O conjunto de documentação deste produto faz o possível para usar uma linguagem imparcial. Para os fins deste conjunto de documentação, a imparcialidade é definida como uma linguagem que não implica em discriminação baseada em idade, deficiência, gênero, identidade racial, identidade étnica, orientação sexual, status socioeconômico e interseccionalidade. Pode haver exceções na documentação devido à linguagem codificada nas interfaces de usuário do software do produto, linguagem usada com base na documentação de RFP ou linguagem usada por um produto de terceiros referenciado. Saiba mais sobre como a Cisco está usando a linguagem inclusiva.
A Cisco traduziu este documento com a ajuda de tecnologias de tradução automática e humana para oferecer conteúdo de suporte aos seus usuários no seu próprio idioma, independentemente da localização. Observe que mesmo a melhor tradução automática não será tão precisa quanto as realizadas por um tradutor profissional. A Cisco Systems, Inc. não se responsabiliza pela precisão destas traduções e recomenda que o documento original em inglês (link fornecido) seja sempre consultado.
Este documento descreve o comportamento esperado do software Cisco IOS®-XE SD-WAN quando rotas externas OSPF (Open Shortest Path First) são instaladas na tabela de roteamento.
O roteador que executa o software Cisco IOS-XE SD-WAN instala rotas externas OSPF (E1 ou E2) na tabela de roteamento. Para os fins da demonstração, considere este diagrama de topologia simples:
Aqui está um par de roteadores R1 e R2 que executam o software Cisco IOS-XE SD-WAN estabelece o peering OSPF sobre vpn do lado do serviço (vrf 2 neste exemplo). Os roteadores têm system-ip 10.10.10.204 e 10.10.10.205 de forma correspondente. System-ip é igual ao router-id do OSPF. Algum outro roteador anuncia o prefixo 192.168.1.0/24 através do Overlay Management Protocol (OMP) a este site.
Ambos os roteadores são configurados de maneira semelhante. A configuração relevante é fornecida aqui (o ponto principal é que a redistribuição mútua entre OSPF e OMP é feita):
route-map omp2ospf permit 10 set metric 1000 set metric-type type-1 ! router ospf 2 vrf 2 compatible rfc1583 distance ospf external 110 distance ospf inter-area 110 distance ospf intra-area 110 redistribute omp route-map omp2ospf ! omp no shutdown send-path-limit 4 ecmp-limit 4 graceful-restart no as-dot-notation timers holdtime 60 advertisement-interval 1 graceful-restart-timer 43200 eor-timer 300 exit address-family ipv4 vrf 2 advertise ospf external advertise connected advertise static ! address-family ipv4 advertise connected advertise static ! address-family ipv6 advertise connected advertise static !
Quando a entrada da tabela de roteamento de condição normal é feita, 192.168.1.0/24 é instalado em um Routing Information Base (RIB) do OMP e redistribuído para OSPF. Esta entrada tem a seguinte aparência:
R1#sh ip route vrf 2 192.168.1.0 255.255.255.0 Routing Table: 2 Routing entry for 192.168.1.0/24 Known via "omp", distance 251, metric 0, type omp Redistributing via ospf 2 Advertised by ospf 2 subnets route-map omp2ospf Last update from 10.10.10.201 00:03:00 ago Routing Descriptor Blocks: * 10.10.10.201 (default), from 10.10.10.201, 00:03:00 ago Route metric is 0, traffic share count is 1 R1#show ip ospf database external 192.168.1.0 OSPF Router with ID (172.16.1.204) (Process ID 2) Type-5 AS External Link States LS age: 354 Options: (No TOS-capability, DC, Downward) LS Type: AS External Link Link State ID: 192.168.1.0 (External Network Number ) Advertising Router: 172.16.1.204 LS Seq Number: 80000001 Checksum: 0x25AE Length: 36 Network Mask: /24 Metric Type: 1 (Comparable directly to link state metric) MTID: 0 Metric: 1000 Forward Address: 0.0.0.0 External Route Tag: 0 LS age: 355 Options: (No TOS-capability, DC, Downward) LS Type: AS External Link Link State ID: 192.168.1.0 (External Network Number ) Advertising Router: 172.16.1.205 LS Seq Number: 80000001 Checksum: 0x1FB3 Length: 36 Network Mask: /24 Metric Type: 1 (Comparable directly to link state metric) MTID: 0 Metric: 1000 Forward Address: 0.0.0.0 External Route Tag: 0
