e iR SR 2 /Y B8 7 0f 438 AIDS 7 2 1Y {58 A

CiscoWorks Monitoring Center for Security

B EANREENRE
A

3.x1& BAESHI X

4 x1& BER AR

5.x1& B ES I A

R EREBEMRSEHAN N ZEEFIFABERN, EEFHEENTATRATEN N E4NRNET
EFQEZRID, BHROENERS. AXERH TREERSKESUEEMENEEPaEsXE
TE(URESZZE) NiHHA.

KRR

ER
RNHERBEAFENER,

{58 AR B9 48 4

AR TFRHENRENEGHRAE, B2 , BESHIBBEINERIZ T BETHRAS6E MM
Perl i,

A

BRMHAENESZER , 55 %E Cisco BRERAE,

BFEfF BN BT

//www.cisco.com/en/US/tech/tk801/tk36/technologies_tech_note09186a0080121ac5.shtml

{5 A I S A2 B i BB F R AR A
X ENETHRGRATERN S FR4bat , WSS E R P TR bat,

1. FHEHAP MRS I EI$BASE\CSCOpx\MDC\etc\ids\scripts directory on the VPN/Z £ E 2 fi#
RABNVMS)RFEE. XATEHEEENSHANNEREFEREE. FHEASER
emailalert.pl, F¥ : MRFEAEMEN , FEAREXESRPELNSHEANFSIAZER
o N FIxMRIERET , B3I XEREBEHI AN T4 xMR& ST |, B EA4 12 BEHAX T5.x0R
fR2R , BEEASxERBEM A MREERBBRAALAES , BERBUEAR , WECIBPLT
B—MRAEL5, XEEN , BRREETHF PN,

2. WA EMBENT D NEALFEHARER. B3R , Fsenaitrept BE (IR
) SRR A BB B o itk

3. LGP ELEHHN LR AFHEIPerlfl 2, MSecurity MonitorETTH , 1%EFAdmin >
Event Rules 7R n#r =4,

4. EEESEHLEREOFR , FNMELLAERGERNTIRSE (EHROP , 2REATEER

AR EEIRAIEXERH) -

Specify the Event Filter

g
Event Field Filtering
Severty =)= = High :_j
none I || e
AND]
none #=l- =i
none z||- =]
|AND =]
nonhe :J = j
(Feverity = High) =

Show Filter

e T T

5. EERBMEEOF , P ZEURTHAR | RENTHEPRBZRAREZR,
6. ESEUE S , MA‘S{Query)’ , TR, XX : XTIEEHFA , BENEIF, eEXD
KNE,

Choose the Actions

| EWEL LT

™ Log & Conzole Notification Evert

Rule Actions
™ piatity vis Emai |
Recipiert(s]; L}j ::I
Subjn_an:t: Fulel.disco-uldookgas ::I
Meszage: e »__!

Lzer Matme:

Severity:

debug

Meszage:

¥ Exeeute a Seript

Script File: | emailalert.pl

3

ke

Arguments: l“HGUEW}"

7. SNBIEHATIERPELNER (ERFPNSTELER) &, AR Nemailalert.plI R
et , HSBNs query RBEBFXRERNEMEE . MABTABRMNFTR , AERAEN

“blat” R T2 7 [6) & & FI 7= R & BB T B4

8. Blat2Windows R £t = A F M4 38 ST S Perl i 45 % 3% 68, 7 BB 44 89 2 B2 54 B8 T BB - R o
HVMSZ %8 & E$SBASE\CSCOpx\bin directoryd, BRIFEFRE |, HEVMSIRE S LT

ﬂ:ﬁ‘% Eﬁxﬁ%’lﬂ#ﬁékblato yD%H&EUFile not foundlf-gi% , %Wblatexeiﬁlﬁﬁﬂ

winnt\system328 % , E KB ZXHEAMNEFREN B RFETTF, BERERRHE , HE1T !

blat -install

EUWERFRE , BNAEK.

