Configure a inundação de VXLAN e aprenda com o núcleo multicast

Contents

Introduction **Prerequisites** Requirements **Componentes Utilizados** Informações de Apoio Formato de pacote de VXLAN Descoberta remota de VTEP Configurar Diagrama de Rede Configuração 9396-A Configuração 9396-B Configuração 9508-A Configuração 9396-C Verificar Status Após O Fluxo De Tráfego Começar Entre Peers Troubleshoot

Introduction

Este documento descreve como configurar e verificar o modo de inundação e aprendizado da LAN extensível virtual (VXLAN) através do transporte multicast IPv4.

Prerequisites

Requirements

A Cisco recomenda que você tenha conhecimento de multicast IP básico.

Componentes Utilizados

As informações neste documento são baseadas na plataforma Nexus.

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. Se a rede estiver ativa, certifique-se de que você entenda o impacto potencial de qualquer comando.

Informações de Apoio

A VXLAN foi projetada para fornecer os mesmos serviços de rede Ethernet de Camada 2 que a

VLAN. A VXLAN encapsula o endereço MAC sobre o pacote UDP, que faz um pacote de Camada 2 transportado por uma rede de Camada 3. Então, é basicamente um cabeçalho MAC-in-UDP.

A VXLAN introduz um cabeçalho VXLAN de 8 bytes que consiste em um Identificador de Rede VXLAN (VNID - Network Identifier) de 24 bits e alguns bits reservados. O cabeçalho VXLAN junto com o quadro Ethernet original vai para o payload UDP. O VNID de 24 bits é usado para identificar segmentos da Camada 2 e para manter o isolamento da Camada 2 entre os segmentos. Com todos os 24 bits em VNID, a VXLAN pode suportar 16 milhões de segmentos de LAN. Assim, ele resolve o problema da limitação da VLAN. Sem a VxLAN, você pode ter apenas o número 4094 de VLAN, com maior demanda, as redes modernas precisam de mais VLANs, e a VXLAN é a solução para resolver o problema.

Como ele usa o quadro ethernet para encapsular o pacote, as propriedades ethernet precisam permanecer intactas como broadcast, unicast e multicast desconhecidos. Para lidar com esse tipo de tráfego, o multicast é usado. Neste documento, a inundação e o aprendizado de VXLAN são descritos. Como o nome especifica que ele inunda o pacote e aprende a extremidade remota. Significa que o plano de dados não está sempre ativo, assim que o plano de dados de fluxo de tráfego é criado e expira assim que o endereço MAC expira.

Formato de pacote de VXLAN

Como mostrado nesta figura, o quadro original é encapsulado no cabeçalho VXLAN, que é de 8 bytes e o VNID é de 24 bits. Isso é encapsulado no cabeçalho UDP e o cabeçalho externo é um cabecalho IP.

O endereço IP origem é o IP do Virtual Terminal End Point (VTEP) de encapsulamento e o IP destino pode ser multicast ou unicast. A VXLAN usa dispositivos VXLAN tunnel endpoint (VTEP) para mapear os dispositivos finais dos usuários para segmentos de VXLAN e para executar o encapsulamento e o desencapsulamento de VXLAN. Cada VTEP tem duas interfaces: Uma é uma interface de switch no segmento de LAN local para suportar a comunicação de ponto final local através de bridging, e a outra é uma interface IP para a rede IP de transporte.

Descoberta remota de VTEP

Quando o host começa a enviar o tráfego, o processo seguido é o explicado aqui. Neste momento, o VTEP não sabe o endereco MAC do host remoto.

- 1. A estação final envia o pacote ARP (Address Resolution Protocol Protocolo de Resolução de Endereços) para a estação final remota.
- 2. O pacote chega ao VTEP-A e como o VTEP-A não sabe sobre o VTEP-B, ele encapsula o pacote dentro do cabeçalho VXLAN. Ele coloca o endereco IP multicast como o endereco IP destino. Como o mesmo endereço multicast é usado por todos os VTEPs, todos se unem ao mesmo grupo multicast.
- 3. Esse pacote chega a todo o VTEP e é desencapsulado, dessa forma o VTEP remoto aprende sobre o outro VTEP. Como o VTEP desencapsulado tem o VNID, ele é encaminhado na VLAN que tem o mesmo VNID configurado.
- 4. Agora, a extremidade remota envia o pacote de resposta ARP e alcança o VTEP-B, já que agora o VTEP-B sabe sobre o VTEP-A ele encapsula novamente o quadro original, mas agora o endereço IP de destino é o VTEP-B e é o endereço IP unicast .
 5. A resposta ARP alcança o VTEP-A e agora o VTEP-A conhece o VTEP-B, ele forma a
- relação de vizinhança com o VTEP-B.

