Configurar e verificar o NAT nos Switches Catalyst 9000

Contents

Introdução Pré-requisitos Requisitos Informações de Apoio **Componentes Utilizados** Terminologia Diagrama de Rede Configurar Exemplo de configurações Verificar o NAT estático Verificação de software Verificação de hardware Verificar o NAT dinâmico Verificação de software Verificação de hardware Verificar a sobrecarga do NAT dinâmico (PAT) Verificação de software Verificação de hardware Depurações em nível de pacote Troubleshooting de Escala NAT Conversão Somente de Endereço (AOT) Informações Relacionadas

Introdução

Este documento descreve como configurar e validar a Network Address Translation (NAT) na plataforma Catalyst 9000.

Pré-requisitos

Requisitos

A Cisco recomenda que você tenha conhecimento destes tópicos:

- Endereçamento IP
- Listas de controle de acesso

Informações de Apoio

O caso mais comum para o NAT é o uso na conversão de espaço de rede IP privada em endereços roteáveis de Internet globalmente exclusivos.

O dispositivo que executa o NAT deve ter uma interface na rede interna (local) e uma interface na rede externa (global).

Um dispositivo NAT é responsável pela inspeção do tráfego de origem para determinar se ele requer uma conversão com base na configuração das regras de NAT.

Se uma conversão for necessária, o dispositivo converterá o endereço IP de origem local em um endereço IP globalmente exclusivo e o acompanhará em sua tabela de conversão de NAT.

Quando os pacotes voltam com um endereço roteável, o dispositivo verifica sua tabela NAT para ver se outra conversão está em ordem.

Em caso afirmativo, o roteador converte o endereço global interno de volta ao endereço local interno apropriado e roteia o pacote.

Componentes Utilizados

Com o Cisco IOS® XE 16.12.1, o NAT agora está disponível na licença do Network Advantage. Em todas as versões anteriores, ele está disponível na licença do DNA Advantage.

Platform	Recurso NAT introduzido						
C9300	Cisco IOS® XE versão 16.10.1						
C9400	Cisco IOS® XE versão 17.1.1						
C9500	Cisco IOS® XE versão 16.5.1a						
C9600	Cisco IOS® XE versão 16.11.1						

Este documento é baseado na plataforma Catalyst 9300 com Cisco IOS® XE versão 16.12.4

As informações neste documento foram criadas a partir de dispositivos em um ambiente de laboratório específico. Todos os dispositivos utilizados neste documento foram iniciados com uma configuração (padrão) inicial. Se a rede estiver ativa, certifique-se de que você entenda o impacto potencial de qualquer comando.

Terminologia

NAT Estático	Permite o mapeamento 1 para 1 de um endereço local para um endereço global.
NAT dinâmica	Mapeia endereços locais para um pool de endereços globais.
NAT de sobrecarga	Mapeia endereços locais para um único endereço global que usa portas L4 exclusivas.
Local interno	O endereço IP atribuído a um host na rede interna.
Global interno	Esse é o endereço IP do host interno como ele aparece para a rede externa. Você pode pensar nisso como o endereço para o qual o local interno é convertido.
Local externo	O endereço IP de um host externo como aparece para a rede interna.
Global externo	O endereço IP atribuído a um host na rede externa. Na maioria dos casos, os endereços local externo e global externo são os mesmos.
FMAN-RP	Gerenciador de recursos RP. Este é o plano de controle do Cisco IOS® XE que passa informações de programação para o FMAN-FP.

FMAN-FP	Gerenciador de recursos FP. O FMAN-FP recebe informações do FMAN-RP e as passa ao FED.
FED	Forwarding Engine Driver (Driver do mecanismo de encaminhamento). O FMAN-FP usa o FED para programar informações do plano de controle para o Unified Access Data Plane (UADP) Application Specific Integrated Circuit (ASIC).

Diagrama de Rede

Configurar

Exemplo de configurações

Configuração **de NAT estático** para converter 192.168.1.100 (local interno) em 172.16.10.10 (global interno):

```
<#root>
NAT-Device#
show run interface tel/0/1
Building configuration...
Current configuration : 109 bytes
!
interface TenGigabitEthernet1/0/1
no switchport
ip address 192.168.1.1 255.255.255.0
ip nat inside <--- NAT inside interface
end
NAT-Device#
show run interface tel/0/2</pre>
```

Building configuration... Current configuration : 109 bytes interface TenGigabitEthernet1/0/2 no switchport ip address 10.10.10.1 255.255.255.0 <-- NAT outside interface ip nat outside end ip nat inside source static 192.168.1.100 172.16.10.10 <-- static NAT rule NAT-Device# show ip nat translations
 Pro Inside global
 Inside local
 Outside local
 Outside global

 icmp 172.16.10.10:4
 192.168.1.100:4
 10.20.30.40:4
 10.20.30.40:4
 <-- active NAT translation --- 172.16.10.10 192.168.1.100 ---- - -<-- static NAT translation added as a result of the configuration

Configuração de NAT dinâmico para converter 192.168.1.0/24 em 172.16.10.1 - 172.16.10.30:

```
<#root>
NAT-Device#
show run interface tel/0/1
Building configuration...
Current configuration : 109 bytes
!
interface TenGigabitEthernet1/0/1
no switchport
ip address 192.168.1.1 255.255.255.0
ip nat inside <--- NAT inside interface
end
NAT-Device#
show run interface tel/0/2
Building configuration...</pre>
```

```
Current configuration : 109 bytes
!
interface TenGigabitEthernet1/0/2
no switchport
ip address 10.10.10.1 255.255.255.0
ip nat outside
<-- NAT outside interface
end
!
ip nat pool TAC-POOL 172.16.10.1 172.16.10.30 netmask 255.255.255.224
                                                                         <-- NAT pool configuration
ip nat inside source list hosts pool TAC-POOL
<-- NAT rule configuration
!
ip access-list standard hosts
                                                                           <-- ACL to match hosts to be
10 permit 192.168.1.0 0.0.0.255
NAT-Device#
show ip nat translations
Pro Inside global
                    Inside local
                                      Outside local
                                                          Outside global
icmp 172.16.10.10:6 192.168.1.100:6 10.20.30.40:6
                                                          10.20.30.40:6
--- 172.16.10.10
                    192.168.1.100
                                       - - -
                                                          - - -
```

