O conjunto de documentação deste produto faz o possível para usar uma linguagem imparcial. Para os fins deste conjunto de documentação, a imparcialidade é definida como uma linguagem que não implica em discriminação baseada em idade, deficiência, gênero, identidade racial, identidade étnica, orientação sexual, status socioeconômico e interseccionalidade. Pode haver exceções na documentação devido à linguagem codificada nas interfaces de usuário do software do produto, linguagem usada com base na documentação de RFP ou linguagem usada por um produto de terceiros referenciado. Saiba mais sobre como a Cisco está usando a linguagem inclusiva.
A Cisco traduziu este documento com a ajuda de tecnologias de tradução automática e humana para oferecer conteúdo de suporte aos seus usuários no seu próprio idioma, independentemente da localização. Observe que mesmo a melhor tradução automática não será tão precisa quanto as realizadas por um tradutor profissional. A Cisco Systems, Inc. não se responsabiliza pela precisão destas traduções e recomenda que o documento original em inglês (link fornecido) seja sempre consultado.
Este documento descreve o processo de criação de um caminho preferido, influenciando diferentes recursos do Enhanced Interior Gateway Routing Protocol (EIGRP).
A Cisco recomenda que você tenha conhecimento destes tópicos:
Este documento não está restrito a versões específicas de software e hardware, no entanto, as informações neste documento são baseadas nestas versões de software e hardware:
As informações neste documento foram criadas a partir de dispositivos em um ambiente de laboratório específico. Todos os dispositivos utilizados neste documento foram iniciados com uma configuração (padrão) inicial. Se a rede estiver ativa, certifique-se de que você entenda o impacto potencial de qualquer comando.
A seleção de caminho do EIGRP pode ser influenciada pela manipulação de várias métricas que o protocolo usa para determinar o melhor caminho para um destino. O EIGRP calcula o melhor caminho para um destino com base em diferentes métricas, e o processo de seleção de caminho envolve a avaliação dessas métricas para determinar a rota ideal. As métricas do EIGRP incluem largura de banda, atraso, carga, confiabilidade e MTU (Maximum Transmission Unit, unidade máxima de transmissão). Entender essas métricas e sua importância ajuda os administradores de rede a modificar a seleção de caminho do EIGRP com base em requisitos específicos ou condições de rede. Por padrão, a partir de diferentes valores de métrica, o EIGRP usa apenas a largura de banda mínima no caminho para uma rede de destino e o atraso total para calcular métricas de roteamento. Além disso, as métricas de largura de banda e atraso são determinadas a partir de valores estáticos configurados nas interfaces a partir de dispositivos ao longo do caminho em direção ao destino, em outras palavras, esses dois parâmetros não são medidos dinamicamente.
Além da manipulação de métrica, a filtragem de rota também pode ser usada para influenciar a seleção de caminho no EIGRP. A filtragem de rotas envolve o controle das informações que podem ou não entrar ou sair de uma tabela de roteamento do roteador. A filtragem de rotas pode ser feita por vários motivos, incluindo a otimização de tabelas de roteamento ou o gerenciamento de tráfego de rede. Alguns dos principais recursos relacionados à filtragem de rotas no EIGRP incluem listas de distribuição, listas de prefixos, mapas de rotas e mapas de vazamento. Esses mecanismos oferecem uma maneira poderosa e flexível de controlar as informações de roteamento que podem ser usadas pelos administradores de rede para personalizar as tabelas de roteamento EIGRP para atender a critérios específicos e melhorar a eficiência da rede.
No cenário dinâmico dos protocolos de roteamento, os administradores frequentemente se deparam com a necessidade de personalizar as decisões de roteamento para alinhar-se com requisitos de rede específicos e otimizar o fluxo de tráfego. Isso envolve a utilização de várias técnicas e configurações para influenciar como os roteadores tomam decisões de seleção de caminhos. Os próximos exemplos fornecem diferentes alternativas onde os administradores podem empregar configurações estratégicas para manipular a seleção de caminho do EIGRP.
1. InfluencePath Selection modificando a métrica Atraso
O ajuste da métrica de atraso em uma interface de roteador permite que os administradores influenciem as decisões de roteamento, afetando esse parâmetro específico em um link. Essa manipulação sutil pode orientar o tráfego a seguir os caminhos preferidos com base nos valores de atraso alterados.
2. Influenciar a seleção de caminhos com o uso de uma lista de compensação
O emprego de uma lista de deslocamento permite a modificação seletiva de métricas para prefixos específicos, fornecendo uma abordagem direcionada para influenciar a seleção de caminho em uma interface específica. Esse mecanismo é usado para aumentar as métricas de entrada e saída para rotas aprendidas via EIGRP e para preferir seletivamente alguns prefixos sobre um caminho específico.
3. Influenciar a seleção de caminhos com resumo
A introdução de rotas de sumarização permite que os administradores influenciem a preferência de correspondência mais longa para um prefixo. A sumarização de rotas pode afetar a granularidade das decisões de roteamento, otimizando as tabelas de roteamento e melhorando a eficiência geral da rede.
4. Seleção do caminho de influência com o uso de mapas de vazamento
O aproveitamento de mapas de vazamento durante o anúncio de rotas de sumarização fornece um mecanismo para anunciar rotas mais específicas seletivamente. Essa abordagem garante que as informações resumidas sejam anunciadas estrategicamente, mantendo a flexibilidade de roteamento e influenciando a seleção de caminhos.
5. Influenciar a Seleção de Caminhos, modificando a Distância Administrativa (AD) de um prefixo
Alterar a distância administrativa de um prefixo é uma técnica útil para controlar a origem das informações de roteamento. Isso pode ser particularmente útil em cenários em que as rotas de determinadas fontes precisam ser excluídas da RIB (Routing Information Base, base de informações de roteamento).
6. Influencie a seleção de caminhos com filtragem de rotas
A filtragem de rotas é um método poderoso usado para controlar o anúncio ou a aceitação de rotas específicas dentro ou fora de um protocolo de roteamento. É comumente usado para filtrar informações de roteamento com base em critérios especificados, evitando que determinadas rotas sejam anunciadas ou aprendidas.
