 Aux Serving Radio Results *********** [AP List]************** BSSID RSSI CHANNEL Time FC:58:9A:15:DE:4E 58 153 57

デュアル無線機WGBによるローミングの最適化

Cisco IOS-XE 17.15.1 リリース以降、デュアル無線機構成のデバイスのローミング効率が向上 しました。ビーコンフレームが連続して欠落するかパケットの再試行回数が上限に達すること で、ローミングが発動します。2 つ目の無線機により、WGB は走査段階を飛ばし、候補とな る AP の走査表を直接確認できます。このプロセスにより、サービスのダウンタイムが短縮さ れます。

ローミングが発動する要因

ローミングは、次のイベントで発動します。

- Low RSSI: AP などのワイヤレスデバイスが信号から受信する電力レベルを測定します。
 RSSI 値を使ってワイヤレス接続の品質を判断し、ワイヤレスネットワークのトラブルシュートと最適化を行います。
- Beacon miss-count: クライアントデバイスがワイヤレスネットワーク内の AP から連続で 受信できなかったビーコンフレーム数を示します。
- Maximum packet retries: クライアントデバイスが確認応答を送信しない場合に、データパケットを再送信する回数の上限を指定します。

デュアル無線機構成

デュアル無線機構成において、IW9167E AP で可能な設定は次のとおりです。

デュアル無線機	AP
5GHz 無線機1+無線機2(走査専用モード)	IW9165E
5 GHz 無線機 1 + 無線機 2(補助走査ハンドオ フモード)	

レイヤ**2 NAT**の設定

1 対1(1:1) レイヤ2NATは、固有のパブリックIPアドレスを既存のプライベートIPアドレス(エンドデバイス)に割り当てるサービスであり、エンドデバイスがパブリックネットワークと通信できるようになります。レイヤ2NATには、プライベートからパブリックおよびパブリックからプライベートへサブネットの変換を定義できる2種類の変換表があります。

産業分野における、すべてのHMI(ロボットなどのお客様のマシン)に同じファームウェアが プログラムされているシナリオでは、マシン間のファームウェアの重複は、IPアドレスがHMI
間で再利用されることを意味します。この機能は、パブリックネットワークと通信する産業用 ネットワークで重複する同じ IP アドレスを持つ複数のエンドデバイスの問題を解決します。

次の表に、レイヤ2NATを設定するためのコマンドを示します。

表 2: レイヤ 2 NAT 設定コマンド

コマンド	説明
<pre>#configure l2nat {enable disable}</pre>	L2 NAT を有効または無効にします。
#configure l2nat default-vlan <vlan_id></vlan_id>	すべてのNAT ルールが適用されるデフォルト のVLANを指定します。 <i>vlan_id</i> が指定されて いない場合、すべてのNAT ルールが vlan 0 に 適用されます。
<pre>#configure l2nat {add delete} inside from host <original_ip_addr> to <translated_ip_addr></translated_ip_addr></original_ip_addr></pre>	プライベートIPアドレスをパブリックIPアド レスに変換する NAT ルールを追加または削除 します。
	 original_ip_addr: WGB イーサネットポートに接続された有線クライアントのプライベート IP アドレス。
	 <i>Translation_ip_addr</i>:パブリックネット ワークで有線クライアントを表すパブリッ ク IP アドレス。

コマンド	説明
<pre>#configure l2nat {add delete} outside from host <original_ip_addr> to <translated_ip_addr></translated_ip_addr></original_ip_addr></pre>	パブリック IP アドレスをプライベート IP アド レスに変換する NAT ルールを追加または削除 します。 • original_ip_addr:外部ネットワークホス トのパブリック IP アドレス。 • Translation_ip_addr:プライベートネット ワークで外部ネットワークホストを表す プライベート IP アドレス。
<pre>#configure l2nat {add delete} inside from network <original_nw_prefix> to <translated_nw_prefix> <subnet_mask></subnet_mask></translated_nw_prefix></original_nw_prefix></pre>	プライベート IP アドレスサブネットをパブ リック IP アドレスサブネットに変換する NAT ルールを追加または削除します。 • original_nw_prefix:プライベート IP ネッ トワークプレフィックス。 • Translation_nw_prefix:パブリック IP ネッ トワークプレフィックス。
#configure l2nat {add delete} outside from network <original_nw_prefix> to <translated_nw_prefix> <subnet_mask></subnet_mask></translated_nw_prefix></original_nw_prefix>	パブリック IP アドレスサブネットをプライ ベート IP アドレスサブネットに変換する NAT ルールを追加または削除します。 ・original_nw_prefix:パブリック IP ネット ワークプレフィックス。 ・Translation_nw_prefix:プライベート IP ネットワークプレフィックス。

次の表に、レイヤ2NAT設定を確認およびトラブルシュートするための show コマンドと debug コマンドを示します。

表 3: レイヤ 2 NAT の Show コマンドと Debug コマンド

コマンド	説明
#show l2nat entry	レイヤ 2 NAT の実行中エントリを表示しま す。
#show l2nat config	レイヤ2NAT 設定の詳細を表示します。
#show l2nat stats	レイヤ2NATパケット変換統計を表示しま す。
#show l2nat rules	設定からレイヤ2NAT ルールを表示します。

コマンド	説明
#clear l2nat statistics	パケット変換統計をクリアします。
#clear l2nat rule	レイヤ2NAT ルールをクリアします。
#clear l2nat config	レイヤ2NAT 設定をクリアします。
#debug l2nat	パケット変換プロセスのデバッグを有効にし ます。
#debug l2nat all	パケット着信時に、NAT エントリに一致する 結果を出力します。
	注意 この debug コマンドにより、コンソールに大 量のログが出力される可能性があります。特 に Syslog サービスがブロードキャストアドレ スで有効になっている場合、このコマンドが 原因でコンソールからの応答が失われる可能 性があります。
#undebug l2nat	パケット変換プロセスのデバッグを無効にし ます。

ホスト IP アドレス変換の設定例

このシナリオでは、WGBに接続されたエンドクライアント(172.16.1.36)は、ゲートウェイ に接続されたサーバー(192.168.150.56)と通信する必要があります。レイヤ2NATは、外部 ネットワーク(192.168.150.36)上でのエンドクライアントのアドレスと内部ネットワーク (172.16.1.56)上でのサーバーのアドレスを提供するように設定されています。

次の表は、このシナリオの設定作業を示しています。

コマンド	目的
#configure l2nat add inside from host 172.16.1.36 to 192.168.150.36 #configure l2nat add outside from host 192.168.150.56 to 172.16.1.56	NAT ルールを追加して、内部クライアントと 外部サーバーが相互に通信できるようにしま す。

コマンド	目的
<pre>#configure l2nat add inside from host 172.16.1.1 to 192.168.150.1 #configure l2nat add inside from host 172.16.1.255 to 192.168.150.255</pre>	ゲートウェイとブロードキャストアドレスの NAT を追加します。

