

CUPS O GGSN

- •マニュアルの変更履歴, on page 1
- 機能説明, on page 1
- 機能の仕組み, on page 3
- CUPS での GGSN の設定, on page 23

マニュアルの変更履歴

Note

リリース 21.24 よりも前に導入された機能については、詳細な改訂履歴は示していません。

改訂の詳細	リリース
初版	21.24 より前

機能説明

Gateway GPRS Support Node (GGSN) は、次の機能を実行します。

- モバイルまたはネットワークによって発信されたサブスクライバの Internet Protocol (IP) または Point-to-Point Protocol (PPP) タイプのパケットデータプロトコル (PDP) コンテキストを確立して維持する。
- ・課金ゲートウェイ (CG、課金ゲートウェイ機能 (CGF) とも呼ばれる) に課金詳細レコード (CDR) を提供する。
- サブスクライバのモバイルステーション (MS) とインターネットやイントラネットなど のパケットデータネットワーク (PDN) 間でデータトラフィックをルーティングする。

PDNは、システムで設定されたアクセスポイント名(APN)に関連付けられます。各APNは、そのAPNに対するサブスクライバ認証と IP アドレス割り当ての処理方法を指示する一連のパラメータで構成されます。

GGSN は、Cisco ASR 5500 および仮想化プラットフォームで実行される既存の StarOS アプリケーションです。このリリースでは、GGSN は CUPS アーキテクチャでサポートされます。

GGSN の詳細については、StarOS の『GGSN Administration Guide』を参照してください。

サポートされる機能

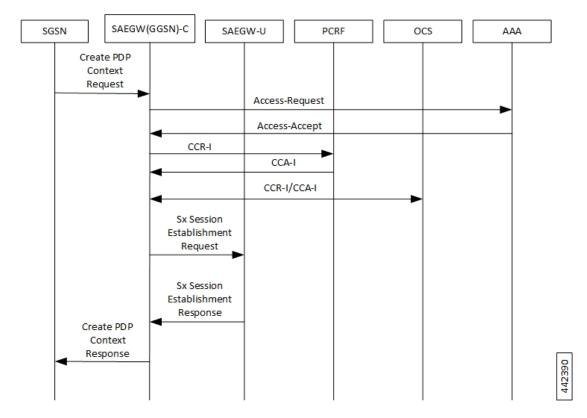
CUPS アーキテクチャの GGSN では、次の機能がサポートされます。

- Gx、Gy、Gz による初期接続と接続解除
- アクセス側更新手順
- GGSN と QoS インタラクションのシナリオ
- GGSN での 3G ハンドオフ
- GnGp RAT 間ハンドオフ (Pure-P)
- GnGp RAT 間ハンドオフ (Collapsed)
- PCRF 開始削除
- ダイレクトトンネル
- RADIUS 認証およびアカウンティングに対応した GGSN
- •S6b インターフェイスを備えた GGSN
- Sx 障害と GTP-C 障害
- GTP-U パス障害、GTP エラー表示
- 合法的傍受
- GGSN 統計
- アイドル タイムアウト
- セッションリカバリと ICSR
- コンテキスト置換のサポート
- トラフィックエンドポイント
- · MS 情報変更手順
- CUPS での GGSN 2G のサポート

標準準拠

CUPS の GGSN は、次の 3GPP 標準規格に準拠しています。

- 3GPP TS 23.060 リリース 16.0.0: 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; General Packet Radio Service (GPRS); Service description; Stage 2.
- 3GPP TS 29.060 リリース 15.5.0: 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; General Packet Radio Service (GPRS); GPRS Tunnelling Protocol (GTP) across the Gn and Gp interface。
- 3GPP TS 23.214 リリース 14.0: Universal Mobile Telecommunications System (UMTS); LTE; Architecture enhancements for control and user plane separation of EPC nodes。
- 3GPP TS 29.244 リリース 14.0: LTE; Interface between the Control Plane and the User Plane of EPC Nodes。


機能の仕組み

ここでは、CUPS の Gateway GPRS Support Node (GGSN) に関連するさまざまなコールフローについて説明します。

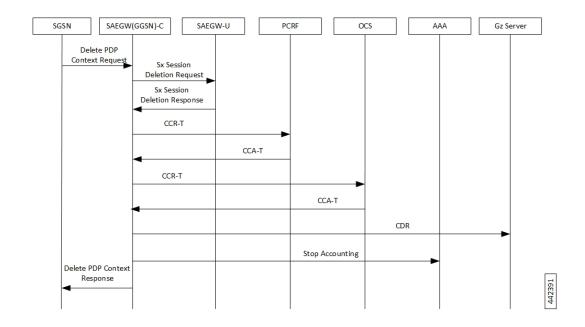
初期接続 GnGp

次のコールフローは、EUTRAN (3G) と GERAN (2G) の両方に適用される GnGp 初期接続中の PDP コンテキスト作成 (CPC) 手順について説明します。

Figure 1: 初期接続(GnGp)