Uma lista de distribuição é uma das principais ferramentas usadas para filtrar prefixos no EIGRP e pode funcionar em conjunto com uma lista de acesso (ACL), lista de prefixo ou mapa de rota.
O emprego de uma lista de prefixos facilita a filtragem granular de prefixos de vizinhos específicos. Esse nível de controle é essencial para gerenciar atualizações de roteamento e modificar a preferência de caminho.
Antes de modificar qualquer configuração, é importante revisar a configuração inicial e o status dos dispositivos (a configuração inicial é a mesma em cada cenário). Com base no diagrama de rede, R1, R2, R3 e R4 são vizinhos EIGRP (cada roteador tem duas adjacências) com R4 também fazendo parte do domínio IS-IS (Intermediate System-to-Intermediate System) e fazendo redistribuição mútua entre IS-IS e EIGRP. É importante observar que R1 tem dois caminhos na tabela de roteamento (através da interface Gi1/0/3 e Gi1/0/4) para as sub-redes 10.20.x.x e 10.30.x.x via EIGRP, e as sub-redes 10.10.x.x estão diretamente conectadas.
R1 | |
Configurações | Status |
|
|
No caso de R2 e R3, todos os prefixos 10.10.x.x, 10.20.x.x e 10.30.x.x estão sendo aprendidos através do EIGRP.
R2 | |
Configurações | Status |
|
|
R3 | |
Configurações | Status |
|
|
R4 | |
Configurações | Status |
|
|
Neste exemplo, o valor de Atraso é usado para influenciar o EIGRP a preferir o caminho através de R3. Antes de fazer qualquer alteração, você pode confirmar se o EIGRP está balanceando a carga entre as interfaces Gi1/0/3 e Gi1/04, já que ambas as interfaces têm o mesmo valor de Atraso de 10 microssegundos.
R1#show ip route eigrp
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, m - OMP
n - NAT, Ni - NAT inside, No - NAT outside, Nd - NAT DIA
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
H - NHRP, G - NHRP registered, g - NHRP registration summary
o - ODR, P - periodic downloaded static route, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR
& - replicated local route overrides by connected
Gateway of last resort is not set
10.0.0.0/8 is variably subnetted, 12 subnets, 2 masks
D EX 10.20.40.0/24
[170/66560] via 192.168.3.2, 5d22h, GigabitEthernet1/0/3
[170/66560] via 192.168.1.2, 5d22h, GigabitEthernet1/0/4
D EX 10.20.50.0/24
[170/66560] via 192.168.3.2, 5d22h, GigabitEthernet1/0/3
[170/66560] via 192.168.1.2, 5d22h, GigabitEthernet1/0/4
D EX 10.20.60.0/24
[170/66560] via 192.168.3.2, 5d22h, GigabitEthernet1/0/3
[170/66560] via 192.168.1.2, 5d22h, GigabitEthernet1/0/4
D 10.30.70.0/24 [90/16000] via 192.168.3.2, 5d22h, GigabitEthernet1/0/3
[90/16000] via 192.168.1.2, 5d22h, GigabitEthernet1/0/4
D 10.30.80.0/24 [90/16000] via 192.168.3.2, 5d22h, GigabitEthernet1/0/3
[90/16000] via 192.168.1.2, 5d22h, GigabitEthernet1/0/4
D 10.30.90.0/24 [90/16000] via 192.168.3.2, 5d22h, GigabitEthernet1/0/3
[90/16000] via 192.168.1.2, 5d22h, GigabitEthernet1/0/4
172.16.0.0/30 is subnetted, 2 subnets
D 172.16.2.0 [90/15360] via 192.168.1.2, 1w5d, GigabitEthernet1/0/4
D 172.16.4.0 [90/15360] via 192.168.3.2, 1w5d, GigabitEthernet1/0/3
R1#show interface GigabitEthernet1/0/3 | i DLY
MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec,
R1#show interface GigabitEthernet1/0/4 | i DLY
MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec,
Agora, vamos modificar e aumentar o atraso para a interface GigabitEthernet1/0/4. Alterando o valor de atraso para 100 (dezenas de microssegundos), o RIB instala o caminho somente através da interface Gi1/0/3.
Olhando para a tabela de topologia EIGRP, você pode confirmar que a interface Gi1/0/4 ainda está aparecendo como um sucessor viável para todos os prefixos e tem um atraso total mais alto.
