Coletar a utilização da CPU em dispositivos Cisco IOS com SNMP

Contents

Introdução
Pré-requisitos
Requisitos
Componentes Utilizados
Conventions
Procedimento para dispositivos com uma única CPU
Exemplo
Procedimento para dispositivos com várias CPUs
Exemplo
Informações Relacionadas

Introdução

Este documento descreve como coletar as informações de utilização da CPU em dispositivos Cisco IOS® que usam o Simple Network Management Protocol (SNMP).

Pré-requisitos

Requisitos

Não existem requisitos específicos para este documento.

Componentes Utilizados

As informações neste documento são apenas para dispositivos que executam o software Cisco IOS.

As informações neste documento foram criadas a partir de dispositivos em um ambiente de laboratório específico. Todos os dispositivos utilizados neste documento foram iniciados com uma configuração (padrão) inicial. Se a rede estiver ativa, certifique-se de que você entenda o impacto potencial de qualquer comando.

Conventions

Consulte as Convenções de Dicas Técnicas da Cisco para obter mais informações sobre convenções de documentos.

Procedimento para dispositivos com uma única CPU

As funções críticas do roteador, como o processamento do protocolo de roteamento e a comutação de pacotes de processos, são manipuladas na memória e compartilham a CPU. Assim, se a utilização da CPU for muito alta, é possível que uma atualização de roteamento não possa ser tratada ou que um pacote de switching de processo seja descartado. A partir do <u>CISCO-PROCESS-MIB</u>, o valor do objeto MIB <u>cpmCPUTotal5minRev</u> relata a porcentagem do processador em uso em uma média de cinco minutos.

Observação: use o <u>Cisco MIB Locator</u> para encontrar informações sobre o MIB em uma plataforma específica ou versão de software.

O objeto MIB <u>cpmCPUTotal5minRev</u> fornece uma visão mais precisa do desempenho do roteador ao longo do tempo do que os objetos MIB <u>cpmCPUTotal1minRev</u> e <u>cpmCPUTotal5secRev</u>. Estes objetos MIB não são precisos porque eles examinam a CPU em um minuto e têm intervalos de cinco segundos, respectivamente. Esses MIBs permitem monitorar as tendências e planejar a

capacidade da sua rede. O limite de elevação de linha de base recomendado para cpmCPUTotal5minRev é 90 por cento. Com base na plataforma, alguns roteadores que são executados a 90% podem apresentar degradação de desempenho em relação a um roteador de alto desempenho, que pode operar bem.

- cpmCPUTotal5secRev (.1.3.6.1.4.1.9.9.109.1.1.1.1.6): a porcentagem geral de ocupação da CPU no último período de cinco segundos. Este objeto substitui o objeto cpmCPUTotal5sec e aumenta o intervalo de valores para (0..100).
- cpmCPUTotal1minRev (.1.3.6.1.4.1.9.9.109.1.1.1.1.7): a porcentagem geral de ocupação da CPU no último período de um minuto. Este objeto substitui o objeto cpmCPUTotal1min e aumenta o intervalo de valores para (0..100).
- cpmCPUTotal5minRev (.1.3.6.1.4.1.9.9.109.1.1.1.1.8): a porcentagem geral de ocupação da CPU nos últimos cinco minutos. Este objeto substitui o objeto cpmCPUTotal5min e aumenta o intervalo de valores para (0..100).

Esta tabela mostra os novos MIBs e seus objetos ao lado dos antigos MIBs e objetos que eles substituem:

Versão	Cisco IOS Software Releases 12.2(3.5) ou posterior	Cisco IOS Software Releases posteriores 12.0(3)T e anteriores à 12.2(3.5)			
MIB	CISCO-PROCESS-MIB	CISCO-PROCESS-MIB			
Objetos	<u>cpmCPUTotal5minRev</u> (.1.3.6.1.4.1.9.9.109.1.1.1.1.8) <u>cpmCPUTotal1minRev</u> (.1.3.6.1.4.1.9.9.109.1.1.1.1.7) <u>cpmCPUTotal5secRev</u> (.1.3.6.1.4.1.9.9.109.1.1.1.1.6)	<u>cpmCPUTotal5min</u> (.1.3.6.1.4.1.9.9.109.1.1.1.1.5) <u>cpmCPUTotal1min(</u> .1.3.6.1.4.1.9.9.109.1.1 <u>cpmCPUTotal5sec(</u> .1.3.6.1.4.1.9.9.109.1.1			

Exemplo

Esta é uma saída típica do comando show processes CPU em um roteador que executa o Cisco IOS Software Release 12.0(9):

