Configurar vários transportes e engenharia de tráfego com política de controle centralizada e política de rota de aplicativo

Contents

Introduction Prerequisites Requirements Componentes Utilizados Configuração Problema Solução Verificar Troubleshoot Informações Relacionadas

Introduction

Este documento descreve como configurar a política de controle centralizado e a política de rota de aplicativo para obter a engenharia de tráfego entre sites. Ele pode ser considerado uma diretriz de projeto específica para o caso de uso específico também.

Prerequisites

Requirements

Não existem requisitos específicos para este documento.

Componentes Utilizados

Este documento não se restringe a versões de software e hardware específicas.

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. Se a rede estiver ativa, certifique-se de que você entenda o impacto potencial de qualquer comando.

Configuração

Para fins de demonstração e melhor entendimento do problema descrito posteriormente, considere a topologia mostrada nesta imagem.

Observe que, em geral, entre o **vedge1** e o **vedge3** você deve ter a segunda conexão/subinterface para a extensão **Biz-Internet** TLOC também, mas aqui, por uma questão de simplicidade, ela não foi configurada.

Aqui estão as configurações de sistema correspondentes para vEdges/vSmart (vedge2 representa todos os outros sites):

hostname ID do site system-ip

	• •
13	192.168.30.4
13	192.168.30.6
4	192.168.30.7
Х	192.168.30.5
1	192.168.30.3
	13 13 4 X 1

Aqui você pode encontrar as configurações do lado do transporte para referência.

vedge1:

```
interface ge0/0
 description "ISP_1"
 ip address 192.168.109.4/24
 nat
  respond-to-ping
  ļ
 tunnel-interface
  encapsulation ipsec
  color biz-internet
  no allow-service bgp
  allow-service dhcp
  allow-service dns
  allow-service icmp
  allow-service sshd
  no allow-service netconf
  no allow-service ntp
  no allow-service ospf
  allow-service stun
  !
 no shutdown
 1
 interface ge0/3
 description "TLOC-extension via vedge3 to ISP_2"
 ip address 192.168.80.4/24
 tunnel-interface
  encapsulation ipsec
  color public-internet
  no allow-service bgp
  allow-service dhcp
  allow-service dns
  allow-service icmp
  no allow-service sshd
  no allow-service netconf
  no allow-service ntp
  no allow-service ospf
  allow-service stun
  !
 no shutdown
 1
 1
ip route 0.0.0.0/0 192.168.80.6
ip route 0.0.0.0/0 192.168.109.10
1
vedge3:
vpn 0
```

```
interface ge0/0
description "ISP_2"
ip address 192.168.110.6/24
nat
 respond-to-ping
 1
 tunnel-interface
  encapsulation ipsec
 color public-internet
 carrier carrier3
 no allow-service bgp
  allow-service dhcp
  allow-service dns
  allow-service icmp
  no allow-service sshd
  no allow-service netconf
```

```
no allow-service ntp
no allow-service ospf
no allow-service stun
!
no shutdown
!
interface ge0/3
ip address 192.168.80.6/24
tloc-extension ge0/0
no shutdown
!
ip route 0.0.0.0/0 192.168.110.10
```

vedge4:

```
vpn 0
 interface ge0/1
  ip address 192.168.103.7/24
  tunnel-interface
  encapsulation ipsec
  color public-internet
  no allow-service bqp
   allow-service dhcp
   allow-service dns
   allow-service icmp
  no allow-service sshd
  no allow-service netconf
  no allow-service ntp
  allow-service ospf
  no allow-service stun
  1
 no shutdown
 1
 ip route 0.0.0.0/0 192.168.103.10
1
```

Problema

O usuário deseja atingir essas metas:

O serviço de Internet fornece ao ISP 2 deve ser preferido comunicar entre o site 13 e o site 4 por alguns motivos. Por exemplo, é um caso de uso bastante comum e um cenário em que a qualidade de conexão/conectividade em um ISP entre seus próprios clientes é muito boa, mas em relação ao restante da qualidade da conectividade com a Internet não atende ao SLA da empresa devido a alguns problemas ou congestionamento em um uplink do ISP e, portanto, esse ISP (ISP 2 no nosso caso) deve ser evitado em geral.

O site 13 deve preferir o uplink **público-internet** para conectar-se ao site **4**, mas ainda assim manter a redundância e deve conseguir acessar o **site 4** se a **internet pública** falhar.

