Configuração do Spanning Tree Protocol (STP) em Switches empilháveis Sx500 Series

Objetivo

O Spanning Tree Protocol (STP) protege os domínios de broadcast da camada 2 contra tempestades de broadcast. Define os links para o modo de espera para evitar loops. Os loops ocorrem quando há rotas alternativas entre os hosts. Esses loops em uma rede estendida podem fazer com que os switches de Camada 2 encaminhem o tráfego uma quantidade infinita de vezes, o que resulta em uma carga de tráfego maior e menor eficiência da rede. O STP fornece uma topologia em árvore para qualquer organização de switches e links de Camada 2 criando um caminho exclusivo entre estações finais em uma rede. Esses caminhos individuais eliminam a possibilidade de loops.

O usuário em um cenário em tempo real pode configurar o STP para evitar loops e, dessa forma, evitar muito fluxo de tráfego na rede.

Este documento explica como configurar o STP em Switches empilháveis Sx500 Series.

Dispositivos aplicáveis

Switches Empilháveis Sx500 Series

Versão de software

•1.3.0.62

Configuração do protocolo Spanning Tree

Etapa 1. Faça login no utilitário de configuração da Web e escolha **Spanning Tree > STP Status & Global Settings**. A página *Status do STP e Configurações globais* é aberta:

Global Settings	
Spanning Tree State:	V Enable
STP Operation Mode:	 Classic STP Rapid STP Multiple STP
BPDU Handling:	FilteringFlooding
Path Cost Default Values:	ShortLong
Bridge Settings	
Priority:	32768
Hello Time:	2
Max Age:	20
Forward Delay:	15
Designated Root	
Bridge ID:	32768-e0:5f:b9:b2:90:1
Root Bridge ID:	32768-e0:5f;b9:b2:90:1
Root Port:	0

Configuração de configurações globais

Global Settings		
Spanning Tree State:	🔽 Enable	
STP Operation Mode:	 Classic STF Rapid STP Multiple STF 	
BPDU Handling:	 Filtering Flooding 	
Path Cost Default Values:	 Short Long 	

Etapa 1. Marque Enable no campo Spanning Tree State para habilitar o spanning tree.

Global Settings	
Spanning Tree State:	Enable
STP Operation Mode:	 Classic STP Rapid STP Multiple STP
BPDU Handling:	 Filtering Flooding
Path Cost Default Values:	ShortLong

Etapa 2. Clique no botão de opção que corresponde ao modo operacional desejado para STP no campo Modo de operação do STP.

·STP clássico — fornece um único caminho entre duas estações finais, evitando e eliminando loops.

•STP rápido — Detecta topologias de rede para fornecer convergência mais rápida do spanning tree. Isso é mais eficaz quando a topologia de rede é naturalmente estruturada em árvore e, portanto, a convergência mais rápida pode ser possível.

·Múltiplo STP — Detecta loops de Camada 2 e tenta atenuá-los impedindo a porta envolvida de transmitir tráfego. O MSTP permite várias instâncias de STP para que seja possível detectar e atenuar loops separadamente em cada instância. O MSTP fornece conectividade total para pacotes alocados a qualquer VLAN. Além disso, o MSTP transmite pacotes atribuídos a várias VLANs através de diferentes regiões de Spanning Tree múltipla (MST).

Global Settings	
Spanning Tree State:	Enable
STP Operation Mode:	 Classic STP Rapid STP Multiple STP
BPDU Handling:	 Filtering Flooding
Path Cost Default Values:	 Short Long

Etapa 3. Clique no botão de opção desejado no campo BPDU (Bridge Protocol Data Unit) Handling (Manuseio da BPDU). A BPDU é usada para transmitir informações do spanning tree quando o STP é desativado na porta ou no switch.

Filtragem — Filtra os pacotes de BPDU quando o spanning tree está desabilitado em uma interface. Apenas alguns pacotes de BPDU são trocados entre os switches.

Inundação — Inunda os pacotes de BPDU quando o spanning tree está desabilitado em uma interface. Todos os pacotes de BPDU são trocados entre todos os switches.

Global Settings	
Spanning Tree State:	Enable
STP Operation Mode:	 Classic STP Rapid STP Multiple STP
BPDU Handling:	FilteringFlooding
Path Cost Default Values:	ShortLong

Etapa 4. Clique no botão de opção desejado no campo Valores padrão de custo do caminho. É usado para atribuir custos de caminho padrão às portas STP. O custo do caminho é a distância (custo) de uma porta específica para a porta raiz.