Configuração **de Sobrecarga de NAT Dinâmico (PAT)** para converter 192.168.1.0/24 em 10.10.10.1 (ip nat outside interface):

```
<#root>
NAT-Device#
show run interface tel/0/1
Building configuration...
Current configuration : 109 bytes
!
interface TenGigabitEthernet1/0/1
no switchport
ip address 192.168.1.1 255.255.255.0
ip nat inside <--- NAT inside interface</pre>
```

end NAT-Device# show run interface te1/0/2 Building configuration... Current configuration : 109 bytes interface TenGigabitEthernet1/0/2 no switchport ip address 10.10.10.1 255.255.255.0 ip nat outside <-- NAT outside interface end 1 ip nat inside source list hosts interface TenGigabitEthernet1/0/2 overload <-- NAT configuration ļ ip access-list standard hosts <-- ACL to match hos 10 permit 192.168.1.0 0.0.0.255 Observe que a porta incrementa no endereço global interno em 1 para cada conversão: <#root> NAT-Device# show ip nat translations Pro Inside global Inside local Outside local Outside global icmp 10.10.10.1:1024 192.168.1.100:1 10.20.30.40:1 10.20.30.40:1024 <-- Notice layer 4 port increments icmp 10.10.10.1:1025 192.168.1.100:2 10.20.30.40:2 10.20.30.40:1025 <-- Notice layer 4 port increments icmp 10.10.10.1:1026 192.168.1.100:3 10.20.30.40:3 10.20.30.40:1026 icmp 10.10.10.1:1027 192.168.1.100:4 10.20.30.40:4 10.20.30.40:1027 icmp 10.10.10.1:1028 192.168.1.100:5 10.20.30.40:5 10.20.30.40:1028 icmp 10.10.10.1:1029 192.168.1.100:6 10.20.30.40:6 10.20.30.40:1029 icmp 10.10.10.1:1030 192.168.1.100:7 10.20.30.40:7 10.20.30.40:1030 icmp 10.10.10.1:1031 192.168.1.100:8 10.20.30.40:8 10.20.30.40:1031

10.10.10.1:1024 = inside global

192.168.1.100:1 = inside local

Verificar o NAT estático

Verificação de software

Espera-se ver metade de uma conversão com NAT estático quando não há fluxo ativo convertido. Quando o fluxo se torna ativo, uma conversão dinâmica é criada

NAT-Device#								
show ip nat translations								
Inside local	Outside local	Outside global						
192.168.1.100:10	10.20.30.40:10	10.20.30.40:10						
n								
192.168.1.100								
	ns Inside local 192.168.1.100:10 n 192.168.1.100	ns Inside local Outside local 192.168.1.100:10 10.20.30.40:10 n 192.168.1.100						

<-- static configuration from NAT rule configuration

Com o comando **show ip nat translations verbose**, você pode determinar o tempo em que o fluxo foi criado e o tempo restante na conversão.

<#root>

NAT-Device#

show ip nat translations verbose

Pro Inside global Inside local Outside local Outside global icmp 172.16.10.10:10 192.168.1.100:10 10.20.30.40:10 10.20.30.40:10

```
create 00:00:13, use 00:00:13, left 00:00:46,
```

<-- NAT timers

flags: extended, use_count: 0, entry-id: 10, lc_entries: 0 --- 172.16.10.10 192.168.1.100 --- --create 00:09:47, use 00:00:13, flags: static, use_count: 1, entry-id: 9, lc_entries: 0

Verifique as estatísticas de NAT. O contador de ocorrências de NAT é incrementado quando um fluxo corresponde a uma regra de NAT e é criado.

O contador de erros de NAT é incrementado quando o tráfego corresponde a uma regra, mas não é possível criar a conversão.

```
<#root>
NAT-DEVICE#
show ip nat statistics
Total active translations: 1 (
1 static,
 0 dynamic; 0 extended)
<-- 1 static translation
Outside interfaces:
TenGigabitEthernet1/0/1
                                  <-- NAT outside interface
Inside interfaces:
TenGigabitEthernet1/0/2
                                   <-- NAT inside interface
Hits: 0 Misses: 0
                                   <-- NAT hit and miss counters.
CEF Translated packets: 0, CEF Punted packets: 0
Expired translations: 0
Dynamic mappings:
-- Inside Source
[Id: 1] access-list hosts interface TenGigabitEthernet1/0/1 refcount 0
```

Para que a conversão ocorra, é necessário que haja uma adjacência para a origem e o destino do fluxo de NAT. Anote a ID da adjacência.

<#root>

NAT-Device#

show ip route 10.20.30.40

Routing entry for 10.20.30.40/32 Known via "static", distance 1, metric 0 Routing Descriptor Blocks: * 10.10.10.2 Route metric is 0, traffic share count is 1 NAT-Device# show platform software adjacency switch active f0 Adjacency id: 0x29(41)<-- adjacency ID Interface: TenGigabitEthernet1/0/1, IF index: 52, Link Type: MCP_LINK_IP Encap: 0:ca:e5:27:3f:e4:70:1f:53:0:b8:e4:8:0 Encap Length: 14, Encap Type: MCP_ET_ARPA, MTU: 1500 Flags: no-13-inject Incomplete behavior type: None Fixup: unknown Fixup_Flags_2: unknown Nexthop addr: 192.168.1.100 <-- source adjacency IP FRR MCP_ADJ_IPFRR_NONE 0 aom id: 464, HW handle: (nil) (created) Adjacency id: 0x24 (36) <-- adjacency ID Interface: TenGigabitEthernet1/0/2, IF index: 53, Link Type: MCP_LINK_IP Encap: 34:db:fd:ee:ce:e4:70:1f:53:0:b8:d6:8:0 Encap Length: 14, Encap Type: MCP_ET_ARPA, MTU: 1500 Flags: no-13-inject Incomplete behavior type: None Fixup: unknown Fixup_Flags_2: unknown Nexthop addr: 10.10.10.2 <-- next hop to 10.20.30.40 IP FRR MCP ADJ IPFRR NONE Ø aom id: 452, HW handle: (nil) (created)

As depurações de NAT podem ser ativadas para verificar se o switch recebe tráfego e se isso cria um fluxo de NAT

Observação: observe que o tráfego ICMP sujeito ao NAT é sempre tratado no software, de modo que as depurações de plataforma não mostram logs para o tráfego ICMP.