次の show コマンドにより、設定を表示します。

・次のコマンドは、レイヤ2NAT設定の詳細を表示します。出力のI2Oは「内部から外部」 を意味し、O2Iは「外部から内部」を意味します。

Status: enabled Default Vlan: 0 The Number of L2nat Rules: 4 Dir Inside Outside Vlan O21 172.16.1.56 192.168.150.56 0 I20 172.16.1.255 192.168.150.255 0 I20 172.16.1.1 192.168.150.1 0 *Xのコマンドは、レイヤ2NATルールを表示します。 *show l2nat rule Vlan Dir Inside Outside Vlan O21 172.16.1.36 192.168.150.56 0 I20 172.16.1.36 192.168.150.56 0 O21 172.16.1.36 192.168.150.255 0 I20 172.16.1.255 192.168.150.255 0 I20 172.16.1.360 192.168.150.360 0 I20 172.16.1.3600 192.168.150.3600 1 false inside-to-outside 172.16.1.3600 192.168.150.3600 1 false inside-to-outside 172.16.1.3600 192.168.150.3600 1 true inside-to-outside 172.16.1.2550 192.168.150.3600 1 true inside-to-outside	#show L2NAT	12nat config Configuration	are:					
DirInsideOutsideVlanO2I172.16.1.56192.168.150.560120172.16.1.36192.168.150.360120172.16.1.255192.168.150.2550120172.16.1.1192.168.150.2550120172.16.1.1192.168.150.10•次のコマンドは、レイヤ2NATルールを表示します。#show 12nat ruleDirInsideOutsideVlan02I172.16.1.56192.168.150.560120172.16.1.36192.168.150.560120172.16.1.255192.168.150.550120172.16.1.255192.168.150.2550120172.16.1.1192.168.150.10•次のコマンドは、レイヤ2NAT実行中エントリを表示します。#show 12nat entryDirectionOriginalSubstituteAgeinside-to-outside172.16.1.3600192.168.150.3600-1finside-to-outside172.16.1.2500192.168.150.25500-1inside-to-outside172.16.1.2500192.168.150.25500-1inside-to-inside192.168.150.3600172.16.1.3600-1utside-to-inside192.168.150.560172.16.1.5600-1inside-to-inside192.168.150.560172.16.1.25500-1inside-to-inside192.168.150.560172.16.1.25500-1inside-to-inside192.168.150.560172.16.1.25500-1inside-to-inside192.168.150.25500172.16.1.25500-1inside-to-inside192.168.150.25500172.16.1.25500-1	Status Defaul The Nu	: enabled t Vlan: 0 mber of L2nat	Rules: 4					
02I 172.16.1.56 192.168.150.56 0 120 172.16.1.36 192.168.150.36 0 120 172.16.1.255 192.168.150.255 0 120 172.16.1.1 192.168.150.255 0 120 172.16.1.1 192.168.150.1 0 •次のコマンドは、レイヤ2NATルールを表示します。 * #show 12nat rule 0 02I 172.16.1.56 192.168.150.56 0 120 172.16.1.36 192.168.150.36 0 120 172.16.1.36 192.168.150.366 0 120 172.16.1.255 192.168.150.255 0 120 172.16.1.1 192.168.150.3660 -1 120 172.16.1.1 192.168.150.3660 -1 120 172.16.1.1 192.168.150.3660 -1 finside-to-outside 172.16.1.3660 192.168.150.3660 -1 finside-to-outside 172.16.1.2550 192.168.150.2550 -1 false inside-to-outside 172.16.1.2500 192.168.150.100 -1 false inside-to-outside 172.16.1.2500 192.168.150.2500	Dir	Inside		Outsid	le		Vlan	
120 172.16.1.36 192.168.150.36 0 120 172.16.1.255 192.168.150.255 0 120 172.16.1.1 192.168.150.1 0 •次のコマンドは、レイヤ2NATルールを表示します。 * *show 12nat rule Vlan 021 172.16.1.56 192.168.150.56 0 120 172.16.1.56 192.168.150.36 0 021 172.16.1.36 192.168.150.36 0 120 172.16.1.255 192.168.150.36 0 120 172.16.1.255 192.168.150.36 0 120 172.16.1.255 192.168.150.36 0 120 172.16.1.255 192.168.150.360 1 120 172.16.1.255 192.168.150.3600 1 120 172.16.1.1 192.168.150.3600 1 isside-to-outside 172.16.1.3600 192.168.150.3600 1 inside-to-outside 172.16.1.25500 192.168.150.100 1 false inside-to-outside 172.16.1.2550 192.168.150.25500 1 false outside-to-inside 192.168.150.3600 172.16.1.3600	021	172.16.1.5	6	192.16	8.150.56		0	
120172.16.1.255192.168.150.2550120172.16.1.1192.168.150.10・次のコマンドは、レイヤ2NATルールを表示します。#show 12nat ruleDirInsideOutsideVlan021172.16.1.56192.168.150.560120172.16.1.36192.168.150.360120172.16.1.255192.168.150.2550120172.16.1.255192.168.150.2550120172.16.1.1192.168.150.10・次のコマンドは、レイヤ2NAT実行中エントリを表示します。#show 12nat entryDirectionOriginalSubstituteAgeinside-to-outside172.16.1.3600192.168.150.3600-1falseinside-to-outside172.16.1.25500192.168.150.3600-1inside-to-outside172.16.1.25500192.168.150.25500-1inside-to-inside192.168.150.3600172.16.1.3600-1outside-to-inside192.168.150.3600172.16.1.3600-1uside-to-inside192.168.150.3600172.16.1.3600-1uside-to-inside192.168.150.3600172.16.1.25500-1outside-to-inside192.168.150.25500172.16.1.25500-1uside-to-inside192.168.150.25500172.16.1.25500-1uside-to-inside192.168.150.25500172.16.1.25500-1	I20	172.16.1.3	6	192.16	8.150.36		0	
120172.16.1.1192.168.150.10・次のコマンドは、レイヤ2NATルールを表示します。#show 12nat ruleDirInsideOutsideVlan021172.16.1.56192.168.150.560120172.16.1.36192.168.150.2550120172.16.1.255192.168.150.2550120172.16.1.1192.168.150.10・次のコマンドは、レイヤ2NAT実行中エントリを表示します。#show 12nat entryDirectionOriginalSubstituteAgeinside-to-outside172.16.1.3600192.168.150. 3600-1inside-to-outside172.16.1.5600192.168.150. 25500-1inside-to-outside172.16.1.3600192.168.150. 25500-1inside-to-outside172.16.1.25500192.168.150. 25500-1outside-to-inside192.168.150.3600172.16.1.3600-1uside-to-inside192.168.150.5600172.16.1.3600-1outside-to-inside192.168.150.5600172.16.1.25500-1outside-to-inside192.168.150.5600172.16.1.25500-1outside-to-inside192.168.150.25500172.16.1.25500-1outside-to-inside192.168.150.25500172.16.1.25500-1	I20	172.16.1.2	55	192.16	8.150.255		0	
 次のコマンドは、レイヤ2NATルールを表示します。 #show 12nat rule Dir Inside Outside Vlan O2I 172.16.1.56 192.168.150.56 0 I2O 172.16.1.36 192.168.150.36 0 I2O 172.16.1.255 192.168.150.255 0 I2O 172.16.1.1 192.168.150.1 0 次のコマンドは、レイヤ2NAT実行中エントリを表示します。 #show 12nat entry Direction Original Substitute Age Reverses inside-to-outside 172.16.1.3600 192.168.150. 3600 -1 false inside-to-outside 172.16.1.5600 192.168.150. 5600 -1 true inside-to-outside 172.16.1.2550 192.168.150. 25500 -1 false outside-to-inside 192.168.150.3600 172.16.1.3600 -1 false outside-to-inside 192.168.150.3600 172.16.1.3600 -1 true outside-to-inside 192.168.150.3600 172.16.1.3500 -1 true outside-to-inside 192.168.150.3600 172.16.1.3500 -1 true outside-to-inside 192.168.150.3600 172.16.1.3500 -1 true outside-to-inside 192.168.150.3500 172.16.1.3500 -1 true outside-to-inside 192.168.150.3500 172.16.1.25500 -1 true	I20	172.16.1.1		192.16	8.150.1		0	
#show 12nat ruleOutsideVlanDirInsideOutsideVlan021172.16.1.56192.168.150.560120172.16.1.255192.168.150.2550120172.16.1.1192.168.150.2550120172.16.1.1192.168.150.10* かのコマンドは、レイヤ2NAT実行中エントリを表示します。#show 12nat entryDirectionOriginalSubstituteAgeReverseinside-to-outside172.16.1.3600192.168.150.3600-1falseinside-to-outside172.16.1.3600192.168.150.3600-1falseinside-to-outside172.16.1.25500192.168.150.25500-1falseoutside-to-inside192.168.150.3600172.16.1.3600-1falseoutside-to-inside192.168.150.3600172.16.1.3600-1trueoutside-to-inside192.168.150.3600172.16.1.3600-1falseoutside-to-inside192.168.150.3600172.16.1.3600-1trueoutside-to-inside192.168.150.3600172.16.1.3600-1trueoutside-to-inside192.168.150.3600172.16.1.3600-1true	・次のコ	マンドは、レー	イヤ2NATルー	ルを表え	示します。			
DirInsideOutsideVlan02I172.16.1.56192.168.150.560120172.16.1.36192.168.150.360120172.16.1.255192.168.150.2550120172.16.1.1192.168.150.10* 次のコマンドは、レイヤ2NAT 実行中エントリを表示します。#show l2nat entryDirectionOriginalSubstituteAgeReverseinside-to-outside172.16.1.3600192.168.150.3600-1finside-to-outside172.16.1.3600192.168.150.5600-1inside-to-outside172.16.1.25500192.168.150.25500-1inside-to-inside192.168.150.3600172.16.1.3600-1outside-to-inside192.168.150.3600172.16.1.3600-1outside-to-inside192.168.150.2560172.16.1.3600-1outside-to-inside192.168.150.2560172.16.1.25500-1outside-to-inside192.168.150.2560172.16.1.25500-1outside-to-inside192.168.150.25500172.16.1.25500-1true192.168.150.2560172.16.1.25500-1true	#show	12nat rule						
021172.16.1.56192.168.150.560120172.16.1.36192.168.150.360120172.16.1.255192.168.150.2550120172.16.1.1192.168.150.10* 次のコマンドは、レイヤ2NAT 実行中エントリを表示します。#show l2nat entryDirectionOriginalSubstituteAgeinside-to-outside172.16.1.3600192.168.150.3600-1falseinside-to-outside172.16.1.3600192.168.150.5600-1inside-to-outside172.16.1.2500192.168.150.2550-1inside-to-outside172.16.1.2550192.168.150.2550-1inside-to-inside192.168.150.3600172.16.1.3600-1utside-to-inside192.168.150.2560172.16.1.25500-1outside-to-inside192.168.150.100172.16.1.25500-1outside-to-inside192.168.150.2560172.16.1.25500-1utside-to-inside192.168.150.2550172.16.1.25500-1true192.168.150.2550172.16.1.25500-1	Dir	Inside		Outsid	le		Vlan	
I20172.16.1.36192.168.150.360I20172.16.1.255192.168.150.2550I20172.16.1.1192.168.150.10* 次のコマンドは、レイヤ2NAT 実行中エントリを表示します。#show l2nat entryDirectionOriginalSubstituteAgeniside-to-outside172.16.1.3600192.168.150.3600-1finside-to-outside172.16.1.3600192.168.150.5600-1inside-to-outside172.16.1.2500192.168.150.25500-1inside-to-outside172.16.1.25500192.168.150.25500-1inside-to-inside192.168.150.3600172.16.1.3600-1outside-to-inside192.168.150.2560172.16.1.3600-1outside-to-inside192.168.150.100172.16.1.25500-1outside-to-inside192.168.150.25500172.16.1.25500-1outside-to-inside192.168.150.25500172.16.1.25500-1true192.168.150.25500172.16.1.25500-1	021	172.16.1.5	6	192.16	8.150.56		0	
I20172.16.1.255192.168.150.2550I20172.16.1.1192.168.150.10•次のコマンドは、レイヤ2NAT実行中エントリを表示します。#show l2nat entryDirectionOriginalSubstituteAgenside-to-outside172.16.1.3600192.168.150.3600-1false172.16.1.2560192.168.150.5660-1inside-to-outside172.16.1.2500192.168.150.25500-1inside-to-outside172.16.1.25500192.168.150.25500-1inside-to-inside192.168.150.3600172.16.1.3600-1outside-to-inside192.168.150.25500172.16.1.25500-1outside-to-inside192.168.150.25500172.16.1.25500-1outside-to-inside192.168.150.25500172.16.1.25500-1outside-to-inside192.168.150.25500172.16.1.25500-1true192.168.150.25500172.16.1.25500-1	I20	172.16.1.3	6	192.16	8.150.36		0	
120 172.16.1.1 192.168.150.1 0 ・次のコマンドは、レイヤ2NAT実行中エントリを表示します。 #show 12nat entry Direction Original Substitute Age Reverse inside-to-outside 172.16.1.3600 192.168.150.3600 -1 false inside-to-outside 172.16.1.3600 192.168.150.5600 -1 true inside-to-outside 172.16.1.25500 192.168.150.25500 -1 false outside-to-inside 192.168.150.3600 172.16.1.3600 -1 true outside-to-inside 192.168.150.3600 172.16.1.3600 -1 true outside-to-inside 192.168.150.2560 172.16.1.25500 -1 false outside-to-inside 192.168.150.25500 172.16.1.25500 -1 true outside-to-inside 192.168.150.25500 172.16.1.25500 -1 true	I20	172.16.1.2	55	192.16	8.150.255		0	
 次のコマンドは、レイヤ2NAT実行中エントリを表示します。 #show 12nat entry Direction Original Substitute Age Reverse inside-to-outside 172.16.1.3600 192.168.150. 3600 -1 false inside-to-outside 172.16.1.5600 192.168.150. 5600 -1 true inside-to-outside 172.16.1.100 192.168.150. 100 -1 false inside-to-outside 172.16.1.25500 192.168.150. 25500 -1 false outside-to-inside 192.168.150.3600 172.16.1.3600 -1 true outside-to-inside 192.168.150.5600 172.16.1.3600 -1 true utside-to-inside 192.168.150.25500 172.16.1.5600 -1 false outside-to-inside 192.168.150.25500 172.16.1.5600 -1 true utside-to-inside 192.168.150.25500 172.16.1.25500 -1 true inside-to-inside 192.168.150.25500 172.16.1.25500 -1 true	I20	172.16.1.1		192.16	8.150.1		0	
#show l2nat entry Original Substitute Age Reverse inside-to-outside 172.16.1.3600 192.168.150.3600 -1 false inside-to-outside 172.16.1.3600 192.168.150.5600 -1 true inside-to-outside 172.16.1.2500 192.168.150.2500 -1 false inside-to-outside 172.16.1.2500 192.168.150.25500 -1 false outside-to-inside 192.168.150.3600 172.16.1.3600 -1 true outside-to-inside 192.168.150.5600 172.16.1.5600 -1 false outside-to-inside 192.168.150.25600 172.16.1.25600 -1 true outside-to-inside 192.168.150.25600 172.16.1.25600 -1 true outside-to-inside 192.168.150.25500 172.16.1.25500 -1 true	・次のコ	マンドは、レ-	イヤ2NAT 実行	中エン	トリを表示します	す。		
DirectionOriginalSubstituteAgeReverseinside-to-outside172.16.1.3600192.168.150. 3600-1falseinside-to-outside172.16.1.5600192.168.150. 5600-1trueinside-to-outside172.16.1.100192.168.150. 100-1falseinside-to-outside172.16.1.25500192.168.150. 25500-1falseoutside-to-inside192.168.150.3600172.16.1.3600-1trueoutside-to-inside192.168.150.5600172.16.1.5600-1falseoutside-to-inside192.168.150.100172.16.1.25500-1trueoutside-to-inside192.168.150.2550172.16.1.25500-1true	#show	12nat entry						
inside-to-outside172.16.1.3600192.168.150. 3600-1falseinside-to-outside172.16.1.5600192.168.150. 5600-1trueinside-to-outside172.16.1.100192.168.150. 100-1falseinside-to-outside172.16.1.25500192.168.150. 25500-1falseoutside-to-inside192.168.150.3600172.16.1.3600-1trueoutside-to-inside192.168.150.5600172.16.1.5600-1falseoutside-to-inside192.168.150.100172.16.1.5600-1trueoutside-to-inside192.168.150.25500172.16.1.25500-1trueoutside-to-inside192.168.150.25500172.16.1.25500-1true	Direct	ion	Original		Substitute		Age	Reversed
inside-to-outside172.16.1.5600192.168.150. 5600-1trueinside-to-outside172.16.1.100192.168.150. 100-1falseinside-to-outside172.16.1.25500192.168.150. 25500-1falseoutside-to-inside192.168.150.3600172.16.1.3600-1trueoutside-to-inside192.168.150.5600172.16.1.5600-1falseoutside-to-inside192.168.150.25500172.16.1.2560-1trueoutside-to-inside192.168.150.25500172.16.1.25500-1true	inside	-to-outside	172.16.1.3600)	192.168.150. 3	3600	-1	false
inside-to-outside172.16.1.100192.168.150. 100-1falseinside-to-outside172.16.1.25500192.168.150. 25500-1falseoutside-to-inside192.168.150.3600172.16.1.3600-1trueoutside-to-inside192.168.150.5600172.16.1.5600-1falseoutside-to-inside192.168.150.100172.16.1.2500-1trueoutside-to-inside192.168.150.25500172.16.1.25500-1true	inside	-to-outside	172.16.1.5600)	192.168.150. 5	5600	-1	true
inside-to-outside172.16.1.25500192.168.150.25500-1falseoutside-to-inside192.168.150.3600172.16.1.3600-1trueoutside-to-inside192.168.150.5600172.16.1.5600-1falseoutside-to-inside192.168.150.100172.16.1.100-1trueoutside-to-inside192.168.150.25500172.16.1.25500-1true	inside	-to-outside	172.16.1.100		192.168.150. 1	100	-1	false
outside-to-inside192.168.150.3600172.16.1.3600-1trueoutside-to-inside192.168.150.5600172.16.1.5600-1falseoutside-to-inside192.168.150.100172.16.1.100-1trueoutside-to-inside192.168.150.25500172.16.1.25500-1true	inside	-to-outside	172.16.1.2550	9 O	192.168.150. 2	25500	-1	false
outside-to-inside192.168.150.5600172.16.1.5600-1falseoutside-to-inside192.168.150.100172.16.1.100-1trueoutside-to-inside192.168.150.25500172.16.1.25500-1true	outsid	le-to-inside	192.168.150.3	3600	172.16.1.3600		-1	true
outside-to-inside192.168.150.100172.16.1.100-1trueoutside-to-inside192.168.150.25500172.16.1.25500-1true	outsid	le-to-inside	192.168.150.5	5600	172.16.1.5600		-1	false
outside-to-inside 192.168.150.25500 172.16.1.25500 -1 true	outsid	le-to-inside	192.168.150.1	L@O	172.16.1.100		-1	true
	outsid	le-to-inside	192.168.150.2	25500	172.16.1.25500	C	-1	true
• 次のコマンドは、ブリッジを介した WGB 有線クライアントを表示します。	・次のコ	マンドは、ブ	リッジを介した	WGB 有	「線クライアント	を表示	します。	

レイヤ2NATの有効化前:

#show	wgb	bridge
-------	-----	--------

***Client ip	table	entries	* * *			
mac	c vap	port	vlan_id	seen_ip	confirm_ago	fast_brg
B8:AE:ED:7E:46:EB	в 0	wired0	0	172.16.1.36	0.360000	true
24:16:1B:F8:05:01	F 0	wbridge1	0	0.0.0.0	3420.560000	true

レイヤ2NATの有効化後:

#show wgb bridge						
***Client ip	table	e entries	* * *			
mac	vap	port	vlan_id	seen_ip	confirm_ago	fast_brg
B8:AE:ED:7E:46:EB	0	wired0	0	192.168.150.36	0.440000	true
24:16:1B:F8:05:0F	0	wbridge1	0	0.0.0	3502.220000	true

NAT の有線クライアントに E2E トラフィックの問題が発生した場合は、次のコマンドを 使用してクライアント登録プロセスを再起動します。

#clear wgb client single B8:AE:ED:7E:46:EB

・次のコマンドは、レイヤ2NATパケット変換の統計を表示します。

#show 12nat stats						
Direction TCP	Original	Substitute	ARP	ΙP	ICMP	UDP
inside-to-outside	172.16.1.102660	192.168.150.102660	1	4	4	0
inside-to-outside 1	172.16.1.36@2660	192.168.150.36@2660	3	129	32	90
inside-to-outside 1	172.16.1.56@2660	192.168.150.56@2660	2	114	28	85
inside-to-outside 0	172.16.1.255@2660	192.168.150.255@2660	0	0	0	0
outside-to-inside 0	192.168.150.102660	172.16.1.102660	1	4	4	0
outside-to-inside 1	192.168.150.3602660	172.16.1.3602660	3	39	38	0
outside-to-inside 1	192.168.150.56@2660	172.16.1.5602660	2	35	34	0
outside-to-inside O	192.168.150.255@2660	172.16.1.255@2660	0	0	0	0
統計情報をリセットするには、次のコマンドを使用します。						

#clear l2nat stats

ネットワークアドレス変換の設定例

このシナリオでは、内部アドレスを 172.16.1.0 255.255.0 サブネットから 192.168.150.0 255.255.255.0 サブネットのアドレスに変換するようにレイヤ 2 NAT が設定されています。こ の変換で置き換えられるのは、ネットワークプレフィックスのみです。IP アドレスのホスト ビットは変わりません。

このシナリオ向けに、次のコマンドが設定されています。

#configure l2nat add inside from network 172.16.1.0 to 192.168.150.0 255.255.255.0

イーサネットポートでのネイティブ VLAN の設定

WGBの一般的な展開では、単一の有線クライアントがWGBイーサネットポートに直接接続 されます。そのため、有線クライアントトラフィックは、WGB(またはWLC/AP/WGB)管理 VLAN と同じ VLAN 上にある必要があります。有線クライアントトラフィックを WGB 管理 VLAN 以外の VLAN に配置する必要がある場合は、イーサネットポートでネイティブ VLAN を設定する必要があります。

(注) イーサネットポートごとのネイティブ VLAN ID の設定はサポートされません。両方のイーサ ネットポートが同じネイティブ VLAN 設定を共有します。

 (注) WGB ブロードキャストタギングが有効で、単一の有線パッシブクライアントが WGB イーサ ネットポートに直接接続している場合、インフラストラクチャ DS 側のクライアントがパッシ ブクライアントの背後でこの WGB に ping を実行できないという問題が発生する可能性があり ます。回避策として、configure wgb ethport native-vlan enable と configure wgb ethport native-vlan id X (X は WGB(または WLC/AP/WGB)管理 VLAN と同じ VLAN) コマンドを追加で設定 します。

次の表に、ネイティブ VLAN を設定するためのコマンドを示します。

表 4: ネイティブ VLAN 設定コマンド

コマンド	説明
#config wgb ethport native-vlan {enable disable}	ネイティブ VLAN 設定を有効または無効にし
例:	ます。
#config wgb ethport native-vlan enable	
#config wgb ethport native-vlan id <vlan-id></vlan-id>	ネイティブ VLAN ID を指定します。
例:	
#config wgb ethport native-vlan id 2735	

設定を確認するには、show wgb ethport config または show running-config コマンドを使用しま す。

低遅延プロファイル

IEEE 802.11 ネットワークは、拡張型分散チャンネルアクセス(EDCA)、集約 MAC プロトコ ルデータユニット(AMPDU)、集約または非集約パケット再試行を適用することで、低遅延 と QoS の要件を満たすモノのインターネット(IoT)のサポートと展開において大きな役割を 果たします。

Enhanced Distributed Channel Access (EDCA; 拡張型分散チャネルアクセス) パラメータは、音声、ビデオ、およびその他の Quality of Service (QoS) トラフィックに優先的な無線チャネル アクセスを提供するように設計されています。

WGBの[Optimized-Video] EDCA プロファイルの設定

ビデオのユースケースに最適化された低遅延プロファイルを設定するには、次のコマンドを使用します。

#configure dot11Radio <radio_slot_id> profile optimized-video {enable | disable}

設定を確認するには、次のコマンドを使用します。

WGBの[Optimized-Automation] EDCA プロファイルの設定

自動化のユースケースに最適化された低遅延プロファイルを設定するには、次のコマンドを使 用します。

#configure dot11Radio <radio_slot_id> profile optimized-automation {enable | disable}

