O conjunto de documentação deste produto faz o possível para usar uma linguagem imparcial. Para os fins deste conjunto de documentação, a imparcialidade é definida como uma linguagem que não implica em discriminação baseada em idade, deficiência, gênero, identidade racial, identidade étnica, orientação sexual, status socioeconômico e interseccionalidade. Pode haver exceções na documentação devido à linguagem codificada nas interfaces de usuário do software do produto, linguagem usada com base na documentação de RFP ou linguagem usada por um produto de terceiros referenciado. Saiba mais sobre como a Cisco está usando a linguagem inclusiva.
A Cisco traduziu este documento com a ajuda de tecnologias de tradução automática e humana para oferecer conteúdo de suporte aos seus usuários no seu próprio idioma, independentemente da localização. Observe que mesmo a melhor tradução automática não será tão precisa quanto as realizadas por um tradutor profissional. A Cisco Systems, Inc. não se responsabiliza pela precisão destas traduções e recomenda que o documento original em inglês (link fornecido) seja sempre consultado.
Este documento descreve como solucionar problemas de utilização da CPU, principalmente devido a interrupções, na nova plataforma Cisco IOS® XE.
É importante entender como o Cisco IOS® XE é construído. Com o Cisco IOS® XE, a Cisco migrou para um kernel Linux e todos os subsistemas foram divididos em processos. Todos os subsistemas que estavam dentro do Cisco IOS antes, como os drivers de módulos, High Availability (HA) e assim por diante, agora são executados como processos de software dentro do sistema operacional Linux (SO). O próprio Cisco IOS é executado como um daemon no sistema operacional Linux (IOSd).O Cisco IOS® XE mantém não apenas a mesma aparência do Cisco IOS® clássico, mas também sua operação, suporte e gerenciamento.
Além disso, o documento introduz vários comandos novos nesta plataforma que são essenciais para solucionar problemas de uso da CPU.
Aqui estão algumas definições úteis:
O processo de solução de problemas e verificação nesta seção pode ser amplamente utilizado para alto uso da CPU devido a interrupções.
O comando show process cpu exibe naturalmente a aparência atual da CPU. Observe que o switch Cisco Catalyst 3850 Series usa quatro núcleos e você verá o uso da CPU listado para todos os quatro núcleos:
3850-2#show processes cpu sorted | exclude 0.0
Core 0: CPU utilization for five seconds: 53%; one minute: 39%; five minutes: 41%
Core 1: CPU utilization for five seconds: 43%; one minute: 57%; five minutes: 54%
Core 2: CPU utilization for five seconds: 95%; one minute: 60%; five minutes: 58%
Core 3: CPU utilization for five seconds: 32%; one minute: 31%; five minutes: 29%
PID Runtime(ms) Invoked uSecs 5Sec 1Min 5Min TTY Process
8525 472560 2345554 7525 31.37 30.84 30.83 0 iosd
5661 2157452 9234031 698 13.17 12.56 12.54 1088 fed
6206 19630 74895 262 1.83 0.43 0.10 0 eicored
6197 725760 11967089 60 1.41 1.38 1.47 0 pdsd
Na saída, fica claro que o daemon Cisco IOS® consome uma parte importante da CPU junto com o FED, que é o coração dessa caixa. Quando o uso da CPU é alto devido a interrupções, você vê que o Cisco IOSd e o FED usam uma parte maior da CPU e esses subprocessos (ou um subconjunto deles) usam a CPU:
Você pode ampliar qualquer um desses processos com o comando show process cpu detailed <process>. Como o Cisco IOSd é responsável pela maior parte do uso da CPU, aqui está uma análise mais detalhada.