<#root> NAT-Device# debug ip nat detailed IP NAT detailed debugging is on NAT-Device# *Mar 8 23:48:25.672: NAT: Entry assigned id 11 <-- receive traffic and flow created *Mar 8 23:48:25.672: NAT: i: icmp (192.168.1.100, 11) -> (10.20.30.40, 11) [55] *Mar 8 23:48:25.672: NAT: s=192.168.1.100->172.16.10.10 , d=10.20.30.40 [55]NAT: dyn flow info download suppressed for flow 11 <-- source is translated *Mar 8 23:48:25.673: NAT: o: icmp (10.20.30.40, 11) -> (172.16.10.10, 11) [55] *Mar 8 23:48:25.674: NAT: s=10.20.30.40, d=172.16.10.10->192.168.1.100 [55]NAT: dyn flow info download suppressed for flow 11 <-- return source is translated *Mar 8 23:48:25.675: NAT: i: icmp (192.168.1.100, 11) -> (10.20.30.40, 11) [56]

Quando o fluxo expira ou é excluído, você vê a ação DELETE nas depurações:

<#root>

*Mar 31 17:58:31.344: FMANRP-NAT: Received flow data, action:

DELETE

<-- action is delete

```
*Mar 31 17:58:31.344: id 2, flags 0x1, domain 0
src_local_addr 192.168.1.100, src_global_addr 172.16.10.10, dst_local_addr 10.20.30.40,
dst_global_addr 10.20.30.40, src_local_port 31783, src_global_port 31783,
dst_local_port 23, dst_global_port 23,
proto 6, table_id 0 inside_mapping_id 0,
outside_mapping_id 0, inside_mapping_type 0,
outside_mapping_type 0
```

Verificação de hardware

Quando a regra NAT é configurada, o dispositivo programa essa regra no TCAM na região NAT 5. Confirme se a regra está programada no TCAM.

As saídas estão em hexadecimal, portanto, a conversão para o endereço IP é necessária.

<#root>

NAT-Device#

show platform hardware fed switch active fwd-asic resource tcam table pbr record 0 format 0 | begin NAT

Printing entries for region NAT_1 (370) type 6 asic 3 Printing entries for region NAT_2 (371) type 6 asic 3 Printing entries for region NAT_3 (372) type 6 asic 3 Printing entries for region NAT_4 (373) type 6 asic 3

Printing entries for region NAT_5 (374) type 6 asic 3

<-- NAT Region 5

c0a80164

<--

inside local IP address 192.168.1.100 in hex (c0a80164)

AD 10087000:0000073

ac100a0a

:00000000

<-- inside global IP address 172.16.10.10 in hex (ac100a0a)

Finalmente, quando o fluxo se torna ativo, a programação de hardware pode ser confirmada pela verificação de TCAM na região 1 do NAT.

<#root>

NAT-Device#

show platform hardware fed switch active fwd-asic resource tcam table pbr record 0 format 0 | begin NAT

Printing entries for region

NAT_1

(370) type 6 asic 1

<-- NAT Region 1

0a141e28:c0a80164

AD 10087000:00000b0

ac100a0a:0a141e28

AD 10087000:00000b1

Starting at Index-32 Key1 from right to left:

c0a80164

= 192.168.1.100 (Inside Local)

0a141e28

= 10.20.30.40 (Outside Global)

0000017

```
= 23 (TCP destination port)
```

06005ac9

= 06 for TCP and 5ac9 is 23241 which is source port from "show ip nat translations" of the inside host Repeat the same for Index-33 which is the reverse translation:

```
0a141e28
= 10.20.30.40 (Outside Global)
ac100a0a
= 172.16.10.10 (Inside Global)
00005ac9
= 23241 TCP Destination port
06000017
= 06 for TCP and 17 for TCP source port 23
```

Verificar o NAT dinâmico

Verificação de software

Confirme se o pool de endereços para o qual converter endereços IP internos está configurado.

Essa configuração permite que a rede 192.168.1.0/24 seja convertida em endereços 172.16.10.1 a 172.16.10.254

<#root>
NAT-Device#
show run | i ip nat
ip nat inside
<--- ip nat inside on inside interface
ip nat outside
<--- ip nat outside on outside interface
ip nat pool MYPOOL 172.16.10.1 172.16.10.254 netmask 255.255.255.0 <--- Pool of addresses to translate
ip nat inside source list hosts pool MYPOOL <--- Enables hosts that match ACL "P

```
NAT-Device#
```

show ip access-list 10 <-- ACL to match hosts to be translated

Standard IP access list 10

10 permit 192.168.1.0, wildcard bits 0.0.0.255 NAT-Device#

Observe que com o NAT dinâmico ele não cria nenhuma entrada com apenas a configuração. Um fluxo ativo precisa ser criado antes que a tabela de conversão seja preenchida.

<#root>

NAT-Device#

```
show ip nat translations
```

<....empty...>

Verifique as estatísticas de NAT. O contador de ocorrências de NAT é incrementado quando um fluxo corresponde a uma regra de NAT e é criado.