Table 1: 初期接続(*GnGp*)コールフロー

ステップ	説明
1	ユーザー機器 (UE) が、Serving GPRS Support Node (SGSN) に対して General Packet Radio Service (GPRS) IP-CAN セッション確立要求を開始します。SGSN が IP-CAN セッション確立 (PDP コンテキスト アクティベーション) 要求を SAEGW(GGSN)-C に送信します。
2a	SAEGW(GGSN)-C がアクセス要求を AAA インタラクションに送信し、User-Name、calling-station-id、called-station-id、NAS-IPAddress、RAT タイプをクエリします。
2b	SAEGW(GGSN)-C が AAA インタラクションに要求を送信し、s6b-AAR の詳細をクエリします。 AAR {Session-ID, MIP6-Agent-Info (PGW-FQDN), User Name (IMSI-NAI), APN, RAT-Type} framed-ip-address
3a	AAA が次の Access-Accept のために GGSN とやり取りします。 User-name、calling-station-id、called-station-id、framed-ip-address、nas-ipaddress
3b	AAA が s6b-AAA の詳細に関して GGSN とやり取りします。


ステップ	説明
4	SAEGW(GGSN)-C が IP-CAN セッション確立手順の CCR-I を PCRF に送信します。
5	PCRF が SAEGW(GGSN)-C に IP-CAN セッション確立のための CCA-I で応答します。
6a	SAEGW(GGSN)-C が CCR-I 要求を OCS に送信します。
6b	OCS が SAEGW(GGSN)-C に CCA-I で応答します。
7	Gx、Gy、インタラクションの後に、IP プール (IP プールに関連付けられた APN) が設定された user-plane-profile に基づいてユーザープレーンを選択します。
	• GTP-U セッションを確立します(IPv6/IPv4v6 PDN の場合、RA/RS に必要)。
	• SGSN との GTP-U パスを確立するために、選択されたユーザープレーンとの Sxb インタラクションを実行します。
	SAEGW(GGSN)-C が Sx セッション確立要求を SAEGW-U に送信します。
	• UL-PDR – PDI {src=access, local-fteid: ch=1, UEIPAddress}, outer-header-removal)
	• DL-PDR(UEIPAddress を使用した PDI、ルールベース)
	• UL-FAR (applyaction=forward, params=core, apn)
	• DL-FAR (applyaction=forward, params=access, outer-header-creation gtpu-teid, gtpu-ipaddress)
	• QER (correlation-id, mbr, gate-status)
	• URR(measurement-method、reporting-trigger、ボリューム/時間しきい値)
	Note ・Create Uplink PDR は、データの「トンネル ID データ I」と「GSN アドレス」の IP アドレス情報に基づく「Outer Header Removal」で送信されます。
	• Create Downlink FAR は、データの「トンネル ID データ I」および「GSN アドレス」として「Outer Header Creation」で送信されます。

ステップ	説明
8	SAEGW(GGSN)-U が Sx セッション確立応答(Created-PDR、local-FTEID)を SAEGW-C に送信します。
	ユーザープレーンは、Sx セッション確立応答の一部として次の情報を提供します。
	 作成された PDR/作成されたトラフィックエンドポイント: データの 「トンネル ID データ I」および「GSN アドレス」として使用される GGSN 入力 F-TEID。
9	Sx セッション確立応答を受信すると、SAEGW(GGSN)-C が、Sx セッション確立応答で受信した情報からのデータの「トンネルIDデータI」と「GSNアドレス」を含む PDP コンテキスト作成応答を SGSN に送信します。

接続解除 (GnGp)

次のコールフローでは、GnGp接続解除中のPDPコンテキスト削除(DPC)手順について説明します。

Figure 2:接続解除 (GnGp)

Table 2: 接続解除 (*GnGp*) コールフロー

ステップ	説明
1	SGSNがPDPコンテキスト削除要求(TEID、NSAPI、Teardown Ind)メッセージをSAEGW(GGSN)-Cに送信します。PDPコンテキスト非アクティブ化要求メッセージ内のMSにTeardown Indが含まれている場合、SGSNはPDPコンテキスト削除要求メッセージにTeardown Indを含めることによって、このPDPアドレスに関連付けられているすべてのPDPコンテキストを非アクティブ化します。
2	SGSN から PDP コンテキスト削除要求を受信すると、SAEGW(GGSN)-Cで次の処理が実行されます。
	• GTP-U セッションを削除します(IPv6/IPv4v6 PDN の場合は RA/RS に必要)。
	• Sxbインタラクションを実行し、Sx セッション削除要求を送信して 既存のIP-CAN セッションの Sx セッションコンテキストを削除しま す。
3	SAEGW-Uが SAEGW(GGSN)-C に Sx セッション削除応答で応答します。
	Sx セッション削除応答を受信すると、SAEGW(GGSN)-C で次の処理が 実行されます。
	• Gx 通信(CCR-T および CCA-T)を実行します。
	・受信した URR 情報に基づいて CDR (Gz) を生成します。
4	GGSN 開始 IP-CAN セッション終了: SAEGW(GGSN)-C が、 CC-Request-Type AVP を TERMINATION_REQUEST に設定した CC 要求 (CCR) メッセージを送信します。
5	PCRF が CC 応答 (CCA) メッセージで応答します。
6	SAEGW(GGSN)-C が CCR 終了要求を OCS に送信します。
7	OCS が CCA-Terminate で応答します。
8	SAEGW(GGSN)-C が CDR を Gz サーバーに送信します。
9	SAEGW(GGSN)-C が Stop-Accounting を AAA に送信します。
10	SAEGW(GGSN)-C が PDP コンテキストを削除し、SGSN に PDP コンテキスト削除応答(TEID)メッセージを返します。