設定を確認するには、次のコマンドを使用します。

WGB1#show controllers dot11Radio 1 EDCA profile: optimized-automation EDCA in use _____ AC Type CwMin CwMax Aifs Txop ACM AC BE L 7 10 12 0 0 AC BK L 8 10 12 0 0 AC VI L 7 7 3 0 0 AC VO L 3 3 1 0 0 Packet parameters in use _____ wbridge1 A-MPDU Priority 0: Enabled wbridge1 A-MPDU Priority 1: Enabled wbridge1 A-MPDU Priority 2: Enabled wbridge1 A-MPDU Priority 3: Enabled wbridge1 A-MPDU Priority 4: Disabled wbridge1 A-MPDU Priority 5: Disabled wbridge1 A-MPDU Priority 6: Disabled wbridge1 A-MPDU Priority 7: Disabled

```
wbridgel A-MPDU subframe number: 3
wbridgel Packet retries drop threshold: 16
```

WGBの[customized-wmm] EDCA プロファイルの設定

カスタマイズされた Wi-Fi マルチメディア(WMM)プロファイルを設定するには、次のコマ ンドを使用します。

#configure dot11Radio <radio_slot_id> profile customized-wmm {enable | disable}

カスタマイズされたWMMプロファイルパラメータを設定するには、次のコマンドを使用します。

#configure dot11Radio {0|1|2} wmm {be | vi | vo | bk} {cwmin <cwmin_num> | cwmax <cwmax_num>
| aifs <aifs_num> | txoplimit <txoplimit_num>}

パラメータの説明:

- •be:ベストエフォート型トラフィックキュー(CSOおよびCS3)。
- •bk: バックグラウンド トラフィック キュー(CS1 および CS2)。
- •vi:ビデオトラフィックキュー(CS4およびCS5)。
- vo:音声トラフィックキュー(CS6およびCS7)。
- aifs:調停フレーム間スペース、<1~15>(単位:スロット時間)
- cwmin:コンテンションウィンドウ最小、<0~15>2^n-1(単位:スロット時間)
- cwmax:コンテンションウィンドウ最大、<0~15>2ⁿ⁻¹(単位:スロット時間)
- txoplimit:送信機会時間、<0~255>の整数(単位:32マイクロ秒)

WGB での低遅延プロファイルの設定

WGB で低遅延プロファイルを設定するには、次のコマンドを使用します。

AP# configure dot11Radio <*radio_slot_id>* profile low-latency [ampdu <*length>*] [sifs-burst {enable | disable}] [rts-cts {enable | disable}] [non-aggr <*length>*] [aggr <*length>*]

iot-low-latency プロファイルの EDCA の詳細なパラメータを表示するには、次のコマンドを使用します。

#show controllers dot11Radio 1 | beg EDCA EDCA config L: Local C:Cell A:Adaptive EDCA params AC Type CwMin CwMax Aifs Txop ACM L AC BE 4 6 11 0 0 AC BK 10 11 L 6 0 0 3 AC VI L 0 4 1 0 AC VO L 0 2 0 0 1 С 4 AC BE 10 11 0 0 С AC_BK 6 10 11 0 0 AC_VI AC_VO C C 2 1 3 4 94 0 3 2 47 1

EDCA パラメータの設定(ワイヤレスコントローラ GUI)

手順

ステップ1 [Configuration]>[Radio Configuration]>[Parameters] を選択します。このページを使用して、6 GHz、5 GHz、 および 2.4 GHz 無線機のグローバルパラメータを設定できます。

(注)

無線ネットワークが有効になっている場合、パラメータを設定または変更することはできません。続行す る前に、[Configuration] > [Radio Configurations] > [Network] ページでネットワークステータスを無効にして ください。

ステップ2 [EDCA Parameters] セクションで、[EDCA Profile] ドロップダウン リストから EDCA プロファイルを選択します。Enhanced Distributed Channel Access (EDCA; 拡張型分散チャネル アクセス) パラメータは、音声、ビデオ、およびその他の Quality-of-Service (QoS) トラフィックに優先的な無線チャネル アクセスを提供するように設計されています。

Configuration * > Radio Configurations * > Parameters			
6 GHz Ba	and 5 GHz Band	2.4 GHz Band	
	▲ 5 GHz Network is a	operational. Configuring EDCA Profile, DFS Channel Switch Announcen will result in loss of connectivity of clients.	
	EDCA Parameters		
	EDCA Profile	iot-low-latency	
	Client Load Pasad	wmm-default	
	Configuration	custom-voice	
		optimized-video-voice	
	DFS (802.11h)	optimized-voice	
		svp-voice	
		fastlane	
	A DTPC Support is enabled	bled. Please di iot-low-latency Power Cons	

ステップ3 [Apply] をクリックします。

EDCA パラメータの設定(ワイヤレスコントローラ CLI)

手順

ステップ1 グローバル コンフィギュレーション モードを開始します。

configure terminal

例:

Device# configure terminal

ステップ2 無線ネットワークを無効にします。

ap dot11 {5ghz | 24ghz | 6ghz} shutdown 例: Device(config)# ap dot11 5ghz shutdown

ステップ3 5 GHz、2.4 GHz、または 6 GHz ネットワークの iot-low-latency EDCA プロファイルを有効にします。

ap dot11 $\{5ghz \mid 24ghz \mid 6ghz\}$ edca-parameters iot-low-latency

例:

Device(config) # ap dot11 5ghz edca-parameters iot-low-latency

ステップ4 無線ネットワークを有効にします。

no ap dot11 {5ghz | 24ghz | 6ghz} shutdown

例:

Device(config) # no ap dot11 5ghz shutdown

ステップ5 特権 EXEC モードに戻ります。

end

例:

Device(config)# end

ステップ6 現在の設定を表示します。

show ap dot11 {5ghz | 24ghz | 6ghz} network

例:

```
Device(config)# show ap dot11 5ghz network
EDCA profile type check : iot-low-latency
```

A-MPDU の設定

集約は、パケット データ フレームを個別に伝送するのではなく、グループにまとめるプロセスです。集約方法には、Aggregated MAC Protocol Data Unit(A-MPDU)と Aggregated MAC Service Data Unit(A-MSDU)の2種類があります。

A-MPDUパラメータは、集約パケットのサイズを定義し、集約パケット間の適切な間隔を定義 して、受信側 WLAN ステーションがパケットを適切に復号化できるようにします。

2.4G、5G、および 6G 無線機でプロファイルベースの A-MPDU を設定するには、次のコマン ドを使用します。

WLC(config)# ap dot11 {5ghz | 24ghz | 6ghz} rf-profile <profile-name>

WLC(config-rf-profile)# [no] dot11n a-mpdu tx block-ack window-size <1-255>

グローバル設定は、次のコマンドを使用して設定できる特殊なプロファイルです。

WLC(config)#[no] ap dot11 {5ghz | 24ghz | 6ghz} dot11n a-mpdu tx block-ack window-size <1-255>

異なる RF プロファイルを無線 RF タグにバインドするには、次のコマンドを使用します。

WLC(config)# wireless tag rf <*rf-tag-name*>

WLC (config-wireless-rf-tag)# 5ghz-rf-policy <rf-profile-name>

(注) RF プロファイルレベルで設定された a-mpdu tx block-ack window-size 値は、グローバルに設定された値に優先します。

A-MPDUの長さの設定値を表示するには、次のコマンドを使用します。

show controllers dot11Radio <radio_slot_id>

```
AP# show controllers dot11Radio 1
Radio Aggregation Config:
```

TX A-MPDU Priority: 0x3f TX A-MSDU Priority: 0x3f TX A-MPDU Window: 0x7f

WGB を使った SNMP の設定と検証

簡易ネットワーク管理プロトコル (SNMP) は、アプリケーション層プロトコルであり、SNMP マネージャと SNMP エージェントとの通信に使用されるメッセージ フォーマットを提供しま す。SNMP はネットワークデバイスの監視や管理に使用される標準化されたフレームワークと 共通言語を提供します。

WGB は、ネットワーク管理者に SNMP インターフェイスを提供し、さまざまな状態やカウン タをポーリングできます。これにより、管理者は現場で WGB の正常性を簡単に監視できま す。 デフォルトでは、SNMP は無効です。

SNMP フレームワークには、次のコンポーネントがあります。

- SNMP Manager: Simple Network Management Protocol (SNMP) マネージャは、SNMP を 使用するネットワークホストのアクティビティを制御および監視するシステムです。最も 一般的な管理システムは、ネットワーク管理システム (NMS) です。NMSという用語は、 ネットワーク管理に使用する専用デバイスを意味する場合と、このようなデバイス上で使 用するアプリケーションを意味する場合があります。
- SNMP Agent : Simple Network Management Protocol (SNMP) エージェントは、デバイスに 対してデータを保守し、このデータを必要に応じて管理システムにレポートする管理対象 デバイス内のソフトウェアコンポーネントです。
- SNMP MIB: SNMP エージェントには、SNMP マネージャが Get 操作や Set 操作を通じて 要求したり変更したりできる MIB 変数が含まれています。マネージャは、エージェント からの値の取得またはエージェントへの値の保存が可能です。エージェントは、デバイス パラメータやネットワーク データに関する情報のリポジトリである SNMP MIB から値を 収集します。エージェントは、マネージャのデータ取得要求やデータ設定要求に応答もで きます。

次の図に、SNMPプロセスを示します。SNMPエージェントはSNMPクライアントからリクエ ストを受信し、そのリクエストをサブエージェントに渡します。その後、サブエージェントは SNMPエージェントに応答を返し、エージェントはSNMP応答パケットを作成し、リクエスト の発信元であるリモートネットワーク管理ステーションに応答を送信します。

図 3: SNMP プロセス

SNMP バージョン

Cisco IOS ソフトウェアでは、次のバージョンの SNMP がサポートされています。

- SNMPv2c:コミュニティストリングに基づく、SNMPv2用の管理フレームワークです。
 SNMPv2cは、SNMPv2p(SNMPv2クラシック)のプロトコル操作とデータタイプが更新 されたもので、SNMPv1のコミュニティベースのセキュリティモデルを使用します。
- SNMPv3: SNMP バージョン 3。SNMPv3 は、次のセキュリティ機能によって、デバイス にセキュアなアクセスを提供します。
 - ・メッセージの完全性:パケットが伝送中に改ざんされていないことを保証します。
 - •認証:有効な送信元からのメッセージであることを判別します。
 - ・暗号化:パケットの内容をスクランブル化することにより、許可のないものに学習されないようにします。

サポートされる SNMP MIB ファイル

Management Information Base (MIB) は、デバイス上の管理可能なオブジェクトのデータベー スです。管理対象オブジェクト、つまり変数を設定したり読み取ったりして、ネットワークデ バイスやインターフェイスに関する情報を提供でき、階層状に構成できます。MIB は、オブ ジェクト識別子によって識別される管理対象オブジェクトの集まりで構成されます。MIB に は、SNMP などのネットワーク管理プロトコルを使用してアクセスします。

MIB モジュールは、IEEE 802.11 ワイヤレスデバイスのアソシエーションの管理およびデータ パケット転送の設定と統計に関するネットワーク管理情報を提供します。

オブジェクト識別子(OID)は、管理対象ネットワークデバイス上のMIBオブジェクトを一意 に識別します。OIDによって、MIB階層内におけるMIBオブジェクトの位置が識別され、複 数の管理対象デバイスのネットワーク内にあるMIBオブジェクトにアクセスする方法が提供 されます。

次に、SNMP Management Information Base (MIB) : CISCO-DOT11-ASSOCIATION-MIB でサ ポートされるオブジェクトのリストを示します。

OID オブジェクト名	OID	OID タイプ	0ID の説明
cDot11ParentAddress	1.3.6.1.4.1.9.9.273.1.1.1	文字列	親アクセスポイン トの MAC アドレ スです。
cDot11ActiveWirelessClients	1.3.6.1.4.1.9.9.273.1.1.2.1.1	ゲージ	このインターフェ イス上のデバイス は、現在、この数 のワイヤレスクラ イアントにアソシ エートしていま す。
cDot11ActiveBridges	1.3.6.1.4.1.9.9.273.1.1.2.1.2	ゲージ	このインターフェ イス上のデバイス は、現在、この数 のブリッジにアソ シエートしていま す。
cDot11ActiveRepeaters	1.3.6.1.4.1.9.9.273.1.1.2.1.3	ゲージ	このインターフェ イス上のデバイス は、現在、この数 のリピーターにア ソシエートしてい ます。

表 5:サポートされる OID

OID オブジェクト名	OID	OID タイプ	0ID の説明
cDot11AssStatsAssociated	1.3.6.1.4.1.9.9.273.1.1.3.1.1	カウンタ	デバイスが再起動 すると、このオブ ジェクトはイン ターフェイス上の デバイスがアソシ エートされている ステーションの数 をカウントしま す。
cDot11AssStatsAuthenticated	1.3.6.1.4.1.9.9.273.1.1.3.1.2	カウンタ	デバイスが再起動 すると、このオブ ジェクトは、イン ターフェイス上の デバイスで現在認 証済みのステー ションの数をカウ ントします。
cDot11AssStatsRoamedIn	1.3.6.1.4.1.9.9.273.1.1.3.1.3	カウンタ	デバイスが再起動 すると、このオブ ジェクトは、別の デバイスからイン ターフェイス上の デバイスにローミ ングされたステー ションの数をカウ ントします。
cDot11AssStatsRoamedAway	1.3.6.1.4.1.9.9.273.1.1.3.1.4	カウンタ	このオブジェクト は、デバイスの再 起動以降、イン ターフェイス上の デバイスからロー ミングされたス テーションの数を カウントします。

OID オブジェクト名	OID	OID タイプ	0ID の説明	
cDot11AssStatsDeauthenticated	1.3.6.1.4.1.9.9.273.1.1.3.1.5	カウンタ	このオブジェクト は、デバイスの再 起動以降、イン ターフェイス上の このデバイスから 認証が解除された ステーションの数 をカウントしま す。	
cDot11AssStatsDisassociated	1.3.6.1.4.1.9.9.273.1.1.3.1.6	カウンタ	このオブジェクト は、デバイスの再 起動以降、イン ターフェイス上の このデバイスから アソシエーション が解除されたス テーションの数を カウントします。	
cd111fCipherMicFailClientAddress	1.3.6.1.4.1.9.9.273.1.1.4.1.1	文字列	これは、直近の MIC障害の原因と なった無線イン ターフェイスに接 続されているクラ イアントの MAC アドレスです。	
cd111fCipherTkipLocalMicFailures	1.3.6.1.4.1.9.9.273.1.1.4.1.2	カウンタ	デバイスが再起動 すると、このオブ ジェクトは無線イ ンターフェイスで 発生した MIC 障 害の数をカウント します。	

OID オブジェクト名	OID	OID タイプ	0ID の説明
cd11IfCipherTkipRemotMicFailures	1.3.6.1.4.1.9.9.273.1.1.4.1.3	カウンタ	デバイスが再起動 すると、このオブ ジェクトは、無線 インターフェイス 上のクライアント によって報告され た MIC 障害の数 をカウントしま す。
cd11IfCipherTkipCounterMeasInvok	1.3.6.1.4.1.9.9.273.1.1.4.1.4	カウンタ	デバイスが再起動 すると、このオブ ジェクトはイン ターフェイスで呼 び出された TKIP カウンタ測定の回 数をカウントしま す。
cd11IfCipherCcmpReplaysDiscarded	1.3.6.1.4.1.9.9.273.1.1.4.1.5	カウンタ	デバイスが再起動 すると、このオブ ジェクトは、イン ターフェイスのリ プレイメカニズム によって破棄され た受信ユニキャス トフラグメントの 数をカウントしま す。
cd111fCipherTkipReplaysDetected	1.3.6.1.4.1.9.9.273.1.1.4.1.6		デバイスが再起動 すると、このオブ ジェクトはこのイ ンターフェイスで 検出された TKIP リプレイエラーの 数をカウントしま す。
cDot11ClientRoleClassType	1.3.6.1.4.1.9.9.273.1.2.1.1.3	カウンタ	クライアントの ロール分類。
cDot11ClientDevType	1.3.6.1.4.1.9.9.273.1.2.1.1.4	列挙値	クライアントのデ バイスタイプ。