%
1S

UTREEIELSR1F5|I A

- 3xtERERHIA
- 4 xR REEHIA
- 5.xfR REFHIA

3.x4& BRI A
3. xhr 4% Res 5 F L B A,

3.xfz Biex

#!/usr/bin/perl

#****k**************k************k*************************

kkhkkkkkhkkkkkikhkkkhkhkkhkk*

#

FILE NAME : emailalert.pl

#

DESCRIPTION : This file is a perl script that will be
executed as an

action when an IDS-MC Event Rule triggers, and will
send an

email to SEmailRcpt with additional alert parameters
(similar to

the functionality available with CSPM notifications)
#

NOTE: this script only works with 3.x sensors,
alarms from 4.0

sensors are stored differently and cannot be
represented

in a similar format.

#

NOTE: check the "system" command in the script for
the correct

format depending on whether you're using
IDSMC/SecMon

v1.0 or vl.1l, you may need the "-on" command-
line option.

#

NOTE : This script takes the ${Query} keyword from
the

triggered rule, extracts the set of alarms
that caused

the rule to trigger. It then reads the last
alarm of

this set, parses the individual alarm fields,
and

calls the legacy script with the same set of
command

line arguments as CSPM.

#

The calling sequence of this script must be of the
form:

#

emailalert.pl "${Query}"

#

Where:

#

"${Query}" - this is the query keyword
dynamically

output by the rule when it triggers.

It MUST be wrapped in double quotes when
specifying it in the Arguments

box on the Rule Actions panel.

#

#

#****k**************k************k*************************

kkhkkkkkhkkkkkihkkkhkkhkk*

##

The following are the only two variables that need
changing. $TempIDSFile can be any

filename (doesn't have to exist), just make sure the
directory that you specify

exists. Make sure to use 2 backslashes for each
directory, the first backslash is

so the Perl interpretor doesn't error on the
pathname.

##

SEmailRcpt is the person that is going to receive the
email notifications. Also

make sure you escape the @ symbol by putting a
backslash in front of it, otherwise

yvou'll get a Perl syntax error.

##

$STempIDSFile = "c:\\temp\\idsalert.txt";
$SEmailRcpt = "nobody\@cisco.com";

##

pull out command line arg

##

SwhereClause = S$ARGVI[O0];

##
extract all the alarms matching search expression
##

StmpFile = "alarms.out";

The following line will extract alarms from 1.0
IDSMC/SecMon database, if

using 1.1 comment out the line below and un-comment
the other system line

below it.

V1.0 IDSMC/SecMon version
system("IdsAlarms -s\"$SwhereClause\" -f\"StmpFile\"");

V1.1 IDSMC/SecMon version.
system("IdsAlarms -on -s\"SwhereClause\" -
f\"StmpFile\"");
##
open matching alarm output
if (!open(ALARM_FILE, S$tmpFile)) {
print "Could not open ", StmpFile, "\n";
exit -1;
read to last line
while (<ALARM_FILE>) {
$line = $_;

clean up

close (ALARM_FILE) ;
unlink ($StmpFile) ;

##

split last line into fields
##

@fields = split(/,/, $line);

SeventType = @fields[0];
SrecordId = @fields[1];
SgmtTimestamp = 0; # need gmt time_t
SlocalTimestamp = 0; # need local time_t
SlocalDate = @fields[4];
SlocalTime = @fields([5];
SappId = @fields[6];

ShostId = @fields[7];

SorgId = @fields[8];
$SsrcDirection = @fields[9];
SdestDirection = @fields[10];
Sseverity = @fields[11];
$sigId = @fields[12];
SsubSigId = @fields[13];
Sprotocol = "TCP/IP";
SsrcAddr = @fields[15];
SdestAddr = @fields([16];
SsrcPort = @fields([17];
SdestPort = @fields([18];
SrouterAddr = @fields([19];
ScontextString = @fields([20];

Open temp file to write alert data into,

open (OUT, ">$TempIDSFile") || warn "Unable to open output
file!'\n";

Now write your email notification message. You're
writing the following into

the temporary file for the moment, but this will then
be emailed. Use the format:

##

print (OUT "Your text with any variable name from the
list above \n");

##

Again, make sure you escape special characters with a
backslash (note the : in between $sigId

and $subSigId has a backslash in front of it)

print (OUT "\n");

print (OUT "Received severity S$severity alert at
SlocalDate S$localTime\n");

print (OUT "Signature ID $sigId\:$subSigId from S$srcAddr
to $destAddr\n") ;

print (OUT "ScontextString") ;

close (OUT) ;

then call "blat" to send contents of that file in the
body of an email message.