Como mostrado no diagrama, o host H1 pertence à VLAN 10 e é encapsulado no VNID 10000. Como mostrado agui, o SMAC com H1 e DMAC com H2 é encapsulado dentro do VNI 1000 e o IP de origem e o IP de destino podem ser multicast ou unicast descritos nesta seção.

Configurar

Diagrama de Rede

- 9396-A e 9396-B são os pares VPC considerados como VTEP-1
- 9396-C é o VTEP-2
 O diagrama tem dois hosts na VLAN 10, ou seja, 10.10.10.1 e 10.10.10.2
- A VLAN 10 é usada com VNID como 10010
- 230.1.1.1 é usado como grupo multicast

Para habilitar a VXLAN no Nexus, é necessário habilitar esse recurso.

Configuração 9396-A

```
feature vn-segment-vlan-based
feature nv overlay
!
vlan 10
                  ----> 10010 is VNID
vn-segment 10010
!
interface nvel
no shutdown
source-interface loopback0
member vni 10010 mcast-group 230.1.1.1
!
interface eth1/2
```

```
!
ip pim sparse-mode
!
interface loopback0
ip address 10.1.1.1/32
ip address 10.1.1.10/32 secondary
ip router ospf 9k area 0.0.0.0
ip pim sparse-mode
!
```

Note: 10.1.1.10 é usado como endereço IP secundário e loopback deve ter o endereço IP secundário somente no caso do vPC. Os dois pares de vPC devem ter o mesmo endereço IP secundário, enquanto o endereço IP principal é diferente.

```
!
feature vpc
!
vpc domain 1
  peer-switch
  peer-keepalive destination 10.31.113.41 source 10.31.113.40
  peer-gateway
!
interface port-channel1
  vpc peer-link
!
interface port-channel112
  vpc 112
!
```

Configuração 9396-B

```
!
vlan 10
vn-segment 10010 ----> 10010 is VNID
1
interface nvel
no shutdown
source-interface loopback0
member vni 10010 mcast-group 230.1.1.1
!
interface eth1/2
ip pim sparse-mode
!
interface loopback0
ip address 10.1.1.2/32
ip address 10.1.1.10/32 secondary
ip router ospf 9k area 0.0.0.0
ip pim sparse-mode
!
feature vpc
1
vpc domain 1
peer-switch
peer-keepalive destination 10.31.113.40 source 10.31.113.41
peer-gateway
!
interface port-channel1
vpc peer-link
!
interface port-channel112
```

vpc 112

1

Configuração 9508-A

feature pim

```
ip pim rp-address 10.1.1.5 group-list 224.0.0.0/4
ip pim ssm range 232.0.0.0/8
interface loopback0
ip pim sparse-mode
interface Ethernet5/2
ip pim sparse-mode
interface Ethernet5/3
ip pim sparse-mode
interface Ethernet5/4
ip pim sparse-mode
```

Note: No 9508, ele só precisa de pim ativado. Como este é o VTEP, ele não exige nenhum recurso de VXLAN.

Configuração 9396-C

```
!
vlan 10
vn-segment 10010
1
interface loopback0
ip address 10.1.1.3/32
ip router ospf 9k area 0.0.0.0
ip pim sparse-mode
!
interface nvel
no shutdown
source-interface loopback0
member vni 10010 mcast-group 230.1.1.1
!
int eth1/2
ip pim sparse-mode
```

Verificar

Use esta seção para confirmar se a sua configuração funciona corretamente.

A partir de agora, o host não começou a enviar o fluxo de pacotes. Como o 9396-A é um dispositivo de retenção de VPC, ele origina a origem do tráfego do endereço IP secundário e atua como um endereço IP de origem para fluxo multicast.

```
VPC Capability: VPC-VIP-Only [notified]
Local Router MAC: d8b1.9076.9053
Host Learning Mode: Data-Plane
Source-Interface: loopback0 (primary: 10.1.1.1, secondary: 10.1.1.10)
```

9396-A# sh ip mroute 230.1.1.1

```
IP Multicast Routing Table for VRF "default"
```

```
(*, 230.1.1.1/32), uptime: 01:09:34, ip pim nve
Incoming interface: Ethernet1/2, RPF nbr: 192.168.10.2
Outgoing interface list: (count: 1)
nve1, uptime: 00:11:20, nve
```

```
(10.1.1.3/32, 230.1.1.1/32), uptime: 00:12:19, ip mrib pim nve
Incoming interface: Ethernet1/2, RPF nbr: 192.168.10.2
Outgoing interface list: (count: 1)
    nve1, uptime: 00:11:20, nve
```

```
(10.1.1.10/32, 230.1.1.1/32), uptime: 00:11:20, nve ip mrib pim
Incoming interface: loopback0, RPF nbr: 10.1.1.10
Outgoing interface list: (count: 1)
Ethernet1/2, uptime: 00:11:20, pim
```

Na *,a interface de entrada G nve é preenchida na Lista de Interface de Saída (OIL - Outgoing Interface List). Como mostrado aqui, 10.1.1.10 é a origem do fluxo multicast e a interface nve é o roteador do último salto para o fluxo multicast com eth1/2 que fica voltado para o núcleo é a interface de saída.