コンテキストの置換

コンテキストの置換が行われるときは、Sx セッション削除要求と Sx セッション削除応答を交換することにより、Sxb インタラクションで UP の以前のセッションが削除されます。

Sx セッション削除応答を受信した後、以前のコンテキストの CDR はすべて閉じられます。 注:残りのコールフローは初期接続と同じままです。

更新手順と QoS インタラクション

次のコールフローでは、更新手順と QoS インタラクションについて説明します。

Figure 3: 更新手順と QoS インタラクション

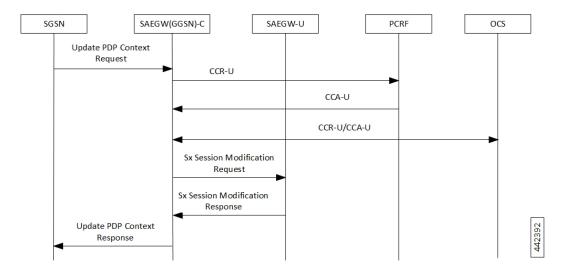


Table 3: 更新手順と QoS インタラクションのコールフロー

ステップ	説明
1	SGSN が PDP コンテキスト更新要求を SAEGW(GGSN)-C に送信します。
2	SAEGW(GGSN)-C が CC 要求(CCR-U)メッセージを PCRF に送信します。
3	結果コードが DIAMETER_SUCCESS の場合、PCRF が CCA-U メッセージで応答します。
4a	SAEGW(GGSN)-C が CCR-U を OCS に送信します。
4b	OCS が SAEGW(GGSN)-C に CCA-U で応答します。
5	SAEGW(GGSN)-CがSxセッション変更要求をSAEGW-Uに送信します。 • UL-Update-PDR(outer-header-removal) • DL-Update-PDR(fowrd-action、outer-hedae-creation、gtpu-address)
6	SAEGW-U が Sx セッション変更応答を SAEGW(GGSN)-C に送信します。
7	SAEGW(GGSN)-CがPDPコンテキスト更新応答をSGSNに送信します。

アクセス側更新手順

アクセス側から受信した QoS 変更は、PCRF から承認された後に次をトリガーします。

- APNAMBR/MBR の変更に関する Update QER
- 新しい QoS に対応する DSCP マーキングの QCI/ARP 変更に関する Update FAR

Gx 更新手順

CCA-U または RAR による Gx 更新手順の動作は次のとおりです。

- FAR 属性が同じ場合、共通の FAR が PDR に使用されます。
- ルールをインストールすると Create PDR と Create QER (SDF レベル) がトリガーされ、 Create FAR と Create URR が含まれる場合もあれば、含まれない場合もあります(ルールでは他のルールの FAR と URR を再利用できます)。
- フローステータス/評価グループのルールを変更するとUpdate QER/Update URR がトリガーされ、Update PDR が含まれる場合もあれば、含まれない場合もあります(つまり、TFT/QoSの変更はありません)。
- TFT/QoS のルールを変更すると Update PDR がトリガーされ、Update QER/Update URR が 含まれる場合もあれば、含まれない場合もあります(QER/URR の変更はありません)。
- フローステータス/評価グループ(のみ)の更新の場合、Update QER/URR が送信されます。つまり、このような場合は Update PDR は送信されません。
- PCRF から受信した APN-AMBR 変更によって Update QER がトリガーされます。
- 新しい QoS に対応する DSCP マーキングに変更がある場合、PCRF から受信した default-eps-bearer-qos の変更によって Update FAR がトリガーされます。

PGW から GGSN へのハンドオフ

次のコールフローでは、P-GW から GGSN へのハンドオフ手順について説明します。

Figure 4: P-GWから GGSNへのハンドオフ

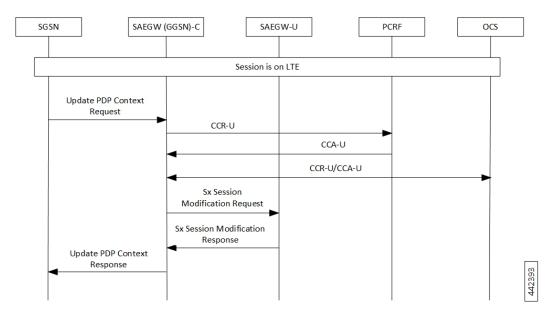


Table 4: P-GW から GGSN へのハンドオフのコールフロー

ステップ	説明
1	ターゲット SGSN が、PDP コンテキスト更新要求メッセージ(新しい SGSN アドレス、SGSN トンネルエンドポイント識別子、ネゴシエートされた QoS、サービス提供ネットワーク アイデンティティ、RAT タイプ、MS 情報変更レポートサポート表示)を SAEGW に送信します。
2	SAEGW(GGSN)-C が CCR-U を PCRF に送信します。
3	IP CAN セッション変更の結果コードが DIAMETER_SUCCESS の場合、PCRF が CCA-U で応答します。
4a	オンライン課金が有効になっている場合、SAEGW(GGSN)-C が条件付きで CCR-U を OCS に送信します。
4b	OCS が SAEGW(GGSN)-C に CCA-U で応答します。
5	SAEGW-C が Sx セッション変更要求を SAEGW-U に送信します。
6	SAEGW-UがSxセッション変更応答をSAEGW(GGSN)-Cに送信します。

