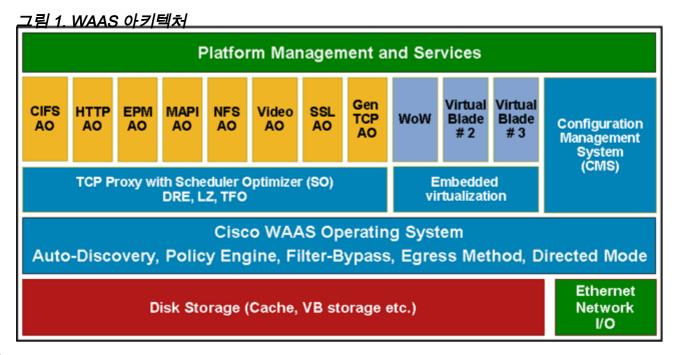
WAAS - WAAS 아키텍처 및 트래픽 흐름 이해

장:WAAS 아키텍처 및 트래픽 흐름 이해

이 문서에서는 WAAS 아키텍처와 데이터가 WAAS 장치로 들어오고, 처리되며, WAAS 장치에서 나가는 방법에 대해 설명합니다.WAAS 시스템의 문제 해결을 지원하기 위해 이러한 개념에 대한 기본적인 이해를 제공합니다.

목차

- 1 WAAS 아키텍처 이해
 - ∘ 1.1 AO
 - 1.2 WoW 및 가상 블레이드
 - 1.3 구성 관리 시스템
 - 1.4 DRE with Scheduler
 - 1.5 스토리지
 - 1.6 네트워크 I/O
 - <u>◦ 1.7 가로채기 및 흐름 관리</u>
 - 1.7.1 자동 검색
 - 1.7.2 정책 엔진
 - 1.7.3 필터 우회
- 2 WAAS 트래픽 흐름


WAAS 아키텍처 이해

NA

가(

WAAS(Wide Area Applications Services) 아키텍처와 데이터 흐름을 기본적으로 이해하면 WAAS 시스템의 문제 해결을 더 쉽게 할 수 있습니다.이 섹션에서는 WAAS 시스템의 주요 기능 영역과 함께 작동하는 방식에 대해 설명합니다.

WAAS 시스템 아키텍처는 그림 1과 같이 일련의 기능 영역 또는 서비스로 구분됩니다.

AO

AO(Application Optimizers, Application Accelerators)는 일반적인 레이어 4 최적화 이외의 레이어 7에서 특정 프로토콜을 최적화하는 애플리케이션별 소프트웨어입니다.AO는 WAE 시스템에서 "애플리케이션"으로 간주될 수 있습니다(OS에 비유). 일반 AO는 프로토콜별 AO가 없는 모든 트래픽에 대해 모두 catch-all 역할을 하며 프로토콜별 AO가 최적화를 적용하지 않기로 결정하면 대리자로서 작동합니다.

WoW 및 가상 블레이드

WAAS(WoW)의 Windows 서버는 가상 블레이드에서 실행되는 Microsoft Windows Server입니다 .WAAS의 가상화 기능을 사용하면 WAE 또는 WAVE 장치에 상주하는 컴퓨터 에뮬레이터인 하나이상의 가상 블레이드를 구성할 수 있습니다.가상 블레이드를 사용하면 WAE 하드웨어에 설치하는 추가 운영 체제에서 사용할 WAE 시스템 리소스를 할당할 수 있습니다.가상 블레이드에서 제공하는 격리된 환경에서 타사 애플리케이션을 호스팅할 수 있습니다.예를 들어 WAE 디바이스에서 Windows 인쇄 및 도메인 조회 서비스를 실행하도록 가상 블레이드를 구성할 수 있습니다.

구성 관리 시스템

CMS(Configuration Management System)는 WAAS Central Manager 및 WAAS 장치 구성 정보를 저장하기 위한 데이터베이스로 구성됩니다.CMS를 사용하면 단일 Central Manager GUI 인터페이스에서 WAE 디바이스 및 디바이스 그룹을 구성하고 관리할 수 있습니다.