Como não há tráfego fluindo do host, não há nenhum par:

9396-A# sh nve peers Interface Peer-IP State LearnType Uptime Router-Mac

Esta saída mostra como a saída do vPC deve ser:

```
9396-A# sh vpc brief
Legend:
              (*) - local vPC is down, forwarding via vPC peer-link
vPC domain id
                                : 1
Peer status
                               : peer adjacency formed ok
vPC keep-alive status
                               : peer is alive
Configuration consistency status : success
Per-vlan consistency status
                                : success
Type-2 consistency status
                               : success
                               : primary
vPC role
Number of vPCs configured
                              : 1
```

Peer Gateway				:	Enabled			
Dual-active excluded VLANs				:	-			
Graceful Consistency Check Auto-recovery status				:	Enabled			
				:	Disabled			
Delay	/-resto	re statı	ıs	:	Timer is	off.(timeout	= 30s)	
Delay	y-resto	re SVI s	status	:	Timer is	off.(timeout	= 10s)	
vPC	Peer-lin	nk statı	1S					
id	Port	Status	Active vlans	5				
1	Po1	up	1-10					
vPC s	status							
id	Port	Status	Consistency	Reaso	on		Active	vlans
 112	 Po112	 up	success	succe	ess		1-10	

9396-A# sh vpc consistency-parameters global

Legend:

Type 1 : vPC will be suspended in case of mismatch

Name	Туре	Local Value	Peer Value
Vlan to Vn-segment Map	1	1 Relevant Map(s)	1 Relevant Map(s)
STP Mode	1	Rapid-PVST	Rapid-PVST
STP Disabled	1	None	None
STP MST Region Name	1		
STP MST Region Revision	1	0	0
STP MST Region Instance to	1		
VLAN Mapping			
STP Loopguard	1	Disabled	Disabled
STP Bridge Assurance	1	Enabled	Enabled
STP Port Type, Edge	1	Normal, Disabled,	Normal, Disabled,
BPDUFilter, Edge BPDUGuard		Disabled	Disabled
STP MST Simulate PVST	1	Enabled	Enabled
Nve Admin State, Src Admin	1	Up, Up, 10.1.1.10, DP	Up, Up, 10.1.1.10, DP
State, Secondary IP, Host			
Reach Mode			
Nve Vni Configuration	1	10010	10010
Nve encap Configuration	1	vxlan	vxlan
Interface-vlan admin up	2		
Interface-vlan routing	2	1	1
capability			
Allowed VLANs	-	1-10	1-10
Local suspended VLANs	-	-	-

9508-A

Como a rota 9508-A é o roteador central, ela não está ciente sobre a VXLAN, ela está ciente sobre a entrada mroute somente conforme mostrado aqui:

9508-A# sh ip mroute 230.1.1.1 IP Multicast Routing Table for VRF "default"

(*, 230.1.1.1/32), uptime: 01:30:06, pim ip Incoming interface: loopback0, RPF nbr: 10.1.1.5, uptime: 01:30:06 Outgoing interface list: (count: 3)

```
Ethernet5/3, uptime: 00:14:11, pim
   Ethernet5/2, uptime: 00:14:31, pim
  Ethernet5/4, uptime: 00:16:22, pim
(10.1.1.3/32, 230.1.1.1/32), uptime: 00:15:44, pim mrib ip
Incoming interface: Ethernet5/4, RPF nbr: 192.168.10.10, uptime: 00:15:44, internal
Outgoing interface list: (count: 2)
   Ethernet5/3, uptime: 00:14:11, pim
   Ethernet5/2, uptime: 00:14:31, pim
(10.1.1.10/32, 230.1.1.1/32), uptime: 00:14:31, pim mrib ip
Incoming interface: Ethernet5/2, RPF nbr: 192.168.10.1, uptime: 00:14:31, internal
Outgoing interface list: (count: 1)
   Ethernet5/4, uptime: 00:14:31, pim
9396-C
9396-C# show ip mroute
IP Multicast Routing Table for VRF "default"
(*, 230.1.1.1/32), uptime: 01:07:34, ip pim nve
```

Incoming interface: Ethernet1/2, RPF nbr: 192.168.10.9
Outgoing interface list: (count: 1)
 nvel, uptime: 00:10:38, nve