R2#sh ip route vrf 2 192.168.1.0 255.255.255.0 Routing Table: 2 Routing entry for 192.168.1.0/24 Known via "omp", distance 251, metric 0, type omp Redistributing via ospf 2 Advertised by ospf 2 subnets route-map omp2ospf Last update from 10.10.10.201 00:04:13 ago Routing Descriptor Blocks: * 10.10.10.201 (default), from 10.10.10.201, 00:04:13 ago Route metric is 0, traffic share count is 1 R2#show ip ospf database external 192.168.1.0 OSPF Router with ID (172.16.1.205) (Process ID 2) Type-5 AS External Link States LS age: 317 Options: (No TOS-capability, DC, Downward) LS Type: AS External Link Link State ID: 192.168.1.0 (External Network Number ) Advertising Router: 172.16.1.204 LS Seq Number: 80000001 Checksum: 0x25AE Length: 36 Network Mask: /24 Metric Type: 1 (Comparable directly to link state metric) MTID: 0 Metric: 1000 Forward Address: 0.0.0.0 External Route Tag: 0 LS age: 316 Options: (No TOS-capability, DC, Downward) LS Type: AS External Link Link State ID: 192.168.1.0 (External Network Number ) Advertising Router: 172.16.1.205 LS Seq Number: 80000001 Checksum: 0x1FB3 Length: 36 Network Mask: /24 Metric Type: 1 (Comparable directly to link state metric) MTID: 0 Metric: 1000 Forward Address: 0.0.0.0 External Route Tag: 0
Como você pode ver, ambos os roteadores instalaram a rota no RIB e a redistribuíram no OSPF. Ambos os roteadores configuram o bit DN para o LSA externo tipo 5 e isso deve impedir que essas rotas sejam instaladas no RIB como rotas OSPF e, portanto, redistribuídas de volta para o OMP, essencialmente evitando o loop. Esse é o mesmo mecanismo descrito em RFC 4576 e RFC 4577.
Todos os roteadores possuem emparelhamento OMP estabelecido com controladores vSmart:
R1#show sdwan omp peers R -> routes received I -> routes installed S -> routes sent DOMAIN OVERLAY SITE PEER TYPE ID ID ID STATE UPTIME R/I/S ------------------------------------------------------------------------------------------ 10.10.10.229 vsmart 1 1 1 up 1:19:35:34 30/12/5 10.10.10.230 vsmart 1 1 3 up 1:19:35:33 26/1/5
R2#show sdwan omp peers R -> routes received I -> routes installed S -> routes sent DOMAIN OVERLAY SITE PEER TYPE ID ID ID STATE UPTIME R/I/S ------------------------------------------------------------------------------------------ 10.10.10.229 vsmart 1 1 1 up 0:01:38:48 30/10/6 10.10.10.230 vsmart 1 1 3 up 1:19:35:36 25/1/6
Agora, R1 perde a conectividade com ambos os pares OMP:
Oct 11 12:53:57.777: %Cisco-SDWAN-Router-OMPD-3-ERRO-400002: R0/0: OMPD: vSmart peer 10.10.10.229 state changed to Init Oct 11 12:53:57.777: %Cisco-SDWAN-Router-OMPD-6-INFO-400005: R0/0: OMPD: Number of vSmarts connected : 1 Oct 11 12:53:58.777: %Cisco-SDWAN-Router-OMPD-3-ERRO-400002: R0/0: OMPD: vSmart peer 10.10.10.230 state changed to Init Oct 11 12:53:58.777: %Cisco-SDWAN-Router-OMPD-6-INFO-400005: R0/0: OMPD: Number of vSmarts connected : 0 R1#show sdwan omp peers R -> routes received I -> routes installed S -> routes sent DOMAIN OVERLAY SITE PEER TYPE ID ID ID STATE UPTIME R/I/S ------------------------------------------------------------------------------------------ 10.10.10.229 vsmart 1 1 1 init-in-gr 30/12/0 10.10.10.230 vsmart 1 1 3 init-in-gr 26/1/0
R1 marcará a rota OMP como obsoleta (consulte o estado da rota OMP S), mas continuará mantendo a rota no RIB instalada pelo protocolo OMP até que o graceful-restart-timer expirou:
R1#show sdwan omp routes 192.168.1.0/24 | exclude not set --------------------------------------------------- omp route entries for vpn 2 route 192.168.1.0/24 --------------------------------------------------- RECEIVED FROM: peer 10.10.10.229 path-id 1076 label 1002 status C,I,R,S Attributes: originator 10.10.10.201 type installed tloc 10.10.10.201, biz-internet, ipsec overlay-id 1 site-id 201207 origin-proto connected origin-metric 0 RECEIVED FROM: peer 10.10.10.230 path-id 775 label 1002 status C,R,S Attributes: originator 10.10.10.201 type installed tloc 10.10.10.201, biz-internet, ipsec overlay-id 1 site-id 201207 origin-proto connected origin-metric 0 R1#sh ip route vrf 2 192.168.1.0 255.255.255.0 Routing Table: 2 Routing entry for 192.168.1.0/24 Known via "omp", distance 251, metric 0, type omp Redistributing via ospf 2 Advertised by ospf 2 subnets route-map omp2ospf Last update from 10.10.10.201 00:23:35 ago Routing Descriptor Blocks: * 10.10.10.201 (default), from 10.10.10.201, 00:23:35 ago Route metric is 0, traffic share count is 1
O temporizador padrão graceful-restart-timer é de 43.200 segundos (12 horas). Depois de expirado, a rota para 192.168.1.0/24 ainda estará lá.