Blat is a freeware email program for WinNT/95, it
comes with VMS in the

SBASE\CSCOpx\bin directory, make sure you install it
first by running:

##

blat -install <SMTP server address> <source email
address>

##

For more help on blat, just type "blat" at the

command prompt on your VMS system (make

sure it's in your path (feel free to move the
executable to c:\winnt\system32 BEFORE

you run the install, that'll make sure your system
can always find it).

system ("blat \"$TempIDSFile\" -t \"$EmailRcpt\" -s
\"Received IDS alert\"");

4.xf& BETHI A
X4 . xhix 1% B2 L B s,

4 x5 B88

#!/usr/bin/perluse
Time: :Local;#***

R I I I R I R S I S S R S I S

#

FILE NAME : emailalert.pl

#

DESCRIPTION : This file is a perl script that will be
executed as an

action when an IDS-MC Event Rule triggers, and will
send an

email to $EmailRcpt with additional alert parameters
(similar to

the functionality available with CSPM notifications)

#
#
NOTE: this script only works with 4.x sensors. It will
not work with 3.x sensors.

#

NOTES : This script takes the ${Query} keyword from

he

o+

triggered rule, extracts the set of alarms that caused
the rule to trigger. It then reads the last alarm of

this set, parses the individual alarm fields, and

calls the legacy script with the same set of command

line arguments as CSPM.

#

#

The calling sequence of this script must be of the
form:

emailalert.pl "${Query}"
Where:

"${Query}" - this is the query keyword dynamically
output by the rule when it triggers.

It MUST be wrapped in double quotes

when specifying it in the Arguments

box on the Rule Actions panel.

Hod H W o

#

#***

kkkkkhkkkkhkhkkkhkkkhkk*k

##

The following are the only two variables that need
changing. $TempIDSFile can be any

filename (doesn't have to exist), just make sure the
directory that you specify

exists. Make sure to use 2 backslashes for each
directory, the first backslash is

so the Perl interpretor doesn't error on the
pathname.

##

SEmailRcpt is the person that is going to receive the
email notifications. Also

make sure you escape the @ symbol by putting a
backslash in front of it, otherwise

yvou'll get a Perl syntax error.

##
STempIDSFile = "c:\\temp\\idsalert.txt";
$SEmailRcpt = "yourname\@yourcompany.com";

subroutine to add leading 0's to any date variable
that's less than 10.
sub add_zero {

my (Svar) = @_;
if ($Svar < 10) {
Svar = "0" .Svar

}
return S$Svar;

}

subroutine to find one or more IP addresses within an
XML tag (we can have multiple

victims and/or attackers in one alert now).
sub find_addresses {

my (svar) = @_;

my @addresses = ();

if (m/$var/) {

Sraw = $&;

while ($raw =~ m/(\d{1,3}\.){33\d{1,3}/) {
push @addresses, $&;

Sraw = $';

}

Svar = join(', ', @addresses);

return S$Svar;

}

}

pull out command line arg

SwhereClause = $ARGVI[O0];

extract all the alarms matching search expression
StmpFile = "alarms.out";

Extract the XML alert/event out of the database.
system("IdsAlarms -s\"$SwhereClause\" -f\"StmpFile\"");
open matching alarm output

if (!open(ALARM_FILE, S$tmpFile)) {

print "Could not open S$StmpFile\n";

exit -1;

}

read to last line

while (<ALARM FILE>) {

chomp $_;
push @logfile,S_;
}

clean up

close (ALARM_FILE) ;
unlink ($StmpFile) ;

Open temp file to write alert data into,

open (OUT, ">$TempIDSFile") ;

split XML output into fields

Soneline = join('',@logfile);
$oneline =~ s/\<\/events\>//g;
Soneline =~ s/\<\/evAlert\>/\<\/evAlert\>, /g;

@items = split(/,/,Soneline);

If you want to see the actual database query result in
the email, un-comment out the

line below (useful for troubleshooting):

print (OUT "Soneline\n");