DRE with Scheduler

DRE with scheduler(SO-DRE)는 레이어 4 최적화 영역의 핵심 모듈이며 DRE(Data Redundancy Elimination) 및 영구 LZ 압축을 비롯한 시스템의 모든 데이터 감소 기술을 담당합니다.여기에서 구현되는 데이터 감소를 위한 시스템 차원의 알고리즘 외에도, 이 구성 요소에는 시스템이 여러 AO에 대해 DRE를 사용하는 순서와 속도를 더 효과적으로 제어할 수 있는 스케줄링 요소도 포함되어 있

습니다.

스토리지

스토리지 시스템은 여러 디스크가 있는 시스템의 시스템 디스크와 논리 RAID 볼륨을 관리합니다.디스크 스토리지는 시스템 소프트웨어, DRE 캐시, CIFS 캐시 및 가상 블레이드 스토리지에 사용됩니다.

네트워크 I/O

네트워크 입력/출력 구성 요소는 WAE에서 WAE로의 통신 및 WAE에서 클라이언트/서버 통신으로의 통신을 포함하여 WAE로 들어오거나 나가는 데이터 통신을 처리하는 것과 관련된 모든 측면을 담당합니다.

가로채기 및 흐름 관리

가로채기와 흐름 관리는 사용자가 구성한 정책을 사용하여 트래픽을 가로채고 피어를 자동으로 검색하고 TCP 연결에서 최적화를 시작하는 여러 하위 모듈로 구성됩니다.주요 하위 모듈 중 일부는 자동 검색, 정책 엔진 및 필터 바이패스입니다.

자동 검색

자동 검색을 사용하면 피어 디바이스가 동적으로 서로를 검색할 수 있으며 WAE 쌍을 미리 구성할 필요가 없습니다.자동 검색은 특정 연결을 위해 피어 WAE 쌍을 검색하는 WAE 간의 프로토콜을 정 의하는 다중 WAE 엔드 투 엔드 메커니즘입니다.

WAE 디바이스는 두 노드가 TCP 연결을 설정할 때 발생하는 TCP 3방향 핸드셰이크 중에 자동으로 서로를 검색합니다.이 검색은 SYN, SYN/ACK 및 ACK 메시지의 TCP 옵션 필드(0x21)에 소량의 데 이터를 추가하여 수행됩니다.이 TCP 옵션을 사용하면 WAE 장치가 링크의 반대쪽 끝에 있는 WAE를 이해할 수 있으며 두 장치에서 흐름에 사용할 최적화 정책을 설명할 수 있습니다.중간 WAE가 네트워크 경로에 존재하는 경우 다른 WAE에 의해 최적화되는 흐름을 통과하기만 하면 됩 니다.자동 검색 프로세스가 끝나면 WAE는 연결의 최적화된 세그먼트를 표시하기 위해 참여 WAE 간에 TCP 패킷의 시퀀스 번호를 20억 개 이상으로 증가시켜 해당 WAE 간의 시퀀스 번호를 이동합 니다.

정책 엔진

정책 엔진 모듈은 트래픽을 최적화해야 하는지, 트래픽을 어디로 보내야 하는지, 트래픽을 어디로 보내야 하는지, 트래픽에 적용해야 하는 DRE(데이터 감소) 레벨을 결정합니다.정책 엔진은 연결 설 정 이상의 트래픽(예: 페이로드 정보 기준)을 분류하고, 최적화되지 않은 연결 흐름을 동적으로 변경 하여 최적화합니다.

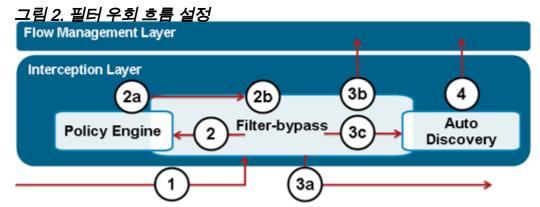
정책의 요소는 다음과 같습니다.

