Inzicht in probleem met geheugenlekkage op 9800 WLC

Inhoud

Inleiding
Geheugenlekkage
Syslog
Hoe de 9800 WLC te identificeren hebben ervaren geheugenlekkage probleem
Geheugenlekkage in IOS-proces oplossen
Basis logboeken van WLC
Voor processorgeheugenpool
Voor IOS-geheugenpool
Geheugenlek op polis-/platformniveau oplossen
Aanbeveling

Inleiding

Dit document beschrijft een geheugenlek in de context van een Cisco Catalyst 9800 draadloze LAN-controller (WLC).

Geheugenlekkage

Als een programma of proces geheugen toewijst voor tijdelijk gebruik en het niet juist lokaliseert als het niet langer nodig is, dan blijft dat geheugen "in gebruik" vanuit het perspectief van het besturingssysteem. Aangezien het proces blijft werken en er herhaaldelijk niet in slaagt om geheugen te delokaliseren, groeit de totale hoeveelheid geheugen die door het proces wordt gebruikt, en minder geheugen is beschikbaar voor andere processen en systeemfuncties. Geheugenlekken worden meestal veroorzaakt door softwarebugs of problemen met de systeemfirmware of de toepassingen die erop draaien.

In het geval van een Cisco Catalyst 9800 WLC, kan een geheugenlek zich als volgt manifesteren:

- Verminderde Prestaties: Aangezien het geheugen steeds schaarser wordt, vertraagt WLC mogelijk, resulterend in langzamere reactietijden voor beheersfuncties of verminderde prestaties van clientapparaten die aan het netwerk worden aangesloten.
- Systeeminstabiliteit: Kritieke processen kunnen beginnen te mislukken, wat mogelijk kan leiden tot verbroken clientverbindingen, onvermogen om de WLC te beheren of ander afwijkend gedrag.
- Systeemcrashes: In ernstige gevallen kan de WLC mogelijk crashen en opnieuw opstarten, vooral als het geheugen voor essentiële operaties opraakt.

Opmerking: 9800 WLC kan een plotselinge reboot / crash ervaren om het gelekte geheugen terug te winnen en zichzelf te herstellen. Aangezien geheugenlekkage buggygedrag is, ontstaan lekken zelfs na het opnieuw opstarten, tenzij de lekkage veroorzakende configuratie/functie is uitgeschakeld.

Syslog

%PLATFORM-4-ELEMENT_WAARSCHUWING:R0/0: klein: RP/0 Gebruikte geheugenwaarde 91% overschrijdt waarschuwingsniveau 88%

Dit bericht drukt de top 3 geheugen verbruikende proces naam samen met de traceky, callsite ID en diff oproepen:

%PLATFORM-4-ELEMENT_WAARSCHUWING: Chassis 1 R0/0: klein: 1/RP/0: Gebruikte geheugenwaarde 91% overschrijdt waarschuwingsniveau 88%. Belangrijkste geheugenallocators zijn: Proces: sessmgrd_rp_0. Tracekey: 1#258b8858a63c7998252e96352473c9c6 Nummerherkenning: 11B8F825A8768000 (diff_call: 20941). Proces: fman_fp_image_fp_0.

Tracekey: 1#36b34d8e636a89f6397a3b12acab9706 Nummerherkenning: 1944E78DF68EC002 (diff_call: 19887). Proces: linux_iosd-imag_rp_0. Tracekey: 1#8ec74901dc8e23a44e060e69d5820ece Callsite-id: E2A338E11594003 (diff_call: 13404).

Hoe de 9800 WLC te identificeren hebben ervaren geheugenlekkage probleem

Het is belangrijk om geheugenlekken direct aan te pakken aangezien zij de stabiliteit en de betrouwbaarheid van de netwerkdiensten kunnen compromitteren die door WLC worden verleend. Om een geheugenlek op een WLC te diagnosticeren, kunt u diverse opdrachten op de CLI gebruiken om het geheugengebruik in de loop der tijd te controleren. Ze kunnen op zoek gaan naar processen die een steeds grotere hoeveelheid geheugen gebruiken zonder het vrij te geven, of patronen die aangeven dat geheugen niet wordt hersteld zoals verwacht.

Controleer hoeveel geheugen volledig aan het platform is toegewezen.

```
9800WLC#show version | in memory
cisco C9800-L-F-K9 (KATAR) processor (revision KATAR) with 1634914K/6147K bytes of memory.
32768K bytes of non-volatile configuration memory.
16777216K bytes of physical memory.
!! Determines Total platform memory available, Here it is 16GB
```

Controleer hoeveel geheugen is toegewezen aan elke pool.

```
9800WLC#show processes memory
Processor Pool Total: 1674013452 Used: 823578520 Free: 850434932
reserve P Pool Total: 102404 Used: 88 Free: 102316
lsmpi_io Pool Total: 6295128 Used: 6294296 Free: 832
```

Controleer het resourcegebruik, inclusief geheugengebruik. Als deze waarde hoger is dan de niveaus Waarschuwing of Kritiek, kan dit wijzen op een mogelijk geheugenlek.