R1#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R1(config)#interface GigabitEthernet1/0/4
R1(config-if)#delay 100
R1(config-if)#end
R1#show ip route eigrp
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, m - OMP
n - NAT, Ni - NAT inside, No - NAT outside, Nd - NAT DIA
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
H - NHRP, G - NHRP registered, g - NHRP registration summary
o - ODR, P - periodic downloaded static route, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR
& - replicated local route overrides by connected
Gateway of last resort is not set
10.0.0.0/8 is variably subnetted, 12 subnets, 2 masks
D EX 10.20.40.0/24
[170/66560] via 192.168.3.2, 00:05:52, GigabitEthernet1/0/3
D EX 10.20.50.0/24
[170/66560] via 192.168.3.2, 00:05:52, GigabitEthernet1/0/3
D EX 10.20.60.0/24
[170/66560] via 192.168.3.2, 00:05:52, GigabitEthernet1/0/3
D 10.30.70.0/24
[90/16000] via 192.168.3.2, 00:05:52, GigabitEthernet1/0/3
D 10.30.80.0/24
[90/16000] via 192.168.3.2, 00:05:52, GigabitEthernet1/0/3
D 10.30.90.0/24
[90/16000] via 192.168.3.2, 00:05:52, GigabitEthernet1/0/3
172.16.0.0/30 is subnetted, 2 subnets
D 172.16.2.0 [90/20480] via 192.168.3.2, 00:05:52, GigabitEthernet1/0/3
D 172.16.4.0 [90/15360] via 192.168.3.2, 00:05:52, GigabitEthernet1/0/3
R1#show interface GigabitEthernet1/0/4 | i DLY MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 1000 usec,
R1#show ip eigrp topology EIGRP-IPv4 VR(LAB) Topology Table for AS(100)/ID(192.168.3.1) Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply, r - reply Status, s - sia Status P 192.168.3.0/30, 1 successors, FD is 1310720 via Connected, GigabitEthernet1/0/3 P 10.30.70.0/24, 1 successors, FD is 2048000 via 192.168.3.2 (2048000/1392640), GigabitEthernet1/0/3 via 192.168.1.2 (66928640/1392640), GigabitEthernet1/0/4 P 10.20.50.0/24, 1 successors, FD is 8519680 via 192.168.3.2 (8519680/7864320), GigabitEthernet1/0/3 via 192.168.1.2 (73400320/7864320), GigabitEthernet1/0/4 P 10.30.80.0/24, 1 successors, FD is 2048000 via 192.168.3.2 (2048000/1392640), GigabitEthernet1/0/3 via 192.168.1.2 (66928640/1392640), GigabitEthernet1/0/4 P 172.16.2.0/30, 1 successors, FD is 2621440 via 192.168.3.2 (2621440/1966080), GigabitEthernet1/0/3 via 192.168.1.2 (66846720/1310720), GigabitEthernet1/0/4 P 10.10.30.0/24, 1 successors, FD is 163840 via Connected, Loopback30 P 10.20.60.0/24, 1 successors, FD is 8519680 via 192.168.3.2 (8519680/7864320), GigabitEthernet1/0/3 via 192.168.1.2 (73400320/7864320), GigabitEthernet1/0/4 P 192.168.1.0/30, 1 successors, FD is 66191360 via Connected, GigabitEthernet1/0/4 via 192.168.3.2 (3276800/2621440), GigabitEthernet1/0/3 P 10.20.40.0/24, 1 successors, FD is 8519680 via 192.168.3.2 (8519680/7864320), GigabitEthernet1/0/3 via 192.168.1.2 (73400320/7864320), GigabitEthernet1/0/4 P 10.10.20.0/24, 1 successors, FD is 163840 via Connected, Loopback20 P 10.30.90.0/24, 1 successors, FD is 2048000 via 192.168.3.2 (2048000/1392640), GigabitEthernet1/0/3 via 192.168.1.2 (66928640/1392640), GigabitEthernet1/0/4 P 172.16.4.0/30, 1 successors, FD is 1966080 via 192.168.3.2 (1966080/1310720), GigabitEthernet1/0/3 P 10.10.10.0/24, 1 successors, FD is 163840 via Connected, Loopback10
R1#show ip eigrp topology 10.20.40.0/24 EIGRP-IPv4 VR(LAB) Topology Entry for AS(100)/ID(192.168.3.1) for 10.20.40.0/24 State is Passive, Query origin flag is 1, 1 Successor(s), FD is 8519680, RIB is 66560 Descriptor Blocks: 192.168.3.2 (GigabitEthernet1/0/3), from 192.168.3.2, Send flag is 0x0 Composite metric is (8519680/7864320), route is External Vector metric: Minimum bandwidth is 1000000 Kbit Total delay is 120000000 picoseconds Reliability is 255/255 Load is 1/255 Minimum MTU is 1500 Hop count is 2 Originating router is 172.16.6.1 External data: AS number of route is 0 External protocol is IS-IS, external metric is 20 Administrator tag is 0 (0x00000000) 192.168.1.2 (GigabitEthernet1/0/4), from 192.168.1.2, Send flag is 0x0 Composite metric is (73400320/7864320), route is External Vector metric: Minimum bandwidth is 1000000 Kbit Total delay is 1110000000 picoseconds Reliability is 255/255 Load is 1/255 Minimum MTU is 1500 Hop count is 2 Originating router is 172.16.6.1 External data: AS number of route is 0 External protocol is IS-IS, external metric is 20 Administrator tag is 0 (0x00000000) R1#traceroute 10.20.40.1 source loopback10 Type escape sequence to abort. Tracing the route to 10.20.40.1 VRF info: (vrf in name/id, vrf out name/id) 1 192.168.3.2 1 msec 0 msec 0 msec 2 172.16.4.2 0 msec 0 msec 1 msec 3 172.16.6.2 1 msec 1 msec *
R1#show ip cef 10.20.40.1 10.20.40.0/24 nexthop 192.168.3.2 GigabitEthernet1/0/3
Modificar o atraso pode ser uma ferramenta útil para controlar o fluxo de tráfego e alterar o comportamento geral da rede. O atraso é um valor cumulativo que cresce com base no atraso de cada segmento no caminho. Também é importante observar que, como a largura de banda pode ser usada por outros cálculos de protocolos, as alterações no parâmetro de atraso da interface são um método preferido. As alterações no atraso, no entanto, são úteis apenas em cenários onde um caminho é preferível em relação a outro para todas as rotas que estão sendo recebidas.
Observação: tenha cuidado ao selecionar o novo valor de atraso, você não deseja aumentar o atraso para um ponto em que o EIGRP não veja mais essas rotas como um sucessor viável.
Neste cenário, o tráfego ou prefixo interessante que precisa ser manipulado é selecionado com o uso de uma ACL. Uma ACL é usada para corresponder esses prefixos e, para este exemplo, a próxima configuração é adicionada para manipular o tráfego destinado às sub-redes 10.20.60.0/24 e 10.30.90.0/24.
R1#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R1(config)#access-list 20 permit 10.20.60.0 0.0.0.255
R1(config)#access-list 30 permit 10.30.90.0 0.0.0.255
!