3850-2#show processes cpu detailed process iosd sorted | ex 0.0
Core 0: CPU utilization for five seconds: 36%; one minute: 39%; five minutes: 40%
Core 1: CPU utilization for five seconds: 73%; one minute: 52%; five minutes: 53%
Core 2: CPU utilization for five seconds: 22%; one minute: 56%; five minutes: 58%
Core 3: CPU utilization for five seconds: 46%; one minute: 40%; five minutes: 31%
PID T C TID Runtime(ms)Invoked uSecs 5Sec 1Min 5Min TTY Process
(%) (%) (%)
8525 L 556160 2356540 7526 30.42 30.77 30.83 0 iosd
8525 L 1 8525 712558 284117 0 23.14 23.33 23.38 0 iosd
59 I 1115452 4168181 0 42.22 39.55 39.33 0 ARP Snoop
198 I 3442960 4168186 0 25.33 24.22 24.77 0 IP Host Track Proce
30 I 3802130 4168183 0 24.66 27.88 27.66 0 ARP Input
283 I 574800 3225649 0 4.33 4.00 4.11 0 DAI Packet Process
3850-2#show processes cpu detailed process fed sorted | ex 0.0
Core 0: CPU utilization for five seconds: 45%; one minute: 44%; five minutes: 44%
Core 1: CPU utilization for five seconds: 38%; one minute: 44%; five minutes: 45%
Core 2: CPU utilization for five seconds: 42%; one minute: 41%; five minutes: 40%
Core 3: CPU utilization for five seconds: 32%; one minute: 30%; five minutes: 31%
PID T C TID Runtime(ms)Invoked uSecs 5Sec 1Min 5Min TTY Process
(%) (%) (%)
5638 L 612840 1143306 536 13.22 12.90 12.93 1088 fed
5638 L 3 8998 396500 602433 0 9.87 9.63 9.61 0 PunjectTx
5638 L 3 8997 159890 66051 0 2.70 2.70 2.74 0 PunjectRx
A saída (saída de CPU do Cisco IOSd) mostra que o Snoop ARP, o Processo de rastreamento de host IP e a Entrada ARP estão altos. Isso é comumente visto quando a CPU é interrompida devido a pacotes ARP.
O switch Cisco Catalyst 3850 Series tem várias filas que atendem a diferentes tipos de pacotes (o FED mantém 32 filas de CPU RX, que são filas que vão diretamente para a CPU). É importante monitorar essas filas para descobrir quais pacotes são lançados para a CPU e quais são processados pelo Cisco IOSd. Essas filas são por ASIC.
Observação: há dois ASICs: 0 e 1. As portas 1 a 24 pertencem ao ASIC 0.
Para examinar as filas, insira o comando show platform punt statistics port-asic <port-asic>cpuq <queue> direction
comando.
No comando show platform punt statistics port-asic 0 cpuq -1 direction rx, o argumento -1 lista todas as filas. Portanto, esse comando lista todas as filas de recebimento para Port-ASIC 0.
Agora, você deve identificar qual fila envia um grande número de pacotes a uma taxa alta. Neste exemplo, um exame das filas revelou este culpado:
<snip>
RX (ASIC2CPU) Stats (asic 0 qn 16 lqn 16):
RXQ 16: CPU_Q_PROTO_SNOOPING
----------------------------------------
Packets received from ASIC : 79099152
Send to IOSd total attempts : 79099152
Send to IOSd failed count : 1240331
RX suspend count : 1240331
RX unsuspend count : 1240330
RX unsuspend send count : 1240330
RX unsuspend send failed count : 0
RX dropped count : 0
RX conversion failure dropped : 0
RX pkt_hdr allocation failure : 0
RX INTACK count : 0
RX packets dq'd after intack : 0
Active RxQ event : 9906280
RX spurious interrupt : 0
<snip>
O número da fila é 16 e o nome da fila é CPU_Q_PROTO_SNOOPING.
Outra maneira de descobrir a fila culpada é inserir o comando show platform punt client.