9800WLC#show platform ∗∗State Acronym: H – H Resource	resources ealthy, W – Warning, Usage	C — Critical Max	Warning	Critical	State
RP0 (ok, active)					н
Control Processor	21.70%	100%	80%	90%	н
DRAM	5444MB(35%)	15467MB	88%	93%	н
ESP0(ok, active)					н
QFP					н
DRAM	234658KB(12%)	1835008KB	85%	95%	н
IRAM	414KB(20%)	2048KB	85%	95%	н
CPU Utilization	0.00%	100%	90%	95%	Н

Geheugengebruik op 9800 WLC

Het totale geheugengebruik van de monitor voor de middelen van het controlevliegtuig

```
9800WLC#show platform software status control-processor brief
Slot Status 1-Min 5-Min 15-Min
1-RPO Healthy 0.52 0.75 0.80
Memory (kB)
Slot Status Total Used (Pct) Free (Pct) Committed (Pct)
1-RPO Healthy 16327028 4898110(30%) 114218918 (70%) 5387920 (33%)
```

Controleer de toegewezen en gebruikte geheugengrootte voor de hoogste processen. Als het geheugengebruik blijft stijgen terwijl het vrije geheugen vast blijft of te laag is, is er een grote kans op een geheugenlek op IOSd-niveau.

9800WLC#show process memory sorted									
Proce	essor	Pool Total	: 1674013452	2 Used: 4	92934952 Free:	11810785	500		
reser	rve P	Pool Total	.: 102404	4 Used:	88 Free:	1023	316		
lsmp	oi_io	Pool Total	: 6295128	B Used:	6294296 Free:	8	332		
-									
PID	TTY	Allocated	Freed	Holding	Getbufs	Retbufs	Process		
0	0	737247000	444817776	268572424	0	0	*Init*		
736	0	147160744	85216176	43848536	0	0	Stby Cnfg Parse		
722	0	34348696	205824	34480984	0	0	SBC main process		
4	0	62523104	35323288	23572272	27362640	27360228	RF Slave Main Th		
81	0	22061704	91560	21946768	0	0	EWLC IOSD CAPWAP		
93	0	70079512	14591040	19359760	0	0	IOSD ipc task		
0	0	0	0	6236576	0	0	*MallocLite*		
224	0	10665096	619664	6202672	0	0	SNMP MA SA		

Per procesgeheugen begint het hoogste holdingproces

Voor geheugenlekkage op platformniveau, controleer de RSS (Resident Set Size) tellers. RSS geeft de hoeveelheid geheugen aan die is toegewezen aan een proces tijdens de uitvoering. Als deze waarde snel stijgt, kan dit wijzen op een mogelijk geheugenlek.

9800WLC#sho	w process me	mory plat	tform sort	ted		
System memo	ry: 15838752	K total,	5409956K	used,	10428796K	free,
Lowest: 103	79012K					

Name	RSS	Dvnamic	Stack	Data	Text	Pid
linux_iosd-imag	1482448	468	136	1482448	409975	4272
ucode_pkt_PPE0	448216	1680	136	448216	22205	19727
wncmgrd	373884	5772	136	373884	182	19880
wncd_0	370916	16416	136	370916	991	20381
dbm	334212	6928	136	334212	536	24705
cpp_cp_svr	302808	1432	136	302808	342	21097
pubd	295656	19228	136	295656	91	26601
paed	274280	6744	136	274280	58	31626
ndbmand	263072	368	136	263072	361	26889
repm	259024	11136	136	259024	478	23222
cli_agent	229112	228	136	229112	57	24961

Platform verwerkt geheugengebruik van het hoogste holdingproces

Geheugenlekkage in IOS-proces oplossen

In IOS XE werkt IOS als een proces (daemon) dat bovenop de Linux-kernel draait, bekend als IOSd. Typisch, IOSd wordt toegewezen tussen 35% tot 50% van het totale beschikbare platform DRAM.

Basis logboeken van WLC

Tijdstempel inschakelen voor tijdreferentie voor alle opdrachten.

9800WLC#term exec prompt timestamp

U kunt de configuratie en geheugengerelateerde informatie als volgt bekijken:

9800WLC#show tech-support wireless 9800WLC#show tech-support memory

Verzamel Core Dump-bestand of systeemrapport indien gegenereerd

Via GUI

Naviagte naar Troubleshooting > Core Dumps and System Report

Troubleshooting * > Core Dump and System Report

Core Dump					
× Delete					
	Date & Time	▼ Size (Bytes)	Ŧ	Name	Download
	29 Apr 2024 23:56:21	125665		bootflash-2/core/WLC-1_1_RP_0_code_sign_verify_894_20240429-182620-UTC.core.gz	۵.,
H 1	▶ E 10 ¥				1 - 1 of 1 items
0 · · · D					
System Rej	port				
X Delete					
	Date & Time	▼ Size (Bytes)	Ŧ	Name	Download
	03 Jul 2024 00:38:23	14560784		bootflash/core/WLC-2_1_RP_0-system-report_20240703-003816-IST.tar.gz	۵.
	25 Jun 2024 23:54:31	16580832		bootflash/core/WLC-2_1_RP_0-system-report_20240625-235418-IST.tar.gz	۵.