R1#show access-lists 20
Standard IP access list 20
10 permit 10.20.60.0, wildcard bits 0.0.0.255
R1#show access-lists 30
Standard IP access list 30
10 permit 10.30.90.0, wildcard bits 0.0.0.255
O objetivo é modificar a métrica dos prefixos específicos, mas sem afetar todo o tráfego do EIGRP. Este exemplo usa uma lista de deslocamento para adicionar um deslocamento à métrica dos prefixos selecionados (10.20.60.0/24 e 10.30.90.0/24) na direção de entrada de R1.
A ideia é preferir o caminho através de R2 através da interface Gi1/0/4 ao acessar a sub-rede 10.20.60.0/24 (de R1) e preferir o caminho através de R3 através da interface Gi1/0/3 ao acessar a sub-rede 10.30.90.0/24 (de R1).
A configuração usa o comando offset-list {nome da ACL|número da ACL} {in|out} <offset> <interface> como mostrado a seguir:
R1#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R1(config)#router eigrp LAB
R1(config-router)#address-family ipv4 unicast autonomous-system 100
R1(config-router-af)#topology base
R1(config-router-af-topology)#offset-list 20 in 200 GigabitEthernet1/0/3
R1(config-router-af-topology)#end
Os resultados da configuração podem ser verificados verificando o RIB, a Base de Informações de Encaminhamento (FIB) e a tabela de Topologia do EIGRP. Nas próximas saídas, pode-se ver que o deslocamento aplicado à interface Gi1/0/3 afetou a métrica desse prefixo específico, em outras palavras, tornando esse caminho menos desejável:
R1#show ip route 10.20.60.0 Routing entry for 10.20.60.0/24 Known via "eigrp 100", distance 170, metric 66560, precedence routine (0), type external Redistributing via eigrp 100 Last update from 192.168.1.2 on GigabitEthernet1/0/4, 00:01:31 ago Routing Descriptor Blocks: * 192.168.1.2, from 192.168.1.2, 00:01:31 ago, via GigabitEthernet1/0/4 Route metric is 66560, traffic share count is 1 Total delay is 120 microseconds, minimum bandwidth is 1000000 Kbit Reliability 255/255, minimum MTU 1500 bytes Loading 1/255, Hops 2
R1#show ip cef 10.20.60.0 10.20.60.0/24 nexthop 192.168.1.2 GigabitEthernet1/0/4 R1#show ip eigrp topology 10.20.60.0/24 EIGRP-IPv4 VR(LAB) Topology Entry for AS(100)/ID(192.168.3.1) for 10.20.60.0/24 State is Passive, Query origin flag is 1, 1 Successor(s), FD is 8519680, RIB is 66560 Descriptor Blocks: 192.168.1.2 (GigabitEthernet1/0/4), from 192.168.1.2, Send flag is 0x0 Composite metric is (8519680/7864320), route is External Vector metric: Minimum bandwidth is 1000000 Kbit Total delay is 120000000 picoseconds Reliability is 255/255 Load is 1/255 Minimum MTU is 1500 Hop count is 2 Originating router is 172.16.6.1 External data: AS number of route is 0 External protocol is IS-IS, external metric is 20 Administrator tag is 0 (0x00000000) 192.168.3.2 (GigabitEthernet1/0/3), from 192.168.3.2, Send flag is 0x0 Composite metric is (8519880/7864520), route is External Vector metric: Minimum bandwidth is 1000000 Kbit Total delay is 120003052 picoseconds <--- Reliability is 255/255 Load is 1/255 Minimum MTU is 1500 Hop count is 2 Originating router is 172.16.6.1 External data: AS number of route is 0 External protocol is IS-IS, external metric is 20 Administrator tag is 0 (0x00000000)
Um processo semelhante é concluído para o prefixo 10.30.90.0/24, a lista de deslocamento é adicionada agora para preferir o caminho de R3 através da interface Gi1/0/3 (mas aplicando o deslocamento à Gi1/0/4). Da mesma forma, revisando a topologia RIB, FIB e EIGRP, pode-se ver que o caminho preferido para o prefixo selecionado é através de R3:
R1#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R1(config)#router eigrp LAB
R1(config-router)#address-family ipv4 unicast autonomous-system 100
R1(config-router-af)#topology base
R1(config-router-af-topology)#offset-list 30 in 300 gigabitEthernet 1/0/4
R1(config-router-af-topology)#end
R1#show ip route 10.30.90.0
Routing entry for 10.30.90.0/24
Known via "eigrp 100", distance 90, metric 16000, precedence routine (0), type internal
Redistributing via eigrp 100
Last update from 192.168.3.2 on GigabitEthernet1/0/3, 00:00:25 ago
Routing Descriptor Blocks:
* 192.168.3.2, from 192.168.3.2, 00:00:25 ago, via GigabitEthernet1/0/3
Route metric is 16000, traffic share count is 1
Total delay is 21 microseconds, minimum bandwidth is 1000000 Kbit
Reliability 255/255, minimum MTU 1500 bytes
Loading 1/255, Hops 2
R1#show ip cef 10.30.90.0 10.30.90.0/24 nexthop 192.168.3.2 GigabitEthernet1/0/3
R1#show ip eigrp topology 10.30.90.0/24 EIGRP-IPv4 VR(LAB) Topology Entry for AS(100)/ID(192.168.3.1) for 10.30.90.0/24 State is Passive, Query origin flag is 1, 1 Successor(s), FD is 2048000, RIB is 16000 Descriptor Blocks: 192.168.3.2 (GigabitEthernet1/0/3), from 192.168.3.2, Send flag is 0x0 Composite metric is (2048000/1392640), route is Internal Vector metric: Minimum bandwidth is 1000000 Kbit Total delay is 21250000 picoseconds Reliability is 255/255 Load is 1/255 Minimum MTU is 1500 Hop count is 2 Originating router is 172.16.6.1 192.168.1.2 (GigabitEthernet1/0/4), from 192.168.1.2, Send flag is 0x0 Composite metric is (2048300/1392940), route is Internal Vector metric: Minimum bandwidth is 1000000 Kbit Total delay is 21254578 picoseconds <--- Reliability is 255/255 Load is 1/255 Minimum MTU is 1500 Hop count is 2 Originating router is 172.16.6.1