3850-2#show platform punt client
tag buffer jumbo fallback packets received failures
alloc free bytes conv buf
27 0/1024/2048 0/5 0/5 0 0 0 0 0
65536 0/1024/1600 0/0 0/512 0 0 0 0 0
65537 0/ 512/1600 0/0 0/512 1530 1530 244061 0 0
65538 0/ 5/5 0/0 0/5 0 0 0 0 0
65539 0/2048/1600 0/16 0/512 0 0 0 0 0
65540 0/ 128/1600 0/8 0/0 0 0 0 0 0
65541 0/ 128/1600 0/16 0/32 0 0 0 0 0
65542 0/ 768/1600 0/4 0/0 0 0 0 0 0
65544 0/ 96/1600 0/4 0/0 0 0 0 0 0
65545 0/ 96/1600 0/8 0/32 0 0 0 0 0
65546 0/ 512/1600 0/32 0/512 0 0 0 0 0
65547 0/ 96/1600 0/8 0/32 0 0 0 0 0
65548 0/ 512/1600 0/32 0/256 0 0 0 0 0
65551 0/ 512/1600 0/0 0/256 0 0 0 0 0
65556 0/ 16/1600 0/4 0/0 0 0 0 0 0
65557 0/ 16/1600 0/4 0/0 0 0 0 0 0
65558 0/ 16/1600 0/4 0/0 0 0 0 0 0
65559 0/ 16/1600 0/4 0/0 0 0 0 0 0
65560 0/ 16/1600 0/4 0/0 0 0 0 0 0
s65561 421/ 512/1600 0/0 0/128 79565859 131644697 478984244 0 37467
65563 0/ 512/1600 0/16 0/256 0 0 0 0 0
65564 0/ 512/1600 0/16 0/256 0 0 0 0 0
65565 0/ 512/1600 0/16 0/256 0 0 0 0 0
65566 0/ 512/1600 0/16 0/256 0 0 0 0 0
65581 0/ 1/1 0/0 0/0 0 0 0 0 0
131071 0/ 96/1600 0/4 0/0 0 0 0 0 0
fallback pool: 98/1500/1600
jumbo pool: 0/128/9300
Determine a tag para a qual a maioria dos pacotes foi alocada. Neste exemplo, é 65561.
Em seguida, insira este comando:
3850-2#show pds tag all | in Active|Tags|65561
Active Client Client
Tags Handle Name TDA SDA FDA TBufD TBytD
65561 7296672 Punt Rx Proto Snoop 79821397 79821397 0 79821397 494316524
Esta saída mostra que a fila é Rx Proto Snoop.
O s antes do 65561 na saída do comando show platform punt client significa que o identificador de FED está suspenso e sobrecarregado pelo número de pacotes de entrada. Se o s não desaparecer, significa que a fila está presa permanentemente.
Nos resultados do comando show pds tag all, observe que um identificador, 7296672, é relatado ao lado do Punt Rx Proto Snoop.
Use este identificador no comando show pds client <handle> packet last sink. Observe que você deve habilitar debug pds pktbuf-last antes de usar o comando. Caso contrário, você encontrará este erro:
3850-2#show pds client 7296672 packet last sink
% switch-2:pdsd:This command works in debug mode only. Enable debug using
"debug pds pktbuf-last" command
Com a depuração ativada, você verá esta saída:
3850-2#show pds client 7296672 packet last sink
Dumping Packet(54528) # 0 of Length 60
-----------------------------------------
Meta-data
0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
0010 00 00 16 1d 00 00 00 00 00 00 00 00 55 5a 57 f0 ............UZW.
0020 00 00 00 00 fd 01 10 df 00 5b 70 00 00 10 43 00 .........[p...C.
0030 00 10 43 00 00 41 fd 00 00 41 fd 00 00 00 00 00 ..C..A...A......
0040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
0050 00 00 00 3c 00 00 00 00 00 01 00 19 00 00 00 00 ...<............
0060 01 01 b6 80 00 00 00 4f 00 00 00 00 00 00 00 00 .......O........
0070 01 04 d8 80 00 00 00 33 00 00 00 00 00 00 00 00 .......3........
0080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
0090 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00a0 00 00 00 00 00 00 00 02 00 00 00 00 00 00 00 00 ................
Data
0000 ff ff ff ff ff ff aa bb cc dd 00 00 08 06 00 01 ................
0010 08 00 06 04 00 01 aa bb cc dd 00 00 c0 a8 01 0a ................
0020 ff ff ff ff ff ff c0 a8 01 14 00 01 02 03 04 05 ................
0030 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 ............
Este comando despeja o último pacote recebido pelo coletor, que é o Cisco IOSd neste exemplo. Isso mostra que ele despeja o cabeçalho e pode ser decodificado com o Wireshark baseado em Terminal (TShark). Os metadados são para uso interno do sistema, mas a saída de dados fornece informações reais do pacote. Os metadados, no entanto, continuam sendo extremamente úteis.
