Implante o Snort IPS nos Integrated Services Routers série 1000

Contents

Introduction Prerequisites Requirements Componentes Utilizados Informações de Apoio Diagrama de Rede Configurar Verificar Troubleshooting Informações Relacionadas

Introduction

Este documento descreve como implantar o recurso Snort IPS no Cisco Integrated Services Router (ISR) série 1000.

Prerequisites

Requirements

A Cisco recomenda que você tenha conhecimento destes tópicos:

- Cisco Integrated Services Routers série 1k
- Comandos XE-IOS básicos
- Conhecimento básico do Snort

Componentes Utilizados

As informações neste documento são baseadas nestas versões de software e hardware:

- C1111X-8P executando a versão 17.03.03
- UTD Engine TAR para versão 17.3.3
- A licença de segurança K9 é necessária no ISR1k
- Énecessária uma assinatura de 1 ou 3 anos
- XE 17.2.1r e superior
- Modelos de hardware ISR que suportam somente DRAM de 8 GB

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. Se a rede estiver ativa, certifique-se de que você entenda o impacto potencial de qualquer comando.

Informações de Apoio

O Snort é um IPS de rede de código aberto que executa análise de tráfego em tempo real e gera alertas quando ameaças são detectadas em redes IP. Ele também pode executar análise de protocolo, pesquisa ou correspondência de conteúdo e detectar uma variedade de ataques e testes, como estouros de buffer, verificações de porta ocultas e assim por diante. O recurso Snort IPS funciona no modelo de prevenção e detecção de intrusão na rede que fornece funcionalidades de IPS ou IDS. No modo de detecção e prevenção de intrusão na rede, o Snort executa as seguintes ações

- Monitorar o tráfego de rede e analisar em relação a um conjunto de regras definido
- Classificação de ataques executados
- Invoca ações contra regras correspondentes

Com base nos requisitos, o Snort pode ser ativado no modo IPS ou IDS. No modo IDS, o Snort inspeciona o tráfego e relata alertas, mas não toma nenhuma ação para impedir ataques. No modo IPS, além da detecção de intrusão, são tomadas ações para evitar ataques. O Snort IPS monitora o tráfego e relata eventos a um servidor de log externo ou ao Syslog do IOS. A habilitação do registro no Syslog do IOS pode afetar o desempenho devido ao volume potencial de mensagens de log. Ferramentas externas de monitoramento de terceiros, que suportam logs Snort, podem ser usadas para coleta e análise de logs.

Há duas maneiras principais de configurar o Snort IPS em Cisco Integrated Services Routers (ISR), o método VMAN e o método IOx. O método VMAN usa um arquivo utd.ova e IOx usa um arquivo utd.tar. O IOx é o método correto e apropriado para a implantação do Snort IPS no Cisco Integrated Services Router (ISR) série 1k.

O Snort IPS pode ser implantado em Cisco Integrated Services Routers (ISR) série 1k com XE 17.2.1r e superior.

Diagrama de Rede

Configurar

Etapa 1. Configurar grupos de portas

```
Router#config-transaction
Router(config)# interface VirtualPortGroup0
Router(config-if)# description Management Interface
Router(config-if)# ip address 192.168.1.1 255.255.255.252
Router(config-if)# no shutdown
Router(config-if)# exit
Router(config)# interface VirtualPortGroup1
Router(config-if)# description Data Interface
Router(config-if)# ip address 192.0.2.1 255.255.252
Router(config-if)# no shutdown
Router(config-if)# no shutdown
Router(config-if)# exit
```

```
Etapa 2. Ativar serviço virtual, configurar e confirmar alterações
```

```
Router(config)# iox
Router(config)# app-hosting appid utd
Router(config-app-hosting)# app-vnic gateway0 virtualportgroup 0 guest-interface 0
Router(config-app-hosting-gateway)# guest-ipaddress 192.168.1.2 netmask 255.255.255.252
Router(config-app-hosting-gateway)# exit
```

Router(config-app-hosting)# app-vnic gateway0 virtualportgroup 1 guest-interface 1
Router(config-app-hosting-gateway)# guest-ipaddress 192.0.2.2 netmask 255.255.255.252
Router(config-app-hosting-gateway)# exit

Router(config-app-hosting) # app-resource package-profile low Router(config-app-hosting) # start Router(config-app-hosting) # exit Router(config) # exit Uncommitted changes found, commit them? [yes/no/CANCEL] yes

Etapa 3. Configurar serviço virtual

Router#app-hosting install appid utd package bootflash:secapputd.17.03.03.1.0.13_SV2.9.16.1_XE17.3.aarch64.tar

Etapa 4. Configurando o UTD (plano de serviço)

```
Router(config)# utd engine standard
Router(config-utd-eng-std)# logging host 10.12.5.100
Router(config-utd-eng-std)# logging syslog
Router(config-utd-eng-std)# threat-inspection
Router(config-utd-engstd-insp)# threat protection [protection, detection]
Router(config-utd-engstd-insp)# policy security [security, balanced, connectivity]
Router(config-utd-engstd-insp)# logging level warning [warning, alert, crit, debug, emerg, err,
info, notice]
Router(config-utd-engstd-insp)# signature update server cisco username cisco password cisco
Router(config-utd-engstd-insp)# signature update occur-at daily 0 0
```

Note: Note: *a proteção contra ameaças* permite o Snort como IPS, a *detecção de ameaças* permite o Snort como IDS.