O **site 4** ainda deve manter a conectividade de melhor esforço com todos os outros sites diretamente (portanto, você não pode usar a palavra-chave **restrita** aqui no **vedge4** para atingir esse objetivo).

O **site** do site **13** deve usar o link de melhor qualidade com cores **da internet** para acessar todos os outros sites (representado pelo **site X** no diagrama de topologia).

Outra razão pode ser problemas de custo/preço quando o tráfego dentro do ISP é gratuito, mas muito mais caro quando o tráfego sai de uma rede de provedor (sistema autônomo).

Alguns usuários que não têm experiência com a abordagem SD-WAN e se acostumam com o roteamento clássico podem começar a configurar o roteamento estático para forçar o tráfego do **vedge1** ao **vedge4** interface pública via interface TLOC-extension entre **vedge1** e **vedge3**, mas não obtêm o resultado desejado e podem gerar confusão porque:

O tráfego do plano de gerenciamento (por exemplo, ping, pacote utilitário traceroute) segue a rota desejada.

Ao mesmo tempo, os túneis de plano de dados SD-WAN (IPsec ou túneis de transporte gre) ignoram as informações da tabela de roteamento e formam conexões com base nas **cores** de TLOCs.

Como uma rota estática não tem inteligência, se a TLOC público-Internet estiver inoperante no vedge3 (uplink para ISP 2), então o vedge1 não perceberá isso e a conectividade com o vedge4 falha apesar do vedge1 ainda ter **biz-internet** disponível.

Por conseguinte, esta abordagem deve ser evitada e não utilizável.

Solução

1. Uso de política de controle centralizado para definir uma preferência para a TLOC **público-Internet** no controlador vSmart ao anunciar rotas OMP correspondentes para **vedge4.** Ele ajuda a arquivar o caminho de tráfego desejado do **site 4** para o **site 13**.

2. Para alcançar o caminho de tráfego desejado no sentido inverso do **site 13** para o **site 4**, você não pode usar a política de controle centralizada porque o **vedge4** tem apenas uma TLOC disponível, portanto, você não pode definir uma preferência para nada, mas pode usar a política de rota de aplicativo para alcançar esse resultado para o tráfego de saída do **site 13**.

Veja como a política de controle centralizado pode ser no controlador vSmart para preferir a TLOC **público-Internet** para acessar o **site 13**:

```
policy
control-policy S4_S13_via_PUB
 sequence 10
  match tloc
   color public-internet
   site-id 13
   1
  action accept
   set
    preference 333
   1
  !
  1
 default-action accept
 !
1
```

E aqui está um exemplo de política de rota de aplicativos para preferir o **uplink público-internet** como um ponto de saída para o tráfego de saída do **site 13** para o **site 4** :

```
policy
 app-route-policy S13_S4_via_PUB
  vpn-list CORP_VPNs
   sequence 10
   match
    destination-data-prefix-list SITE4_PREFIX
    !
    action
     count
                                COUNT PKT
    sla-class SLA_CL1 preferred-color public-internet
    1
   1
  !
 !
policy
 lists
  site-list S13
  site-id 13
  1
  site-list S40
  site-id 4
  !
  data-prefix-list SITE4_PREFIX
   ip-prefix 192.168.60.0/24
  1
  vpn-list CORP_VPNs
  vpn 40
  1
 !
 sla-class SLA_CL1
  loss 1
  latency 100
  jitter 100
 !
```

As políticas devem ser aplicadas adequadamente no controlador vSmart:

```
apply-policy
site-list S13
app-route-policy S13_S4_via_PUB
!
site-list S4
control-policy S4_S13_via_PUB out
!
```

Lembre-se também de que as políticas de rota de aplicativo não podem ser configuradas como uma política localizada e devem ser aplicadas somente no vSmart.

Verificar

Observe que a política de rota do aplicativo não será aplicada ao tráfego gerado localmente pelo vEdge, portanto, para verificar se os fluxos de tráfego são direcionados de acordo com o caminho desejado, é recomendável gerar algum tráfego de segmentos de LAN de sites correspondentes. Como um cenário de teste de alto nível, você pode usar o iperf para gerar tráfego entre hosts em segmentos de LAN do **site 13** e do **site 4** e, em seguida, verificar as estatísticas de uma interface. Por exemplo, no meu caso, não havia tráfego além do sistema gerado e, portanto, você pode ver que a maior quantidade de tráfego passou pela interface ge0/3 em direção à extensão TLOC no