OID オブジェクト名	OID	OID タイプ	0ID の説明
cDot11ClientRadioType	1.3.6.1.4.1.9.9.273.1.2.1.1.5	列挙値	クライアントの無 線機の分類。
cDot11ClientWepEnabled	1.3.6.1.4.1.9.9.273.1.2.1.1.6	列挙値	クライアントの データフレームの 送信に WEP 鍵メ カニズムを使用す るかどうか。
cDot11ClientWepKeyMixEnabled	1.3.6.1.4.1.9.9.273.1.2.1.1.7	列挙値	このクライアント が WEP 鍵ミキシ ングを使用してい るかどうか。
cDot11ClientMicEnabled	1.3.6.1.4.1.9.9.273.1.2.1.1.8	列挙値	クライアントの MICが有効になっ ているかどうか。
cDot11ClientPowerSaveMode	1.3.6.1.4.1.9.9.273.1.2.1.1.9	列挙値	クライアントの電 源管理モード。
cDot11ClientAid	1.3.6.1.4.1.9.9.273.1.2.1.1.10	ゲージ	これは、デバイス にアソシエートす るクライアントま たはマルチキャス トアドレスのアソ シエーション識別 子です。
cDot11ClientDataRateSet	1.3.6.1.4.1.9.9273.1.2.1.1.11	文字列	このクライアント のデータ送受信に おけるデータレー トのセットです。
cDot11ClientSoftwareVersion	1.3.6.1.4.1.9.9.273.1.2.1.1.12	文字列	Cisco IOS ソフト ウェアバージョ ン。
cDot11ClientName	1.3.6.1.4.1.9.9.273.1.2.1.1.13	文字列	Cisco IOS デバイ スのホスト名。
cDot11ClientAssociationState	1.3.6.1.4.1.9.9.273.1.2.1.1.14	列挙値	このオブジェクト は、認証およびア ソシエーションプ ロセスの状態を示 します。

OID オブジェクト名	OID	OID タイプ	0ID の説明
cDot11ClientVlanId	1.3.6.1.4.1.9.9.273.1.2.1.1.17	ゲージ	ワイヤレスクライ アントがワイヤレ スステーションに 正常にアソシエー トされたときに割 り当てられる VLAN。
cDot11ClientSubIfIndex	1.3.6.1.4.1.9.9.273.1.2.1.1.18	整数	これは、このワイ ヤレスクライアン トがワイヤレスス テーションに正常 にアソシエートさ れたときに割り当 てられるサブイン ターフェイスの ifIndex です。
cDot11ClientAuthenAlgorithm	1.3.6.1.4.1.9.9.273.1.2.1.1.19	列挙値	アソシエーション 中にワイヤレスス テーションとこの クライアントの間 で実行される IEEE 802.1x 認証 方式。
cDot11ClientDot1xAuthenAlgorithm	1.3.6.1.4.1.9.9273.1.2.1.1.21	オクテット文字列	ワイヤレスクライ アントと認証サー バーの間で実行さ れる IEEE 802.1x 認証方式。
cDot11ClientUpTime	1.3.6.1.4.1.9.9.273.1.3.1.1.2	ゲージ	このクライアント がこのデバイスに アソシエートされ ている時間 (秒)。
cDot11ClientSignalStrength	1.3.6.1.4.1.9.9.273.1.3.1.1.3	整数	デバイス依存の測 定単位で、クライ アントから直近に 受信したパケット の信号強度を測定 します。

OID オブジェクト名	OID	OID タイプ	0ID の説明
cDot11ClientSigQuality	1.3.6.1.4.1.9.9.273.1.3.1.1.4	ゲージ	デバイス依存の測 定単位で、クライ アントから直近に 受信したパケット の信号品質を測定 します。
cDot11ClientPacketsReceived	1.3.6.1.4.1.9.9.273.1.3.1.1.6	カウンタ	このクライアント から受信したパ ケット数。
cDot11ClientBytesReceived	1.3.6.1.4.1.9.9.273.1.3.1.1.7	カウンタ	クライアントから 受信したバイト 数。
cDot11ClientPacketsSent	1.3.6.1.4.1.9.9.273.1.3.1.1.8	カウンタ	クライアントに送 信したパケット 数。
cDot11ClientBytesSent	1.3.6.1.4.1.9.9.273.1.3.1.1.9	カウンタ	クライアントに送 信したバイト数。
cDot11ClientMsduRetries	1.3.6.1.4.1.9.9273.1.3.1.1.11	カウンタ	このカウンタは、 1回以上再送信し た後に MSDU が 正常に送信される とカウントしま す。
cDot11ClientMsduFails	1.3.6.1.4.1.9.9.273.1.3.1.1.12	カウンタ	このカウンタは、 送信試行回数が一 定の上限を超えた ためにクライアン トが MSDU を正 常に送信できない とカウントしま す。

WGB CLI による SNMP の設定

次の CLI コマンドが、SNMP の設定に使用されます。

(注)

- SNMP CLI ロジックは SNMP 設定用に変更されています。SNMP 機能を有効にする前に、 CLI: configure snmp enabled により、SNMP のパラメータをすべて設定する必要があります。
 - SNMP 機能を無効にすると、SNMP に関連するすべての設定が自動的に削除されます。

手順

- ステップ1 [SNMP v2c community ID] 番号を入力します(SNMP v2c のみ)。 Device#configure snmp v2c community-id <length 1-64>
- ステップ2 SNMP プロトコルのバージョンを指定します。 Device#configure snmp version {v2c | v3}
- **ステップ3 SNMP v3 認証**プロトコルを指定します(SNMP v3 のみ)。 Device#configure snmp auth-method <md5 | sha>
- ステップ4 SNMP v3 ユーザー名を入力します(SNMP v3 のみ)。 Device#configure snmp v3 username <length 32>
- **ステップ5 SNMP v3 ユーザーパスワード**を入力します(SNMP v3 のみ)。

Device#configure snmp v3 password <length 8-64>

ステップ6 SNMP v3 暗号化プロトコルを指定します(SNMP v3 のみ)。

Device#configure snmp encryption {des | aes | none}

(注) 使用可能な暗号化値は、des または aes です。または、v3 暗号化プロトコルが必要ない場合は、none を入 力します。

ステップ7 SNMP v3 暗号化パスフレーズを入力します(SNMP v3 のみ)。

Device#configure snmp secret <length 8-64>

ステップ8 WGB で SNMP 機能を有効にします。

Device#configure snmp enabled

SNMP v2c を設定する場合は、ステップ1~2およびステップ8を繰り返します。 SNMP v3 を設定する場合は、ステップ2~8を繰り返します。

ステップ9 SNMP 設定を無効にします。

Device#configure snmp disabled

SNMP を無効にすると、関連するすべての設定が削除されます。

例

SNMP の設定例。

・SNMP v2c を設定するための CLI :

```
Device#configure snmp v2 community-id <length 1-64>
Device#configure snmp version v2c
Device#configure snmp enabled
```

・SNMP v3 を設定するための CLI(セキュリティレベル AuthPriv):

```
Device#configure snmp auth-method <md5|sha>
Device#configure snmp v3 username <length 32>
Device#configure snmp v3 password <length 8-64>
Device#configure snmp secret <length 8-64>
Device#configure snmp encryption <aes|des>
Device#configure snmp version v3
Device#configure snmp enabled
```

・SNMP v3 を設定するための CLI(セキュリティレベル AuthNoPriv):

```
Device#configure snmp auth-method <md5|sha>
Device#configure snmp v3 username <length 32>
Device#configure snmp v3 password <length 8-64>
Device#configure snmp encryption none
Device#configure snmp version v3
Device#configure snmp enabled
```

WGB CLI による SNMP の確認

SNMP 設定を確認するには、次の show コマンドを使用します。

• SNMP バージョン v3 の出力の表示:

Device# show snmp SNMP: enabled Version: v3 Community ID: test Username: username Password: password Authentication method: SHA Encryption: AES Encryption Passphrase: passphrase Engine ID: 0x800000903c0f87fe5f314

• SNMP バージョン v2c の出力の表示:

Device# show snmp SNMP: enabled Version: v2c Community ID: test Username: username Password: password Authentication method: SHA Encryption: AES Encryption Passphrase: passphrase Engine ID: 0x800000903c0f87fe5f314

QoS ACL の分類とマーキングのサポート

Cisco Unified Industrial Wireless ソフトウェアリリース 17.14.1 以降、WGB では、2 つの有線ポートからの異なるパケットを分類し、それをユーザー設定に従って異なるアクセス制御ドライバキューにマークできます。

WGBは、TCPまたはUDPに加えて、イーサネットタイプおよびDSCPに基づく分類もサポートします。ジッターおよび遅延の要件を満たすため、WGBはパケットを分類し、現場環境に 基づいて異なるアクセス制御キューに割り当てる必要があります。

概要

WGBでは、イーサネットポートからの着信パケットをワイヤレス側の特定の優先キューにマッ ピングするカスタムルールを作成できます。WGBには、IEEE 802.1p(dot1p)または DiffServ コードポイント (DSCP) のいずれかに基づいてアップストリームデータトラフィックをマッ ピングする機能があります。

イーサネットタイプ(Profinet など)、トランスポート層のポート番号またはポート範囲、お よびDSCPに基づいてルールを設定できます。ワイヤレスネットワーク上のさまざまなアクセ ス制御キューにパケットを転送し、効率的な QoS の適用を促進します。

イーサネットポートに着信したパケットは、カスタマイズされたルールベースのマッピングを 使用して、ワイヤレス側の特定のアクセス制御キューに転送されます。

カスタマイズされたルールによって、送信元および宛先 IP アドレス、ポート番号、プロトコ ルタイプなどのあらかじめ定義された条件に基づいて、パケットの分類とさまざまなアクセス 制御キューへの割り当てが規定されます。ルールを定義すると、定義されたルールによって着 信パケット内の重要なサービスまたはトラフィックが識別されます。定義されたルールによっ てこうした重要なサービスを照合することで、一致するサービスをネットワークインフラスト ラクチャ内の優先度の高いキューにマッピングできます。

WGBにおけるルールベースのトラフィックの分類とマッピングを使用することで、ネットワークトラフィックを効果的に管理し、優先順位付けを行い、重要なアプリケーションやサービスに固有の要求を満たせます。このアプローチにより、ネットワーク内でQoSポリシーを効果的に適用して、最適なネットワーク性能を維持し、重要なサービスの遅延を最小限に抑え、ユーザー体験全般を向上できます。

QoS と ACL に基づくトラフィックの分類

分類とは、パケット内のフィールドを検証して、トラフィックを区別するプロセスです。デバ イスでは、QoS が有効になっている場合にのみ分類が有効になります。 分類時に、デバイスは検索処理を実行し、パケットに QoS ラベルを割り当てます。QoS ラベルは、パケットに対して実行するすべての QoS アクションを示し、パケットの送信元キューを識別します。

レイヤ2イーサネットフレームでは、[Ethertype]フィールドに分類情報が含まれます。[Ethertype] フィールド(通常、サイズは2バイト)は、通常、フレームにカプセル化されたデータのタイ プを示します。

レイヤ 3 IP パケットでは、8 ビットの [Type of Service (TOS)]フィールドに分類情報が含ま れます。[ToS]フィールドには、IP precedence 値または Diffserv コードポイント (DSCP) 値の いずれかが含まれます。IP precedence 値の範囲は $0 \sim 7$ です。DSCP 値の範囲は $0 \sim 63$ です。

レイヤ 4 TCP セグメントまたは UDP データグラムでは、[Source Port] フィールドまたは [Destination Port] フィールドに分類情報が含まれます。これらのポートフィールドは、データ の送信者と受信者に関連付けられたポート番号を指定します。これにより、ネットワーキング デバイスは、事前に定義された条件に基づいてトラフィックを分類できます。

システムにより、イーサネットタイプ、DSCP、またはUDP/TCPポート(またはポート範囲) に基づいてトラフィックが特定のサービスクラスに割り当てられ、サービスクラス内のパケッ トが一貫して処理されます。WGBは、2つの有線ポートからのさまざまなパケットを分類し、 ユーザー設定に従って異なるドライバキューにマッピングするのに役立ちます。

データプレーン統計は、ネットワークトラフィックが各ルールにヒットした回数を示します。 これらのカウンタは、ネットワーク管理者がルールとポリシーの有効性を分析し、ネットワー ク性能を最適化する上で不可欠です。

コントロールプレーンは、ネットワークを介したデータの転送方法を管理および設定するネットワークアーキテクチャの一部です。

図 4: WGB イーサネットポートからのトラフィックフローのフローチャート

QoSが無効になっている場合、アクセスポイントは従来のマッピング動作に従い、次の処理を 実行します。

1. 指定された Ethertype 0x8100 の VLAN 要素からタグ制御情報(TCI)の優先順位を取得します。

- **2.** Ethertype 0x8892 (Profinet) QoS マッピングについては、TCI の優先順位に 6 を割り当てま す。
- **3.** Ethertype 0x0800 (IP) および 0x86DD (IPv6) については、DSCP の優先順位はデフォルト の dscp2dot1p マッピング表に従って設定されます。

```
====== dscp mapping =======
Default dscp2dotlp Table Value:
[0]->0 [1]->0 [2]->0 [3]->0 [4]->0 [5]->0 [6]->0 [7]->0
[8]->1 [9]->1 [10]->1 [11]->1 [12]->1 [13]->1 [14]->1 [15]->1
[16]->2 [17]->2 [18]->2 [19]->2 [20]->2 [21]->2 [22]->2 [23]->2
[24]->3 [25]->3 [26]->3 [27]->3 [28]->3 [29]->3 [30]->3 [31]->3
[32]->4 [33]->4 [34]->4 [35]->4 [36]->4 [37]->4 [38]->4 [39]->4
[40]->5 [41]->5 [42]->5 [43]->5 [44]->5 [45]->5 [46]->5 [47]->5
[48]->6 [49]->6 [50]->6 [51]->6 [52]->6 [53]->6 [54]->6 [55]->6
[56]->7 [57]->7 [58]->7 [59]->7 [60]->7 [61]->7 [62]->7 [63]->7
```

QoS が有効になっている場合、アクセスポイントは次の処理を実行します。

- 1. Ethertype 0x8892 (Profinet) QoS マッピングの優先順位は、構成の設定に基づきます。
- 2. Ethertype 0x0800 (IP) および 0x86DD (IPv6) については、優先順位はポートまたは DSCP を考慮したマッピングルールに基づきます。
 - UDP/TCP ポート(またはポート範囲)ルールを確認します。
 - •DSCP ルールを確認します。
- 3. 非 IPv4/IPv6 パケットのユーザー優先順位として値 0 を割り当てます。
- 4. ルールが設定されていない場合、QoS プロファイルは従来のマッピング動作に従います。

(注) 802.1pの優先順位が存在する場合は、それがカスタマイズされたルールに優先します。

Quality of Service マッピングプロファイルの設定

次のコマンドを使用すると、WGB QoS マッピングを設定するための各種分類ルールを定義できます。

手順

ステップ1 QoS マッピングプロファイルを有効にします。

Device#config wgb qos-mapping <profile-name> enable

例:

Device#configure wgb qos-mapping demo-profile enable

ステップ2 イーサネットタイプに基づく WGB QoS マッピング プロファイル ルール。

次のコマンドを使用して、イーサネットフレームタイプに基づいてルールを設定します。

イーサネットタイプに基づいてルールを追加します。

Device#config wgb qos-mapping <profile-name> add ethtype hex <number> priority <0-7>

例:

Device#configure wgb qos-mapping demo-profile add ethtype hex 8892 priority 5

コマンドにより存在しないプロファイルを指定した場合、新しい空のプロファイルが作成され、マッピン グルールが追加されます。

•イーサネットタイプに基づくルールの削除

Device#config wgb qos-mapping <profile-name> delete ethtype hex <number>

例:

Device#configure wgb qos-mapping demo-profile delete ethtype hex 8892

このコマンドの場合、存在しないプロファイルを指定すると、警告メッセージが発行されます。さらに、 指定したマッピングルールを削除するとプロファイルが空になる場合には、そのプロファイルは自動的に 削除されます。

ステップ3 ポートの ID または範囲に基づくルール。

次のコマンドを使用して、L4 ポートの ID または範囲に基づいてルールを設定します。

・ポートの ID または範囲に基づいてルールを追加します。

Device#config wgb qos-mapping <profile-name> add srcport <number> | <range <start-number> <end-number>>> [dstport <number> | <range <start-number> <end-number>>>] priority <0-7>

例:

Device#configure wgb qos-mapping demo-profile add srcport range 5050 5070 dstport 8000 priority 3

コマンドにより存在しないプロファイルを指定した場合、新しい空のプロファイルが作成され、マッピン グルールが追加されます。

ポートの ID または範囲に基づいてルールを削除します。

Device#config wgb qos-mapping <profile-name> delete [srcport <number> | <range <start-number> <end-number>>> [dstport <number> | <range <start-number> <end-number>>>]]

例:

Device#configure wgb qos-mapping demo-profile delete srcport range 5050 5070 dstport 8000

このコマンドの場合、存在しないプロファイルを指定すると、警告メッセージが発行されます。さらに、 指定したマッピングルールを削除するとプロファイルが空になる場合には、そのプロファイルは自動的に 削除されます。

ステップ4 DSCP に基づくルール。

次のコマンドは、IPv4/IPv6 パケットの DSCP 値に基づいてルールを設定するために使用されます。

• [Add

Device#config wgb qos-mapping <profile-name> add dscp <number> priority < 0-7>

例:

Device#configure wgb qos-mapping demo-profile add dscp 63 priority 4

コマンドにより存在しないプロファイルを指定した場合、新しい空のプロファイルが作成され、マッピン グルールが追加されます。

•削除 (Delete)

Device#config wgb qos-mapping <profile-name> delete dscp <number> priority < 0-7>

例:

Device#configure wgb qos-mapping demo-profile delete dscp 63

このコマンドの場合、存在しないプロファイルを指定すると、警告メッセージが発行されます。さらに、 指定したマッピングルールを削除するとプロファイルが空になる場合には、そのプロファイルは自動的に 削除されます。

(注)

DSCP マッピングルールを削除すると、ルールは DSCP マッピングのデフォルト値にリセットされます。

ステップ5 QoS マッピングプロファイルを無効にします。

Device#config wgb qos-mapping <profile-name> disable

例:

Device#configure wgb qos-mapping demo-profile disable

無効にすると、コマンドによってプロファイルがデータパスからクリアされ、WGB構成ファイルに保持さ れます。指定されたプロファイルが存在しない場合、コマンドは警告メッセージを発行し、新しい空のプ ロファイルは作成されません。

ステップ6 QoS マッピングプロファイルを削除します。

Device#config wgb qos-mapping <profile-name> delete

例:

Device#configureure wgb qos-mapping demo-profile delete

削除すると、プロファイルはデータパスと WGB 設定から削除されます。

WGB の Quality of Service マッピングの確認

コントロールプレーンの WGB QoS マッピング設定を確認するには、show wgb qos-mapping を 実行します。

Device# show wgb qos-mapping

```
Number of QoS Mapping Profiles: 2
Profile name : qos1
```

```
Profile status : active
Number of Rules: 8
Rules:
L4 srcport : 31000-31100, dstport : 6666-7777, priority : 7
L4 srcport : 23000, dstport : N/A, priority : 3
L4 srcport : N/A, dstport : 20000-20100, priority : 5
L4 srcport : N/A, dstport : 2222, priority : 2
L4 srcport : 12300-12500, dstport : N/A, priority : 6
IPv4/IPv6 dscp: 43, priority : 1
Ethernet type : 0x8892, priority : 0
L4 srcport : 8888, dstport : 9999, priority : 4
Profile name : qos2
Profile status : inactive
Number of Rules: 8
Rules:
L4 srcport : 31000-31100, dstport : 6666-7777, priority : 2
L4 srcport : 23000, dstport : N/A, priority : 6
L4 srcport : N/A, dstport : 20000-20100, priority : 4
L4 srcport : N/A, dstport : 2222, priority : 7
L4 srcport : 12300-12500, dstport : N/A, priority : 3
IPv4/IPv6 dscp: 43, priority : 0
Ethernet type : 0x8892, priority : 1
L4 srcport : 8888, dstport : 9999, priority : 5
```

データプレーンの WGB QoS マッピング設定を確認するには、show datapath qos-mapping rule を実行します。

Device# show datapath qos-mapping rule

```
Status: active
QoS Mapping entries
====== dscp mapping ======
Default dscp2dotlp Table Value:
[0]->0 [1]->0 [2]->0 [3]->0 [4]->0 [5]->0 [6]->0 [7]->0
[8]->1 [9]->1 [10]->1 [11]->1 [12]->1 [13]->1 [14]->1 [15]->1
[16]->2 [17]->2 [18]->2 [19]->2 [20]->2 [21]->2 [22]->2 [23]->2
[24]->3 [25]->3 [26]->3 [27]->3 [28]->3 [29]->3 [30]->3 [31]->3
[32]->4 [33]->4 [34]->4 [35]->4 [36]->4 [37]->4 [38]->4 [39]->4
[40]->5 [41]->5 [42]->5 [43]->5 [44]->5 [45]->5 [46]->5 [47]->5
[48]->6 [49]->6 [50]->6 [51]->6 [52]->6 [53]->6 [54]->6 [55]->6
[56]->7 [57]->7 [58]->7 [59]->7 [60]->7 [61]->7 [62]->7 [63]->7
active dscp2dotlp Table Value:
```

 $\begin{bmatrix} 0 \end{bmatrix} ->0 \quad \begin{bmatrix} 1 \end{bmatrix} ->0 \quad \begin{bmatrix} 2 \end{bmatrix} ->0 \quad \begin{bmatrix} 3 \end{bmatrix} ->0 \quad \begin{bmatrix} 4 \end{bmatrix} ->0 \quad \begin{bmatrix} 5 \end{bmatrix} ->0 \quad \begin{bmatrix} 6 \end{bmatrix} ->0 \quad \begin{bmatrix} 7 \end{bmatrix} ->0 \\ \begin{bmatrix} 8 \end{bmatrix} ->1 \quad \begin{bmatrix} 9 \end{bmatrix} ->1 \quad \begin{bmatrix} 10 \end{bmatrix} ->1 \quad \begin{bmatrix} 11 \end{bmatrix} ->1 \quad \begin{bmatrix} 12 \end{bmatrix} ->1 \quad \begin{bmatrix} 13 \end{bmatrix} ->1 \quad \begin{bmatrix} 14 \end{bmatrix} ->1 \quad \begin{bmatrix} 15 \end{bmatrix} ->1 \\ \begin{bmatrix} 16 \end{bmatrix} ->7 \quad \begin{bmatrix} 17 \end{bmatrix} ->2 \quad \begin{bmatrix} 18 \end{bmatrix} ->2 \quad \begin{bmatrix} 19 \end{bmatrix} ->2 \quad \begin{bmatrix} 20 \end{bmatrix} ->2 \quad \begin{bmatrix} 21 \end{bmatrix} ->2 \quad \begin{bmatrix} 22 \end{bmatrix} ->2 \quad \begin{bmatrix} 23 \end{bmatrix} ->2 \\ \begin{bmatrix} 24 \end{bmatrix} ->3 \quad \begin{bmatrix} 25 \end{bmatrix} ->3 \quad \begin{bmatrix} 26 \end{bmatrix} ->3 \quad \begin{bmatrix} 27 \end{bmatrix} ->3 \quad \begin{bmatrix} 28 \end{bmatrix} ->3 \quad \begin{bmatrix} 29 \end{bmatrix} ->3 \quad \begin{bmatrix} 30 \end{bmatrix} ->3 \quad \begin{bmatrix} 31 \end{bmatrix} ->3 \\ \begin{bmatrix} 32 \end{bmatrix} ->4 \quad \begin{bmatrix} 33 \end{bmatrix} ->4 \quad \begin{bmatrix} 34 \end{bmatrix} ->4 \quad \begin{bmatrix} 35 \end{bmatrix} ->4 \quad \begin{bmatrix} 36 \end{bmatrix} ->4 \quad \begin{bmatrix} 37 \end{bmatrix} ->4 \quad \begin{bmatrix} 38 \end{bmatrix} ->4 \quad \begin{bmatrix} 38 \end{bmatrix} ->4 \\ \begin{bmatrix} 38 \end{bmatrix} ->4 \quad \begin{bmatrix} 38 \end{bmatrix} ->4 \\ \begin{bmatrix} 49 \end{bmatrix} ->5 \quad \begin{bmatrix} 41 \end{bmatrix} ->5 \quad \begin{bmatrix} 42 \end{bmatrix} ->5 \quad \begin{bmatrix} 44 \end{bmatrix} ->5 \quad \begin{bmatrix} 44 \end{bmatrix} ->5 \quad \begin{bmatrix} 45 \end{bmatrix} ->5 \quad \begin{bmatrix} 46 \end{bmatrix} ->5 \quad \begin{bmatrix} 47 \end{bmatrix} ->5 \\ \begin{bmatrix} 48 \end{bmatrix} ->6 \quad \begin{bmatrix} 49 \end{bmatrix} ->6 \quad \begin{bmatrix} 50 \end{bmatrix} ->6 \quad \begin{bmatrix} 51 \end{bmatrix} ->6 \quad \begin{bmatrix} 52 \end{bmatrix} ->6 \quad \begin{bmatrix} 53 \end{bmatrix} ->6 \quad \begin{bmatrix} 54 \end{bmatrix} ->6 \quad \begin{bmatrix} 55 \end{bmatrix} ->6 \\ \begin{bmatrix} 56 \end{bmatrix} ->7 \quad \begin{bmatrix} 57 \end{bmatrix} ->7 \quad \begin{bmatrix} 58 \end{bmatrix} ->7 \quad \begin{bmatrix} 59 \end{bmatrix} ->7 \quad \begin{bmatrix} 60 \end{bmatrix} ->7 \quad \begin{bmatrix} 61 \end{bmatrix} ->7 \quad \begin{bmatrix} 62 \end{bmatrix} ->7 \quad \begin{bmatrix} 63 \end{bmatrix} ->7 \\ \end{bmatrix}$

データプレーンの WGB QoS マッピング統計を確認するには、show datapath qos-mapping statistics コマンドを実行します。

Device# show datapath qos-mapping statistics

```
===== pkt stats per dscp-mapping rule =======
dscp up pkt_cnt
16 7 0
```

データプレーンの WGB QoS マッピング統計をクリアするには、clear datapath qos-mapping statistics コマンドを実行します。

(注) このコマンドは、データプレーンのルールごとにパケットカウント統計をクリアします。

パケットキャプチャ:WGB での TCP ダンプ

WGB での TCP ダンプ

TCP ダンプユーティリティは、ネットワーク監視およびデータ取得に広く使用されるネット ワーク パケット アナライザです。TCP ダンプを WGB に適用すると、WGB の有線インター フェイスを介して送信されたパケットをキャプチャ、表示、および保存できます。

「WGB での TCP ダンプ」の章では、Catalyst IW9165E の WGB 有線インターフェイスを介して TCP ダンプを有効にする方法について説明します。

TCP ダンプユーティリティの目的

WGBのTCP ダンプは、ネットワーク通信を監視してトラブルシュートすることで、WGB に より有線クライアントとワイヤレスネットワーク間でフレームが正しくリレーされるようにし ます。

TCP ダンプユーティリティの機能

- •WGB 端末でキャプチャされたパケットをリアルタイムで表示する
- ストレージにパケットをキャプチャする

(注) TCP ダンプユーティリティでは、パケットのストレージへのキャプチャと WGB 端末への表示 を同時に行うことはできません。

パケットキャプチャモード

- Default: WGB 端末でキャプチャされたパケットをヘッダー付きでリアルタイムに表示します。
- Verbose: WGB 端末でリアルタイムパケットを解析して(ヘッダー付きで)出力し、各パケットのデータ(リンクレベルヘッダーを含む)を16進数フォーマットで出力します。

停止します。

WGB のプロトコル パケット キャプチャ機能

デフォルトフィルタまたはカスタムフィルタを使って、WGB 有線ポートを介して AP からパ ケットをキャプチャし、外部サーバーにアップロードできます。

デフォルトフィルタによるキャプチャでは、IP、TCP、UDPなどの3つの主要なプロトコルパ ケットをキャプチャします。

カスタムフィルタによるキャプチャでは、特定の問題の障害対応または特定のタイプのネット ワークアクティビティの監視に関連する特定のパケットをキャプチャします。

さまざまなプロトコルフィルタを使用して、デバッグのためのパケットをキャプチャできま す。たとえば、フィルタ式に次のような特定のプロトコルを含めます。

- 伝送制御プロトコル
- Internet Control Message Protocol (ICMP) および ICMPv6
- IP プロトコル 0x8892 を使用した Profinet
- •アドレス解決プロトコル (ARP)
- ・インターネットグループ管理プロトコル (IGMP)
- User Datagram Protocol
- ・ポート 67 またはポート 68 を使用した Dynamic Host Configuration Protocol (DHCP) 、およ びポート 546 またはポート 547 を使用した DHCPv6

- TCP ポート 44818 を使用した Common Industrial Protocol (CIP)
- ・ポート 53 を使用したドメインネームシステム (DNS)
- ポート 161 またはポート 162 を使用した Simple Network Management Protocol

パケットキャプチャのフィルタ式

PCAP のフィルタ式は、1 つ以上のプリミティブで構成されます。プリミティブは通常、修飾 子とそれに続く識別子で構成されます。識別子には、名前または番号を指定できます。

修飾子は3種類あります。

Type:識別子のタイプを指定します。タイプには、ポート、ホスト、ネットワーク、またはポートの範囲を指定できます。

例: port 20

・Dir:特定の方向に転送されるパケットのみをキャプチャするよう指定します。

例: src x.x.x.x and port ftp-data または dst x.x.x.x and port ftp

- Proto:特定のプロトコルに限定してキャプチャします。
- 例: tcp port 21

論理演算子 AND、OR、および NOT を使用してフィルタ式を組み合わせることで、より具体的で複雑なフィルタを作成できます。

(注) フィルタ式を作成するときは、演算の順序を理解し、必要に応じてカッコを使って式をグループ化することで正しく解釈されるようにすることが重要です。

WGB の有線パケットキャプチャの有効化

手順

- ステップ1 PCAP を有効にするには、次のいずれかのオプションを選択します。
 - 1. デフォルトフィルタを使用した PCAP:

Device#debug traffic wired $[0|1] \{ip|tcp|udp\} [verbose|capture]$

[0~1]:有線インターフェイス番号を指定します。選択されていない場合は、すべての有線インターフェイスからパケットをキャプチャします。

次の表に、Default、Verbose、および Capture モードの PCAP の例を示します。

モード	例		
Default : IP プロト コルヘッダーパ ケットをキャプ チャします。	<pre>b Device#debug traffic wired 1 ip APXXXX.XXXX.XXXX#reading from file /dev/click_wired_log, link-type EN10MB (Ethernet) 1 08:35:50.529851 IP 209.165.200.213 > 209.165.200.1: ICMP echo request, id 13721, seq 1, length 64 2 08:35:50.534813 IP 209.165.200.1 > 209.165.200.213: ICMP echo reply, id 13721, seq 1, length 64</pre>		
Verbose:UDPプロ トコルパケットの 詳細情報をキャプ チャします。	<pre>Device#debug traffic wired 1 udp verbose APXXXX.XXXX.XXXX#reading from file /dev/click_wired_log, link-type EN10MB (Ethernet) 1 08:25:59.696990 IP6 fe80::322c:712c:5787:f246.dhcpv6-client > ff02::1:2.dhcpv6-server: dhcp6 solicit</pre>		
Capture:TCPパ ケット情報をPCAP ファイルに書き込 みます。	Device#debug traffic wired 1 tcp capture % Writing packets to "/pcap/APXXXX.XXXX_capture.pcap0" APXXXX.XXXX.XXXX#reading from file /dev/click_wired_log, link-type EN10MB (Ethernet)		

2. カスタムフィルタを使用した PCAP:

(注)

有効にする PCAP プロセスは一度に1つとしてください。フィルタ式では、"`\$^&|\><?;~などの サポートされていない文字を使用しないでください。

Device#debug traffic wired [0|1] filter *expression* [verbose|capture]

次の表に、Default、Verbose、および Capture モードの PCAP の例を示します。

モード	例
Default : IP プロト コルヘッダーパ ケットをキャプ チャします。	<pre>Device#debug traffic wired 0 filter icmp APXXXX.XXXX.XXXX#reading from file /dev/click_wired_log, link-type EN10MB (Ethernet) 1 10:38:59.948729 IP 209.165.200.213 > 209.165.200.1: ICMP echo request, id 16204, seq 1, length 64 2 10:38:59.954308 IP 209.165.200.1 > 209.165.200.213: ICMP echo reply, id 16204, seq 1, length 64</pre>

モード	例
Verbose:UDPプロ トコルパケットの 詳細情報をキャプ チャします。	<pre>Device#debug traffic wired 1 filter icmp verbose APXXXX.XXXX##reading from file /dev/click_wired_log, link-type EN10MB (Ethernet) 17:13:30.706493 IP 209.165.200.213 > 209.165.200.1: ICMP echo request, id 986, seq 1, length 64 0x0000: fc58 9a17 afd4 f8e4 3b9d 7322 0800 4500 0x0010: 0054 57a0 4000 4001 889e c0a8 6cc8 c0a8 0x0020: 6c51 0800 940c 03da 0001 7f3d 5365 0000 0x0030: 0000 cea2 0000 0000 0000 1011 1213 1415 0x0040: 1617 1819 1a1b 1c1d 1e1f 2021 2223 2425 0x0050: 2627 2829 2a2b 2c2d 2e2f 3031 3233 3435 0x0060: 3637 17:13:30.710567 IP 209.165.200.1 > 209.165.200.213: ICMP echo reply, id 986, seq 1, length 64 0x0000: f8e4 3b9d 7322 fc58 9a17 afd4 0800 4500 0x0010: 0054 9102 0000 4001 8f3c c0a8 6c51 c0a8 0x0020: 6cc8 0000 9ccc 03da 0001 7f3d 5365 0000 0x0030: 0000 cea2 0000 0000 1011 1213 1415 0x0040: 1617 1819 1a1b 1c1d 1e1f 2021 2223 2425 0x0050: 2627 2829 2a2b 2c2d 2e2f 3031 3233 3435 0x0060: 3637</pre>
Capture:TCPパ ケット情報をPCAP ファイルに書き込 みます。	Device#ddebug traffic wired 1 filter icmp capture % Writing packets to "/tmp/pcap/APXXXX.XXXX.capture.pcap0" APXXXX.XXXX.XXXX#reading from file /dev/click_wired_log, link-type EN10MB (Ethernet)

フィルタ式の詳細については、TCP ダンプの PCAP フィルタに関するドキュメントを参照してください。

3. カスタムフィルタを使用した複数 VLAN の PCAP:

(注)

一部のカスタムフィルタでは、非ネイティブ VLAN のトラフィックをキャプチャできません。たとえ ば、カスタムフィルタコマンド #debug traffic wired 0 filter icmp では、非ネイティブ VLAN のダウン リンク ICMP トラフィックをキャプチャできません。

非ネイティブ VLAN でダウンリンクトラフィックをキャプチャするには、次の2つのオプションがあります。

フィルタ式にVLANを加えることで、非ネイティブVLANの有線クライアントの双方向トラフィックをキャプチャする。

```
Device#debug traffic wired 0 filter "icmp or (vlan and icmp)"
```

1 12:27:40.833815 IP 209.165.200.102 > 209.165.200.1: ICMP echo request, id 27279, seq 1, length 64

```
2 12:27:40.841331 IP 209.165.200.1 > 209.165.200.102: ICMP echo reply, id 27279, seq 1, length 64
```

 デフォルト IP フィルタを使用して、ネイティブ VLAN と非ネイティブ VLAN を含むすべての IP トラフィックをキャプチャする。

Device#debug traffic wired 0 ip

1 12:27:40.833815 IP 209.165.200.102 > 209.165.200.1: ICMP echo request, id 27279, seq 1, length 64

2 12:27:40.841331 IP 209.165.200.1 > 209.165.200.102: ICMP echo reply, id 27279, seq 1, length 64 有線 PCAP を無効にするには、「WGB の有線パケットキャプチャの無効化」を参照してください。 ステップ2 パケットを外部サーバーにアップロードするには、次のコマンドを使用します。 (注) パケットをアップロードする前に、PCAP プロセスを完了し、パケットをファイルに保存します。 TFTP、SFTP、または SCP サーバーを使用して、PCAP ファイルを外部サーバーにアップロードします。 Device#copy pcap APxxxx.xxxx.capture.pcap0 <tftp|sftp>://A.B.C.D[/dir][/filename] copy pcap APxxxx.xxxx_capture.pcap0 scp://username@A.B.C.D[:port]:/dir[/filename] 例: Device#copy pcap APXXXX.XXXX.XXXX capture.pcap0 scp://iot@209.165.200.213:/capture/wgb sniffer.pcap copy ""/pcap/APXXXX.XXXX.XXXX capture.pcap0"" to "scp://iot@209.165.200.213:/capture/wgb_dhcp_sniffer_0_46_29.pcap" (Y/N)Y iot@209.165.200.213 password: APXXXX.XXXX.XXXX capture.pcap0 08 0 0.0KB/s --:-- ETA APXXXX.XXXX.XXXX capture.pcap0 100% 2530 916.5KB/s 00:00

WGB の有線パケットキャプチャの無効化

手順

PCAP を無効にするには、次のコマンドを使用します。

1. デフォルトフィルタ:

Device#no debug traffic wired [0-3] {ip | tcp | udp} [verbose | capture]

2. カスタムフィルタ:

Device#no debug traffic wired [0-3] filter expression [verbose | capture]

(注)

キャプチャプロセスを終了するには、no debug または undebug all コマンドを使用します。

WGB の有線パケットキャプチャの確認

・デバッグステータスを確認するには、show debug コマンドを使用します。

```
Device#show debug
traffic:
    wired tcp debugging is enabled
```

 ファイルに保存されているキャプチャ済み内部有線パケットを表示するには、show pcap コマンドを使用します。


```
(注)
```

パケットをファイルにキャプチャした後、show pcap コマンドを 使用してパケットを表示します。

Device#show pcap

- reading from file /pcap/APXXXX.XXXX.XXXX_capture.pcap0, link-type EN10MB (Ethernet)
 1 00:00:00.000000 IP 0.0.0.0 > 224.0.0.1: igmp query v2
- 2 09:41:48.903670 IP 209.165.200.189 > 209.165.200.1: ICMP echo request, id 29920,
- seq 1, length 64
- 3 09:41:48.908927 IP 209.165.200.1 > 209.165.200.189: ICMP echo reply, id 29920, seq 1, length 64
- 4 09:41:49.904914 IP 209.165.200.102 > 209.165.200.1: ICMP echo request, id 29920, seq 2, length 64

5 09:41:49.909009 IP 209.165.200.1 > 209.165.200.102: ICMP echo reply, id 29920, seq 2, length 64

 キャプチャされたパケットの基本的な内容をフィルタ処理して順番に表示するには、show pcap [filter expression] コマンドを実行します。

Device#**show pcap filter "src 209.165.200.189"** reading from file /pcap/APXXXX.XXXX.XXXX_capture.pcap0, link-type EN10MB (Ethernet)

1 09:41:48.903670 IP 209.165.200.189 > 209.165.200.1: ICMP echo request, id 29920, seq 1, length 64 2 09:41:48.908927 IP 209.165.200.1 > 209.165.200.189: ICMP echo reply, id 29920, seq 1, length 64

 特定のパケットの詳細な内容をフィルタ処理して表示するには、show pcap [filter expression][detail no] コマンドを実行します。

Device#show pcap filter "src 209.165.200.189" detail 2 2024-04-25 09:41:49.904914 000000 18 59 f5 96 af 74 00 50 56 85 8a 0a 08 00 45 00 000010 00 54 14 6c 40 00 40 01 b7 9d 64 16 53 72 64 16 000020 53 01 08 00 70 81 74 e0 00 02 d4 3e 2b 66 00 00 000030 00 00 50 24 04 00 00 00 00 00 10 11 12 13 14 15 000040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 000050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 000060 36 37

AAA ユーザー認証のサポート

AAA ユーザー認証のサポートに関する情報

この章では、AAAによって(認証を通じて)ネットワークリソースの使用を制御し、(承認 を通じて)許可されるアクションを定義する方法を説明します。リリース17.15.1以降、IW9165E WGBでは AAA ベースのユーザー管理および認証がサポートされます。

AAA サーバーは、Authorization-Reply メッセージを使用して、0~15の権限レベルをクライア ントに割り当てます。現在、レベル1(表示ユーザー)と15(管理ユーザー)のみがサポート されており、レベル2~14は予約済みです。AAA サーバーにユーザーを追加する際、権限レ ベル0および2~14は使用しないでください。権限レベルを指定しないでユーザーを追加し た場合、そのユーザーには WGB によって最も低い権限レベルが割り当てられます。

AAA ベースのユーザー管理および認証の機能は次のとおりです。

- •マルチユーザーをサポート
- •AAA サーバーにユーザー名とパスワードを保存
- •AAA を活用したユーザー認証
- ユーザー毎に異なる権限をサポート
- ・ユーザーの権限に基づいた CLI アクセス制限

- (注)
 - Ciscoルータまたはスイッチと同様に、ワークグループブリッジ(WGB)も、ユーザー名とパ スワードをローカルに作成して保存できます。

AAA サーバーの設定

始める前に

- ・プライマリ AAA サーバーを追加する前に、セカンダリ AAA サーバー(RADIUS または TACACS+)を追加できます。プライマリ AAA サーバーが追加されると、クライアントは プライマリ AAA サーバーに接続します。
- ・プライマリ RADIUS サーバーとセカンダリ RADIUS サーバーの両方が設定されている場合、WGB はプライマリ RADIUS サーバーとの接続を3回試行してから、セカンダリ RADIUS サーバーに切り替えます。
- TACACS+ サーバーの場合、プライマリ TACACS+ サーバーとの接続は1回のみ試行され ます。プライマリ TACACS+ サーバーが応答しない場合は、セカンダリ TACACS+ サー バーが使用されます。

(注) WGB AAA RADIUS サーバー設定コマンドは、17.15.1 リリース以降で正式にサポートされま す。

イメージを17.15.1 リリース以降から17.14.1 以前のリリースにダウングレードした場合、または17.14.1 以前のリリースから17.15.1 リリース以降にアップグレードした場合、もともと設定されていた RADIUS サーバーポートはゼロにリセットされます。このため、再度 RADIUS サーバーポートの設定が必要です。

手順

ステップ1 次のコマンドを使用して、AAA サーバー(RADIUS または TACACS+)を設定します。

Device# config {radius | tacplus} authentication {primary | secondary} address {ipv4 | ipv6} ip-address port port-number secret secret-string

(注)

secret-stringパラメータには、縦棒(l)、セミコロン(;)、ドル記号(\$)、小なり(<)、大なり(>)、 アンパサンド(&)、キャレット記号(^)、抑音アクセント(`)、バックスラッシュ(\)、改行(\r)、 および二重引用符("")などのサポートされていない文字は使用しないでください。

ステップ2 (オプション) AAAサーバー (RADIUS またはTACACS+) を削除するには、次のコマンドを使用します。 Device# config {radius | tacplus} authentication {primary | secondary}delete

ログインユーザーの RADIUS 認証の有効化または無効化

手順

- **ステップ1** 次のコマンドを実行して、ログインユーザーの AAA RADIUS 認証を有効にします。 Device# config ap management aaa radius enable
- **ステップ2** (オプション)次のコマンドを実行して、ログインユーザーの AAA RADIUS 認証を無効にします。 Device# config ap management aaa radius disable

ログインユーザーの TACACS+ 認証の有効化または無効化

始める前に

手順

ステップ1 次のコマンドを実行して、ログインユーザーの AAA TACACS+ 認証を有効にします。 Device# config ap management aaa tacplus enable

ステップ2 (オプション) 次のコマンドを実行して、ログインユーザーの AAA TACACS+ 認証を無効にします。 Device# config ap management aaa tacplus disable

AAA 認証設定の確認

AAA サーバー(RADIUS または TACACS+)の設定を確認するには、show running-configuration コマンドを使用します。

次に、AAA RADIUS 認証が有効になっている場合の出力例を示します。

次に、AAA tacplus 認証が有効になっている場合の出力例を示します。

Device# show running-config

無線機統計コマンド

無線接続の問題をトラブルシュートするには、次のコマンドを使用します。

#debug wgb dot11 rate

#debug wgb dot11 rate

[*03/13/2023 18:00:08.7814]	MAC Tx-	Pkts	Rx-Pkts		
Tx-Rate(Mbps)	Rx-Rate(Mbps)	RSSI	SNR Tx-Re	etries	
[*03/13/2023 18:00:08.7814]	FC:58:9A:17:C2:51	0	0		
HE-20,2SS,MCS6,GI0.8 (154)	HE-20,3SS,MCS4,GI0.8	(154)	-30	62	0
[*03/13/2023 18:00:09.7818]	FC:58:9A:17:C2:51	0	0		
HE-20,2SS,MCS6,GI0.8 (154)	HE-20,3SS,MCS4,GI0.8	(154)	-30	62	0

この例では、FC:58:9A:17:C2:51 が親 AP の無線機 MAC です。

#show interfaces dot11Radio <slot-id> statistics

#show interfaces dot11Radio 1 statistics Dot11Radio Statistics:

DOT11	Statistics (Cumulativ	ле То	tal/Last 5 S	econds):	
RECEIVER			TRANSMITTER	L	
Host Rx K Byte	s: 965570/0		Host Tx K B	ytes:	1611903/0
Unicasts Rx:	379274/0		Unicasts Tx	:	2688665/0
Broadcasts Rx:	3166311/0		Broadcasts	Tx:	0/0
Beacons Rx:	722130099/1631	L	Beacons Tx:		367240960/784
Probes Rx:	588627347/2224	1	Probes Tx:		78934926/80
Multicasts Rx:	3231513/0		Multicasts	Tx:	53355/0
Mgmt Packets R	x: 764747086/1769	9	Mgmt Packet	s Tx:	446292853/864
Ctrl Frames Rx	: 7316214/5		Ctrl Frames	Tx:	0/0
RTS received:	0/0		RTS transmi	tted:	0/0
Duplicate fram	es: 0/0		CTS not rec	eived:	0/0
MIC errors:	0/0		WEP errors:		2279546/0
FCS errors:	0/0		Retries:		896973/0
Key Index erro	rs: 0/0		Tx Failures	:	8871/0
- 1			Tx Drops:		0/0
					-, -
Rate Statistic	s for Radio::				
[Legacy]:					
6 Mbps:					
Rx Packets:	159053/0	Ψx	Packets	88650/0	
in facheco.	100000,0	τv	Retries:	2382/0	
9 Mhns.		IA	Neurres.	2302/0	
Py Packete.	13/0	Ψv	Packete.	23/0	
IG Idences.	-370	TV TV	Retries:	71/0	
12 Mbpg.		IV	Netites.	/1/0	
IZ MDP3.	1 / 0	Π	Dockoto.	110/0	
KA FACKELS.	170	1 A 1 A	Patrios:	19/0	
19 Mbpg.		17	Retifes.	100/0	
IO MUPS.	0 / 0	Π	Dockoto.	5/0	
KA FACKELS.	070	I A. 	Patrica.	124/0	
24 Mbma		17	Retifes.	134/0	
24 Mops: Py Dackota:	235/0	Π.,	Dockoto.	20003/0	
KA FACKELS.	23370	I A. 	Patrica.	20993/0	
26 Mbra		IX	Retries:	5040/0	
So Mups:	0.40	m	Daalaata	701/0	
KX PACKetS:	070	1X.	Packets:	701/0	
E.4. Marsa		ТX	Retries:	221/0	
54 Mops:	122/0		D	0247/0	
RX Packets:	133/0	TX	Packets:	934//0	
		ΤX	Retries:	1/92/0	
[SU]:					
MU:	7 (0	_		c. / c	
KX Packets:	770	'l'x	Packets:	0/0	
		Τx	Ketries:	6/0	
M1:	/ .				
Rx Packets:	1615/0	Tx	Packets:	35035/0	
		Τx	Retries:	3751/0	
M2:					

Rx	Packets:	15277/0	Tx Tx	Packets: Retries:	133738/0 22654/0
M3:	Dackota.	10232/0	T	Dacketa	1500/0
ΓĂ	rackets.	1023270	Tx	Retries:	21271/0
M4:					
Rx	Packets:	218143/0	Tx	Packets:	190408/0
			Tx	Retries:	36444/0
M5:					
Rx	Packets:	399283/0	Tx	Packets:	542491/0
			Tx	Retries:	164048/0
M6:					
Rx	Packets:	3136519/0	Tx	Packets:	821537/0
			Tx	Retries:	329003/0
M7:					
Rx	Packets:	1171128/0	Tx	Packets:	303414/0
			Tx	Retries:	154014/0

Beacons missed: 0-30s 31-60s 61-90s 90s+ 2 0 0 0

• #show wgb dot11 uplink latency

AP4C42.1E51.A050#**show wgb dotl1 uplink latency** Latency Group Total Packets Total Latency Excellent(0-8) Very Good(8-16) Good (16-32 ms) Medium (32-64ms) Poor (64-256 ms) Very Poor (256+ ms) AC_BK 0 0 0 0 0 0 0 0 0

	AC BE	1840	4243793	1809	10
14	_	7	0	0	
	AC VI	0	0	0	0
0	_	0	0	0	
	AC VO	24	54134	24	0
0	_	0	0	0	

#show wgb dot11 uplink

AP4C42.1E51.A050#show wgb dot11 uplink

```
HE Rates: 1SS:M0-11 2SS:M0-11
Additional info for client 8C:84:42:92:FF:CF
RSSI: -24
PS : Legacy (Awake)
Tx Rate: 278730 Kbps
Rx Rate: 410220 Kbps
VHT TXMAP: 65530
CCX Ver: 5
Rx Key-Index Errs: 0
         mac intf TxData TxUC TxBytes TxFail TxDcrd TxCumRetries MultiRetries
MaxRetriesFail RxData RxBytes RxErr
                                             TxRt(Mbps)
RxRt(Mbps) LER PER stats_ago
8C:84:42:92:FF:CF wbridge1 1341 1341 184032 0
                                                 0
                                                            543
96
            0 317 33523
                            0 HE-40,2SS,MCS6,GI0.8 (309) HE-40,2SS,MCS9,GI0.8
(458) 27272 0 1.370000
Per TID packet statistics for client 8C:84:42:92:FF:CF
Priority Rx Pkts Tx Pkts Rx(last 5 s) Tx (last 5 s)
     0 35 1314
                         0
                                           8
           0
0
0
                0
      1
                              0
                                           0
      2
                   0
                              0
                                           0
                  0
                              0
      3
                                           0
           0
                  0
                             0
                                           0
      4
      5
           0
                  0
                                           0
                              0
      6
        182
                 24
                                           0
                              1
```

7	2	2		0	
/	3	3		U	
Rate Statis	tics:				
Rate-Index	Rx-Pkts		Tx-Pkts	Tx-Retries	
0	99		3	0	
4	1		1	9	
5	21		39	35	
6	31		185	64	
7	26		124	68	
8	28		293	82	
9	77		401	151	
10	32		140	97	
11	2		156	37	

イベントロギング

WGBフィールド展開の場合、イベントロギングは有用な情報(WGBの状態変更やパケットの Rx/Tx など)を収集して分析し、ログ履歴を提供して、特にローミングケースにおける問題の コンテキストを提示します。

0

probe、auth、assoc、EAP、dhcp、icmp、arpなど、すべての管理パケットタイプに対して WGB トレースフィルタを設定できます。WGB トレースを有効または無効にするには、次のコマン ドを使用します。

#config wgb event trace {enable|disable}

次の4種類のイベントタイプがサポートされています。

- Basic event: WGBの基本レベルの情報メッセージのほとんどをカバーします。
- Detail event:基本イベントと追加のデバッグレベルメッセージをカバーします。
- Trace event: 有効になっている場合、wgb トレースイベントを記録します。
- All event: トレースイベントと詳細イベントをバンドルします。

ログのフォーマットは次のとおりです。[timestamp] module:level <event log string>

異常な状況が発生した場合は、次の show コマンドを使用して、eventlog メッセージをメモリ に手動でダンプできます。このコマンドでは、WGB ロギングも表示されます。

#show wgb event [basic|detail|trace|all]

次に、show wgb event all の出力例を示します。

```
APCOF8.7FE5.F3C0#show wgb event all

[*08/16/2023 08:18:25.167578] UP_EVT:4 R1 IFC:58:9A:17:B3:E7] parent_rssi: -42 threshold:

-70

[*08/16/2023 08:18:25.329223] UP_EVT:4 R1 State CONNECTED to SCAN_START

[*08/16/2023 08:18:25.329539] UP_EVT:4 R1 State SCAN_START to STOPPED

[*08/16/2023 08:18:25.330002] UP_DRV:1 R1 MGB UPLINK mode stopped

[*08/16/2023 08:18:25.629405] UP_DRV:1 R1 Delete client FC:58:9A:17:B3:E7

[*08/16/2023 08:18:25.989936] UP_CFG:8 R1 configured for standard: 7

[*08/16/2023 08:18:25.996992] UP_CFG:4 R1 band 1 current power level: 1

[*08/16/2023 08:18:25.996692] UP_CFG:4 R1 band 1 set tx power level: 1

[*08/16/2023 08:18:26.872086] UP_DRV:1 R1 WGB uplink mode started

[*08/16/2023 08:18:26.872096] UP_EVT:4 Reset aux scan

[*08/16/2023 08:18:26.872096] UP_EVT:4 Pause aux scan on slot 2
```

```
[*08/16/2023 08:18:26.872100] SC_MST:4 R2 reset uplink scan state to idle
[*08/16/2023 08:18:26.872104] UP_EVT:4 Aux bring down vap - scan
[*08/16/2023 08:18:26.872123] UP_EVT:4 Aux bring up vap - serv
[*08/16/2023 08:18:26.872514] UP_EVT:4 R1 State STOPPED to SCAN_START
[*08/16/2023 08:18:26.8727091 SC_MST:4 R1 Uplink Scan Started.
[*08/16/2023 08:18:26.884054] UP_EVT:8 R1 CH event 149
```

(注) show wgb event コマンドは、コンソールに出力が表示されるまでに時間がかかる場合があります。Ctrl+C を使用して出力を中断しても、メモリへのログ ダンプには影響しません。

次の clear コマンドは、メモリの WGB イベントを消去します。

#clear wgb event [basic|detail|trace|all]

すべてのイベントログを WGB フラッシュに保存するには、次のコマンドを使用します。

#copy event-logging flash

パッケージファイルは、ログレベルが異なる4つの個別のログファイルで構成されます。

次のコマンドを使用して、イベントログをリモートサーバーに保存することもできます。

#copy event-logging upload <tftp|sftp|scp>://A.B.C.D[/dir][/filename.tar.gz]

次に、イベントログを TFTP サーバーに保存する例を示します。

Control and Provisioning of Wireless Access Points

- •概要 (73ページ)
- 屋内展開の設定 (77 ページ)
- •6G 標準出力モードの AFC サポート (83 ページ)
- AP の AFC ステータスの確認 (84 ページ)
- GNSS のサポート (84 ページ)
- •アンテナ切断検知について (85ページ)
- トラブルシューティング (86ページ)

概要

CAPWAP は、ワイヤレス LAN コントローラが複数の AP とワイヤレス LAN コントローラ (WLC)を管理し、セキュア通信トンネルを介してコントロールプレーンとデータプレーン情報を交換できるようにする IEEE 標準規格プロトコルです。

CAPWAP はレイヤ3 でのみ動作し、AP と WLC の両方で IP アドレスの提示を必要とします。 CAPWAP は、UDP ポート 5246 および 5247 で、それぞれ IPv4 および IPv6 用のトンネルを確 立します。Datagram Transport Layer Security(DTLS)暗号化により、一層セキュリティが強化 されます。

DTLSは、APとWLC間のセキュリティを担保するプロトコルとして機能し、通信の暗号化を 促進することで中間者攻撃による盗聴や改ざんを防ぎます。

デフォルトでは、DTLS は CAPWAP の制御チャンネルを保護し、AP と WLC 間のすべての CAPWAP 管理トラフィックおよび制御トラフィックを暗号化します。

データチャンネルはデフォルトでは無効であり、APとWLC間を移動するクライアントデータ は暗号化されません。CAPWAPデータ暗号化を有効にするかどうかは任意であり、APでアク ティブ化する前にWLCにDTLSライセンスをインストールする必要があります。

AP が DTLS データ暗号化をサポートしない場合、DTLS はコントロールプレーンのみ有効となり、データプレーンの DTLS セッションは確立されません。

AP がデータ DTLS をサポートしている場合は、コントローラから新しい設定を受信した後に データ DTLS を有効にします。AP は、ポート 5247 で DTLS ハンドシェイクを実行し、ハンド シェイクが成功すると DTLS セッションを確立します。すべてのデータトラフィック(AP か らコントローラ、およびコントローラから AP)が暗号化されます。

CAPWAP によって、管理者はワイヤレスネットワーク全体を中央で一元的に管理できます。 IW9165E は、コントローラとネットワーク上の他の AP 間の通信に Internet Engineering Task Force (IETF) 標準規格の CAPWAP を使用します。

図 5: WLC に接続された CAPWAP AP

Lightweight アクセス ポイントでの証明書プロビジョニング

LAP で新しい証明書をプロビジョニングするには、CAPWAP モードの間に LAP が新しい署名 付き X.509 証明書を取得できる必要があります。そのために、LAP はコントローラに certRequest を送信します。コントローラは CA プロキシとして機能し、CA により署名された LAP 用 certRequest の取得を支援します。

certReq および certResponse は LWAPP ペイロードを使用して LAP に送信されます。

LSC CA 証明書とLAP デバイス証明書の両方がLAP にインストールされ、システムが自動的 に再起動します。システムは、次回起動時にはLSC を使用するように設定されているため、 AP は join 要求の一部としてLSC デバイス証明書をコントローラに送信します。join 応答の一 部として、コントローラは新しいデバイス証明書を送信し、新しいCA ルート証明書を使用し て受信LAP 証明書も検証します。

次の作業

コントローラおよび AP の既存の PKI インフラストラクチャを使用して証明書の登録を設定、 許可、および管理するには、LSC プロビジョニング機能を使用する必要があります。

AP の CAPWAP 接続について

CAPWAP を有効にすると、最初の機能として、ディスカバリフェーズが開始されます。ワイ ヤレス AP は、ディスカバリ要求メッセージを送信してコントローラを検索します。ディスカ バリ要求を受信すると、コントローラはディスカバリ応答を返します。この時点で、この2台 のデバイスの間に、CAPWAP 制御メッセージとデータメッセージを交換するための Datagram Transport Layer Security(DTLS)プロトコルを使ったセキュアな接続が確立されます。

AP は CAPWAP ディスカバリメカニズムを使用して、コントローラに CAPWAP 接続要求を送 信します。コントローラは AP に CAPWAP 接続応答を送信し、AP がコントローラに接続でき るようにします。AP がワイヤレスコントローラに接続すると、ワイヤレスコントローラによっ て AP の構成、ファームウェア、制御トランザクション、およびデータトランザクションが管 理されます。

CAPWAPには、制御とデータの2つのチャンネルがあります。APは制御チャンネルを使用して、設定メッセージの送信、イメージとクライアント鍵のダウンロード、またはコンテキストの受信を行います。現在の実装では、制御チャンネルには単一のウィンドウが設けられます。 APは、コントローラから送信されたすべてのメッセージを単一のウィンドウ内で確認する必要があります。APは、前の制御パケットの確認応答が終わるまで、次の制御パケットを送信しません。

CAPWAP データチャンネルは、AP と WLC 間のユーザーデータトラフィックのカプセル化と トンネリングを担います。これにより、ユーザーデータフローの中央管理が可能になり、WLC はポリシーを適用し、Quality of Service (QoS) を適用し、ワイヤレスネットワーク全体で一貫 したセキュリティ対策を確保できます。ユーザーデータは CAPWAP フレーム内でカプセル化 され、AP と WLC 間で転送できるようになります。

IETF に従い、CAPWAP は2つの動作モードをサポートしています。

 Split Media Access Control (MAC) : CAPWAP の主要なコンポーネントの1つに、スプリットMACという概念があります。これは、802.11プロトコルでの動作の一部をCAPWAP AP が管理し、残りの部分を WLC が管理するというものです。

スプリットMACモードでは、CAPWAPプロトコルがすべてのレイヤ2ワイヤレスデータ および管理フレームをカプセル化し、これらのデータやフレームがWLCとAP間で交換 されます。

• Local MAC: ローカル MAC モードでは、データフレームをイーサネットフレームとして ローカルにブリッジまたはトンネリングできます。

ローカル MAC では、すべてのワイヤレス MAC 機能が AP で実行されます。管理フレー ムおよび制御フレームの処理を含む完全な 802.11 MAC 機能が AP に常駐します。

どちらのモードでも、AP はレイヤ2 ワイヤレス管理フレームをローカルで処理してから、コ ントローラに転送します。

リセットボタンの設定

IW9165E では、(ブートローダがリセット信号を受信した後に)LED が赤色の点滅に変わる と、次のリセットアクションが実行されます。デバイスの電源を入れる前に、必ずデバイスの リセットボタンを押します。

- ・完全にリセットするには、ボタンを長押し(20秒未満)します。
- 工場出荷時の状態まで完全にリセットする(FIPSフラグをクリアする)には、ボタンを長 押し(20秒以上 60秒未満)します。