- 응용 프로그램 정의:트래픽 유형에 대한 통계를 보고하는 데 도움이 되는 논리적 트래픽 그룹입니다.
- 트래픽 분류자:IP 주소, 포트 등을 기반으로 연결을 선택하는 데 도움이 되는 ACL(Access Control List)
- 정책 맵:응용 프로그램 및 분류자를 적용할 최적화 유형(있는 경우)을 지정하는 작업에 바인딩합니다.두 가지 유형의 정책 맵이 있습니다.
 - 정적 정책 맵:CLI 또는 GUI(또는 기본적으로 설치)를 통해 디바이스에 구성되며 제거되지 않는 한 지속적입니다.

○ 동적 정책 맵:WAE에 의해 자동으로 구성되며 새 연결을 수락할 수 있을 정도로 수명이 짧습니다.

다음 컨피그레이션 예는 분류자(HTTP) 및 작업(전체 가속화 http 최적화)을 포함하는 정책 엔진 애 플리케이션 정의(웹)를 보여줍니다.

wae(config)# policy-engine application map basic
wae(config-app-bsc)# name Web classifier HTTP action optimize full accelerate http set-dscp copy


필터 우회

차단 후 filter-bypass 모듈은 정책 엔진과 자동 검색 간의 중재자 역할을 합니다.filter-bypass 모듈은 연결 수명 동안 필터링 테이블에서 최적화된 모든 연결을 추적합니다.또한 통과 연결을 추적하지만 통과 테이블 항목은 3초 후 시간 초과됩니다.

WAAS 트래픽 흐름

이 섹션에서는 WAAS의 패킷 흐름에 대해 설명합니다.

그림 2는 패킷이 시스템에 들어올 때 필터 우회 흐름 설정을 보여줍니다.

- 1. 플로우의 SYN 패킷이 시스템에 들어갑니다.이 패킷은 filter-bypass 모듈로 라우팅됩니다.
- 2. 필터 바이패스 모듈은 플로우를 처리하는 방법에 대해 정책 엔진을 협의합니다.

2a.정책 엔진은 구성 및 동적으로 추가된 정책을 상담하며, AO 및 SO-DRE의 현재 운영 상태를 기준으로 WAE가 이 플로우에 대해 무엇을 할 수 있는지 결정합니다.통과, 로컬 종료 또는 최적화를 수행합니다.

2b.그런 다음 정책 엔진의 패킷 및 결정이 filter-bypass 모듈로 반환됩니다.

3. 필터 우회 모듈은 다음 각 목의 어느 하나에 해당하는 방법으로 정책 엔진 결정에 대한 역할을 한다.

3a패킷을 즉시 전송합니다(통과).

3bAO가 로컬 종료를 위해 패킷을 전송합니다.

3c최적화를 위해 자동 검색 모듈로 패킷을 전송합니다.

filter-bypass 모듈이 옵션 3c를 선택하면 패킷이 자동 검색 모듈로 전송됩니다.자동 검색 모듈은 피어 WAE의 가용성 및 활성화된 기능을 기반으로 어떤 최적화를 수행할 수 있는지 결정합니다.피어 WAE는 원격 노드에 대한 TCP 핸드셰이크 중에 추가된 TCP 옵션을 사용하여 검색됩니다.자동 검

색 모듈에서 피어 WAE를 사용할 수 있다고 판단하면 TCP 3방향 핸드셰이크가 완료되면 추가 처리를 위해 연결이 해제됩니다.피어 WAE가 처음으로 발견되면 WAE는 AO 버전 및 기능에 대해 추가로 협상합니다.이 정보는 연결에 대한 AO 수준 기능을 결정하는 데 사용됩니다.

4. 특정 L4 및 L7 최적화를 통해 시스템에 연결되며 적절한 L4(DRE) 및 L7(AO) 가속화 모듈에 연결됩니다.프로토콜별 AO(HTTP, MAPI 등)에 의해 최적화되지 않은 것으로 나중에 검색된 연결의 경우, DRE 최적화를 사용하거나 사용하지 않고(연결 설정 중에 협상된 대로) 일반 AO에서 연결을 처리합니다.