<#root>

Router#

show processes CPU

CPU	utilization f	or five se	conds:	2%/1%;	one minu	te: 1%;	fiv	e minutes: 1%
PID	Runtime(ms)	Invoked	uSecs	5Sec	: 1Min	5Min	TTY	Process
1	164	137902	1	0.00%	0.00%	0.00%	0	Load Meter
2	100	119	840	0.57%	0.11%	0.02%	2	Virtual Exec

3	468644	81652	5739	0.00%	0.04%	0.05%	0 Check heaps
4	0	1	0	0.00%	0.00%	0.00%	0 Pool Manager
5	0	2	0	0.00%	0.00%	0.00%	0 Timers
6	0	2	0	0.00%	0.00%	0.00%	0 Serial Background
7	0	1	0	0.00%	0.00%	0.00%	0 OIR Handler
8	0	1	0	0.00%	0.00%	0.00%	0 IPC Zone Manager
9	348	689225	0	0.00%	0.00%	0.00%	0 IPC Periodic Tim
10	0	1	0	0.00%	0.00%	0.00%	0 IPC Seat Manager
11	175300	332916	526	0.00%	0.02%	0.00%	0 ARP Input
12	3824	138903	27	0.00%	0.00%	0.00%	0 HC Counter Timer
13	0	2	0	0.00%	0.00%	0.00%	0 DDR Timers
14	0	1	0	0.00%	0.00%	0.00%	0 Entity MIB API
15	0	1	0	0.00%	0.00%	0.00%	0 SERIAL A'detect
16	0	1	0	0.00%	0.00%	0.00%	0 Microcode Loader
17	0	1	0	0.00%	0.00%	0.00%	0 IP Crashinfo Inp
<sni< td=""><td>0></td><td></td><td></td><td></td><td></td><td></td><td></td></sni<>	0>						

Na saída, essas são as informações relevantes:

Software que é executada no dispositivo, use objetos MIB apropriados.

Observação: somente usuários registrados da Cisco podem acessar ferramentas e informações internas da Cisco.

 A utilização da CPU nos últimos cinco segundos [também disponível através do <u>objectbusyPer</u> (.1.3.6.1.4.1.9.2.1.56)]

%snmpwalk -v2c -c public 172.16.99.1 .1.3.6.1.4.1.9.2.1.56
!--- SNMP Query
enterprises.9.2.1.56.0 = 2
!--- Response

• A porcentagem de tempo de CPU no nível de interrupção (pacotes comutados rápidos) em

um período de cinco segundos. Se você pegar a diferença entre o primeiro e o segundo, chegará à porcentagem de cinco segundos que o roteador gasta no nível do processo. Nesse caso, o roteador gasta um por cento no nível do processo nos últimos cinco segundos (pacotes comutados por processo - nenhuma variável MIB).

 A utilização da CPU no último minuto [também disponível através do objeto avgBusy1(.1.3.6.1.4.1.9.2.1.57)]

%snmpwalk -v2c -c public 172.16.99.1 .1.3.6.1.4.1.9.2.1.57

```
!--- SNMP Query
```

```
enterprises.9.2.1.57.0 = 3
```

```
!--- Response
```

 A utilização da CPU nos últimos cinco minutos [também disponível através do objectavgBusy5 (.1.3.6.1.4.1.9.2.1.58)]

%snmpwalk -v2c -c public 172.16.99.1 .1.3.6.1.4.1.9.2.1.58
!--- SNMP Query
enterprises.9.2.1.58.0 = 1
!--- Response

Quando você sonda as variáveis de utilização da CPU e quaisquer outras variáveis SNMP, a utilização real da CPU é afetada. Às vezes, a utilização é de 99% quando você elege continuamente a variável em intervalos de um segundo. É um exagero fazer o poll com tanta frequência, mas leve em consideração o impacto na CPU quando você determina com que frequência deseja fazer o poll da variável.

Procedimento para dispositivos com várias CPUs

Se o dispositivo Cisco IOS tiver várias CPUs, você deverá usar <u>CISCO-PROCESS-</u>MIBe seu objeto <u>cpmCPUTotal5minRev</u> da tabela chamada_<u>cpmCPUTotalTable</u>, indexado com <u>cpmCPUTotalIndex</u>. Esta tabela <u>permiteCISCO-PROCESS-</u>MIB<u>manter</u> as estatísticas da CPU para diferentes entidades físicas no roteador, como diferentes chips da CPU, grupo de CPUs ou CPUs em diferentes módulos/placas. No caso de uma única CPU, o objeto cpmCPUTotalTable tem apenas uma entrada.