Etapa 5. Configurando o UTD (plano de dados)

```
Router(config)# utd
Router(config-utd)# all-interfaces
Router(config-utd)# engine standard
Router(config-engine)# fail close
```

Observação: Observação: *fail open* é a configuração padrão.

Verificar

Verificar o endereço IP e o estado da interface dos grupos de portas

```
Router#show ip int brief | i VirtualPortGroup
Interface IP-Address OK? Method Status Protocol
VirtualPortGroup0 192.168.1.1 YES other up up
VirtualPortGroup1 192.0.2.1 YES other up up
```

```
Verificar a configuração dos grupos de portas
```

```
interface VirtualPortGroup0
description Management interface
ip address 192.168.1.1 255.255.255.252
no mop enabled
```

```
no mop sysid

!

interface VirtualPortGroup1

description Data interface

ip address 192.0.2.1 255.255.252

no mop enabled

no mop sysid

!

Verificar a configuração do servico vid
```

Verificar a configuração do serviço virtual

```
Router#show running-config | b app-hosting
app-hosting appid utd
app-vnic gateway0 virtualportgroup 0 guest-interface 0
guest-ipaddress 192.168.1.2 netmask 255.255.255.252
app-vnic gateway1 virtualportgroup 1 guest-interface 1
guest-ipaddress 192.0.2.2 netmask 255.255.255.252
app-resource package-profile low
start
```

Note: Verifique se o comando *start* está presente, caso contrário a ativação não será iniciada.

Verifique a ativação do serviço virtual.

```
Router#show running-config | i iox iox
```

Note: o iox ativará o Virtual Service.

Verificar a configuração do UTD (plano de serviço e plano de dados)

```
Router#show running-config | b utd

utd engine standard

logging host 10.12.5.55

logging syslog

threat-inspection

threat protection

policy security

signature update server cisco username cisco password BYaO\HCd\XYQXVRRfaabbDUGae]

signature update occur-at daily 0 0

logging level warning

utd

all-interfaces

engine standard

fail close
```