ステップ	説明
7	SAEGW(GGSN)-C が PDP コンテキストフィールドを更新し、PDP コンテキスト更新応答(TEID、ペイロード圧縮の禁止、APN制限、CGI/SAI/RAI変更レポートが必要、BCM)メッセージを SGSN に返します。

GGSN から PGW へのハンドオフ

次のコールフローでは、GGSN から P-GW へのハンドオフ手順について説明します。

Figure 5: GGSN から PGWへのハンドオフ

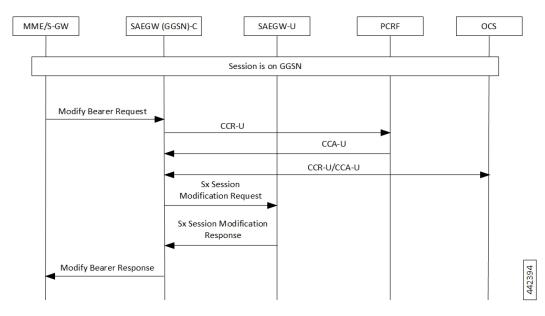
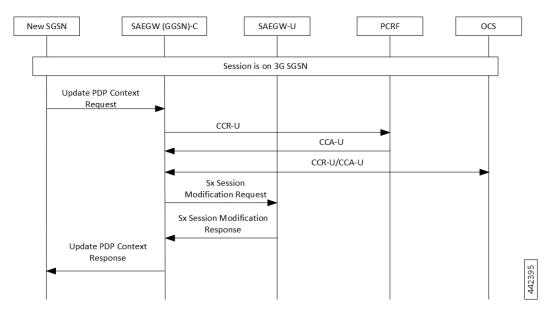


Table 5: GGSN から PGW へのハンドオフのコールフロー

ステップ	説明
1	S-GW/MME が、ベアラー変更要求(コントロールプレーンの送信者 F-TEID、変更されるベアラーコンテキスト(EBI、S5/S8-U SGW F-TEID)、(UE-TZ))を SAEGW(PGW)-C に送信します。
2	SAEGW(GGSN)-C が CCR-U を PCRF に送信します。
3	PCRF が IP CAN セッション変更に対して CCA で応答します。
4a	オンライン課金が有効になっている場合、SAEGWが条件付きでCCR-UをOCSに送信します。
4b	OCS が SAEGW(GGSN)-C に CCA-U で応答します。


ステップ	説明
5	SAEGW(GGSN)-C が Sx 変更要求を SAEGW-U に送信します。
	• DL:ターゲット S-GW/eNB の FAR、URR、QER(変更された場合)を更新
	• UL: PDR (S-GW/eNB IP タイプに応じて)、URR、QER (変更された場合)を更新
6	SAEGW-Uが、cause Success を使用して SAEGW(GGSN)-C に Sx 変更応答で応答します。
7	SAEGWが、ベアラー変更応答(原因、MSISDN、変更されたベアラーコンテキスト(EBI、原因))で S-GW/MME に応答します。

lu 3G から lu 3G への SGSN 間ハンドオフ

Iu モードから A/Gb モードへの SGSN 間およびシステム間変更は、PMM IDLE または PMM CONNECTED 状態の MS が UTRAN または GERAN Iu モードから A/Gb モードに変わり、MS にサービスを提供する A/Gb モードの無線アクセスノードが別の SGSN からサービスの提供を 受けたときに、実行されます。この場合、RA が変更され、MS は A/Gb モード RA 更新手順を 開始します。RA 更新手順では、RA と LA の両方が更新されるか RA のみが更新されます。MS または RAN は、システム間変更の実行を決定します。これにより、MS は A/Gb モードを使用 する必要がある新しいセルに切り替わり、ネットワークへの送信が停止されます。

次のコールフローでは、GPRS の SGSN 間のハンドオフ手順について説明します。

Figure 6: SGSN 間ハンドオフ: lu (3G) から lu (3G)

Table 6: SGSN 間ハンドオ	7 · In (3G)	から Iu (3G)	へのコールフロー
I AUTE V. SUSIN IBIT N Z I TI	. IU \JU/	13' DI (301)	· · W J D J D D D

ステップ	説明
1	新しい SGSN が、関連する各 SAEGW(GGSN)-C に PDP コンテキスト更新要求メッセージを送信します。
2	RATタイプトリガーが有効になっている場合、SAEGW(GGSN)-Cが条件付きで CCR-U を PCRF に送信します。
3	PCRF が IP-CAN セッションに対して CCA-U で応答します。
4a	GGSN が条件付きで CCR-U を OCS に送信します。
4b	OCS が SAEGW(GGSN)-C に CCA-U で応答します。
5	SAEGW(GGSN)-Cが、RNCIPと受信したTEIDを更新するためにSxセッション変更要求をSAEGW-Uに送信します。
	• DL:ターゲット SGSN の FAR、URR、QER(変更された場合)を 更新
	•UL:ターゲット SGSN IP タイプの PDR、URR、QER(変更された 場合)を更新
6	SAEGW-U が、cause-accept を使用して SAEGW(GGSN)-C に Sx セッション変更応答で応答します。
7	SAEGW(GGSN)-Cが、PDP コンテキスト更新応答を新しい SGSN に送信します。