O contador de erros de NAT é incrementado quando o tráfego corresponde a uma regra, mas não é possível criar a conversão.

```
<#root>
NAT-DEVICE#
show ip nat statistics
Total active translations: 3794 (1 static,
3793 dynamic
; 3793 extended)
<-- dynamic translations
Outside interfaces:
TenGigabitEthernet1/0/1
                                  <-- NAT outside interface
Inside interfaces:
TenGigabitEthernet1/0/2
                                  <-- NAT inside interface
Hits: 3793
Misses: 0
<-- 3793 hits
CEF Translated packets: 0, CEF Punted packets: 0
Expired translations: 0
Dynamic mappings:
                                  <-- rule for dynamic mappings
```

-- Inside Source
[Id: 1]
access-list hosts interface TenGigabitEthernet1/0/1
refcount 3793
<-- NAT rule displayed</pre>

Confirme se a adjacência com a origem e o destino está presente

<#root>

NAT-Device#

show platform software adjacency switch active f0

Number of adjacency objects: 4

Adjacency id:

0x24(36)

<-- adjacency ID

Interface: TenGigabitEthernet1/0/2, IF index: 53, Link Type: MCP_LINK_IP Encap: 34:db:fd:ee:ce:e4:70:1f:53:0:b8:d6:8:0 Encap Length: 14, Encap Type: MCP_ET_ARPA, MTU: 1500 Flags: no-l3-inject Incomplete behavior type: None Fixup: unknown Fixup_Flags_2: unknown Nexthop addr:

10.10.10.2

<-- adjacency to destination

IP FRR MCP_ADJ_IPFRR_NONE 0
aom id: 449, HW handle: (nil) (created)

Adjacency id:

0x25 (37)

<-- adjacency ID

Interface: TenGigabitEthernet1/0/1, IF index: 52, Link Type: MCP_LINK_IP Encap: 0:ca:e5:27:3f:e4:70:1f:53:0:b8:e4:8:0 Encap Length: 14, Encap Type: MCP_ET_ARPA, MTU: 1500 Flags: no-l3-inject Incomplete behavior type: None Fixup: unknown
Fixup_Flags_2: unknown
Nexthop addr:

```
192.168.1.100
```

<-- source adjacency

```
IP FRR MCP_ADJ_IPFRR_NONE 0
aom id: 451, HW handle: (nil) (created)
```

Depois que as adjacências forem confirmadas, se houver um problema com o NAT, você poderá começar com depurações de NAT independentes de plataforma

<#root>

NAT-Device#

debug ip nat

IP NAT debugging is on NAT-Device#

debug ip nat detailed

IP NAT detailed debugging is on

NAT-Device#

show logging

*May 13 01:00:41.136: NAT: Entry assigned id 6 *May 13 01:00:41.136: NAT: Entry assigned id 7 *May 13 01:00:41.136: NAT: i:

tcp (192.168.1.100, 48308)

-> (10.20.30.40, 23) [30067]

<-- first packet ingress without NAT

*May 13 01:00:41.136: NAT: TCP Check for Limited ALG Support *May 13 01:00:41.136: NAT:

s=192.168.1.100->172.16.10.10

, d=10.20.30.40 [30067]NAT: dyn flow info download suppressed for flow 7

<-- confirms source address translation

*May 13 01:00:41.136: NAT: attempting to setup alias for 172.16.10.10 (redundancy_name , idb NULL, flags *May 13 01:00:41.139: NAT: o:

tcp (10.20.30.40, 23)

-> (172.16.10.10, 48308) [40691] <-- return packet from destination to be translated *May 13 01:00:41.139: NAT: TCP Check for Limited ALG Support *May 13 01:00:41.139: NAT: s=10.20.30.40, d=172.16.10.10->192.168.1.100 [40691]NAT: dyn flow info download suppressed for flow 7 <-- return packet is translated *May 13 01:00:41.140: NAT: i: tcp (192.168.1.100, 48308) -> (10.20.30.40, 23) [30068] Você também pode depurar a operação NAT FMAN-RP: <#root> NAT-Device# debug platform software nat all NAT platform all events debugging is on Log Buffer (100000 bytes): *May 13 01:04:16.098: FMANRP-NAT: Received flow data, action: ADD <-- first packet in flow so we ADD an entry *May 13 01:04:16.098: id 9, flags 0x1, domain 0 src_local_addr 192.168.1.100, src_global_addr 172.16.10.10, dst_local_addr 10.20.30.40 <-- verify inside local/global and outside local/global dst_global_addr 10.20.30.40, src_local_port 32529, src_global_port 32529, dst_local_port 23, dst_global_port 23 <-- confirm ports, in this case they are for Telnet proto 6, table_id 0 inside_mapping_id 1, outside_mapping_id 0, inside_mapping_type 2, outside_mapping_type 0 *May 13 01:04:16.098: FMANRP-NAT: Created TDL message for flow info: ADD id 9

*May 13 01:04:16.098: FMANRP-NAT: Sent TDL message for flow data config:

ADD id 9

*May 13 01:04:16.098: FMANRP-NAT: Received flow data, action:

MODIFY <-- subsequent packets are MODIFY

*May 13 01:04:16.098: id 9, flags 0x1, domain 0
src_local_addr 192.168.1.100, src_global_addr 172.16.10.10, dst_local_addr 10.20.30.40,
dst_global_addr 10.20.30.40, src_local_port 32529, src_global_port 32529,
dst_local_port 23, dst_global_port 23,
proto 6, table_id 0 inside_mapping_id 1,
outside_mapping_id 0, inside_mapping_type 2,
outside_mapping_type 0
*May 13 01:04:16.098: FMANRP-NAT: Created TDL message for flow info:
MODIFY id 9
*May 13 01:04:16.098: FMANRP-NAT: Sent TDL message for flow data config:
MODIFY id 9

Se a regra for removida por qualquer motivo, como expiração ou remoção manual, uma ação DELETE será observada:

<#root>

*May 13 01:05:20.276: FMANRP-NAT: Received flow data, action:

DELETE <-- DELETE action

```
*May 13 01:05:20.276: id 9, flags 0x1, domain 0
src_local_addr 192.168.1.100, src_global_addr 172.16.10.10, dst_local_addr 10.20.30.40,
dst_global_addr 10.20.30.40, src_local_port 32529, src_global_port 32529,
dst_local_port 23, dst_global_port 23,
proto 6, table_id 0 inside_mapping_id 0,
outside_mapping_id 0, inside_mapping_type 0,
outside_mapping_type 0
```

Verificação de hardware

Verifique se a regra NAT que corresponde ao tráfego a ser convertido foi adicionada corretamente no hardware na região NAT 5:

<#root>

NAT-Device#

show platform hardware fed switch active fwd-asic resource tcam table pbr record 0 format 0 | begin NAT

Printing entries for region

NAT_1

(370) type 6 asic 1

<<<< empty due to no active flow

_____ Printing entries for region NAT_2 (371) type 6 asic 1 _____ Printing entries for region NAT_3 (372) type 6 asic 1 _____ Printing entries for region NAT_4 (373) type 6 asic 1 _____ Printing entries for region NAT_5 (374) type 6 asic 1 TAQ-2 Index-128 (A:0,C:1) Valid StartF-1 StartA-1 SkipF-0 SkipA-0 AD 10087000:0000073 TAQ-2 Index-129 (A:0,C:1) Valid StartF-0 StartA-0 SkipF-0 SkipA-0 ffffff00 c0a80100 AD 10087000:0000073

ffffff00 = 255.255.255.0 in hex

c0a80100 = 192.168.1.0 in hex which matches our network in the NAT ACL

Por fim, você precisa confirmar se a tradução ativa está programada corretamente na região 1 de TCAM de NAT

<#root>

NAT-Device#

show ip nat translations

 Pro Inside global
 Inside local
 Outside local
 Outside global

 tcp 172.16.10.10:54854
 192.168.1.100:54854
 10.20.30.40:23
 10.20.30.40:23

 --- 172.16.10.10
 192.168.1.100
 -- --

NAT-Device#

show platform hardware fed switch active fwd-asic resource tcam table pbr record 0 format 0 | begin NAT

Printing entries for region

NAT_1

(370) type 6 asic 1

TAQ-2 Index-32 (A:0,C:1) Valid StartF-1 StartA-1 SkipF-0 SkipA-0

0a141e28

```
:
```

c0a80164

AD 10087000:00000b0

ac100a0a

:

0a141e28

AD 10087000:00000b1

```
Printing entries for region NAT_2 (371) type 6 asic 1

Printing entries for region NAT_3 (372) type 6 asic 1

Printing entries for region NAT_4 (373) type 6 asic 1

Printing entries for region NAT_5 (374) type 6 asic 1
```

Starting at Index-32 Key 1 from right to left:

c0a80164

- 192.168.1.100 (inside local)

0a141e28

- 10.20.30.40 (outside local/global)

0000017

- TCP port 23

0600d646

- 6 for TCP protocol and 54854 for TCP source port

Starting at Index-33 Key 1 from right to left

0a141e28

- 10.20.30.40 destination address

ac100a0a

- 172.16.10.10 (inside global source IP address)

0000d646

- TCP source port

- TCP protocol 6 and 23 for the TCP destination port

Verificar a sobrecarga do NAT dinâmico (PAT)

Verificação de software

Os processos de registro para verificar o PAT são os mesmos do NAT dinâmico. Você só precisa confirmar a conversão de porta correta e se as portas estão programadas corretamente no hardware.

O PAT é obtido pela palavra-chave "overload" anexada à regra NAT.

<#root>
NAT-Device#
show run | i ip nat
ip nat inside
<--- ip nat inside on NAT inside interface
ip nat outside
<--- ip nat outside on NAT outside interface
ip nat pool MYPOOL 172.16.10.1 172.16.10.254 netmask 255.255.255.0 <--- Address pool to translate to
ip nat inside source list hosts pool MYPOOL overload <--- Links ACL hosts to address pool</pre>

Confirme se a adjacência com a origem e o destino está presente

<#root>

NAT-Device#

show ip route 10.20.30.40

```
Routing entry for 10.20.30.40/32
Known via "static", distance 1, metric 0
Routing Descriptor Blocks:
*
```

```
10.10.10.2
```

Route metric is 0, traffic share count is 1 NAT-Device# show platform software adjacency switch active f0 Number of adjacency objects: 4 Adjacency id: 0x24(36) <-- adjacency ID Interface: TenGigabitEthernet1/0/2, IF index: 53, Link Type: MCP_LINK_IP Encap: 34:db:fd:ee:ce:e4:70:1f:53:0:b8:d6:8:0 Encap Length: 14, Encap Type: MCP_ET_ARPA, MTU: 1500 Flags: no-13-inject Incomplete behavior type: None Fixup: unknown Fixup_Flags_2: unknown Nexthop addr: 10.10.10.2 <-- adjacency to destination IP FRR MCP_ADJ_IPFRR_NONE 0 aom id: 449, HW handle: (nil) (created) Adjacency id: 0x25 (37) <-- adjacency ID Interface: TenGigabitEthernet1/0/1, IF index: 52, Link Type: MCP_LINK_IP Encap: 0:ca:e5:27:3f:e4:70:1f:53:0:b8:e4:8:0 Encap Length: 14, Encap Type: MCP_ET_ARPA, MTU: 1500 Flags: no-13-inject Incomplete behavior type: None Fixup: unknown Fixup_Flags_2: unknown Nexthop addr: 192.168.1.100 <-- source adjacency IP FRR MCP_ADJ_IPFRR_NONE 0 aom id: 451, HW handle: (nil) (created)

Confirme se a conversão é adicionada à tabela de conversão quando o fluxo está ativo. Observe que com o PAT não há uma meia entrada criada como com o NAT dinâmico.

Controle os números de porta nos endereços locais internos e globais internos.

<#root>

NAT-Device#

show ip nat translations

Pro Inside global	Inside local	Outside local	Outside global
tcp 172.16.10.10:1024	192.168.1.100:52448	10.20.30.40:23	10.20.30.40:23

Verifique as estatísticas de NAT. O contador de ocorrências de NAT é incrementado quando um fluxo corresponde a uma regra de NAT e é criado.