Loop until there's no more alerts

foreach (@items) {

if (m/\<hostId\>(.*)\<\/hostId\>/) {
$hostid = $1;
}

if (m/severity="(.*?)"/) {
Ssev = $1;
}

if (m/Zone\=".*"\>(.*)\<\/time\>/) {

$t = $1;

if (St =~ m/(.*)(\d{9})/) {

(Ssec, $min, Shour, $Smday, Smon, Syear, Swday, Syday, $isdst) =
localtime($1);

Year is reported from 1900 onwards (eg. 2003 is 103).
Syear = Syear + 1900;

Months start at 0 (January = 0, February = 1, etc), so
add 1.
Smon = Smon + 1;

Smon = add_zero ($mon) ;
Smday = add_zero (S$mday) ;
Shour = add_zero (Shour);
Smin = add_zero ($min);
Ssec = add_zero ($sec);

}

}

if (m/sigName="(.*?)"/) {
$SigName = $1;
}

if (m/sigId="(.*?)"/) {
$SigID = $1;

if (m/subSigId="(.*?)"/) {
$SubSig = $1;
}

Sattackerstring = "\<attacker.*\<\/attacker";

if (Sattackerstring = find_addresses (Sattackerstring))
{

}

Svictimstring = "\<victim.*\<\/victim";

if ($victimstring = find_addresses ($Svictimstring)) {

}

if (m/\<alertDetails\>(.*)\<\/alertDetails\>/) {
SAlertDetails = $1;
}

Qactions = ();

if (m/\<actions\>(.*)\<\/actions\>/) {
Srawaction = $1;

while (Srawaction =~ m/\<(\w*?)\>(.*?)\</) {
$rawaction = $';

if ($2 eqg "true") {

push @actions, $1;

}

}

if (@actions) {

Sactiontaken = join(', ',6 @actions);
}

}

else {

Sactiontaken = "None";

}

Now write your email notification message. You're
writing the following into

the temporary file for the moment, but this will then
be emailed.

##

Again, make sure you escape special characters with a
backslash (note the : between

the SigID and the SubSig) .

##

Put your VMS servers IP address in the NSDB: line
below to get a direct link

to the signature details within the email.

print (OUT "\nShostid reported a $sev severity alert at
Shour:$min:S$sec on $mon/Smday/S$Syear\n") ;

print (OUT "Signature: $SigName \ ($SigID\:$SubSig\)\n");
print (OUT "Attacker: S$Sattackerstring ---> Victim:
$victimstring\n") ;

print (OUT "Alert details: S$SAlertDetails \n");

print (OUT "Actions taken: Sactiontaken \n");

print (OUT "NSDB: https\://<your VMS server IP
address>/vms/nsdb/html /expsig_$SigID.html\n\n") ;
print(OUT "—-—————— -

close (OUT) ;

Now call "blat" to send contents of the file in the
body of an email message.

Blat is a freeware email program for WinNT/95, it
comes with VMS in the

SBASE\CSCOpx\bin directory, make sure you install it
first by running:

##

blat -install <SMTP server address> <source email
address>

##

For more help on blat, just type "blat" at the
command prompt on your VMS system (make

sure it's in your path (feel free to move the
executable to c:\winnt\system32 BEFORE

you run the install, that'll make sure your system
can always find it).

system ("blat \"$TempIDSFile\" -t \"$EmailRcpt\" -s
\"Received IDS alert\"");

5.x4& B ER B A
X 5.xhix 1% B 255 B L B A<,

5.xf& B.88

#!/usr/bin/perl
use Time::Local;

#***

kkkhkkkhkkkkhkhkkkkkhkk*k

#

FILE NAME : emailalertv5.pl

#

DESCRIPTION : This file is a perl script that will be
executed as an

action when an IDS-MC Event Rule
triggers, and will send an

email to $EmailRcpt with additional
alert parameters (similar to

the functionality available with CSPM
notifications)

#

NOTE: this script only works with 5.x
sensors.

#

NOTES : This script takes the ${Query} keyword
from the

triggered rule, extracts the set of
alarms that caused

the rule to trigger. It then reads the
last alarm of

this set, parses the individual alarm
fields, and

calls the legacy script with the same
set of command

line arguments as CSPM.

#

The calling sequence of this script

must be of the form:

emailalert.pl "${Query}"

Where:

H# o3 H o o

"$S{Query}" - this is the query
keyword dynamically

output by the rule
when it triggers.