Verificar o estado de hospedagem do aplicativo

Router#show app-hosting list App id State

utd RUNNING

Verificar o estado de hospedagem do aplicativo com detalhes

*May 29 16:05:48.129: VIRTUAL-SERVICE: Received status request message *May 29 16:05:48.129: VIRTUAL-SERVICE: Received status request message for virtual service (utd) *May 29 16:05:48.129: VIRTUAL-SERVICE [utd]: cs send request: Sending CSReq type 4 (1), transid=12 *May 29 16:05:48.129: VIRTUAL-SERVICE [utd]: cs send request: Sending CSReq type 5 (3), transid=13 *May 29 16:05:48.129: VIRTUAL-SERVICE [utd]: cs send request: Sending CSReg type 5 (4), transid=14 *May 29 16:05:48.129: VIRTUAL-SERVICE: Delivered Virt-manager request message to virtual service 'utd' *May 29 16:05:48.184: VIRTUAL-SERVICE [utd]: cs callback string info result: containerID=1, tansid=12, type=4 *May 29 16:05:48.184: VIRTUAL-SERVICE [utd]: cs response callback for 1, error=0 *May 29 16:05:48.188: VIRTUAL-SERVICE: cs callback addr info result, TxID 13 *May 29 16:05:48.188: VIRTUAL-SERVICE: convert_csnet_to_ipaddrlist: count 2 *May 29 16:05:48.188: VIRTUAL-SERVICE: csnet_to_ipaddrlist: Num intf 2 *May 29 16:05:48.188: VIRTUAL-SERVICE [utd]: Calling callback *May 29 16:05:48.188: VIRTUAL-SERVICE [utd]: cs response callback for 3, error=0 *May 29 16:05:48.193: VIRTUAL-SERVICE: cs callback addr info result, TxID 14 *May 29 16:05:48.193: VIRTUAL-SERVICE: convert csnet to rtlist: route count: 2 *May 29 16:05:48.194: VIRTUAL-SERVICE [utd]: Calling callbackApp id : utd Owner : ioxm State : RUNNING Application Type : LXC Name : UTD-Snort-Feature Version : 1.0.13_SV2.9.16.1_XE17.3 Description : Unified Threat Defense Path : /bootflash/secapp-utd.17.03.03.1.0.13_SV2.9.16.1_XE17.3.aarch64.tar URL Path : Activated profile name : low Resource reservation Memory : 1024 MB Disk : 711 MB CPU : 33 units VCPU : 0 Attached devices Type Name Alias _____ Disk /tmp/xml/UtdIpsAlert-IOX *May 29 16:05:48.194: VIRTUAL-SERVICE [utd]: cs response callback for 4, error=0 *May 29 16:05:48.194: VIRTUAL-SERVICE [utd]: Process status response message for virtual service id (1) *May 29 16:05:48.195: VIRTUAL-INSTANCE: Message sent for STATUS TDL response: Virtual service name: u Disk /tmp/xml/UtdUrlf-IOX Disk /tmp/xml/UtdTls-IOX Disk /tmp/xml/UtdAmp-IOX Watchdog watchdog-238.0 Disk /opt/var/core Disk /tmp/HTX-IOX Disk /opt/var NIC ieobc_1 ieobc Disk _rootfs NIC dp_1_1 net3 NIC dp_1_0 net2 Serial/Trace serial3

```
Network interfaces
_____
eth0:
MAC address : 54:e:0:b:c:2
Network name : ieobc_1
eth2:
MAC address : 78:c:f0:fc:88:6e
Network name : dp_1_0
eth1:
MAC address : 78:c:f0:fc:88:6f
IPv4 address : 192.0.2.2
Network name : dp_1_1
_____
Process Status Uptime # of restarts
_____
climgr UP 0Y 1W 3D 1:14:35 2
logger UP 0Y 1W 3D 1: 1:46 0
snort_1 UP 0Y 1W 3D 1: 1:46 0
Network stats:
eth0: RX packets:2352031, TX packets:2337575
eth1: RX packets:201, TX packets:236
DNS server:
nameserver 208.67.222.222
nameserver 208.67.220.220
Coredump file(s): lost+found
Interface: eth2
ip address: 192.0.2.2/30
Interface: eth1
ip address: 192.168.1.2/30
Address/Mask Next Hop Intf.
_____
                    _____
0.0.0.0/0 192.0.2.1 eth2
0.0.0.0/0 192.168.1.1 eth1
```

Troubleshooting

1. Garantir que o Cisco Integrated Services Router (ISR) execute o XE 17.2.1r ou superior

2. Garanta que o Cisco Integrated Services Router (ISR) seja licenciado com Security K9

3. Verifique se o modelo de hardware do ISR suporta somente DRAM de 8 GB

4. Confirme a compatibilidade entre o software IOS XE e o arquivo UTD Snort IPS Engine (arquivo .tar) para corresponder ao software IOS XE; a instalação pode falhar por incompatibilidade

Note: O software pode ser baixado usando o link: https://software.cisco.com/download/home/286315006/type

5. Confirme para ativar e iniciar serviços UTD usando os comandos **iox** e **start** mostrados na etapa 2 na *seção* Configurar

6. Validar os recursos atribuídos ao serviço UTD usando 'show app-host resource' após a

Router#show app-hosting resource CPU: Quota: 33(Percentage) Available: 0(Percentage) VCPU: Count: 2 Memory: Quota: 3072(MB) Available: 2048(MB) Storage device: bootflash Quota: 1500(MB) Available: 742(MB)

7. Após a ativação do Snort, confirme o uso da CPU ISR e da memória. Você pode usar o comando 'show app-host usage appid utd' para monitorar a utilização de CPU UTD, memória e disco

Router#show app-hosting utilization appid utd Application: utd CPU Utilization: CPU Allocation: 33 % CPU Used: 3 % Memory Utilization: Memory Allocation: 1024 MB Memory Used: 117632 KB Disk Utilization: Disk Allocation: 711 MB Disk Used: 451746 KB

Se você puder ver uma alta utilização de memória, CPU ou disco, entre em contato com o Cisco TAC.

8. Use os comandos listados abaixo para coletar informações de implantação do Snort IPS em caso de falha:

```
debug virtual-service all
debug virtual-service virtualPortGroup
debug virtual-service messaging
debug virtual-service timeout
debug utd config level error [error, info, warning]
```

Informações Relacionadas

Documentos adicionais relacionados à implantação do Snort IPS podem ser encontrados aqui:

Snort IPS

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_data_utd/configuration/xe-16-12/sec-datautd-xe-16-12-book/snort-ips.pdf

Snort IPS em ISR, ISRv e CSR - configuração passo a passo

https://community.cisco.com/t5/security-documents/snort-ips-on-isr-isrv-and-csr-step-by-stepconfiguration/ta-p/3369186

Guia de implantação do Snort IPS

https://www.cisco.com/c/en/us/products/collateral/security/router-security/guide-c07-736629.html#_Toc442352480