O contador de erros de NAT é incrementado quando o tráfego corresponde a uma regra, mas não é possível criar a conversão.

```
<#root>
NAT-DEVICE#
show ip nat statistics
Total active translations: 3794 (1 static,
3793 dynamic
; 3793 extended)
<-- dynamic translations
Outside interfaces:
TenGigabitEthernet1/0/1
                                                  <-- NAT outside interface
Inside interfaces:
TenGigabitEthernet1/0/2
                                                  <-- NAT inside interface
Hits: 3793
Misses: 0
<-- 3793 hits
CEF Translated packets: 0, CEF Punted packets: 0
Expired translations: 0
Dynamic mappings:
```

<-- rule for dynamic mappings

```
-- Inside Source
[Id: 1]
```

access-list hosts interface TenGigabitEthernet1/0/1

refcount 3793

<-- NAT rule displayed

As depurações de NAT independente de plataforma mostram que a conversão de porta ocorre:

<#root>

NAT-Device#

debug ip nat detailed

```
IP NAT detailed debugging is on
NAT-Device#
```

debug ip nat

IP NAT debugging is on

NAT-device#

show logging

Log Buffer (100000 bytes):

*May 18 23:52:20.296: NAT: address not stolen for 192.168.1.100, proto 6 port 52448 *May 18 23:52:20.296: NAT: Created portlist for proto tcp globaladdr 172.16.10.10 *May 18 23:52:20.296: NAT: Allocated Port for 192.168.1.100 -> 172.16.10.10:

wanted 52448 got 1024 <-- confirms PAT is used

*May 18 23:52:20.296: NAT: Entry assigned id 5
*May 18 23:52:20.296: NAT: i: tcp (192.168.1.100, 52448) -> (10.20.30.40, 23) [63338]
*May 18 23:52:20.296: NAT: TCP Check for Limited ALG Support
*May 18 23:52:20.296: NAT: TCP

s=52448->1024

, d=23

<-- confirms NAT overload with PAT

*May 18 23:52:20.296: NAT:

s=192.168.1.100->172.16.10.10, d=10.20.30.40

[63338]NAT: dyn flow info download suppressed for flow 5

<-- shows inside translation

*May 18 23:52:20.297: NAT: attempting to setup alias for 172.16.10.10 (redundancy_name , idb NULL, flags *May 18 23:52:20.299: NAT: o: tcp (10.20.30.40, 23) -> (172.16.10.10, 1024) [55748] *May 18 23:52:20.299: NAT: TCP Check for Limited ALG Support *May 18 23:52:20.299: NAT: TCP s=23,

d=1024->52448

<-- shows PAT on return traffic

*May 18 23:52:20.299: NAT: s=10.20.30.40, d=172.16.10.10->192.168.1.100 [55748]NAT: dyn flow info downlo

dst_local_port 23, dst_global_port 23, proto 6, table_id 0 inside_mapping_id 1, outside_mapping_id 0, inside_mapping_type 2, outside_mapping_type 0 <snip>

Verificação de hardware

Confirme se a regra NAT está instalada corretamente no hardware na região NAT 5

<#root>

NAT-Device#

show platform hardware fed switch active fwd-asic resource tcam table pbr record 0 format 0 | begin NAT

Printing entries for region

NAT_1

(370) type 6 asic 1

<-- NAT_1 empty due to no active flow

Printing entries for region NAT_2 (371) type 6 asic 1 Printing entries for region NAT_3 (372) type 6 asic 1 Printing entries for region NAT_4 (373) type 6 asic 1 Printing entries for region NAT_5 (374) type 6 asic 1

fffff00

c0a80100

AD 10087000:0000073

ffffff00 = 255.255.255.0 in hex for our subnet mask in NAT ACL

c0a80100 = 192.168.1.0 in hex for our network address in NAT ACL

Por fim, você pode verificar se o fluxo de NAT está programado no TCAM de hardware em NAT_Region 1 quando o fluxo está ativo

<#root>

NAT-Device#

show ip nat translations

 Pro Inside global
 Inside local
 Outside local
 Outside global

 tcp
 172.16.10.10:1024
 192.168.1.100:20027
 10.20.30.40:23
 10.20.30.40:23

NAT-Device#

show platform hardware fed switch active fwd-asic resource tcam table pbr record 0 format 0 | begin NAT_

```
Printing entries for region
NAT_1
(370) type 6 asic 1
<-- NAT region 1
_____
TAQ-2 Index-32 (A:0,C:1) Valid StartF-1 StartA-1 SkipF-0 SkipA-0
Key1 00009000:
06004e3b
:00000000:
0000017
0a141e28
:
c0a80164
AD 10087000:00000b0
TAQ-2 Index-33 (A:0,C:1) Valid StartF-0 StartA-0 SkipF-0 SkipA-0
Key1 00009000:
0600017
:00000000:
00000400
0a141e28
:
0a141e28
AD 10087000:00000b1
Starting at Index-32 Key1 from right to left:
c0a80164
- 192.168.1.100 (inside local source address)
0a141e28
- 10.20.30.40 (inside global address/outside local address)
```

0000017

```
- 23 (TCP destination port)
06004e3b
- TCP source port 20027 (4e3b) and TCP protocol 6
Starting at Index-33 Key1 from right to left:
0a141e28

10.20.30.40 (outside global address/outside local address)
ac100a0a
172.16.10.10 (inside global)

00000400

TCP inside global source port 1024
06000017
TCP protocol 6 and TCP source port 23
```

Depurações em nível de pacote

O primeiro pacote em um fluxo que corresponde a uma regra NAT no hardware deve ser apontado para a CPU do dispositivo para ser processado. Para exibir saídas de depuração relacionadas ao caminho de punt, você pode habilitar os rastreamentos do caminho de punt FED para o nível de depuração para garantir que o pacote seja pontuado. O tráfego de NAT que precisa de recursos da CPU vai para a fila da CPU de Tráfego de Trânsito.

Verifique se a fila de CPU do tráfego de trânsito vê pacotes apontados ativamente para ela.

