Rastrear o status da integridade dos túneis quando conectado à Internet

Contents

Introduction Informações de Apoio Prerequisites Requirements Componentes Utilizados Configurar Diagrama de Rede Monitorar status da interface Configurações Verificar Troubleshoot

Introduction

Este documento descreve como rastrear o status de integridade dos túneis de transporte no VPN 0. Nas versões 17.2.2 e posteriores, as interfaces de transporte ativadas para Network Address Translation (NAT) são usadas para saída da Internet local. Você pode rastrear o status da conexão com a Internet com a ajuda deles. Se a Internet ficar indisponível, o tráfego será automaticamente redirecionado para o túnel não NAT na interface de transporte.

Informações de Apoio

Para fornecer aos usuários em um local acesso direto e seguro a recursos da Internet, como sites, você pode configurar o roteador vEdge para funcionar como um dispositivo NAT, que executa a conversão de endereço e porta (NAPT). Quando você habilita o NAT, ele permite que o tráfego que sai de um roteador vEdge passe diretamente para a Internet em vez de ser transferido para uma instalação de co-localização que fornece serviços NAT para acesso à Internet. Se você usar o NAT dessa forma em um roteador vEdge, poderá eliminar o "trombone" de tráfego e permitir rotas eficientes, que tenham distâncias menores, entre os usuários no local e os aplicativos baseados na rede que eles usam.

Prerequisites

Requirements

Não existem requisitos específicos para este documento.

Componentes Utilizados

Este documento não se restringe a versões de software e hardware específicas.

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. Se a rede estiver ativa, certifique-se de que você entenda o impacto potencial de qualquer comando.

Configurar

Diagrama de Rede

O roteador vEdge1 aqui atua como um dispositivo NAT. O roteador vEdge divide o tráfego em dois fluxos, que você pode imaginar como dois túneis separados. Um fluxo de tráfego, mostrado em verde, permanece dentro da rede de sobreposição e viaja entre os dois roteadores da maneira usual, nos túneis IPsec seguros que formam a rede de sobreposição. O segundo fluxo de tráfego, mostrado em cinza, é redirecionado através do dispositivo NAT do roteador vEdge e, em seguida, da rede de sobreposição para uma rede pública.

Essa imagem explica como a funcionalidade NAT no roteador vEdge divide o tráfego em dois fluxos (ou dois túneis) de modo que alguns permaneçam na rede sobreposta e outros vão diretamente para a Internet ou outras redes públicas.

Aqui, o roteador vEdge tem duas interfaces:

- A interface ge0/1 enfrenta o site local e está na VPN 1. Seu endereço IP é 10.1.12.0/24.
- A interface ge0/0 enfrenta a nuvem de transporte e está no VPN 0 (o transporte VPN). Seu endereço IP é 192.23.100.0/24 e usa o número de porta OMP padrão, 12346, para túneis de rede sobrepostos.

Para configurar o roteador vEdge para atuar como um dispositivo NAT de modo que algum tráfego do roteador possa ir diretamente para uma rede pública, você faz três coisas:

- Ative o NAT na VPN de transporte (VPN 0) na interface para transporte da WAN, que aqui é ge0/0. Todo o tráfego que sai do roteador vEdge, indo para outros locais de rede sobrepostos ou para uma rede pública, passa por essa interface.
- Para direcionar o tráfego de dados de outras VPNs para sair do roteador vEdge diretamente para uma rede pública, ative a NAT nessas VPNs ou assegure que essas VPNs tenham uma

rota para a VPN 0.

Quando o NAT é ativado, todo o tráfego que passa pelo VPN 0 é NATed. Isso inclui o tráfego de dados da VPN 1 destinado a uma rede pública e todo o tráfego de controle, incluindo o tráfego necessário para estabelecer e manter túneis de plano de controle DTLS entre o roteador vEdge e o controlador vSmart e entre o roteador e o orquestrador vBond.