Examinando o comando show ip route eigrp, você pode confirmar se a configuração foi bem-sucedida e apenas os prefixos específicos foram afetados, e todas as outras rotas permaneceram intactas. A execução de um traceroute também confirma que o tráfego está seguindo o caminho desejado:
R1#show ip route eigrp Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, m - OMP n - NAT, Ni - NAT inside, No - NAT outside, Nd - NAT DIA i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route H - NHRP, G - NHRP registered, g - NHRP registration summary o - ODR, P - periodic downloaded static route, l - LISP a - application route + - replicated route, % - next hop override, p - overrides from PfR & - replicated local route overrides by connected Gateway of last resort is not set 10.0.0.0/8 is variably subnetted, 12 subnets, 2 masks D EX 10.20.40.0/24 [170/66560] via 192.168.3.2, 00:22:32, GigabitEthernet1/0/3 [170/66560] via 192.168.1.2, 00:22:32, GigabitEthernet1/0/4 D EX 10.20.50.0/24 [170/66560] via 192.168.3.2, 00:22:32, GigabitEthernet1/0/3 [170/66560] via 192.168.1.2, 00:22:32, GigabitEthernet1/0/4 D EX 10.20.60.0/24 [170/66560] via 192.168.1.2, 00:16:54, GigabitEthernet1/0/4 D 10.30.70.0/24 [90/16000] via 192.168.3.2, 00:22:32, GigabitEthernet1/0/3 [90/16000] via 192.168.1.2, 00:22:32, GigabitEthernet1/0/4 D 10.30.80.0/24 [90/16000] via 192.168.3.2, 00:22:32, GigabitEthernet1/0/3 [90/16000] via 192.168.1.2, 00:22:32, GigabitEthernet1/0/4 D 10.30.90.0/24 [90/16000] via 192.168.3.2, 00:04:56, GigabitEthernet1/0/3 172.16.0.0/30 is subnetted, 2 subnets D 172.16.2.0 [90/15360] via 192.168.1.2, 00:22:32, GigabitEthernet1/0/4 D 172.16.4.0 [90/15360] via 192.168.3.2, 00:22:32, GigabitEthernet1/0/3
R1#traceroute 10.20.60.1 source loop10 Type escape sequence to abort. Tracing the route to 10.20.60.1 VRF info: (vrf in name/id, vrf out name/id) 1 192.168.1.2 1 msec 1 msec 0 msec <--- R2 2 172.16.2.2 1 msec 1 msec 0 msec 3 172.16.6.2 1 msec 1 msec * R1#traceroute 10.30.90.1 source loop10 Type escape sequence to abort. Tracing the route to 10.30.90.1 VRF info: (vrf in name/id, vrf out name/id) 1 192.168.3.2 0 msec 1 msec 0 msec <--- R3 2 172.16.4.2 1 msec 1 msec *
Neste cenário, o resumo de rotas é usado para preferir um caminho ao outro. O EIGRP tem a flexibilidade de configurar uma rota sumarizada por interface e, neste exemplo, uma rota sumarizada é configurada em R4 para sumarizar os prefixos 10.30.x.x e outra para os prefixos 10.20.x.x. A ideia é que R4 anuncia a rota de sumarização 10.30.0.0/16 sobre a interface GigabitEthernet1/0/1 e a rota de sumarização 10.20.0.0/16 sobre a interface GigabitEthernet1/0/2, e com esse tráfego de configuração é influenciado pela preferência de correspondência mais longa. Isso faz com que a origem de tráfego de R1 e destinada às sub-redes 10.30.x.x selecione o caminho através de R3 e o tráfego destinado às sub-redes 10.20.x.x selecione o caminho através de R2. A configuração é mostrada a seguir:
R4#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R4(config)#router eigrp LAB
R4(config-router)#address-family ipv4 unicast autonomous-system 100
R4(config-router-af)#af-interface gigabitEthernet 1/0/1
R4(config-router-af-interface)#summary-address 10.30.0.0/16
R4(config-router-af-interface)#exit
R4(config-router-af)#af-interface gigabitEthernet 1/0/2
R4(config-router-af-interface)#summary-address 10.20.0.0/16
R4(config-router-af-interface)#end
R4#
Agora, verificando a tabela de roteamento de R1, é possível verificar se há uma rota sumarizada para 10.20.0.0/16 sendo aprendida através da interface GigabitEthernet1/0/3 (conectada a R3) e uma rota sumarizada 10.30.0.0/16 aprendida através de GigabitEthernet1/0/4 (conectada a R2). O resultado dessa configuração é que o tráfego com um destino de 10.20.60.1 é roteado através de R2 e o tráfego com o destino de 10.30.90.1 é roteado através de R3. O motivo é que R1 prefere os prefixos de correspondência mais longos que ainda são aprendidos através de outra interface e podem ser confirmados através de saídas FIB e traceroute:
R1#show ip route eigrp
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, m - OMP
n - NAT, Ni - NAT inside, No - NAT outside, Nd - NAT DIA
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
H - NHRP, G - NHRP registered, g - NHRP registration summary
o - ODR, P - periodic downloaded static route, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR
& - replicated local route overrides by connected
Gateway of last resort is not set
10.0.0.0/8 is variably subnetted, 14 subnets, 3 masks
D 10.20.0.0/16 [90/66560] via 192.168.3.2, 00:00:16, GigabitEthernet1/0/3
D EX 10.20.40.0/24
[170/66560] via 192.168.1.2, 00:00:16, GigabitEthernet1/0/4
D EX 10.20.50.0/24
[170/66560] via 192.168.1.2, 00:00:16, GigabitEthernet1/0/4
D EX 10.20.60.0/24
[170/66560] via 192.168.1.2, 00:00:16, GigabitEthernet1/0/4
D 10.30.0.0/16 [90/16000] via 192.168.1.2, 00:00:44, GigabitEthernet1/0/4
D 10.30.70.0/24
[90/16000] via 192.168.3.2, 00:00:44, GigabitEthernet1/0/3
D 10.30.80.0/24
[90/16000] via 192.168.3.2, 00:00:44, GigabitEthernet1/0/3
D 10.30.90.0/24
[90/16000] via 192.168.3.2, 00:00:44, GigabitEthernet1/0/3
172.16.0.0/30 is subnetted, 2 subnets
D 172.16.2.0 [90/15360] via 192.168.1.2, 02:42:44, GigabitEthernet1/0/4
D 172.16.4.0 [90/15360] via 192.168.3.2, 02:42:44, GigabitEthernet1/0/3
R1#show ip route 10.20.0.0
Routing entry for 10.20.0.0/16
Known via "eigrp 100", distance 90, metric 66560, precedence routine (0), type internal
Redistributing via eigrp 100
Last update from 192.168.3.2 on GigabitEthernet1/0/3, 00:12:07 ago
Routing Descriptor Blocks:
* 192.168.3.2, from 192.168.3.2, 00:12:07 ago, via GigabitEthernet1/0/3
Route metric is 66560, traffic share count is 1
Total delay is 120 microseconds, minimum bandwidth is 1000000 Kbit
Reliability 255/255, minimum MTU 1500 bytes
Loading 1/255, Hops 2
R1#show ip route 10.30.0.0
Routing entry for 10.30.0.0/16
Known via "eigrp 100", distance 90, metric 16000, precedence routine (0), type internal
Redistributing via eigrp 100
Last update from 192.168.1.2 on GigabitEthernet1/0/4, 00:12:50 ago
Routing Descriptor Blocks:
* 192.168.1.2, from 192.168.1.2, 00:12:50 ago, via GigabitEthernet1/0/4
Route metric is 16000, traffic share count is 1
Total delay is 21 microseconds, minimum bandwidth is 1000000 Kbit
Reliability 255/255, minimum MTU 1500 bytes
Loading 1/255, Hops 2
R1#show ip cef exact-route 10.10.10.1 10.20.60.1 10.10.10.1 -> 10.20.60.1 =>IP adj out of GigabitEthernet1/0/4, addr 192.168.1.2
R1#traceroute 10.20.60.1 source loop10 Type escape sequence to abort. Tracing the route to 10.20.60.1 VRF info: (vrf in name/id, vrf out name/id) 1 192.168.1.2 1 msec 1 msec 0 msec <--- R2 2 172.16.2.2 1 msec 1 msec 0 msec 3 172.16.6.2 1 msec 1 msec * R1#show ip cef exact-route 10.10.10.1 10.30.90.1 10.10.10.1 -> 10.30.90.1 =>IP adj out of GigabitEthernet1/0/3, addr 192.168.3.2 R1#traceroute 10.30.90.1 source loop10 Type escape sequence to abort. Tracing the route to 10.30.90.1 VRF info: (vrf in name/id, vrf out name/id) 1 192.168.3.2 1 msec 0 msec 1 msec <--- R3 2 172.16.4.2 0 msec 1 msec *
O uso de mapas de vazamento durante o anúncio de rotas de sumarização fornece um mecanismo flexível para anunciar rotas mais específicas de forma seletiva e, em seguida, aproveitar a correspondência mais longa para preferir um caminho desejado.
Neste exemplo, uma rota de sumarização 10.0.0.0/8 é anunciada de R4 em ambas as interfaces (Gi1/0/1 e Gi1/0/2). Vejamos a configuração:
R4#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R4(config)#router eigrp LAB
R4(config-router)#address-family ipv4 unicast autonomous-system 100
R4(config-router-af)#af-interface GigabitEthernet1/0/1
R4(config-router-af-interface)#summary-address 10.0.0.0 255.0.0.0
R4(config-router-af-interface)#exit
R4(config-router-af)#af-interface GigabitEthernet1/0/2
R4(config-router-af-interface)#summary-address 10.0.0.0 255.0.0.0
R4(config-router-af-interface)#end
A configuração anterior é refletida na tabela de roteamento de R1, como mostrado a seguir; no entanto, isso ainda faz o balanceamento de carga do tráfego nos dois caminhos de R1:
R1#show ip route eigrp
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, m - OMP
n - NAT, Ni - NAT inside, No - NAT outside, Nd - NAT DIA
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
H - NHRP, G - NHRP registered, g - NHRP registration summary
o - ODR, P - periodic downloaded static route, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR
& - replicated local route overrides by connected
Gateway of last resort is not set
10.0.0.0/8 is variably subnetted, 7 subnets, 3 masks
D 10.0.0.0/8 [90/16000] via 192.168.3.2, 00:04:16, GigabitEthernet1/0/3 [90/16000] via 192.168.1.2, 00:04:16, GigabitEthernet1/0/4
172.16.0.0/30 is subnetted, 2 subnets
D 172.16.2.0 [90/15360] via 192.168.1.2, 03:50:08, GigabitEthernet1/0/4
D 172.16.4.0 [90/15360] via 192.168.3.2, 03:50:08, GigabitEthernet1/0/3
No entanto, o tráfego de R1 para a sub-rede 10.20.60.0/24 e 10.30.70.0/24 precisa ser preferencial em relação à GigabitEthernet1/0/4 (conectada a R2). Para obter esse resultado, um mapa de vazamento pode ser configurado em R4 para vazar os prefixos mais específicos, mas mantendo o resumo em vigor.