AGb 2G から lu 3G への SGSN 間ハンドオフ

2G から 3G への SGSN 間ハンドオフのコールフローは、lu(3G)から lu(3G)への SGSN 間ハンドオフと同じままですが、SAEGW(GGSN)-C が残り、UE が 2G SGSN から 3G SGSN に移行する点が異なります。

lu 3G から AGb 2G への SGSN 間ハンドオフ

3G から 2G への SGSN 間ハンドオフのコールフローは、lu(3G) から lu(3G) への SGSN 間 ハンドオフと同じままですが、SAEGW(GGSN)-C が残り、UE が 3G SGSN から 2G SGSN に移行する点が異なります。

ダイレクトトンネル

次のコールフローでは、ダイレクトトンネルのさまざまなノードとインターフェイスについて 説明します。

Figure 7: ダイレクトトンネル

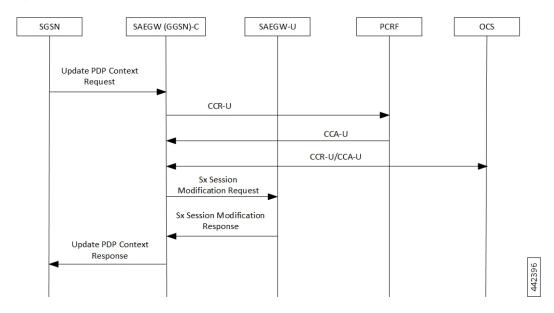


Table 7: ダイレクト トンネル コール フロー

ステップ	説明	
1	SGSN がダイレクトトンネル機能をサポートしている場合、コールが確立されると、SGSN が SGSNデータ TEID フィールドと SGSNデータ IP フィールドそれぞれの RNC TEID と RNC IP とともに、DT フラグが「1」に設定された DT IE を含む PDP コンテキスト更新要求を GGSN に送信します。これにより、データが RNC に直接転送され、GGSN と RNC 間のダイレクトトンネルが確立されます。	
2	SAEGW(GGSN)-C が CCR-U を PCRF に送信します。	
3	PCRF が CCA-U メッセージで応答します。	
4a	SAEGW(GGSN)-C が CCR-U を OCS に送信します。	
4b	OCS が SAEGW(GGSN)-C に CCA-U で応答します。	
5	SAEGW(GGSN)-C が、RNC IP と受信した TEID を更新するために Sx セッション変更要求を SAEGW-U に送信します。 • UL-Update-PDR(outer-header-removal) • DL-Update-FAR(Outer-header-creation)	
6	SAEGW-U が、cause-accept を使用して SAEGW(GGSN)-C に Sx セッション変更応答で応答します。	
7	SAEGW(GGSN)-C が PDP コンテキスト更新応答を SGSN に送信します。	

PCRF 開始セッション削除

次のコールフローでは、セッションの PCRF 開始削除のさまざまなノードとそれに関連するインターフェイスについて説明します。

Figure 8: PCRF 開始セッション削除

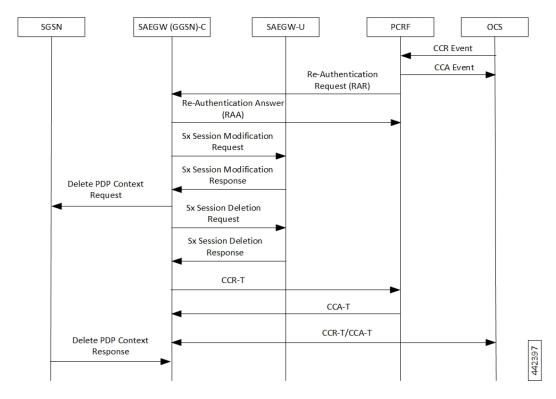


Table 8: PCRF 開始セッション削除のコールフロー

ステップ	説明
1	PCRF が Diameter 再認証要求(RAR)を送信し、SAEGW(GGSN)-C が IP CAN セッション用に以前にインストールされたすべての PCC ルールを削除するとともに、IP CAN セッション用に以前にアクティブ化されたすべての PCC ルールを非アクティブ化するよう求めます。
2	SAEGW(GGSN)-C が再認証応答(RAA)メッセージで応答します。
3	SAEGW(GGSN)-C が SAEGW-U に変更要求を送信し、アップリンクとダウンリンク両方のデータパスの Apply Action を「DROP」にして FAR を更新します。
4	SAEGW-Uが Sx 変更応答で応答します。

ステップ	説明	
5	SSAEGW(GGSN)-C が Sx 削除要求を SAEGW-U に送信します。	
	• GTP-U セッションを削除します(IPv6/IPv4v6 PDN の場合は RA/RS に必要)。	
	• Sxb インタラクションを実行し、Sx セッション削除要求を送信して 既存の IP-CAN セッションの Sx セッションコンテキストを削除しま す。	
6	SAEGW(GGSN)-C が、並行して PDP コンテキスト削除要求(TEID、NSAPI、Teardown Ind)メッセージを SGSN に送信します。	
7	SAEGEW-UからSxセッション削除応答を取得した後、SAEGW-Cで次の処理が実行されます。	
	• Gx/Gy 通信(CCR-T および CCA-T)を実行します。	
	・受信した URR 情報に基づいて CDR (Gz) を生成します。	
8	GGSN が、CC-Request-Type AVP を TERMINATION_REQUEST に設定した CC 要求(CCR)メッセージを送信します。	
9	PCRF が CC 応答 (CCA) メッセージで応答します。	
10	SAEGW(GGSN)-C が Gy インターフェイスで CCR-Terminate を生成します。	
11	OCS が CCA-Terminate で応答します。	
12	SGSN が PDP コンテキストを削除し、SAEGW(GGSN)-C に PDP コンテキスト削除応答(TEID)メッセージを返します。	