R1#sh ip route vrf 2 192.168.1.0 255.255.255.0 Routing Table: 2 Routing entry for 192.168.1.0/24 Known via "ospf 2", distance 252, metric 1100, type extern 1 Redistributing via omp Last update from 10.28.7.205 on Vlan2807, 00:04:11 ago Routing Descriptor Blocks: * 10.28.7.205, from 172.16.1.205, 00:04:11 ago, via Vlan2807 SDWAN Down Route metric is 1100, traffic share count is 1 R1#show ip ospf database external 192.168.1.0 OSPF Router with ID (172.16.1.204) (Process ID 2) Type-5 AS External Link States LS age: 339 Options: (No TOS-capability, DC, Downward) LS Type: AS External Link Link State ID: 192.168.1.0 (External Network Number ) Advertising Router: 172.16.1.205 LS Seq Number: 80000004 Checksum: 0x19B6 Length: 36 Network Mask: /24 Metric Type: 1 (Comparable directly to link state metric) MTID: 0 Metric: 1000 Forward Address: 0.0.0.0 External Route Tag: 0
Ele é instalado como rota externa do OSPF tipo 1 agora, apesar do fato de que o LSA do OSPF que corresponde tem um conjunto de bits DN.
Além disso, observe que a distância administrativa (AD) é sempre 1 unidade a mais do que o AD de OMP (251 é o padrão para OMP, portanto 252 neste caso).
É importante explicar por que o roteador instala essa rota com AD maior que o AD da rota OMP. Isso se deve ao fato de que você tenta impedir cenários de loop quando o peering OMP é restabelecido novamente e a acessibilidade para a estrutura é restaurada.
O processo de instalação da rota com AD=252 também é claramente visto se os comandos debug ip routing e debug ip ospf rib redistribution estão ativados:
Oct 11 14:13:28.302: RT(2): del 192.168.1.0 via 10.10.10.201, omp metric [251/0] Oct 11 14:13:28.303: RT(2): delete network route to 192.168.1.0/24 Oct 11 14:13:28.307: OSPF-2 REDIS: Notification to redistribute 192.168.1.0/24 Oct 11 14:13:28.307: RT(2): updating ospf 192.168.1.0/24 (0x2) [local lbl/ctx:1048577/0x0] omp-tag:0 : via 10.28.7.205 Vl2807 0 1048578 0x100001 Oct 11 14:13:28.307: RT(2): add 192.168.1.0/24 via 10.28.7.205, ospf metric [252/1100]
Esse é o comportamento esperado que foi especificamente introduzido no software Cisco IOS-XE SD-WAN para evitar cenários de bloqueio de tráfego quando um dos roteadores é particionado da sobreposição SD-WAN. O Blackhole pode ocorrer porque o tráfego do lado do serviço ainda tem balanceamento de carga através de ambos os roteadores. Isso acontece porque duas rotas estáticas apontam para ambos os roteadores ou algumas rotas apontam para apenas um roteador que está particionado.
No caso de ECMP (quando R1 é particionado da estrutura), o tráfego segue dois caminhos:
LAN -> R1 -> R2 -> roteador remoto -> 192.168.1.0/24
LAN -> R2 -> roteador remoto -> 192.168.1.0/24
Aqui, você também pode ver exemplos de saídas de R1 quando R1 está particionado da estrutura. Como você pode ver, a conectividade com a sub-rede 192.168.1.0/24 ainda é preservada através do R2 (próximo salto 10.27.7.205):
R1#ping vrf 2 192.168.1.1 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 192.168.1.1, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 4/33/44 ms R1# traceroute vrf 2 192.168.1.1 numeric Type escape sequence to abort. Tracing the route to 192.168.1.1 VRF info: (vrf in name/id, vrf out name/id) 1 10.28.7.205 4 msec 0 msec 0 msec 2 192.168.1.1 4 msec * 0 msec