R4#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R4(config)#ip prefix-list LEAKED-PREFIXES permit 10.20.60.0/24
R4(config)#ip prefix-list LEAKED-PREFIXES permit 10.30.70.0/24
R4(config)#route-map LEAKED-PREFIXES R4(config-route-map)#match ip address prefix-list LEAKED-PREFIXES R4(config-route-map)#exit
R4(config)#router eigrp LAB
R4(config-router)#address-family ipv4 unicast autonomous-system 100
R4(config-router-af)#af-interface GigabitEthernet1/0/1
R4(config-router-af-interface)#summary-address 10.0.0.0 255.0.0.0 leak-map LEAKED-PREFIXES
R4(config-router-af-interface)#end
Após aplicar a configuração anterior, R1 começa a ver uma entrada mais específica para 10.20.60.0/24 e 10.30.70.0/24 que agora estão sendo aprendidas através da interface GigabitEthernet1/0/4, como mostrado a seguir:
R1#show ip route eigrp
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, m - OMP
n - NAT, Ni - NAT inside, No - NAT outside, Nd - NAT DIA
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
H - NHRP, G - NHRP registered, g - NHRP registration summary
o - ODR, P - periodic downloaded static route, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR
& - replicated local route overrides by connected
Gateway of last resort is not set
10.0.0.0/8 is variably subnetted, 9 subnets, 3 masks
D 10.0.0.0/8 [90/16000] via 192.168.3.2, 01:26:41, GigabitEthernet1/0/3
[90/16000] via 192.168.1.2, 01:26:41, GigabitEthernet1/0/4
D EX 10.20.60.0/24 [170/66560] via 192.168.1.2, 00:01:29, GigabitEthernet1/0/4 D 10.30.70.0/24 [90/16000] via 192.168.1.2, 00:01:29, GigabitEthernet1/0/4
172.16.0.0/30 is subnetted, 2 subnets
D 172.16.2.0 [90/15360] via 192.168.1.2, 05:12:33, GigabitEthernet1/0/4
D 172.16.4.0 [90/15360] via 192.168.3.2, 05:12:33, GigabitEthernet1/0/3
R1#show ip cef exact-route 10.10.10.1 10.20.60.1
10.10.10.1 -> 10.20.60.1 =>IP adj out of GigabitEthernet1/0/4, addr 192.168.1.2
R1#show ip cef exact-route 10.10.10.1 10.30.70.1
10.10.10.1 -> 10.30.70.1 =>IP adj out of GigabitEthernet1/0/4, addr 192.168.1.2
A ideia deste exemplo é modificar o AD para o prefixo 10.30.90.0/24, portanto, o tráfego destinado a ele pode ser roteado através de R3.
Observação: essa abordagem é outro recurso para influenciar o EIGRP, no entanto, é menos preferível do que o uso de uma lista de compensação. Tenha cuidado se estiver usando vários protocolos de roteamento no mesmo dispositivo, pois esse método também pode afetá-los.
Observação: esse método afeta apenas as rotas EIGRP Internas, a configuração não modifica o AD de rotas EIGRP Externas.
Observe que R1 está aprendendo a rota 10.30.90.0/24 através de R2 (192.168.1.2) e R3 (192.168.3.2) com a mesma métrica:
R1#show ip route eigrp
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, m - OMP
n - NAT, Ni - NAT inside, No - NAT outside, Nd - NAT DIA
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
H - NHRP, G - NHRP registered, g - NHRP registration summary
o - ODR, P - periodic downloaded static route, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR
& - replicated local route overrides by connected
Gateway of last resort is not set
10.0.0.0/8 is variably subnetted, 12 subnets, 2 masks
D EX 10.20.40.0/24
[170/66560] via 192.168.3.2, 00:00:26, GigabitEthernet1/0/3
[170/66560] via 192.168.1.2, 00:00:26, GigabitEthernet1/0/4
D EX 10.20.50.0/24
[170/66560] via 192.168.3.2, 00:00:26, GigabitEthernet1/0/3
[170/66560] via 192.168.1.2, 00:00:26, GigabitEthernet1/0/4
D EX 10.20.60.0/24
[170/66560] via 192.168.3.2, 00:00:26, GigabitEthernet1/0/3
[170/66560] via 192.168.1.2, 00:00:26, GigabitEthernet1/0/4
D 10.30.70.0/24
[90/16000] via 192.168.3.2, 00:00:26, GigabitEthernet1/0/3
[90/16000] via 192.168.1.2, 00:00:26, GigabitEthernet1/0/4
D 10.30.80.0/24
[90/16000] via 192.168.3.2, 00:00:26, GigabitEthernet1/0/3
[90/16000] via 192.168.1.2, 00:00:26, GigabitEthernet1/0/4
D 10.30.90.0/24 [90/16000] via 192.168.3.2, 00:00:26, GigabitEthernet1/0/3 [90/16000] via 192.168.1.2, 00:00:26, GigabitEthernet1/0/4
172.16.0.0/30 is subnetted, 2 subnets
D 172.16.2.0 [90/15360] via 192.168.1.2, 00:00:26, GigabitEthernet1/0/4
D 172.16.4.0 [90/15360] via 192.168.3.2, 00:00:26, GigabitEthernet1/0/3
Para realizar a alteração, é necessário configurar uma ACL que seja usada para corresponder à sub-rede desejada; em seguida, o AD do prefixo pode ser modificado especificando também o vizinho do anúncio com o uso do comando distance <route AD> <IP Source address> <Wildcard bits> <ACL>.