Packets received from ASIC : 0 <-- no punt traffic for NAT Send to IOSd total attempts : 0 Send to IOSd failed count : 0 RX suspend count : 0 RX unsuspend count : 0 RX unsuspend send count : 0 RX unsuspend send failed count : 0 RX consumed count : 0 RX dropped count : 0 RX non-active dropped count : 0 RX conversion failure dropped : 0 RX INTACK count : 0 RX packets dq'd after intack : 0 Active RxQ event : 0 RX spurious interrupt : 0 RX phy_idb fetch failed: 0 RX table_id fetch failed: 0 RX invalid punt cause: 0 Replenish Stats for all rxq: -----Number of replenish : 0 Number of replenish suspend : 0 Number of replenish un-suspend : 0 _____ NAT-DEVICE# show platform software fed switch active punt cpuq 18 <-- after new translation Punt CPU Q Statistics _____ CPU Q Id : 18 CPU Q Name : CPU_Q_TRANSIT_TRAFFIC Packets received from ASIC : 5 <-- confirms the UADP ASIC punts to Send to IOSd total attempts : 5 Send to IOSd failed count : 0 RX suspend count : 0 RX unsuspend count : 0 RX unsuspend send count : 0 RX unsuspend send failed count : 0 RX consumed count : 0 RX dropped count : 0 RX non-active dropped count : 0 RX conversion failure dropped : 0 RX INTACK count : 5 RX packets dq'd after intack : 0 Active RxQ event : 5 RX spurious interrupt : 0 RX phy_idb fetch failed: 0 RX table_id fetch failed: 0 RX invalid punt cause: 0

Replenish Stats for all rxq: Number of replenish : 18 Number of replenish suspend : 0 Number of replenish un-suspend : 0

Troubleshooting de Escala NAT

Suporte de hardware atual para o número máximo de entradas de TCAM de NAT, conforme ilustrado na tabela:

Observação: cada conversão de NAT ativa requer 2 entradas TCAM.

Platform	Número máximo de entradas TCAM
Catalyst 9300	5000
Catalyst 9400	14000
Catalyst 9500	14000
Alto desempenho do Catalyst 9500	15500
Catalyst 9600	15500

Se você suspeitar de um problema com a escala, poderá confirmar o número total de conversões de NAT TCP/UDP para verificar em relação a um limite de plataforma.

Se você tiver esgotado o espaço de TCAM de NAT, o módulo NAT no hardware do switch não poderá processar essas conversões. Neste cenário, o tráfego sujeito à conversão de NAT é direcionado para a CPU do dispositivo para ser processado.

Isso pode causar latência e pode ser confirmado por meio de quedas que incrementam a fila do vigilante do plano de controle, que é responsável pelo tráfego de punt NAT. A fila da CPU para onde o tráfego NAT vai é "Tráfego de trânsito".

<#root>

NAT-Device#

show platform hardware fed switch active gos queue stats internal cpu policer

	CPU Queue Statistics								
====	PlcIdx	Queue Name	Enabled	(default) Rate	(set) Rate	Queue Drop(Bytes)	Queue Drop(Frames)		
<sni< td=""><td>ip></td><td></td><td></td><td></td><td></td><td></td><td></td></sni<>	ip>								
14	13	Sw forwarding	Yes	1000	1000	0	0		
15	8	Topology Control	Yes	13000	16000	0	0		
16	12	Proto Snooping	Yes	2000	2000	0	0		
17	6	DHCP Snooping	Yes	500	500	0	0		
18	13	Transit Traffic	Yes	1000	1000	34387271	399507		
<	< drops for NAT traffic headed towards the CPU								
19	10	RPF Failed	Yes	250	250	0	0		
20	15	MCAST END STATION	Yes	2000	2000	0	0		
<sni< td=""><td>Lp></td><td></td><td></td><td></td><td></td><td></td><td></td></sni<>	Lp>								

Confirme o espaço TCAM do NAT disponível no código 17.x. Essa saída é de um 9300 com o modelo NAT ativado para que o espaço seja maximizado.

<#root>

NAT-DEVICE#

show platform hardware fed switch active fwd-asic resource tcam utilization

Codes: EM - Exact_Match, I - Input, O - Output, IO - Input & Output, NA - Not Applicable

CAM Utilization for	ASIC [0]								
Table	Subtype	Dir	Max	Used	%Used	V4	V6	MPLS	Other
Mac Address Table	EM	I	32768	22	0.07%	0	0	0	22
Mac Address Table	TCAM	I	1024	21	2.05%	0	0	0	21
L3 Multicast	EM	I	8192	0	0.00%	0	0	0	0
L3 Multicast	TCAM	I	512	9	1.76%	3	6	0	0
L2 Multicast	EM	I	8192	0	0.00%	0	0	0	0
L2 Multicast	TCAM	I	512	11	2.15%	3	8	0	0
IP Route Table	EM	I	24576	16	0.07%	15	0	1	0
IP Route Table	TCAM	I	8192	25	0.31%	12	10	2	1
QOS ACL	TCAM	IO	1024	85	8.30%	28	38	0	19
Security ACL	TCAM	IO	5120	148	2.89%	27	76	0	45
Netflow ACL	ТСАМ	I	256	6	2.34%	2	2	0	2
PBR ACL	TCAM	I	5120	24	0.47%	18	6	0	0
Netflow ACL	ТСАМ	0	768	6	0.78%	2	2	0	2

Flow SPAN ACL	TCAM	IO	1024	13	1.27%	3	6	0	4
Control Plane	TCAM	I	512	281	54.88%	130	106	0	45
Tunnel Termination	TCAM	I	512	18	3.52%	8	10	0	0
Lisp Inst Mapping	TCAM	I	512	1	0.20%	0	0	0	1
Security Association	TCAM	I	256	4	1.56%	2	2	0	0
Security Association	TCAM	0	256	5	1.95%	0	0	0	5
CTS Cell Matrix/VPN									
Label	EM	0	8192	0	0.00%	0	0	0	0
CTS Cell Matrix/VPN									
Label	TCAM	0	512	1	0.20%	0	0	0	1
Client Table	EM	I	4096	0	0.00%	0	0	0	0
Client Table	TCAM	I	256	0	0.00%	0	0	0	0
Input Group LE	TCAM	I	1024	0	0.00%	0	0	0	0
Output Group LE	TCAM	0	1024	0	0.00%	0	0	0	0
Macsec SPD	TCAM	I	256	2	0.78%	0	0	0	2

Confirme o espaço TCAM do NAT disponível no código 16.x. Essa saída é de um 9300 com o modelo de Acesso SDM, de modo que o espaço disponível para entradas NAT TCAM não é maximizado.