Core Dump and System rapport

Via CLI

9800WLC#show bootflash: | in core/system-report 9800WLC#copy bootflash:system-report/Core_file {tftp: | ftp: | https: ..}

Voor processorgeheugenpool

Controleer per procesgeheugen vanaf het hoogste holdingproces.

9800WLC#show process memory sorted

Controleer de totale geheugenstatus voor de betreffende pool. Het toont ook de grootste gratis blok en het laagste beschikbare geheugen sinds boot.

9800WLC#show memory Statistics

Controleer de programmateller (PC) die veel geheugen heeft toegewezen.

9800WLC#show memory allocation-process totals

Controleer gelekte blokken en stukjes.

!!This is CPU intensive cli and use only if above CLI output is not helping.

Voor IOS-geheugenpool

Controleer de bovenste allocatoren.

9800WLC#show memory io allocating-process totals

Als de bovenste allocator 'Packet Data of Pool Manager' is, controleer dan welke caller_pc om een groot aantal buffers vroeg

9800WLC#show buffers 9800WLC#show buffers usage

Als de bovenste allocator is 'mananged_chunk_process()' of 'Chunk Manager' proces, dan betekent het dat een of meer stukjes is/zijn het toewijzen van een grote hoeveelheid geheugen.

9800WLC#show chunk summary 9800WLC#show chunk brief

Als het proces MallocLite de belangrijkste allocator is

9800WLC#show memory lite-chunks totals 9800WLC#show memory lite-chunks stats

Geheugenlek op polis-/platformniveau oplossen

Controleer geheugengebruik % voor beschikbare geheugenbronnen op platform.

9800WLC#show Platform resources

Controleer de algemene momentopname van het systeemgeheugen.

9800WLC#show platform software process slot chassis active R0 Monitor | in Mem

Controleer alle platform processen geheugen gesorteerd.

9800WLC#show process memory platform sorted 9800WLC#show platform software process memory chassid active r0 all sorted

Controleer de status van de laatst geannuleerde oproepen.

9800WLC#show process memory platform accounting

Kies de top contender van de vorige twee CLI-uitgangen en schakel de debugs voor de afzonderlijke processen in.

9800WLC#debug platform software memory <process> chassis <1-2/active/standby> R0 alloc callsite stop 9800WLC#debug platform software memory <process> chassis <1-2/active/standby> R0 alloc callsite clear 9800WLC#debug platform software memory <process> chassis <1-2/active/standby> R0 alloc backtrace start <CALL_SITE> depth 10 9800WLC#debug platform software memory <process> chassis <1-2/active/standby> R0 alloc callsite start 9800WLC#debug platform software memory <process> chassis <1-2/active/standby> R0 alloc callsite start 9800WLC#debug platform software memory <process> chassis <1-2/active/standby> R0 alloc callsite start 9800WLC#debug platform software memory <process> chassis <1-2/active/standby> R0 alloc callsite start

Verzamel de output een paar minuten (15 minuten tot een uur) na het initiëren van de debugs.

9800WLC#show platform software memory <process> chassis <1-2/active/standby> R0 alloc backtrace !! Capture this output three times, with a 5-10 minutes interval between each capture, to identify the pattern.

Controleer op call_diff, wijst waarde toe en vrijmaakt met de respectievelijke backtrace voor elk proces.

9800WLC#show platform software memory process> chassis <1-2/active/standby> R0 alloc callsite brief

Opmerking: call_diff = allocs - free

Als allocs = vrij, geen geheugenlek

Als frees = 0, geheugenlek

Als allocs != vrijkomt, is het mogelijk dat het geheugen lekt of niet (Als call_diff meer is, duidt dit op een grote kans op geheugenlekkage)

Leg gegevens van het databasegeheugen vast voor elk afzonderlijk proces.

9800WLC#show platform software memory <process> chassis <1-2/active/standby>active R0 alloc type data brief 9800WLC#show platform software memory database <process> chassis <1-2/active/standby> chassis active R0 brief

Controleer de informatie op het systeem om het geheugengebruik te controleren op een tijdelijk aangemaakt virtueel bestandssysteem.

9800WLC#show platform software mount

Aanbeveling

Raadpleeg de relevante configuratiehandleidingen, gegevensbladen en releaseopmerkingen voor geheugenaanbevelingen en schalinglimieten en zorg ervoor dat de WLC is bijgewerkt naar de laatst aanbevolen release.

Over deze vertaling

Cisco heeft dit document vertaald via een combinatie van machine- en menselijke technologie om onze gebruikers wereldwijd ondersteuningscontent te bieden in hun eigen taal. Houd er rekening mee dat zelfs de beste machinevertaling niet net zo nauwkeurig is als die van een professionele vertaler. Cisco Systems, Inc. is niet aansprakelijk voor de nauwkeurigheid van deze vertalingen en raadt aan altijd het oorspronkelijke Engelstalige document (link) te raadplegen.