Observe a linha que começa com 0070. Use os primeiros 16 bits depois disso, como mostrado aqui:
3850-2#show platform port-asic ifm iif-id 0x0104d88000000033
Interface Table
Interface IIF-ID : 0x0104d88000000033
Interface Name : Gi2/0/20
Interface Block Pointer : 0x514d2f70
Interface State : READY
Interface Stauts : IFM-ADD-RCVD, FFM-ADD-RCVD
Interface Ref-Cnt : 6
Interface Epoch : 0
Interface Type : ETHER
Port Type : SWITCH PORT
Port Location : LOCAL
Slot : 2
Unit : 20
Slot Unit : 20
Acitve : Y
SNMP IF Index : 22
GPN : 84
EC Channel : 0
EC Index : 0
ASIC : 0
ASIC Port : 14
Port LE Handle : 0x514cd990
Non Zero Feature Ref Counts
FID : 48(AL_FID_L2_PM), Ref Count : 1
FID : 77(AL_FID_STATS), Ref Count : 1
FID : 51(AL_FID_L2_MATM), Ref Count : 1
FID : 13(AL_FID_SC), Ref Count : 1
FID : 26(AL_FID_QOS), Ref Count : 1
Sub block information
FID : 48(AL_FID_L2_PM), Private Data : 0x54072618
FID : 26(AL_FID_QOS), Private Data : 0x514d31b8
A interface culpada é identificada aqui. Gig2/0/20 é onde há um gerador de tráfego que bombeia o tráfego ARP. Se você desligar, o problema seria resolvido e o uso da CPU seria minimizado.
A única desvantagem do método discutido na última seção é que ele apenas despeja o último pacote que vai para o coletor e não pode ser o culpado.
Uma maneira melhor de solucionar esse problema seria usar um recurso chamado rastreamento de FED. O rastreamento é um método de captura de pacotes (usando vários filtros) que são enviados pelo FED à CPU. No entanto, o rastreamento de FED não é tão simples quanto o recurso Netdr no Cisco Catalyst 6500 Series Switch.
Aqui, o processo é dividido em etapas:
3850-2#set trace control fed-punject-detail enable
3850-2#show mgmt-infra trace settings fed-punject-detail
One shot Trace Settings:
Buffer Name: fed-punject-detail
Default Size: 32768
Current Size: 32768
Traces Dropped due to internal error: No
Total Entries Written: 0
One shot mode: No
One shot and full: No
Disabled: False
3850-2#set trace control fed-punject-detail buffer-size
3850-2#set trace control fed-punject-detail buffer-size ?
<8192-67108864> The new desired buffer size, in bytes
default Reset trace buffer size to default
3850-2#set trace fed-punject-detail direction rx filter_add
3850-2#set trace fed-punject-detail direction rx filter_add ?
cpu-queue rxq 0..31
field field
offset offset
3850-2#set trace fed-punject-detail direction rx filter_add cpu-queue
3850-2#set trace fed-punject-detail direction rx filter_add cpu-queue 16 16
3850-2#set trace fed-punject-detail direction rx match_all
3850-2#set trace fed-punject-detail direction rx filter_enable
3850-2#show mgmt-infra trace messages fed-punject-detail
[11/25/13 07:05:53.814 UTC 2eb0c9 5661]
00 00 00 00 00 4e 00 40 07 00 02 08 00 00 51 3b
00 00 00 00 00 01 00 00 03 00 00 00 00 00 00 01
00 00 00 00 20 00 00 0e 00 00 00 00 00 01 00 74
00 00 00 04 00 54 41 02 00 00 00 00 00 00 00 00
[11/25/13 07:05:53.814 UTC 2eb0ca 5661]
ff ff ff ff ff ff aa bb cc dd 00 00 08 06 00 01
08 00 06 04 00 01 aa bb cc dd 00 00 c0 a8 01 0a
ff ff ff ff ff ff c0 a8 01 14 00 01 02 03 04 05