Short — Especifica o intervalo de 1 a 65.535 para custos de caminho de porta.

Longo — Especifica o intervalo de 1 a 200.000.000 para custos de caminho de porta.

Etapa 5. Clique em Apply.

Configuração da Bridge

.....

Bridge Settings		
🌣 Priority:	4096	(Range: 0 - 61440, Default: 32768)
🗱 Hello Time:	4	sec. (Range: 1 - 10, Default: 2)
🗱 Max Age:	15	sec. (Range: 6 - 40, Default: 20)
Sorward Delay:	25	sec. (Range: 4 - 30, Default: 15)

Etapa 1. Insira o valor de prioridade no campo Prioridade. Após a troca de BPDUs, o dispositivo com a prioridade mais baixa torna-se o Root Bridge. Uma Bridge Raiz é a ponte que se torna a ponte ativa da rede e é responsável por todas as outras decisões, como qual porta precisa ser bloqueada e qual porta precisa estar no modo de encaminhamento. Caso todas as bridges usem a mesma prioridade, seus endereços MAC são usados para determinar qual é a bridge raiz. O valor de prioridade da bridge é fornecido em incrementos de 4096.

Se você não está familiarizado com os termos usados, confira o <u>Cisco Business: Glossário</u> <u>de Novos Termos</u>.

Note: Depois de trocar BPDUs, o dispositivo com a prioridade mais baixa torna-se a Root Bridge. Se todas as bridges usarem a mesma prioridade, seus endereços MAC serão usados para determinar qual é a bridge raiz. A bridge com o menor endereço MAC torna-se então a Root Bridge.

Bridge Settings		
🜣 Priority:	4096	(Range: 0 - 61440, Default: 32768)
🗱 Hello Time:	4	sec. (Range: 1 - 10, Default: 2)
🗱 Max Age:	15	sec. (Range: 6 - 40, Default: 20)
Sorward Delay:	25	sec. (Range: 4 - 30, Default: 15)

Etapa 2. Insira o intervalo (em segundos) que uma Root Bridge espera entre as mensagens de configuração no campo Hello Time. O intervalo é de 1 a 10 segundos.

Bridge Settings		
C Priority:	4096	(Range: 0 - 61440, Default: 32768)
📽 Hello Time:	4	sec. (Range: 1 - 10, Default: 2)
🌣 Max Age:	15	sec. (Range: 6 - 40, Default: 20)
C Forward Delay:	25	sec. (Range: 4 - 30, Default: 15)

Etapa 3. Insira o intervalo (em segundos) que o switch pode esperar sem receber uma mensagem de configuração antes de tentar redefinir sua própria configuração no campo Idade máxima.

Bridge Settings		
🗳 Priority:	4096	(Range: 0 - 61440, Default: 32768)
* Hello Time:	4	sec. (Range: 1 - 10, Default: 2)
🏶 Max Age:	15	sec. (Range: 6 - 40, Default: 20)
Forward Delay:	25	sec. (Range: 4 - 30, Default: 15)

Etapa 4. Insira o intervalo (em segundos) em que uma bridge permanece em um estado de aprendizado antes de encaminhar pacotes no campo Forward Delay. O temporizador de retardo de encaminhamento é o tempo durante o qual uma porta permanece no estado de escuta antes de se mover para um estado de aprendizado ou o tempo durante o qual uma porta permanece no estado de aprendizado antes de se mover para o estado de escuta.

32768-e0:5f:b9:b2:90:75
32768-e0:5f:b9:b2:90:75
0
0
2
0D/22H/12M/8S

A área Raiz designada exibe as seguintes informações:

ID da bridge — A prioridade da bridge concatenada com o endereço MAC do switch.

ID da Bridge Raiz — A prioridade da Bridge Raiz concatenada com o endereço MAC do switch.

Porta Raiz — A porta que tem o caminho de menor custo desta ponte para a Root Bridge.

Root Path Cost — O custo do caminho desde essa bridge até a raiz.

Contagem de alterações de topologia — O número total de alterações de topologia STP que ocorreram.

Última alteração de topologia — O intervalo de tempo decorrido desde a última alteração

de topologia. A hora é exibida no formato dias/horas/minutos/segundos.

Etapa 5. Clique em Apply.