vedge3:

vedge1# show interface statistics

PPPOE	PPPOE	DOT1	X D	DT1X									
			AF	RX			RX		RX	TX		TX	TX
RX	RX	ΤX		ГХ	ΤX	RX	TX	RX	2				
VPN	INTERFACE]	TYPE	PACKE	TS :	RX OCTETS	ERROR	S	DROPS	PACKETS	TX OCTETS	ERRORS	DROPS
PPS	Kbps	PPS	1	Kbps	PKT	S PKTS	PKTS	PK	TS				
0	ge0/0		ipv4	1832		394791	0		167	1934	894680	0	0
26	49	40	:	229	-	-	0	0					
0	ge0/2		ipv4	0		0	0		0	0	0	0	0
0	0	0	(C	-	-	0	0					
0	ge0/3		ipv4	30530	34	4131607715	0		27	2486248	3239661783	0	0
51933	563383	415	88	432832	-	-	0	0					
0	ge0/4		ipv4	0		0	0		0	0	0	0	0
0	0	0	(C	-	-	0	0					

Troubleshoot

Em primeiro lugar, assegure-se de que as sessões BFD correspondentes sejam estabelecidas (não use **restringir** palavra-chave em qualquer lugar):

vedge1# show bfo	d sessio	ns									
				SOURCE	TLOC		REMOTE	TLOC			
DST PUBLIC			DST P	UBLIC		DET	ECT	TX			
SYSTEM IP	SITE I	D STATE		COLOR			COLOR		SOURCI	E IP	
IP TRANSITIONS			PORT	ENCAP		MULTIPLIER		INTERVAL	(msec) UPTIME		
192.168.30.5	2	up		public	-inter	net	public-	-internet	192.10	58.80.4	
192.168.109.5			12386	:	ipsec	7		1000		0:02:10:54	3
192.168.30.5	2	up		biz-in	ternet		public-	-internet	192.10	58.109.4	
192.168.109.5			12386	:	ipsec	7		1000		0:02:10:48	3
192.168.30.7	4	up		public	-inter	net	public-	-internet	192.10	68.80.4	
192.168.103.7			12366	:	ipsec	7		1000		0:02:11:01	2
192.168.30.7	4	up		biz-in	ternet		public-	-internet	192.10	58.109.4	
192.168.103.7			12366	:	ipsec	7		1000		0:02:10:56	2

vedge3# show bfd sessions

					SOURCE	TLOC		REMOTE	TLOC			
DST PUBLIC				DST 1	PUBLIC		DETI	ECT	TX			
SYSTEM IP	SITE	ID	STATE		COLOR			COLOR		SOURC	E IP	
IP				PORT		ENCAP	MULT	TIPLIER	INTERVAL	(msec)	UPTIME	
TRANSITIONS												
192.168.30.5	2		up		public	-inter	net	public-	-internet	192.1	68.110.6	
192.168.109.5				12380	5	ipsec	7		1000		0:02:11:05	1
192.168.30.7	4		up		public	-inter	net	public-	-internet	192.1	68.110.6	
192.168.103.7				1236	5	ipsec	7		1000		0:02:11:13	2

vedge4# show bf	d sessions	5								
				SOURCE TLOC		REMOTE	TLOC			
DST PUBLIC			DST P	UBLIC	DET	ECT	ТХ			
SYSTEM IP	SITE ID	STATE		COLOR		COLOR		SOURCE	IP	
IP			PORT	ENCAP	MUL	TIPLIER	INTERVAL	(msec)	UPTIME	
TRANSITIONS										
192.168.30.4	13	up		public-inter	net	biz-int	ernet	192.16	8.103.7	
192.168.109.4			12346	ipsec	7		1000		0:02:09:11	2
192.168.30.4	13	up		public-inter	net	public-	internet	192.16	8.103.7	
192.168.110.6			63084	ipsec	7		1000		0:02:09:16	2
192.168.30.5	2	up		public-inter	net	public-	internet	192.16	8.103.7	
192.168.109.5			12386	ipsec	7		1000		0:02:09:10	3
192.168.30.6	13	up		public-inter	net	public-	internet	192.16	8.103.7	
192.168.110.6			12386	ipsec	7		1000		0:02:09:07	2

Se você não conseguir alcançar o resultado desejado com a engenharia de tráfego, verifique se as políticas foram aplicadas corretamente:

1. No **vedge4** você deve verificar se para prefixos originados do **site 13** foi selecionada a TLOC apropriada:

vedge4# show omp routes 192.168.40.0/24 detail _____ omp route entries for vpn 40 route 192.168.40.0/24 _____ RECEIVED FROM: peer 192.168.30.3 path-id 72 1002 label R status loss-reasontloc-preferencelost-to-peer192.168.30.3 lost-to-path-id 74 Attributes: originator192.168.30.4typeinstalledtloc192.168.30.4, biz-internet, ipsec ultimate-tloc not set domain-id not set overlay-id 1 site-id 13 preference not set not set tag origin-proto connected origin-metric 0 as-path not set unknown-attr-len not set RECEIVED FROM: 192.168.30.3 peer peer path-id 73 1002 label C,I,R status loss-reason not set lost-to-peer not set lost-to-path-id not set Attributes:

originator 192.168.30.4 type installed tloc 192.168.30.4, public-internet, ipsec ultimate-tloc not set domain-id not set overlay-id 1 site-id 13 preference not set not set taq origin-proto connected origin-metric 0 as-path not set unknown-attr-len not set RECEIVED FROM: peer 192.168.30.3 path-id 74 1002 label status C,I,R loss-reason not set lost-to-peer not set lost-to-path-id not set Attributes: originator 192.168.30.6 type **tloc** installed 192.168.30.6, public-internet, ipsec ultimate-tloc not set domain-id not set domaın-... overlay-id 1 overlay-idIsite-id13preferencenot settagnot set origin-proto connected origin-metric 0 as-path not set unknown-attr-len not set

2. No **vedge1** e **vedge3** garantem que a política apropriada do vSmart seja instalada e que os pacotes sejam correspondidos e contados:

```
vedge1# show policy from-vsmart
from-vsmart sla-class SLA_CL1
loss 1
latency 100
 jitter 100
from-vsmart app-route-policy S13_S4_via_PUB
vpn-list CORP_VPNs
 sequence 10
  match
   destination-data-prefix-list SITE4_PREFIX
  action
                              COUNT_PKT
   count
   backup-sla-preferred-color biz-internet
   sla-class SLA CL1
   no sla-class strict
   sla-class preferred-color public-internet
from-vsmart lists vpn-list CORP_VPNs
vpn 40
from-vsmart lists data-prefix-list SITE4_PREFIX
ip-prefix 192.168.60.0/24
```

vedge1# show policy app-route-policy-filter

Além disso, você deve ver muito mais pacotes enviados através da cor **da internet pública** do **site 13** (durante meu teste não houve tráfego via **Internet** TLOC):

vedge1# show app-route stats remote-system-ip 192.168.30.7 app-route statistics 192.168.80.4 192.168.103.7 ipsec 12386 12366 remote-system-ip 192.168.30.7 local-color public-internet remote-color public-internet 0 mean-loss 1 mean-latency mean-jitter 0 sla-class-index 0,1 AVERAGE AVERAGE TX DATA RX DATA TOTAL INDEX PACKETS LOSS LATENCY JITTER PKTS PKTS _____ 0 0 0 0
 0
 600
 0
 0
 0
 0
 0

 1
 600
 0
 1
 0
 5061061
 6731986

 2
 600
 0
 0
 0
 3187291
 3619658

 3
 600
 0
 0
 0
 0
 0

 4
 600
 0
 2
 0
 9230960
 12707216

 5
 600
 0
 1
 0
 9950840
 4541723
 0 600 0 app-route statistics 192.168.109.4 192.168.103.7 ipsec 12346 12366 remote-system-ip 192.168.30.7 local-color biz-internet public-internet remote-color mean-loss 0 0 mean-latency 0 mean-jitter sla-class-index 0,1 TOTAL AVERAGE AVERAGE TX DATA RX DATA INDEX PACKETS LOSS LATENCY JITTER PKTS PKTS _____ 600000006000100060000000600020006000000060000000 0 1 2 3 4 5

Informações Relacionadas

<u>https://sdwan-</u>

docs.cisco.com/Product_Documentation/Software_Features/Release_18.3/07Policy_Applications/01Application-Aware_Routing/01Configuring_Application-Aware_Routing

 <u>https://sdwan-</u> docs.cisco.com/Product_Documentation/Software_Features/Release_18.3/02System_and_Int erfaces/06Configuring_Network_Interfaces

• https://sdwan-

docs.cisco.com/Product_Documentation/Command_Reference/Configuration_Commands/col or