Monitorar status da interface

O rastreamento do status da interface é útil quando você habilita o NAT em uma interface de transporte na VPN 0 para permitir que o tráfego de dados do roteador saia diretamente para a Internet, em vez de ter que primeiro ir para um roteador em um data center. Nessa situação, a ativação do NAT na interface de transporte divide o TLOC entre o roteador local e o data center em dois, com um indo para o roteador remoto e o outro indo para a Internet.

Quando você habilita o rastreamento de túnel de transporte, o software sonda periodicamente o caminho para a Internet para determinar se ele está ativado. Se o software detectar que esse caminho está inoperante, ele retira a rota para o destino da Internet e o tráfego destinado à Internet é roteado através do roteador do data center. Quando o software detecta que o caminho para a Internet está novamente funcionando, a rota para a Internet é reinstalada.

Configurações

1. Configure o rastreador no bloco do sistema.

endpoint-dns-name <*dns-name*> é o nome DNS do endpoint da interface do túnel. Esse é o destino na Internet para o qual o roteador envia sondas para determinar o status da interface de transporte.

```
system
tracker tracker
endpoint-dns-name google.com
!
!
```

2. Configure nat e tracker na interface de transporte.

```
vpn 0
interface ge0/0
ip address 192.0.2.70/24
nat
!
tracker tracker
tunnel-interface
!
```

3. Direcionar o tráfego para o existente localmente via VPN 0.

```
vpn 1
    ip route 0.0.0.0/0 vpn 0
!
```

Verificar

Use esta seção para confirmar se a sua configuração funciona corretamente.

1. A verificação da rota padrão está em VPN 0.

```
vEdge# show ip route vpn 0
Codes Proto-sub-type:
IA -> ospf-intra-area, IE -> ospf-inter-area,
E1 -> ospf-external1, E2 -> ospf-external2,
N1 -> ospf-nssa-external1, N2 -> ospf-nssa-external2,
e -> bgp-external, i -> bgp-internal
Codes Status flags:
F -> fib, S -> selected, I -> inactive,
B -> blackhole, R -> recursive
```

			PROTOCOL	NEXTHOP	NEXTHOP	NEXTHOP	
VPN IP	PREFIX COLOR	PROTOCOL ENCAP STATUS	SUB TYPE	IF NAME	ADDR	VPN	TLOC
0	0.0.0/0	static		ge0/0	192.0.2.1	-	-
0	- 192.0.2.255/32	- F,S connected - F S	-	system	-	-	-
0	192.0.2.70/24	connected - F.S	-	ge0/0	-	-	-

2. O status do rastreador deve ser 'UP' em show interface VPN 0.

vEdge# show interface ge0/0												
						IF	IF	IF				
			5	ГСР								
		AF				ADMIN	OPER	TRACKER	ENCAP			
	SPEED			MSS			RX	TX				
VPN	INTERFACE	TYPE	IP	ADDRESS		STATUS	STATUS	STATUS	TYPE	PORT TYPE	MTU	HWADDR
	MBPS	DUPLI	ΞX	ADJUST	UPTII	ЧE	PACKETS	PACKE	ГS			
0	ge0/0	ipv4	192	2.0.2.70/	24 T	Jp	Up	Up	null	transport	1500	

12:b7:c4:d5:0c:50 1000 full 1420 19:17:56:35 21198589 24842078

3. Procure a entrada da rota 'NAT' no RIB.

```
vEdge# show ip routes nat
Codes Proto-sub-type:
 IA -> ospf-intra-area, IE -> ospf-inter-area,
 E1 -> ospf-external1, E2 -> ospf-external2,
 N1 -> ospf-nssa-external1, N2 -> ospf-nssa-external2,
 e -> bgp-external, i -> bgp-internal
Codes Status flags:
 F -> fib, S -> selected, I -> inactive,
 B -> blackhole, R -> recursive
                               PROTOCOL NEXTHOP
                                              NEXTHOP
                                                           NEXTHOP
VPN
    PREFIX
                               SUB TYPE IF NAME
                  PROTOCOL
                                               ADDR
                                                            VPN
                                                                  TLOC
ΙP
     COLOR
                   ENCAP STATUS
_____
_____
   0.0.0/0 nat
                                       ge0/0
                                                            0
1
                                               _
        _
                   _
                        F,S
```