管理クリア

次のコールフローでは、管理クリアのさまざまなノードとそれに関連するインターフェイスに ついて説明します。

Figure 9: 管理クリア

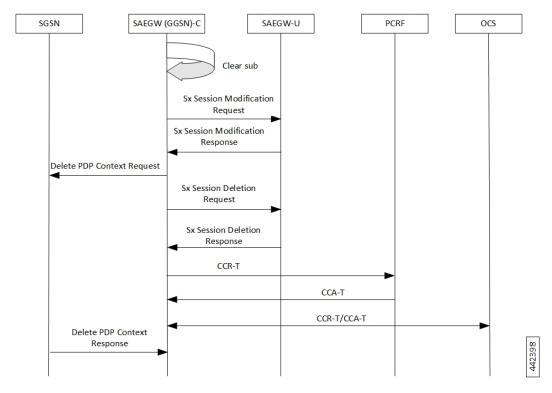


Table 9: 管理クリアコールフロー

ステップ	説明	
1	管理者が、既存の(CUPS アーキテクチャで適用可能な非 CUPS CLI)clear sub imsi CLI コマンドを使用してセッションクリアを開始します。	
2	SAEGW(GGSN)-C が SAEGW-U に変更要求を送信し、アップリンクとダウンリンク両方のデータパスの Apply Action を「DROP」にして FAR を更新します。	
3	SAEGW-Uが Sx 変更応答で応答します。	
4	SSAEGW(GGSN)-C が Sx 削除要求を SAEGW-U に送信します。	
	• GTP-U セッションを削除します(IPv6/IPv4v6 PDN の場合は RA/RS に必要)。	
	• Sxb インタラクションを実行し、Sx セッション削除要求を送信して既存の IP-CAN セッションの Sx セッションコンテキストを削除します。	
5	SAEGW(GGSN)-Cが、並行してPDPコンテキスト削除要求(TEID、NSAPI、Teardown Ind)メッセージを SGSN に送信します。	

ステップ	説明	
6	SAEGEW-U から Sx セッション削除応答を取得した後、SAEGW(GGSN)-C で次の処理が実行されます。	
	• Gx/Gy 通信(CCR-T および CCA-T)を実行します。	
	・受信した URR 情報に基づいて CDR (Gz) を生成します。	
7	SAEGW(GGSN)-C が、CC-Request-Type AVP を TERMINATION_REQUEST に設定した CC 要求(CCR)メッセージを送信します。	
8	PCRF が CC 応答 (CCA) メッセージで応答します。	
9	SAEGW(GGSN)-C が Gy インターフェイスで CCR-Terminate を生成します。	
10	OCS が CCA-Terminate で応答します。	
11	SGSN が PDP コンテキストを削除し、SAEGW(GGSN)-C に PDP コンテキスト削除応答(TEID)メッセージを返します。	

ネットワーク障害

次のような発生する可能性があるすべてのネットワーク障害のシナリオもサポートされます。

- Sx 障害
- GTP 障害: GTP-C パス障害、GTP-U パス障害、GTP エラー表示
- Gx 障害
- アイドルタイムアウトとベアラー非アクティブタイムアウト

Gy インターフェイスを使用した GGSN セッションレポート

GGSN の Gy インターフェイスを使用するセッションレポート機能は、P-GW に似ています。 詳細については、『Ultra パケットコア CUPS コントロール プレーン アドミニストレーション ガイド』の「Gy インターフェイスを使用した P-GW セッションレポート」セクションを参照してください。

Gz インターフェイスを使用した GGSN セッションレポート

GGSN の Gz インターフェイスを使用したセッションレポート機能は、P-GW に似ています。 詳細については、『Ultra パケットコア CUPS コントロール プレーン アドミニストレーション ガイド』の「Gz インターフェイスを使用した P-GW セッションレポート」セクションを参照してください。

セカンダリ PDP コンテキストの動作

セカンダリ PDP コンテキストは GnGp GGSN CUPS ではサポートされていないため、次のシナリオで説明するように、セカンダリ PDP コンテキストの要求は拒否されます。

SGSN 開始セカンダリ PDP コンテキスト

セカンダリ PDP コンテキストの PDP コンテキスト作成 (CPC) 要求は、次のコールフローに示すように、ベアラー処理が Bearer Handling Not Supported (230) という理由で拒否されます。

Figure 10: SGSN 開始セカンダリ PDP コンテキスト

SGSN Initiated Secondary PDP Context

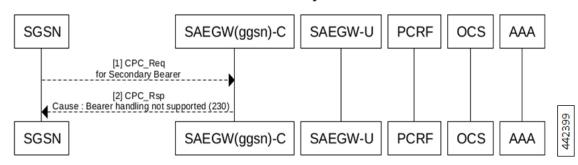


Table 10: SGSN 開始セカンダリ PDP コンテキストコールフロー

ステップ	説明
1	SGSN が、セカンダリベアラーの GTP PDP コンテキスト作成を GGSN に 送信します。
2	GGSN が、原因が「Bearer Handling Not Supported (230) 」に設定された GTP PDP コンテキスト作成応答を送信します。

