Configurar o Network Time Protocol no Nexus como servidor e cliente

Contents

Introdução
<u>Pré-requisitos</u>
Requisitos
Componentes Utilizados
Configurar
Diagrama de Rede
Configurações
Verificar
1. Confirme se o relógio está configurado com o protocolo NTP.
2. Confirme se o servidor NTP e o Nexus IP estão listados.
3. Confirme se o servidor NTP configurado está selecionado para sincronização.
4. Verifique se os pacotes NTP são recebidos e enviados ao servidor.
5. Procure o pacote enviado do Nexus ao seu cliente NTP para confirmar seu uso do servidor NTP configurado como referência:
6. Execute um ELAM para verificar se os pacotes estão atribuídos corretamente às estatísticas das ACLs de redirecionamento do supervisor (COPP):
Informações Relacionadas

Introdução

Este documento descreve uma configuração e validação simples para uma plataforma Nexus 9000 para atuar como servidor e cliente Network Time Protocol (NTP).

Pré-requisitos

Requisitos

A Cisco recomenda que você tenha conhecimento destes tópicos:

- Software NX-OS Nexus.
- Network Time Protocol (NTP) (Protocolo de tempo de rede).

Componentes Utilizados

As informações neste documento são baseadas no Cisco Nexus 9000 com NXOS versão 10.2(5).

As informações neste documento foram criadas a partir de dispositivos em um ambiente de laboratório específico. Todos os dispositivos utilizados neste documento foram iniciados com uma configuração (padrão) inicial. Se a rede estiver ativa, certifique-se de que você entenda o impacto

potencial de qualquer comando.

Configurar

O NTP é um protocolo de rede usado para sincronizar o tempo de um conjunto de dispositivos dentro de uma rede para correlacionar eventos quando você recebe logs do sistema e outros eventos específicos do tempo de vários dispositivos de rede.

Diagrama de Rede

Configurações

Etapa 1. Ative o NTP.

feature ntp

Etapa 2. Defina o protocolo de clock como NTP.

clock protocol ntp

Etapa 3. Defina o Nexus como cliente e servidor NTP.

Aviso: este protocolo pode levar alguns minutos para ser sincronizado, mesmo depois que os pacotes são trocados do servidor para o cliente.

Observação: O conceito de estrato é empregado pelo NTP para indicar a distância (em saltos NTP) entre uma máquina e uma fonte de tempo autorizada. Esse valor pode ser configurado ao ativar o servidor NTP em um Nexus com o comando "ntp master <stratum>".

```
N9K-1# show running-config ntp
ntp source 10.0.0.1
ntp master 1
```

N9K-2# show running-config ntp ntp server 10.0.0.1 use-vrf default ntp source 10.0.0.2 ntp master 8 N9K-3# show running-config ntp ntp server 172.16.0.1 use-vrf default ntp source 172.16.0.2

Verificar

Observação: para fins de ampliação, a verificação está focada apenas no N9K-2, pois ele executa as funções de servidor e cliente do NTP simultaneamente.

1. Confirme se o relógio está configurado com o protocolo NTP.

N9K-2# show clock 12:32:51.528 UTC Thu Sep 28 2023 Time source is NTP <<<<< 2. Confirme se o servidor NTP e o Nexus IP estão listados.

Observação: a entrada com endereço IP 127.127.1.0 é um IP local que indica que o Nexus foi sincronizado consigo mesmo, representando uma fonte de tempo de referência gerada localmente como parte da função de um servidor NTP.

N9K-2# show ntp peers	
Peer IP Address	Serv/Peer
10.0.0.1 127.127.1.0	Server (configured) Server (configured) <<<

3. Confirme se o servidor NTP configurado está selecionado para sincronização.

Observação: um stratum (st) de 16 indica que o servidor não está sincronizado com uma origem de tempo confiável e nunca será selecionado para sincronização. Começando com o Cisco NX-OS versão 10.1(1), apenas uma stratum de 13 ou inferior pode sincronizar.