Neste exemplo, para preferir o anúncio de R3, um valor AD mais baixo é usado (85), o endereço IP do vizinho EIGRP de R3 (192.168.3.2) é adicionado com um curinga de 0.0.0.0 e, em seguida, a ACL para corresponder ao prefixo é adicionada:
R1#configure terminal Enter configuration commands, one per line. End with CNTL/Z. R1(config)#access-list 30 permit 10.30.90.0 0.0.0.255 R1(config)#router eigrp LAB R1(config-router)#address-family ipv4 unicast autonomous-system 100 R1(config-router-af)#topology base R1(config-router-af-topology)#distance 85 192.168.3.2 0.0.0.0 30 R1(config-router-af-topology)#end
O resultado pode ser visto na saída RIB e FIB de R1, onde a entrada de roteamento para 10.30.90.0/24 tem seu AD alterado para 85 e o vizinho EIGRP preferido é R3 (192.168.3.2):
R1#show ip route eigrp
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, m - OMP
n - NAT, Ni - NAT inside, No - NAT outside, Nd - NAT DIA
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
H - NHRP, G - NHRP registered, g - NHRP registration summary
o - ODR, P - periodic downloaded static route, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR
& - replicated local route overrides by connected
Gateway of last resort is not set
10.0.0.0/8 is variably subnetted, 12 subnets, 2 masks
D EX 10.20.40.0/24
[170/66560] via 192.168.3.2, 00:00:14, GigabitEthernet1/0/3
[170/66560] via 192.168.1.2, 00:00:14, GigabitEthernet1/0/4
D EX 10.20.50.0/24
[170/66560] via 192.168.3.2, 00:00:14, GigabitEthernet1/0/3
[170/66560] via 192.168.1.2, 00:00:14, GigabitEthernet1/0/4
D EX 10.20.60.0/24
[170/66560] via 192.168.3.2, 00:00:14, GigabitEthernet1/0/3
[170/66560] via 192.168.1.2, 00:00:14, GigabitEthernet1/0/4
D 10.30.70.0/24
[90/16000] via 192.168.3.2, 00:00:14, GigabitEthernet1/0/3
[90/16000] via 192.168.1.2, 00:00:14, GigabitEthernet1/0/4
D 10.30.80.0/24
[90/16000] via 192.168.3.2, 00:00:14, GigabitEthernet1/0/3
[90/16000] via 192.168.1.2, 00:00:14, GigabitEthernet1/0/4
D 10.30.90.0/24 [85/16000] via 192.168.3.2, 00:00:14, GigabitEthernet1/0/3
172.16.0.0/30 is subnetted, 2 subnets
D 172.16.2.0 [90/15360] via 192.168.1.2, 00:00:14, GigabitEthernet1/0/4
D 172.16.4.0 [90/15360] via 192.168.3.2, 00:00:14, GigabitEthernet1/0/3
R1#show ip route 10.30.90.0
Routing entry for 10.30.90.0/24
Known via "eigrp 100", distance 85, metric 16000, precedence routine (0), type internal
Redistributing via eigrp 100
Last update from 192.168.3.2 on GigabitEthernet1/0/3, 00:00:31 ago
Routing Descriptor Blocks:
* 192.168.3.2, from 192.168.3.2, 00:00:31 ago, via GigabitEthernet1/0/3
Route metric is 16000, traffic share count is 1
Total delay is 21 microseconds, minimum bandwidth is 1000000 Kbit
Reliability 255/255, minimum MTU 1500 bytes
Loading 1/255, Hops 2
R1#show ip cef 10.30.90.0
10.30.90.0/24
nexthop 192.168.3.2 GigabitEthernet1/0/3
Neste exemplo, a ideia é influenciar seletivamente a seleção de caminho filtrando algumas rotas ou prefixos que chegam a R1.
R1 deve preferir o caminho de R2 quando o destino for qualquer uma das próximas sub-redes 10.30.70.0/24, 10.30.80.0/24 e 10.20.40.0/24. Quando o destino é a sub-rede 10.30.90.0/24, 10.20.50.0/24 e 10.20.60.0/24, R1 deve preferir o caminho R3.
Para fazer isso, uma lista de prefixo é usada para corresponder as rotas desejadas e uma lista de distribuição é configurada no processo EIGRP para aplicar o filtro de rota em uma direção de entrada, como mostrado a seguir:
R1#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R1(config)#ip prefix-list R2-Preferred permit 10.30.70.0/24
R1(config)#ip prefix-list R2-Preferred permit 10.30.80.0/24
R1(config)#ip prefix-list R2-Preferred permit 10.20.40.0/24
R1(config)#
R1(config)#ip prefix-list R3-Preferred permit 10.30.90.0/24
R1(config)#ip prefix-list R3-Preferred permit 10.20.50.0/24
R1(config)#ip prefix-list R3-Preferred permit 10.20.60.0/24
R1(config)#router eigrp LAB
R1(config-router)#address-family ipv4 unicast autonomous-system 100
R1(config-router-af)#topology base
R1(config-router-af-topology)#distribute-list prefix R2-Preferred in GigabitEthernet1/0/4
R1(config-router-af-topology)#distribute-list prefix R3-Preferred in GigabitEthernet1/0/3
R1(config-router-af-topology)#end
Observação: observe que a opção "prefix" é necessária ao aplicar a lista de distribuição como uma lista de prefixo de IP está sendo usada para corresponder às rotas desejadas
Observação: uma das principais diferenças entre métodos, como o uso de uma lista de deslocamento, é que a lista de distribuição impede que os prefixos não permitidos sejam inseridos na RIB e na tabela de topologia EIGRP.
O resultado é que a tabela de roteamento de R1 mostra a seleção de caminho desejada:
R1#show ip route eigrp
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, m - OMP
n - NAT, Ni - NAT inside, No - NAT outside, Nd - NAT DIA
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
H - NHRP, G - NHRP registered, g - NHRP registration summary
o - ODR, P - periodic downloaded static route, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR
& - replicated local route overrides by connected
Gateway of last resort is not set
10.0.0.0/8 is variably subnetted, 12 subnets, 2 masks
D EX 10.20.40.0/24
[170/66560] via 192.168.1.2, 00:00:12, GigabitEthernet1/0/4 <--- R2
D EX 10.20.50.0/24
[170/66560] via 192.168.3.2, 00:00:24, GigabitEthernet1/0/3 <--- R3
D EX 10.20.60.0/24
[170/66560] via 192.168.3.2, 00:00:24, GigabitEthernet1/0/3
D 10.30.70.0/24
[90/16000] via 192.168.1.2, 00:00:12, GigabitEthernet1/0/4
D 10.30.80.0/24
[90/16000] via 192.168.1.2, 00:00:12, GigabitEthernet1/0/4
D 10.30.90.0/24
[90/16000] via 192.168.3.2, 00:00:24, GigabitEthernet1/0/3
Revisão | Data de publicação | Comentários |
---|---|---|
1.0 |
12-Jan-2024 |
Versão inicial |