PCRF 開始セカンダリ PDP コンテキスト

セカンダリ PDP コンテキストへのルールマッピングはアクティブ化されず、失敗したルールを示す CCR-U が PCRF に送信され、Rule-Failure-Code が RESOURCE_ALLOCATION_FAILURE (10) に設定されます。次のコールフローに示すように、CCA-I、CCA-U、または RAR で受信したルールの動作は似ています。

Figure 11: PCRF 開始セカンダリ PDP コンテキスト

PCRF Initiated Secondary PDP Context

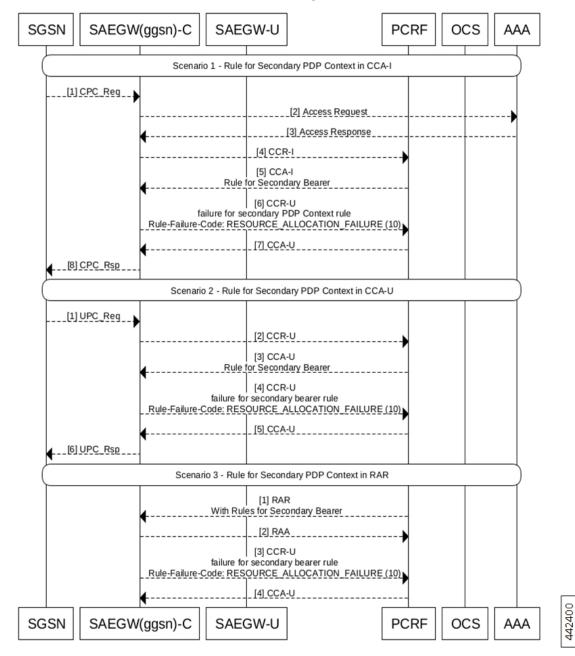


Table 11: PCRF 開始セカンダリ PDP コンテキスト (シナリオ 1)

ステップ	説明
1	UE が SGSN への GPRS IP-CAN セッション確立要求を開始します。SGSN が IP-CAN セッション確立(プライマリ PDP コンテキスト アクティベーション)要求を GGSN に送信します。
2a	GGSN がアクセス要求を AAA インタラクションに送信し、User-Name、calling-station-id、called-station-id、NAS-IPAddress、RAT タイプをクエリします。
2b	GGSN が AAA インタラクションに要求を送信し、s6b-AAR の詳細をクエリします。
	AAR {Session-ID, MIP6-Agent-Info (PGW-FQDN), User Name (IMSI-NAI), APN, RAT-Type} framed-ip-address
3a	AAA が次の Access-Acceptance のために GGSN とやり取りします。
	User-name, calling-station-id, called-station-id, framed-ip-address, nas-ipaddress
3b	AAA が s6b-AAA の詳細に関して GGSN とやり取りします。
4	GGSN が IP-CAN セッション確立手順の要求を PCRF に送信します。
5	PCRF が GGSN に IP-CAN セッション確立のための CCA で応答します。
6	CCR-U には、PCC-Rule-Status が INACTIVE、Rule-Failure-Code が「RESOURCE_ALLOCATION_FAILURE (10)」である、Charging-Rule-Report AVP と課金ルール名が含まれています。
7	PCRF が GGSN に CCA-U で応答します。
8	GGSN が GTP PDP コンテキスト作成応答を SGSN に送信します。

Table 12: PCRF 開始セカンダリ PDP コンテキスト (シナリオ 2)

ステップ	説明
1	SGSN が PDP コンテキスト更新要求を GGSN に送信します。
2	GGSN がアクセス要求を AAA インタラクションに送信します。
3	AAA が Access Request -Acceptance のために GGSN とやり取りします。
4	GGSN が CCR 要求を PCRF に送信します。SGSN の変更では、RAT の変更、合法的傍受の更新、またはその他の条件に基づいて QoS プロファイルを更新するために GGSN と PCRF の交換が必要になる場合があります。この交換は、MS プロファイルおよび/または課金コードを更新するために必要になる場合があります。たとえば、このプロファイル情報は、PDPコンテキスト要求メッセージ中に vSGSN を介して HLR から受信した QoS情報と重複する可能性があり、その場合、重複値に差異が生じて PGW はこれらの PCRF(Gx)値を使用します。

ステップ	説明
5	PCRF が CC 応答 (CCA) 更新メッセージで応答します。結果コードが DIAMETER_SUCCESS の場合、セカンダリベアラー作成のルールも受信 されます。
6	CCR-U には、PCC-Rule-Status が INACTIVE、Rule-Failure-Code が「RESOURCE_ALLOCATION_FAILURE (10)」である、Charging-Rule-Report AVP と課金ルール名が含まれています。
7	PCRF が GGSN に IP-CAN セッション確立のための CCA で応答します。
8	GGSN が GTP PDP コンテキスト更新応答を SGSN に送信します。

Table 13: PCRF 開始セカンダリ PDP コンテキスト (シナリオ 3)

ステップ	説明
1	PUSH 手順を使用して PCC ルールをプロビジョニングし、一方的な PCC ルールのプロビジョニングを開始するために、RAR コマンドが PCRF によって PCEF に送信されます。セカンダリベアラーの作成に関するルールも受信されます。
2	PUSH 手順を使用して PCC ルールをプロビジョニングし、一方的な PCC ルールのプロビジョニングを開始するために、RAA コマンドが PCRF によって PCEF に送信されます。
3	CCR-U には、PCC-Rule-Status が INACTIVE、Rule-Failure-Code が「RESOURCE_ALLOCATION_FAILURE(10)」である、Charging-Rule-Report AVP と課金ルール名が含まれています。
4	PCRF が GGSN に CCA-U で応答します。