N9K-2# show ntp peer-star Total peers : 2 * - selected for sync, + - peer mode(passive), =	tus - peer mode(active), = - polled in client mode					
remote	local	st	: р	110	rea	ich de
=127.127.1.0	10.0.0.2	8	16		0	0.00
*10.0.0.1	10.0.2	2	32	37	'7	0.00

4. Verifique se os pacotes NTP são recebidos e enviados ao servidor.

Observação: o comando "show ntp statistics peer ipaddr <ntp-server>" só funciona para clientes NTP. Se houver valores não padrão nos contadores, você poderá limpá-los usando o comando: "clear ntp statistics all-peers".

N9K-2# show ntp statis	stics pe	eer	ipaddr	10.0.0.1
remote host:	10.0.0.	.1		
local interface:	10.0.0.	. 2		
time last received:	28s			
time until next send:	5s			
reachability change:	876s			
packets sent:	58	<<<	<<<	
packets received:	58	<<<	<<<	
bad authentication:	0			
bogus origin:	0			
duplicate:	0			
bad dispersion:	0			
bad reference time:	0			
candidate order:	6			

Exemplo de captura de pacotes para fluxo de pacotes NTP bidirecional:

N9K-2# ethanalyzer local interface inband display-filter ntp limit-captured-frames 0 Capturing on 'ps-inb' 4 2024-01-01 03:23:47 900233043 172 16 0 2 + 172 16 0 1 NTP 90 NTP Version 4 client

	4 2024-01-01 03:23:47.900233043	$1/2.16.0.2 \rightarrow 1/2.16.$	0.1 NIP 90 NIP Version 4, client
2	5 2024-01-01 03:23:47.900863464	172.16.0.1 → 172.16.0.2	NTP 90 NTP Version 4, server
	6 2024-01-01 03:23:52.926382561	10.0.0.2 → 10.0.0.1	NTP 90 NTP Version 4, client
4	7 2024-01-01 03:23:52.927169592	10.0.0.1 → 10.0.0.2	NTP 90 NTP Version 4, server

5. Procure o pacote enviado do Nexus ao seu cliente NTP para confirmar seu uso do servidor NTP configurado como referência:

```
N9K-2# ethanalyzer local interface inband display-filter ntp limit-captured-frames 0 detail
Capturing on 'ps-inb'
. . .
<output omitted>
. . .
Frame 5: 90 bytes on wire (720 bits), 90 bytes captured (720 bits) on interface ps-inb, id 0
   Interface id: 0 (ps-inb)
       Interface name: ps-inb
   Encapsulation type: Ethernet (1)
   Arrival Time: Jan 1, 2024 03:24:35.900699824 UTC
    [Time shift for this packet: 0.000000000 seconds]
    Epoch Time: 1704079475.900699824 seconds
    [Time delta from previous captured frame: 0.000643680 seconds]
    [Time delta from previous displayed frame: 0.000643680 seconds]
    [Time since reference or first frame: 10.974237168 seconds]
    Frame Number: 5
    Frame Length: 90 bytes (720 bits)
   Capture Length: 90 bytes (720 bits)
    [Frame is marked: False]
    [Frame is ignored: False]
    [Protocols in frame: eth:ethertype:ip:udp:ntp]
Ethernet II, Src: d4:77:98:2b:4c:87, Dst: f8:0b:cb:e5:d9:fb
   Destination: f8:0b:cb:e5:d9:fb
       Address: f8:0b:cb:e5:d9:fb
       .... ..0. .... .... = LG bit: Globally unique address (factory default)
       .... = IG bit: Individual address (unicast)
    Source: d4:77:98:2b:4c:87
       Address: d4:77:98:2b:4c:87
       .... ..0. .... .... = LG bit: Globally unique address (factory default)
       .... = IG bit: Individual address (unicast)
    Type: IPv4 (0x0800)
Internet Protocol Version 4, Src: 172.16.0.1, Dst: 172.16.0.2
   0100 .... = Version: 4
    \dots 0101 = Header Length: 20 bytes (5)
   Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
       0000 00.. = Differentiated Services Codepoint: Default (0)
       \dots \dots 00 = Explicit Congestion Notification: Not ECN-Capable Transport (0)
   Total Length: 76
    Identification: 0xbd85 (48517)
    Flags: 0x0000
       0.... .... = Reserved bit: Not set
       .0.. .... = Don't fragment: Not set
```