<#root>

NAT-DEVICE#

show platform hardware fed switch active fwd-asic resource tcam utilization

CAM Utilization for ASIC [0]	Max Values		
	Max values	Used values	
Unicast MAC addresses	32768/1024	20/21	
L3 Multicast entries	8192/512	0/9	
L2 Multicast entries	8192/512	0/11	
Directly or indirectly connected routes	24576/8192	5/23	
QoS Access Control Entries	5120	85	
Security Access Control Entries	5120	145	
Ingress Netflow ACEs	256	8	
Policy Based Routing ACEs	1024	24 < NAT us	age in PRB TCAM
Egress Netflow ACEs	768	8	
Flow SPAN ACEs	1024	13	
Control Plane Entries	512	255	
Tunnels	512	17	
Lisp Instance Mapping Entries	2048	3	
Input Security Associations	256	4	
SGT_DGT	8192/512	0/1	
CLIENT_LE	4096/256	0/0	
INPUT_GROUP_LE	1024	0	
OUTPUT_GROUP_LE	1024	0	
Macsec SPD	256	2	

O espaço de hardware disponível para NAT TCAM pode ser aumentado por uma alteração no modelo SDM para preferir o NAT. Isso aloca o suporte de hardware para o número máximo de entradas de TCAM.

NAT-Device#conf t Enter configuration commands, one per line. End with CNTL/Z. NAT-Device(config)#

sdm prefer nat

Se você comparar o SDM antes e depois da conversão para o modelo NAT, poderá confirmar se o espaço TCAM utilizável é trocado por entradas de controle de acesso de QoS e ACEs de roteamento baseado em política (PBR - Policy Based Routing).

PBR TCAM é onde o NAT é programado.

<#root> NAT-Device# show sdm prefer Showing SDM Template Info This is the Access template. Number of VLANs: 4094 Unicast MAC addresses: 32768 Overflow Unicast MAC addresses: 1024 L2 Multicast entries: 8192 Overflow L2 Multicast entries: 512 L3 Multicast entries: 8192 Overflow L3 Multicast entries: 512 Directly connected routes: 24576 Indirect routes: 8192 Security Access Control Entries: 5120 QoS Access Control Entries: 5120 <-- NAT Policy Based Routing ACEs: 1024 <....> NAT-Device# show sdm prefer Showing SDM Template Info This is the NAT template. Number of VLANs: 4094 Unicast MAC addresses: 32768 Overflow Unicast MAC addresses: 1024 L2 Multicast entries: 8192 Overflow L2 Multicast entries: 512 L3 Multicast entries: 8192 Overflow L3 Multicast entries: 512 Directly connected routes: 24576 Indirect routes: 8192 Security Access Control Entries: 5120 QoS Access Control Entries: 1024

<snip>

Conversão Somente de Endereço (AOT)

A AOT é um mecanismo que pode ser usado quando o requisito de NAT é converter apenas o campo de endereço IP e não as portas de camada 4 de um fluxo. Se isso atender aos requisitos, a AOT poderá aumentar muito o número de fluxos a serem convertidos e encaminhados no hardware.

- A AOT é mais eficaz quando a maioria dos fluxos de NAT é destinada a um único ou pequeno conjunto de destinos.
- A AOT está desabilitada por padrão. Depois de habilitado, é necessário limpar as conversões de NAT atuais.

Observação: a AOT é suportada apenas com NAT estático e NAT dinâmico que não inclui PAT.

Isso significa que as únicas configurações NAT possíveis que permitem a AOT são:

```
#ip nat inside source static <source> <destination>
#ip nat inside source list <list> pool <pool name>
```

Você pode habilitar a AOT com este comando:

<#root>

NAT-Device(config)#

```
no ip nat create flow-entries
```

Confirme se a regra NAT da AOT está programada corretamente. Essa saída é de uma conversão de NAT estático.

<#root>

NAT-DEVICE#

show running-config | include ip nat

ip nat outside ip nat inside

no ip nat create flow-entries

ip nat inside source static 10.10.10.100 172.16.10.10 <-- static NAT enabled

NAT-DEVICE#

show platform hardware fed switch active fwd-asic resource tcam table pbr record 0 format 0 | begin NAT

0a0a0a64

AD 10087000:0000073

ac100a0a

:00000000 AD 10087000:00000073

```
0a0a0a64 = 10.10.10.100 (inside local)
ac100a0a = 172.16.10.10 (inside global)
```

Verifique a entrada da AOT no TCAM através da confirmação de que somente o endereço IP origem e destino está programado quando o fluxo se torna ativo.

<#root>

NAT-DEVICE#

show platform hardware fed switch active fwd-asic resource tcam table pbr record 0 format 0 | begin NAT

c0a80164:0a0a0a64 <-- no L4 ports, only source and destination IP is programmed

AD 10087000:00000b2

TAQ-1 Index-225 (A:0,C:1) Valid StartF-0 StartA-0 SkipF-0 SkipA-0

Informações Relacionadas

- Guia de configuração de NAT do Catalyst 9300 17.3.x
- Guia de configuração de NAT do Catalyst 9400 17.3.x
- Guia de configuração de NAT do Catalyst 9500 17.3.x
- Guia de configuração de NAT do Catalyst 9600 17.3.x
- <u>Suporte Técnico e Documentação Cisco Systems</u>

Interno da Cisco Informações

<u>CSCvz46804</u> Aprimoramento para adicionar um syslog quando os recursos de TCAM de NAT estiverem esgotados ou quando uma entrada de NAT não puder ser programada com êxito.

Sobre esta tradução

A Cisco traduziu este documento com a ajuda de tecnologias de tradução automática e humana para oferecer conteúdo de suporte aos seus usuários no seu próprio idioma, independentemente da localização.

Observe que mesmo a melhor tradução automática não será tão precisa quanto as realizadas por um tradutor profissional.

A Cisco Systems, Inc. não se responsabiliza pela precisão destas traduções e recomenda que o documento original em inglês (link fornecido) seja sempre consultado.