(10.1.1.3/32, 230.1.1.1/32), uptime: 00:10:38, nve ip mrib pim Incoming interface: loopback0, RPF nbr: 10.1.1.3 Outgoing interface list: (count: 1) Ethernet1/2, uptime: 00:09:49, pim

```
(10.1.1.10/32, 230.1.1.1/32), uptime: 00:08:05, ip mrib pim nve
Incoming interface: Ethernet1/2, RPF nbr: 192.168.10.9
Outgoing interface list: (count: 1)
nve1, uptime: 00:08:05, nve
```

Status Após O Fluxo De Tráfego Começar Entre Peers

Assim que o host 1, ou seja, 10.10.10.1 começa a enviar o tráfego para 10.10.10.2 NVE peer, ele é ativado:

93 Leg	96-A# gend:	sh	mac address-table	e dynamic				
		* – age (T)	primary entry, G - seconds since] - True, (F) - Fal	- Gateway .ast seen, .se	MAC, (R) + - prima	- Route ry entry	ed MAC v usir	C, O - Overlay MAC ng vPC Peer-Link,
	VLAN		MAC Address	Туре	age	Secure N	ITFY H	Ports
* +	10 10	+-	8c60.4f93.5ffc 8c60.4f93.647c	dynamic dynamic	0 0	F F F	F F	Po112 nve1(10.1.1.3)

Interface	Peer-IP	State	LearnType	Uptime	Router-Mac
nve1	10.1.1.3	Up	DP	00:00:14	n/a

9396-A# sh nve peers

9396-A# sh nve peers detail

Details of nve Peers:

Peer-Ip: 10.1.1.3		
NVE Interface	:	nvel
Peer State	:	Up
Peer Uptime	:	00:04:49
Router-Mac	:	n/a
Peer First VNI	:	10010
Time since Create	:	00:04:49
Configured VNIs	:	10010
Provision State	:	add-complete
Route-Update	:	Yes
Peer Flags	:	None
Learnt CP VNIs	:	
Peer-ifindex-resp	:	Yes

9396-A sh nve vni 10010 detail

VNI: 10010	
NVE-Interface	: nvel
Mcast-Addr	: 230.1.1.1
VNI State	: Up
Mode	: data-plane
VNI Type	: L2 [10]
VNI Flags	:
Provision State	: add-complete
Vlan-BD	: 10
SVI State	: n/a

9396-A# sh nve internal vni 10010 VNI 10010 Ready-State : Ready **[L2-**

: Ready [L2-vni-flood-learn-ready]

Da mesma forma, no 9396-C, os pares NVE devem estar ativos:

9396-C# show mac address-table dynamic

Legend:

		* -	primary entry, G	Gatewa	y MAC,	(R) - Rout	ted MA	AC, O - Overlay MAC
		age	- seconds since	last seen	,+ - pr	imary ent	ry usi	ng vPC Peer-Link,
		(T)	- True, (F) - Fa	lse				
	VLAN		MAC Address	Туре	age	Secure	NTFY	Ports
		+		+	+	+	-+	+
*	10		8c60.4f93.5ffc	dynamic	0	F	F	nve1(10.1.1.10)
*	10		8c60.4f93.647c	dynamic	0	F	F	Eth1/13

9396-C# sh nve peers

Interface	Peer-IP	State	LearnType	Uptime	Router-Mac
nve1	10.1.1.10	Up	DP	00:08:28	n/a

9396-C# sh nve peers detail

Details of nve Peers:

Provision State	: add-complete
Configured VNIs	: 10010
Time since Create	: 00:08:32
Peer First VNI	: 10010
Router-Mac	: n/a
Peer Uptime	: 00:08:32
Peer State	: Up
NVE Interface	: nvel
Peer-Ip: 10.1.1.10	

Route-Update : Yes Peer Flags : None Learnt CP VNIS : --Peer-ifindex-resp : Yes

9396-C sh nve vni 10010 detail

VNI: 10010	
NVE-Interface	: nvel
Mcast-Addr	: 230.1.1.1
VNI State	: Up
Mode	: data-plane
VNI Type	: L2 [10]
VNI Flags	:
Provision State	: add-complete
Vlan-BD	: 10
SVI State	: n/a

9396-C# sh nve internal vni 10010

VNI 10010 Ready-State : Ready [L2-vni-flood-learn-ready]

Como mostrado aqui, nve colegas se baseiam no aprendizado do plano de dados e usam o mecanismo de inundação e aprendizado. Caso o endereço MAC tenha expirado, o peer nve fica inativo.

Troubleshoot

Atualmente, não existem informações disponíveis específicas sobre Troubleshooting para esta configuração.