As informações sobre diferentes entidades físicas do roteador são armazenadas na

entPhysicalTable do ENTITY-MIB baseado em padrão RFC 2737. Você pode vincular duas tabelas (cpmCPUTotalTable e entPhysicalTable) facilmente: cada linha de cpmCPUTotalTable tem um objeto cpmCPUTotalPhysicalIndex que mantém o valor do entPhysicalIndex (índice de entPhysicalTable) e aponta para a entrada em entPhysicalTable , correspondente à entidade física para a qual essas estatísticas de CPU são mantidas.

Isso implica que o dispositivo IOS Cisco deve suportar <u>CISCO-PROCESS-</u>MIB e<u>ENTITY-</u>MIB para que você possa recuperar informações relevantes sobre a utilização da CPU. O único caso em que você não precisa ter ou usar<u>ENTITY-</u>MIB é quando você tem apenas uma única CPU.

Exemplo

Monitore o uso de várias CPUs no chassi (RSP e dois VIPs). O mesmo se aplica às placas de linha GSR.

 PollcpmCPUTotal5min (.1.3.6.1.4.1.9.9.109.1.1.1.1.5)para obter a "porcentagem geral de ocupação da CPU nos últimos 5 minutos" para todas as CPUs no chassi. A saída mostra que o dispositivo tem três CPUs, utilizadas para 10%, 1% e 2% durante os últimos 5 minutos.

```
%snmpwalk -v2c -c public 172.16.0.1 .1.3.6.1.4.1.9.9.109.1.1.1.1.5
!--- SNMP Query
enterprises.9.9.109.1.1.1.1.5.1 = 10
enterprises.9.9.109.1.1.1.1.5.8 = 1
enterprises.9.9.109.1.1.1.1.5.9 = 2
!--- Response
```

Observação: com base na versão do Cisco IOS Software que é executada no dispositivo, use objetos MIB apropriados.

 Para identificar a entidade física à qual esses valores correspondem, eleja <u>cpmCPUTotalPhysicalIndex</u> (.1.3.6.1.4.1.9.9.109.1.1.1.1.2).Você verá três entidades físicas com índices 9, 25 e 28:

```
%snmpwalk -v2c -c public 172.16.0.1 .1.3.6.1.4.1.9.9.109.1.1.1.1.2
!--- SNMP Query
enterprises.9.9.109.1.1.1.1.2.1 = 9
enterprises.9.9.109.1.1.1.1.2.8 = 25
enterprises.9.9.109.1.1.1.1.2.9 = 28
!--- Response
```

Para identificar a placa específica à qual cada entrada física está relacionada, eleja a <u>entrada entPhysicalName(.1.3.6.1.2.1.47.1.1.1.7)</u>correspondente, com os índices exatos 9, 25, 28 da Etapa 2, como um último dígito. Você verá que o RSP é utilizado para 10% e os VIPs nos slots 4 e 6 são utilizados para um e dois por cento.

```
%snmpwalk -v2c -c public 172.16.0.1 .1.3.6.1.2.1.47.1.1.1.1.7.9
!--- SNMP Query
47.1.1.1.1.7.9 = "RSP at Slot 2"
!--- Response
%snmpwalk -v2c -c public 172.16.0.1 .1.3.6.1.2.1.47.1.1.1.1.7.25
!--- SNMP Query
47.1.1.1.1.7.25 = "Line Card 4"
!--- Reponse
%snmpwalk -v2c -c public 172.16.0.1 .1.3.6.1.2.1.47.1.1.1.1.7.28
!--- SNMP Query
47.1.1.1.1.7.28 = "Line Card 6"
!--- Response
```

Informações Relacionadas

- Compreendendo a CPU de VIP que executa em 99% e coloca em buffer no lado Rx
- Troubleshooting de Alta Utilização de CPU em Cisco Routers
- Indexação de série de comunidade SNMP
- <u>Índice do Protocolo de gerenciamento de rede simples</u>
- Suporte técnico e downloads da Cisco

Sobre esta tradução

A Cisco traduziu este documento com a ajuda de tecnologias de tradução automática e humana para oferecer conteúdo de suporte aos seus usuários no seu próprio idioma, independentemente da localização.

Observe que mesmo a melhor tradução automática não será tão precisa quanto as realizadas por um tradutor profissional.

A Cisco Systems, Inc. não se responsabiliza pela precisão destas traduções e recomenda que o documento original em inglês (link fornecido) seja sempre consultado.