It MUST be wrapped in
double quotes

when specifying it in
the Arguments

box on the Rule
Actions panel.

#

#

#***

kkhkkhkkkhkkkkhhkkhkkkhkk*k

##

The following are the only two variables that need
changing. S$TempIDSFile can be any

filename (doesn't have to exist), just make sure the
directory that you specify

exists. Make sure to use 2 backslashes for each
directory, the first backslash is

so the Perl interpretor doesn't error on the
pathname.

##

SEmailRcpt is the person that is going to receive the
email notifications. Also

make sure you escape the @ symbol by putting a
backslash in front of it, otherwise

yvou'll get a Perl syntax error.

##
$STempIDSFile = "c:\\temp\\idsalert.txt";
SEmailRcpt = "gfullage\@cisco.com";

subroutine to add leading 0's to any date variable
that's less than 10.
sub add_zero {

my (Svar) = @_;
if ($var < 10) {
Svar = "0" .Svar

}

return S$Svar;

subroutine to find one or more IP addresses within an
XML tag (we can have multiple

victims and/or attackers in one alert now).

sub find_addresses {

my (Svar) = @_;

my @addresses = ();

if (m/$var/) {
Sraw = $&;

while ($raw =~ m/(\d{1,3}\.){33\d{1,3}/) {
push @addresses, $&;
Sraw = $';

}

$var = join(', ', @addresses);

return S$Svar;

pull out command line arg

SwhereClause = S$ARGVI[O0];

extract all the alarms matching search expression

StmpFile = "alarms.out";

Extract the XML alert/event out of the database.

system("IdsAlarms -os -s\"SwhereClause\" -
f\"StmpFile\"");

open matching alarm output

if (!open(ALARM_FILE, S$tmpFile)) {
print "Could not open S$StmpFile\n";
exit -1;

read to last line

while (<ALARM_FILE>) {
chomp $_;
push @logfile,$_;

clean up

close (ALARM_FILE) ;
unlink ($StmpFile) ;

Open temp file to write alert data into,

open (OUT, ">$TempIDSFile") ;

split XML output into fields

Soneline = join('',@logfile);
Soneline =~ s/\<\/sd\:events\>//g;
Soneline =~

s/\<\/sd\:evIdsAlert\>/\<\/sd\:evIidsAlert\>, /g;
@items = split(/,/,Soneline);

If you want to see the actual database query result
the email, un-comment out the

line below (useful for troubleshooting):

print (OUT "Soneline\n");

Loop until there's no more alerts

foreach (@items) {
unless (S_ =~ /\<\/env\:Body\>/) {

if (m/\<sd\:hostId\>(.*)\<\/sd\:hostId\>/) {

Shostid = $1;

if (m/severity="(.*?)"/) {
Ssev = $1;

in

if (m/Zone\=".*"\>(.*)\<\/sd\:time\>/) {
st = s1;
if (St =~ m/(.*)(\d{9})/) {

(Ssec, $min, Shour, $Smday, Smon, Syear, Swday, Syday, $isdst) =
localtime($1);

Year is reported from 1900 onwards (eg. 2003
is 103).

Syear = Syear + 1900;

Months start at 0 (January = 0, February = 1,
etc), so add 1.

Smon = Smon + 1;

Smon = add_zero ($mon) ;
Smday = add_zero (S$mday) ;
Shour = add_zero (Shour);
Smin = add_zero ($min);
Ssec = add_zero ($sec);

}

if (m/description="(.*?)"/) {
$SigName = $1;

if (m/\ id="(.*?)"/) {
$SigID = $1;

if (m/\<cid\:subsigId\>(.*)\<\/cid\:subsigId\>/) {
$SubSig = $1;

if
(m/\<cid\:riskRatingValue\>(.*)\<\/cid\:riskRatingValue\
>/) |
SRR = $1;

if (m/\<cid\:interface\>(.*)\<\/cid\:interface\>/) {

$Intf = $1;
}
Sattackerstring =
"\<sd\:attacker.*\<\/sd\:attacker";
if (Sattackerstring = find_addresses

(Sattackerstring)) {
}

Svictimstring = "\<sd\:target.*\<\/sd\:target";

if ($victimstring = find_addresses ($Svictimstring))
{

}

if

(m/\<cid\:alertDetails\>(.*)\<\/cid\:alertDetails\>/) {
SAlertDetails = $1;

Qactions = ();
if (m/\<sd\:actions\>(.*)\<\/sd\:actions\>/) {
Srawaction = $1;

while (Srawaction =~ m/\<\w*?2: (\w*?)\>(.*?)\</) {

$rawaction = $';

if ($2 eqg "true") {
push @actions, $1;

}

if (@actions) {

Sactiontaken = join(', ',6 @actions);
}
}
else {
Sactiontaken = "None";

Now write your email notification message. You're
writing the following into

the temporary file for the moment, but this will then
be emailed.