..0. = More fragments: Not set Fragment offset: 0 Time to live: 255 Protocol: UDP (17) <<<<< UDP protocol number Header checksum: 0xa5f7 [validation disabled] [Header checksum status: Unverified] Source: 172.16.0.1 <<<<< Destination: 172.16.0.2 <<<<< NTP Client User Datagram Protocol, Src Port: 123, Dst Port: 123 Source Port: 123 Destination Port: 123 Length: 56 Checksum: 0x71d5 [unverified] [Checksum Status: Unverified] [Stream index: 1] [Timestamps] [Time since first frame: 0.000643680 seconds] [Time since previous frame: 0.000643680 seconds] Network Time Protocol (NTP Version 4, server) Flags: 0x24, Leap Indicator: no warning, Version number: NTP Version 4, Mode: server 00.. = Leap Indicator: no warning (0) ..10 0... = Version number: NTP Version 4 (4) \dots .100 = Mode: server (4) Peer Clock Stratum: secondary reference (3) Peer Polling Interval: 4 (16 seconds) Peer Clock Precision: 0.000000 seconds Root Delay: 0.001083 seconds Root Dispersion: 0.013611 seconds Reference ID: 10.0.0.1 <<<<< NTP server Reference Timestamp: Jan 1, 2024 03:22:32.927228435 UTC Origin Timestamp: Jan 1, 2024 03:24:35.896950020 UTC Receive Timestamp: Jan 1, 2024 03:24:35.900271042 UTC Transmit Timestamp: Jan 1, 2024 03:24:35.900397771 UTC

6. Execute um ELAM para verificar se os pacotes estão atribuídos corretamente às estatísticas das ACLs de redirecionamento do supervisor (COPP):

Observação: o tráfego NTP deve ser direcionado para a CPU, portanto tem o flag sup_hit definido.

```
Dst MAC address: D4:77:98:2B:4C:87
Src MAC address: D4:77:98:2B:43:27
Sup hit: 1, Sup Idx: 2753
                                     <<<< packet punt identifier, use below CLI to resolve its meaning</pre>
Dst IPv4 address: 10.0.0.2
Src IPv4 address: 10.0.0.1
Ver = 4, DSCP = 0, Don't Fragment = 0
Proto = 17, TTL = 255, More Fragments = 0
Hdr len = 20, Pkt len = 76, Checksum
                                        = 0xae26
L4 Protocol : 17
UDP Dst Port : 123
UDP Src Port : 123
Drop Info:
-----
LUA:
LUB:
LUC:
LUD:
Final Drops:
vntag:
vntag_valid : 0
           : 0
: 0
vntag_vir
vntag_svif
ELAM not triggered yet on slot - 1, asic - 0, slice - 1
N9K-2(TAH-elam-insel6)# show system internal access-list sup-redirect-stats | i 2753
    2753
                                     copp-system-p-acl-ntp 462 <<<< correct ACL assigned
```

Informações Relacionadas

<u>Guia de configuração de gerenciamento do sistema NX-OS do Cisco Nexus 9000 Series, versão</u> <u>10.2(x)</u>

Sobre esta tradução

A Cisco traduziu este documento com a ajuda de tecnologias de tradução automática e humana para oferecer conteúdo de suporte aos seus usuários no seu próprio idioma, independentemente da localização.

Observe que mesmo a melhor tradução automática não será tão precisa quanto as realizadas por um tradutor profissional.

A Cisco Systems, Inc. não se responsabiliza pela precisão destas traduções e recomenda que o documento original em inglês (link fornecido) seja sempre consultado.