CAPWAP モードでのイーサネットポートの使用状況

Catalyst IW9165E では、2 つの 2x2 Multiple Input and Multiple Output (MIMO) と 2 つのイーサ ネットポート (2.5G mGig および 1G) により、最大 3.6 Gbps の物理データレートがサポート されています。

Catalyst IW9165Eには、以下の内部ポートマッピングルールがあります。

• Wired0: 802.3af、802.3at、802.3bt PoEをサポートする1つのmGig(2.5 Gbps)イーサネットポート。

(注) 17.14.1 リリース以降、RLAN 機能は wired1 ポートではサポート されません。

屋内展開の設定

IW9165E は、規制ドメイン -B(米国)、-E(EU)、-A(カナダ)、-Z(オーストラリア、 ニュージーランド)の屋内および屋外展開をサポートします。

デフォルトでは、APの展開モードは屋内です。

-Bドメインでは屋外と屋内の周波数は同じです。

表 6: 無線機の 6G 出力モードの対応表

AP 展開モード	6G 展開モード	屋内低出力への対応	標準出力への対応
屋内 AP	屋外	非対応	対応

(注) 屋外モードは屋内で使用できますが、5150~5350 MHz のチャンネルは-Eの国々では屋内の みであるため、屋内モードを屋外で使用することはできません。

ワイヤレスコントローラでの AP 展開モードの設定方法については、『Cisco Catalyst 9800 シ リーズワイヤレスコントローラソフトウェアコンフィギュレーションガイド』を参照してく ださい。

このコマンドは、APの再起動を発動します。再起動後にAPがワイヤレスコントローラに登録されたら、対応する国番号をAPに割り当てる必要があります。

屋内展開の確認

WLC で屋内展開が有効になっているかどうかを確認します。

#show ap name <AP_Name> config general | inc Indoor コマンドを実行します。

 ⁽注) AP のローカルモードや FlexConnect モードでは、wired0 ポートは CAPWAP アップリンクポートとして使用されます。
 ・Wired1:1Gig イーサネット LAN ポート。

・屋内モードが有効になっている場合、show コマンドは次の出力を提供します。

```
#show ap name <AP_Name> config general | inc Indoor
AP Indoor Mode : Enabled
```

・屋内モードが無効になっている場合、show コマンドは次の出力を提供します。

```
#show ap name <AP_Name> config general | inc Indoor
AP Indoor Mode : Disabled
```

```
AP の屋内展開のステータスを確認するには、show controllers Dot11Radio [1|2] コマンドを実行します。
```

・屋内モードが有効になっている場合、show コマンドは次の出力を提供します。

```
Device#show controllers Dot11Radio [1|2]
```

```
(注)
```

コマンド出力の「-Ei」は、屋内モードが有効になっていることを 示します。

・屋内モードが無効になっている場合、show コマンドは次の出力を提供します。

(注) コマンド出力の「-E」は、屋内モードが無効になっていることを 示します。

CLI出力には、サポートされるチャンネルも表示されます。

AP Radio Slot

Cisco Unified Industrial Wireless ソフトウェアリリース 17.14.1 以降、Cisco Catalyst IW9165E では、2x2 5GHz Wi-Fi 専用無線機と 5 GHz および 6 GHz のデュアルバンド (XOR) 2x2 無線機が 使用できます。

Catalyst IW9165Eには、5Gバンドと6Gバンドを切り替えるオプションがあります。5Gバンドと6Gバンドを切り替えるには、次のCLIコマンドを使用します。

ap name <ap-name> dot11 dual-band band 6ghz/5ghz

(注) デフォルトでは、管理状態は無効です。

スロット2の XOR 無線機は5G に固定されています。

表7:AP Wi-Fi 無線機アーキテクチャモード

モード	5 GHz	5/6 GHz
	スロット1	スロット 2
5G + 5G	5GHz 2x2:2SS (20/40/80 MHz)	5G 2x2:2SS (20/40/80/160 MHz)
5G + 6G	5GHz 2x2:2SS (20/40/80 MHz)	6G 2x2:2SS (20/40/80/160 MHz)

固定ドメインと国コードのサポート

ROW 規制ドメインにより、特定のドメインがマッピングされていないすべての国コードの製造プロセスのドメイン管理が簡素化されます。この項では、Catalyst IW9165E アクセスポイントの固定ドメインと国コードのサポートについて説明します。

サポートされている固定ドメイン

ドメイン	国番号
А	CA (カナダ)
В	US (米国)

ドメイン	国番号
E	

ドメイン	国番号
	・AT (オーストラリア)
	・AT(オーストラリア)
	•BE (ベルギー)
	・BG(ブルガリア)
	・HR (クロアチア)
	・CY (キプロス)
	・CZ (チェコ共和国)
	・DK(デンマーク)
	・EE (エストニア)
	・FI(フィンランド)
	・FR(フランス)
	• DE (ドイツ)
	・GR(ギリシャ)
	・HU(ハンガリー)
	・IS(アイスランド)
	• IE(アイルランド)
	・IT(イタリア)
	・LV(ラトビア)
	・LI(リヒテンシュタイン)
	・LT (リトアニア)
	•LU(ルクセンブルク)
	• MT (マルタ)
	•NL(オランダ)
	•NO (ノルウェー)
	• PL(ポーランド)
	・PT(ポルトガル)
	・RO(ルーマニア)
	•SK (スロバキア共和国)

ドメイン	国番号
	•SI (スロベニア)
	・ES(スペイン)
	・SE(スウェーデン)
	• CH (スイス)
F	ID(インドネシア)
Q	JP (日本)
Z	・AU(オーストラリア)
	・NZ(ニュージーランド)

Catalyst IW9165 でサポートされている国コード (ROW)

ドメイン	国番号
ROW	・CL (チリ)
	•KR (韓国)
	•GB (英国)
	・VN(ベトナム)

使用している AP の各国における認可状況については、お客様にご確認いただく必要がありま す。認可状況および特定の国に関連する規制ドメインの確認方法。詳細については、「Cisco Product Approval Status」[英語] を参照してください。

無線アンテナ配置の設定

Catalyst IW9165E は、RP-SMA(f) コネクタで4つの外部アンテナをサポートしています。無 線機1はアンテナポート1および2に接続します。無線機2はアンテナポート3および4に接 続します。

IW9165E は、6G バンドの Self Identifiable Antenna (SIA) アンテナとの互換性があります。ア ンテナポート1 および3 では、SIA アンテナをサポートできます。アンテナの詳細について は、『Cisco Catalyst IW9165E 高耐久性アクセスポイントおよびワイヤレスクライアント ハー ドウェア設置ガイド』を参照してください。

(注) 初めて SIA アンテナを取り付けた後は、電源を一度切ってから再度オンにする必要があります。

SIAは、アンテナIW-ANT-OMV-2567-NおよびIW-ANT-OMH-2567-Nのみをサポートします。

表 8: アンテナ利得 (dBm)

5 GHz スロット1	5 GHz スロット 2	6 GHz スロット 2
3 4 7 8 10 13 15	3 4 7 8 10 13 15	7

以下の項で、SIA テストを確認するための CLI コマンドについて説明します。

コントローラの SIA ステータスを確認するには、show ap config slots <AP> コマンドを実行します。

Device#show ap config slot ap_name

show ap config slots AP2CF8.9B1C.CE78
Cisco AP Name : AP4C42.1E51.A144
Attributes for Slot 2
SIA Status : Present(RPTNC)
SIA Product ID : IW-ANT-OMV-2567-N

6G 標準出力モードの AFC サポート

Cisco Catalyst IW9165E は、自動周波数調整(AFC)6 GHz 標準出力モードをサポートします。 標準出力 AP がシステムに接続されます。標準出力を有効にする前に、AP は AFC システムか ら使用可能な周波数と各周波数範囲の出力を取得する必要があります。

AFC システムは、規制機関(米国の場合は FCC)から提供される情報に基づいて、使用可能 な周波数と最大許容出力を計算します。応答がコントローラに返送され、AFCシステムから返 された許可チャンネルリストに基づいて標準出力チャンネルが AP に割り当てられます。

標準出力 AP は、AFC サービスを通じて調整を行います。AFC は情報にアクセスし、AP の地 理位置情報とアンテナの特性に加え、APの干渉半径をモデル化したトポグラフィック伝達マッ プを作成します。このマップを使用することで、最大送信電力を割り当て、チャンネル設定を 調整または設定して干渉を回避できます。

表 9: 無線機の 6 GHz 出力モードの対応

AP 展開モード	6G 展開モード	屋内低出力への対応	標準出力への対応
屋内 AP	屋外	非対応	対応

送信電力の実効等方放射電力(EIRP)は最大 36 dB に制限され、AFC サービスを通じて AP を調整する必要があります。これらの AP は、-B(米国)ドメインでは、UNII-5(5.925~6.425 GHz)および UNII-7(6.525~7.125 GHz)での運用が許可されます。

表 10:6 GHz 目標出力

経路ごとの導体	出力	アンテナ利得	ンテナ利得 Tx x Rx チェー ン	最大 EIRP	最大 EIRP (SP/AFC)
20 ~ 80Mhz	160Mhz				
17 dBm	17 dBm	7 dBi*	2 X 2	27 dBm*	36 dBm

APのAFC ステータスの確認

APのAFC要求および応答データを確認するには、show rrm afc コマンドを実行します。

```
Device#show rrm afc
Location Type: 1
Deployment Type: 2
Height: 129
Uncertainty: 5
Height Type: 0
Request Status: 5
Request Status Timestamp: 2023-08-31T06:20:17Z
Request Id Sent: 5546388983266789933
Ellipse 1: longitude: -121.935066 latitude: 37.512830 major axis: 43 minor axis:
9 orientation: 36.818100
AFC Response Request ID: 5546388983266789933
AFC Response Ruleset ID: US_47_CFR_PART_15_SUBPART_E
```

現在稼働中の出力モードを確認するには、show controllers dot11Radio 2 | i Radio コマンドを実行します。

```
Device#show controllers dotllRadio 2 | i Radio
DotllRadio2 Link encap:Ethernet HWaddr 24:16:1B:F8:06:C0
Radio Info Summary:
Radio: 6.0GHz (SP)
```

GNSS のサポート

IW9165Eでは、全地球航法衛星システム(GNSS)がサポートされます。APは、屋外環境に展開されたデバイスのGPS情報を追跡し、ワイヤレスコントローラにGNSS情報を送信します。

APの GNSS 情報を表示するには、次のコマンドを使用します。

ap# show gnss info

APの GPS 位置情報を表示するには、次のコマンドを使用します。

controller# show ap geolocation summary

controller# show ap name <Cisco AP> geolocation detail

アンテナ切断検知について

アクセスポイント(AP)の送信機と受信機に複数のアンテナがあると、性能と信頼性が向上 します。複数のアンテナによって、受信機側でより強い信号を選択するか、個々の信号を組み 合わせることで受信状態が改善します。したがって、障害のあるアンテナやアンテナの物理的 な破損を検出することは、APの信頼性を確保する上で重要です。

アンテナの切断検知機能は、受信機のアンテナ間における信号強度の差分に基づきます。この 差分が一定期間に定義された制限を超えると、そのアンテナは問題があると見なされます。

設定した検知期間ごとに、AP はアンテナの状態を伝える Inter-Access Point Protocol (IAPP) メッセージを送信します。このメッセージは、問題が検知された場合に一度だけ送信され、コ ントローラ トラップ メッセージ、SNMP トラップ、およびコントローラデバッグログに表示 されます。

設定ワークフロー

- 1. AP を設定します。
- 2. AP プロファイルを設定します。
- 3. AP プロファイルで機能を有効にします。
- 4. 機能のパラメータを設定します。
- 5. 設定を確認します。

ワイヤレスコントローラでのアンテナ切断検知の設定方法について詳しくは、『Cisco Catalyst 9800 Series Wireless Controller Software Configuration Guide』を参照してください。

アンテナ切断検知の確認

AP のアンテナ切断検知機能の設定を確認するには、次のコマンドを使用します。

9800-Conroller#sh ap name AP4C42.1E51.A144 config general

Cisco AP Name : AP4C42.1E51.A144 _____ Cisco AP Identifier : 8c84.4292.f840 Country Code : Multiple Countries : US, CN, GB, HK, DE, IN, CZ, NZ Regulatory Domain Allowed by Country : 802.11bg:-ACE^ 802.11a:-ABCDEHNSZ^ 802.11 6GHz:-BEZ^ Radio Authority IDs : None AP Country Code : CZ - Czech Republic AP Regulatory Domain 802.11bg : -E 802.11a : -E : 8c84.4292.f840 MAC Address IP Address Configuration : DHCP TP Address : 9.9.33.3 IP Netmask : 255.255.255.0

Gateway IP Address	:	9.9.33.1
Fallback IP Address Being Used	:	
Domain	:	
Name Server	:	
CAPWAP Path MTU	:	1485
Capwap Active Window Size	:	1

APプロファイルのアンテナ切断検知機能の設定を確認するには、次のコマンドを使用します。

9800-Controller#show ap profile name ap-profile detailed

```
AP Profile Name: ap-profile

.

.

AP broken antenna detection:

Status : ENABLED

RSSI threshold : 40

Weak RSSI : -80

Detection Time : 120
```

トラブルシューティング

このドキュメントでは、アクセスポイント(AP)とワイヤレスコントローラ間の Control And Provisioning of Wireless Access Points (CAPWAP) /Lightweight Access Point Protocol (LWAPP) トンネルが切断される理由を理解するためのユースケースを紹介します。詳細については、「コントローラからのアクセスポイントの関連付け解除のトラブルシューティング」を参照してください。

- (注)
- ソフトウェアまたはハードウェアの変更により、コマンドが動作しなくなったり、構文が変更 されたり、リリースによって GUI や CLI の見た目が異なったりする場合があります。

フィードバックのリクエスト

ユーザー入力が役立ちます。これらのサポートドキュメントを改善するための重要な側面は、 お客様からのフィードバックです。これらのドキュメントは、シスコ内の複数のチームによっ て所有および管理されていることに注意してください。ドキュメントに固有の問題(不明瞭、 混乱、情報不足など)を見つけた場合:

- 対応する記事の右側のパネルにある[Feedback]ボタンを使用して、フィードバックを提供します。ドキュメントの所有者に通知され、記事が更新されるか、削除のフラグが付けられます。
- ドキュメントのセクション、領域、または問題に関する情報と、改善できる点を含めてく ださい。できるだけ詳細に記述してください。

免責事項と注意事項

このマニュアルの情報は、特定のラボ環境に置かれたデバイスに基づいて作成されました。このマニュアルで使用されるデバイスはすべて、初期設定(デフォルト)の状態から作業が開始

されています。本稼働中のネットワークでは、各コマンドによって起こる可能性がある影響を 十分確認してください。

I

トラブルシューティング

【注意】シスコ製品をご使用になる前に、安全上の注意(www.cisco.com/jp/go/safety_warning/)をご確認ください。本書は、米国シスコ発行ド キュメントの参考和訳です。リンク情報につきましては、日本語版掲載時点で、英語版にアップデートがあり、リンク先のページが移動/変更され ている場合がありますことをご了承ください。あくまでも参考和訳となりますので、正式な内容については米国サイトのドキュメントを参照くだ さい。また、契約等の記述については、弊社販売パートナー、または、弊社担当者にご確認ください。

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2024 Cisco Systems, Inc. All rights reserved.

翻訳について

このドキュメントは、米国シスコ発行ドキュメントの参考和訳です。リンク情報につきましては 、日本語版掲載時点で、英語版にアップデートがあり、リンク先のページが移動/変更されている 場合がありますことをご了承ください。あくまでも参考和訳となりますので、正式な内容につい ては米国サイトのドキュメントを参照ください。