 Verifique se a rota padrão do lado do serviço aponta para a interface de transporte com NAT ativado.

vEdge	e# show ip route	vpn 1 0.0.0.0											
Code	s Proto-sub-type:	:											
IA	IA -> ospf-intra-area, IE -> ospf-inter-area,												
E1	E1 -> ospf-external1, E2 -> ospf-external2,												
Nl	N1 -> ospf-nssa-external1, N2 -> ospf-nssa-external2,												
e ·	e -> bgp-external, i -> bgp-internal												
Code	lodes Status flags:												
F	F -> fib, S -> selected, I -> inactive,												
В·	B -> blackhole, R -> recursive												
			PROTOCOL	NEXTHOP	NEXTHOP	NEXTHO	2						
VPN	PREFIX	PROTOCOL	SUB TYPE	IF NAME	ADDR	VPN	TLOC IP						
	COLOR	ENCAP STATUS	5										
1	0.0.0/0	nat	-	ge0/0	-	0	-						
	-	– F,S											

Troubleshoot

Use esta seção para confirmar se a sua configuração funciona corretamente.

1. Certifique-se de que o endpoint-ip ou endpoint-dns-name seja algo na Internet que possa responder às solicitações HTTP. Além disso, verifique se o endereço IP do ponto final não é o mesmo da interface de Transporte. No caso, "Status do rastreador" será exibido como "Inativo".

vEdge# show interface ge0/0 IF IF IF TCP AF ADMIN OPER TRACKER ENCAP SPEED MSS RX TX

VPN	INTERFACE	TYPE II	P ADDRESS	STAT	US STATUS	STATUS	TYPE	PORT TYPE	MTU	HWADDR
	MBPS	DUPLEX	ADJUST	UPTIME	PACKEI	'S PACK	ETS			
0	ge0/0	ipv4 19	92.0.2.70	/24 Up	Up	Down	null	transport	1500	
12:b	7:c4:d5:0c:	50 1000	full	1420	19:18:24:1	.2 21219	358 248	866312		

2. Aqui está um exemplo que pode ser usado para verificar se os pacotes saem para a Internet. Por exemplo, 8.8.8.8 é o Google DNS. Os pacotes da VPN 1 são originados.

vEdge# ping vpn 1 8.8.8.8 Ping in VPN 1 PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data. 64 bytes from 8.8.8.8: icmp_seq=1 ttl=51 time=0.473 ms 64 bytes from 8.8.8.8: icmp_seq=2 ttl=51 time=0.617 ms 64 bytes from 8.8.8.8: icmp_seq=3 ttl=51 time=0.475 ms 64 bytes from 8.8.8.8: icmp_seq=4 ttl=51 time=0.505 ms 64 bytes from 8.8.8.8: icmp_seq=5 ttl=51 time=0.477 ms ---- 8.8.8.8 ping statistics ---5 packets transmitted, 5 received, 0% packet loss, time 3999ms rtt min/avg/max/mdev = 0.473/0.509/0.617/0.058 ms

Verifique os filtros de tradução NAT. Você verá que o filtro NAT foi criado para o Internet Control Message Protocol (ICMP).

vEdge# show ip nat filter

PRIVATE PRIVATE PUBLIC PRIVATE PUBLIC PUBLIC SOURCE PRIVATE DEST SOURCE DEST SOURCE NAT NAT PUBLTC DEST SOURCE DEST FILTER IDLE OUTBOUND OUTBOUND INBOUND INBOUND VPN IFNAME VPN PROTOCOL ADDRESS ADDRESS PORT PORT ADDRESS ADDRESS PORT PORT STATE TIMEOUT PACKETS OCTETS PACKETS OCTETS DIRECTION _____ _____ _ _ _ ge0/0 1 icmp 192.0.0.70 8.8.8.8 13067 13067 192.0.2.70 8.8.8.8 13067 13067 established 0:00:00:02 5 510 5 490 ge0/0 1 icmp 0