CUPS での GGSN のリカバリと ICSR

既存のフレームワークは、CUPS リカバリと ICSR で GGSN をサポートするように拡張されます。CUPS の GGSN では、リカバリ/ICSR のときに完全なセッション/PDN 状態が回復されます。

注 : このリリースでは、CUPS の GGSN で ICSR スイッチオーバーが実行された場合、**show sx peers** CLI コマンドは新しいアクティブシャーシで関連付けられたピアを表示しません。ただし、機能への影響はありません。

制限事項

このリリースでは、「サポートされる機能」セクションに記載されている機能がCUPSのGGSN (GnGp) でサポートされます。

CUPS の GGSN では、次の機能はサポートされません。

- カスタムディクショナリ:特に明記されていない限り、標準ディクショナリのみがサポートされます。
- ・非標準 QCI はサポートされません。
- カスタム CLI または機能はサポートされません。

Note

CUPS アーキテクチャの GGSN でサポートされるお客様固有の CLI コマンドは、「サポートされるカスタム CLI コマンド」に記載されています。

• PDP タイプ PPP、RADIUS CoA、Gi トンネリングプロトコルはサポートされません。

CUPS での **GGSN** の設定

ここでは、この機能をサポートするために使用可能な CLI コマンドについて説明します。

GGSN サービスでの CUPS の有効化

GGSN サービスで CUPS を有効にするには、次の設定を使用します。

configure

```
context context_name
    ggsn-service service_name
    [ no ] cups-enabled
    end
```

注:

- SAEGW サービスが STARTED 状態に移行するには、次のサービスが STARTED 状態になっており、SAEGW サービスで関連付けられている必要があります。
- 1. (GGSN サービスに関連付けられた P-GW の) すべての eGTP-C サービスは、cups-enabled CLI コマンドを使用して設定する必要があります。
- 2. すべての GGSN サービスは、cups-enabled CLI コマンドで設定する必要があります。

GGSN の GTPC サービスにおける CUPS の有効化

GGSN に関連付けられている P-GW の eGTP-C サービスで CUPS を有効にするには、次の設定を使用します。

configure

```
context context_name
  egtp-service service_name
```

[no] cups-enabled end

SAEGW の GGSN サービスにおける CUPS の確認

CUPS が GGSN サービスに対して有効になっているかどうかを確認するには、次のコマンドを使用します。

- show configuration
- show configuration verbose
- show egtp-service { all | name service_name }
- show ggsn-service { all | name service_name }

サポートされるカスタム CLI コマンド

ここでは、CUPSのGGSNでサポートされるお客様固有のCLIコマンドについて説明します。

次の GTP-C コマンドは、CUPS アーキテクチャの GGSN でサポートされています。

コマンド	説明
gtpc support-earp	このコマンドは、Gn-Gp インターフェイスで G サービスの Evolved ARP(e-ARP)サポートを有 します。
<pre>gtpc support-access-side { traffic-class { downgrade } }</pre>	このコマンドを使用すると、ベアラー制御モー (BCM) が混合に設定されている場合に、Gn-GGSN のトラフィッククラスを MS によってダ グレードできます。
gtpc bitrates-rounded-down-kbps	このコマンドは、GTPインターフェイスでビット トの切り捨て kbps 値を有効または無効にします フォルトでは、このコマンドはディセーブルで
gtpc map-mbr-ambr	このコマンドは、SGSNからのPDPコンテキスト 更新メッセージで集約最大ビットレート属性値 (AMBR)を受信しない場合、SGSNからPDP テキスト更新 QoS メッセージで受信した最大ヒレート AVP を AMBR にマッピングします。こ マンドは Gn-Gp GGSN モードにのみ適用されま
gtpc update-pdp-resp reject imsi-mismatch	ULI がホーム PLMN セッションの一部でない場 このコマンドは PDP 更新要求メッセージを拒否 す。

コマンド	説明
コマンド	記がり
egtp gngp-modify-bearer-rsp-with-apn-ambr	このコマンドは、Gn-Gp ハンドオフの場合に APN-AMBR を使用してベアラー変更応答を す。
gtpc peer-salvation	このコマンドは、eGTP サービスの非アクテ GTPv2 ピアのピア復旧を有効にします。

次の GTPP コマンドは、CUPS アーキテクチャの GGSN でサポートされています。

	1
コマンド	説明
gtpp storage-server mode local	このコマンドは、ストレージモードをローカル て設定します。
gtpp storage-server local file purge-processed-files [purge-interval purge_interval]	このコマンドは、連続するファイルパージ間の 間隔を分単位で設定します。
no gtpp trigger time-limit	このコマンドは、CDR の時間制限トリガーを無 します。
gtpp attribute served-pdp-pdn-address-extension	このコマンドにより、GGSN は CDR にオプショフィールド「Served PDP/PDN Address extension」めることができます。

サポートされるカスタム CLI コマンド

翻訳について

このドキュメントは、米国シスコ発行ドキュメントの参考和訳です。リンク情報につきましては、日本語版掲載時点で、英語版にアップデートがあり、リンク先のページが移動/変更されている場合がありますことをご了承ください。あくまでも参考和訳となりますので、正式な内容については米国サイトのドキュメントを参照ください。