06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 f6 b9 10 32
[11/25/13 07:05:53.814 UTC 2eb0cb 5661] Frame descriptors:
[11/25/13 07:05:53.814 UTC 2eb0cc 5661]
=========
fdFormat=0x4 systemTtl=0xe
loadBalHash1=0x8 loadBalHash2=0x8
spanSessionMap=0x0 forwardingMode=0x0
destModIndex=0x0 skipIdIndex=0x4
srcGpn=0x54 qosLabel=0x41
srcCos=0x0 ingressTranslatedVlan=0x3
bpdu=0x0 spanHistory=0x0
sgt=0x0 fpeFirstHeaderType=0x0
srcVlan=0x1 rcpServiceId=0x2
wccpSkip=0x0 srcPortLeIndex=0xe
cryptoProtocol=0x0 debugTagId=0x0
vrfId=0x0 saIndex=0x0
pendingAfdLabel=0x0 destClient=0x1
appId=0x0 finalStationIndex=0x74
decryptSuccess=0x0 encryptSuccess=0x0
rcpMiscResults=0x0 stackedFdPresent=0x0
spanDirection=0x0 egressRedirect=0x0
redirectIndex=0x0 exceptionLabel=0x0
destGpn=0x0 inlineFd=0x0
suppressRefPtrUpdate=0x0 suppressRewriteSideEfects=0x0
cmi2=0x0 currentRi=0x1
currentDi=0x513b dropIpUnreachable=0x0
srcZoneId=0x0 srcAsicId=0x0
originalDi=0x0 originalRi=0x0
srcL3IfIndex=0x2 dstL3IfIndex=0x0
dstVlan=0x0 frameLength=0x40
fdCrc=0x7 tunnelSpokeId=0x0
=========
[11/25/13 07:05:53.814 UTC 2eb0cd 5661]
[11/25/13 07:05:53.814 UTC 2eb0ce 5661] PUNT PATH (fed_punject_rx_process_packet:
830):RX: Q: 16, Tag: 65561
[11/25/13 07:05:53.814 UTC 2eb0cf 5661] PUNT PATH (fed_punject_get_physical_iif:
579):RX: Physical IIF-id 0x104d88000000033
[11/25/13 07:05:53.814 UTC 2eb0d0 5661] PUNT PATH (fed_punject_get_src_l3if_index:
434):RX: L3 IIF-id 0x101b6800000004f
[11/25/13 07:05:53.814 UTC 2eb0d1 5661] PUNT PATH (fed_punject_fd_2_pds_md:478):
RX: l2_logical_if = 0x0
[11/25/13 07:05:53.814 UTC 2eb0d2 5661] PUNT PATH (fed_punject_get_source_cos:638):
RX: Source Cos 0
[11/25/13 07:05:53.814 UTC 2eb0d3 5661] PUNT PATH (fed_punject_get_vrf_id:653):
RX: VRF-id 0
[11/25/13 07:05:53.814 UTC 2eb0d4 5661] PUNT PATH (fed_punject_get_src_zoneid:667):
RX: Zone-id 0
[11/25/13 07:05:53.814 UTC 2eb0d5 5661] PUNT PATH (fed_punject_fd_2_pds_md:518):
RX: get_src_zoneid failed
[11/25/13 07:05:53.814 UTC 2eb0d6 5661] PUNT PATH (fed_punject_get_acl_log_direction:
695): RX: : Invalid CMI2
[11/25/13 07:05:53.814 UTC 2eb0d7 5661] PUNT PATH (fed_punject_fd_2_pds_md:541):RX:
get_acl_log_direction failed
[11/25/13 07:05:53.814 UTC 2eb0d8 5661] PUNT PATH (fed_punject_get_acl_full_direction:
724):RX: DI 0x513b ACL Full Direction 1
[11/25/13 07:05:53.814 UTC 2eb0d9 5661] PUNT PATH (fed_punject_get_source_sgt:446):
RX: Source SGT 0
[11/25/13 07:05:53.814 UTC 2eb0da 5661] PUNT PATH (fed_punject_get_first_header_type:680):
RX: FirstHeaderType 0
[11/25/13 07:05:53.814 UTC 2eb0db 5661] PUNT PATH (fed_punject_rx_process_packet:916):
RX: fed_punject_pds_send packet 0x1f00 to IOSd with tag 65561
[11/25/13 07:05:53.814 UTC 2eb0dc 5661] PUNT PATH (fed_punject_rx_process_packet:744):
RX: **** RX packet 0x2360 on qn 16, len 128 ****
[11/25/13 07:05:53.814 UTC 2eb0dd 5661]
buf_no 0 buf_len 128
<snip>
ff ff ff ff ff ff - destination MAC address
aa bb cc dd 00 00 - source MAC address
[11/25/13 07:05:53.814 UTC 2eb0ce 5661] PUNT PATH (fed_punject_rx_process_packet:
830):RX: Q: 16, Tag: 65561
[11/25/13 07:05:53.814 UTC 2eb0cf 5661] PUNT PATH (fed_punject_get_physical_iif:
579):RX: Physical IIF-id 0x104d88000000033
3850-2#show platform port-asic ifm iif-id 0x0104d88000000033
Interface Table
Interface IIF-ID : 0x0104d88000000033
Interface Name : Gi2/0/20
Interface Block Pointer : 0x514d2f70
Interface State : READY
Interface Stauts : IFM-ADD-RCVD, FFM-ADD-RCVD
Interface Ref-Cnt : 6
Interface Epoch : 0
Interface Type : ETHER
Port Type : SWITCH PORT
Port Location : LOCAL
Slot : 2
Unit : 20
Slot Unit : 20
Active : Y
SNMP IF Index : 22
GPN : 84
EC Channel : 0
EC Index : 0
ASIC : 0
ASIC Port : 14
Port LE Handle : 0x514cd990
Non Zero Feature Ref Counts
FID : 48(AL_FID_L2_PM), Ref Count : 1
FID : 77(AL_FID_STATS), Ref Count : 1
FID : 51(AL_FID_L2_MATM), Ref Count : 1
FID : 13(AL_FID_SC), Ref Count : 1
FID : 26(AL_FID_QOS), Ref Count : 1
Sub block information
FID : 48(AL_FID_L2_PM), Private Data : 0x54072618
FID : 26(AL_FID_QOS), Private Data : 0x514d31b8
Você identificou novamente a interface de origem e o responsável.
O rastreamento é uma ferramenta poderosa que é crítica para solucionar problemas de uso elevado da CPU e fornece muitas informações para resolver com sucesso tal situação.
Use este comando para disparar um log a ser gerado em um limite específico:
process cpu threshold type total risinginterval
switch
O log gerado com o comando é semelhante a este:
*Jan 13 00:03:00.271: %CPUMEM-5-RISING_THRESHOLD: 1 CPUMEMd[6300]: Threshold: : 50, Total CPU Utilzation(total/Intr) :50/0, Top 3 processes(Pid/Util) : 8622/25, 5753/12, 9663/0
O log gerado fornece estas informações:
8622/25 - 8622 is PID for IOSd and 25 implies that this process is using 25% CPU.
5753/12 - 5733 is PID for FED and 12 implies that this process is using 12% CPU.
O script EEM é mostrado aqui:
event manager applet highcpu
event syslog pattern "%CPUMEM-5-RISING_THRESHOLD"
action 0.1 syslog msg "high CPU detected"
action 0.2 cli command "enable"
action 0.3 cli command "show process cpu sorted | append nvram:<filename>.txt"
action 0.4 cli command "show process cpu detailed process <process name|process ID>
sorted | nvram:<filename>.txt"
action 0.5 cli command "show platform punt statistics port-asic 0 cpuq -1
direction rx | append nvram:<filename>.txt"
action 0.6 cli command "show platform punt statistics port-asic 1 cpuq -1
direction rx | append nvram:<filename>.txt"
action 0.7 cli command "conf t"
action 0.8 cli command "no event manager applet highcpu"
Observação: o comando process cpu threshold não funciona atualmente na trilha 3.2.X. Outro ponto a ser lembrado é que esse comando examina a utilização média da CPU entre os quatro núcleos e gera um log quando essa média atinge o percentual definido no comando.
Se você tiver switches Catalyst 3850 que executam o Cisco IOS® XE Software Release 16.x ou posterior, consulte Troubleshooting de Alto Uso da CPU em Catalyst Switch Platforms Executando o IOS-XE 16.x.
Revisão | Data de publicação | Comentários |
---|---|---|
3.0 |
12-Dec-2023 |
Recertificação |
2.0 |
21-Nov-2022 |
Título e introdução atualizados, requisitos de estilo, tradução automática, gerunds, SEO e formatação. |
1.0 |
04-Apr-2014 |
Versão inicial |