##

Again, make sure you escape special characters with a
backslash (note the : between

the SigID and the SubSig) .

##

Put your VMS servers IP address in the NSDB: line
below to get a direct link

to the signature details within the email.

print (OUT "\nShostid reported a $sev severity alert
at Shour:$min:S$sec on Smon/Smday/Syear\n") ;

print (OUT "Signature: $SigName
\ ($S1igID\:$SubSig\)\n");

print (OUT "Attacker: S$attackerstring ---> Victim:
$victimstring\n") ;

print (OUT "Alert details: S$SAlertDetails \n");

print (OUT "Risk Rating: SRR, Interface: S$Intf \n");

print (OUT "Actions taken: Sactiontaken \n");

print (OUT "NSDB: https\://sec-
srv/vms/nsdb/html/expsig _$SigID.html\n\n") ;

print (OUT "—-——————— e

close (OUT) ;

Now call "blat" to send contents of the file in the
body of an email message.

Blat is a freeware email program for WinNT/95, it
comes with VMS in the

SBASE\CSCOpx\bin directory, make sure you install it
first by running:

##

blat -install <SMTP server address> <source email
address>

##

For more help on blat, just type "blat" at the
command prompt on your VMS system (make

sure it's in your path (feel free to move the
executable to c:\winnt\system32 BEFORE

you run the install, that'll make sure your system
can always find it).

system ("blat \"$TempIDSFile\" -t \"$EmailRcpt\" -s
\"Received IDS alert\"");

Wi

SR A HUATHREENRIETE,

B P B BR

EHERUAT U A HEBRE BB R

1. ERTRRAFTEITUTHT , LREDIatREEF I :

blat

<filename>7~EEVMSz$\éJ2l§J:{fﬁjczlxjcﬁ:ﬂlg%gﬁg‘{[ﬁo QH%EB#WZIK?EWE’QFEF'EEB#IEIEFW
B304, B EE L X B

2. MREMERERERRBNEFERH , BRHANBTRRFE OBITPerliAd . XSRHE R
BPer S ERERE, At , BHFGTRRIFHAA

>cd Program Files/CSCOpx/MDC/etc/ids/scripts
>ema11a1ert pl ${Query}

B g2 E|SybasetiiR , EARBIEL ., XREANEEFIEN s (queri BHER LT BEEE
, WTEMKéw_vi..%ﬁ'{%li{n,mo

| Command Prompt = m] B

D:sProgram Files\CECOpx“MDCuetcsidssscriptsiemailalert.pl ${Query’
Error: SyhaseESgl::-prepareSgl: PREPARE Suvntax error near *'Query’
Sending cistemphidsalert.txt to gfullagefcisco.com
Subject:Recedived High Severity alert

Login name is idsmclPcisco.com

D=“Program Files“CECOpx“MDChetcids scriptsl

BRT BRMEIRA WARRERSTHRER TN, BEEXTNABEERSHAENE
MRKEEAIPer IR EHEIR , WEREB FERH 2RI FEEEXLEHEIR,

HXfER

- BRRLAEGHHTRRA
- BARF R - Cisco Systems

//www.cisco.com/en/US/products/sw/secursw/ps2113/tsd_products_support_series_home.html?referring_site=bodynav
//www.cisco.com/cisco/web/support/index.html?referring_site=bodynav

	配置与脚本的电子邮件通知IDS戒备的使用CiscoWorks Monitoring Center for Security
	目录
	简介
	先决条件
	要求
	使用的组件
	规则

	电子邮件通知配置过程
	脚本
	3.x传感器脚本
	4.x传感器脚本
	5.x传感器脚本

	验证
	故障排除
	相关信息

