配置零子網和全1子網

目錄

<u>簡介</u>

<u>必要條件</u>

需求

採用元件

<u>慣例</u>

<u>背景資訊</u>

零子網

全1子網

零子網和全1子網的問題

零子網問題

全1子網問題

使用零子網和全1子網

相關資訊

簡介

本文檔介紹零子網和全1子網的使用。

必要條件

需求

本文件沒有特定需求。

採用元件

本文件所述內容不限於特定軟體和硬體版本。

本文中的資訊是根據特定實驗室環境內的裝置所建立。文中使用到的所有裝置皆從已清除(預設)的組態來啟動。如果您的網路運作中,請確保您瞭解任何指令可能造成的影響。

慣例

如需檔案慣例的詳細資訊,請參閱技術提示和其他內容的使用格式慣例。

背景資訊

子網劃分將給定的網路地址劃分為更小的子網。結合其他技術,例如網路位址翻譯(NAT)和連線埠位址翻譯(PAT),可更有效率地使用可用的IP位址空間,並大幅減輕位址耗盡的問題。子網劃分的準

則涵蓋第一個和最後一個子網(分別稱為零子網和全1子網)的使用。

零子網

如果對網路地址劃分子網,對網路地址劃分子網後獲得的第一個子網稱為零子網。

考慮B類地址172.16.0.0。預設情況下,B類地址172.16.0.0保留了16位來表示主機部分,因此它允許65534(2¹⁶-2)個有效主機地址。如果網路172.16.0.0/16由於從主機部分借用3位而劃分子網,則獲得八(2³)個子網。下表顯示了透過對地址172.16.0.0劃分子網而獲得的子網、生成的子網掩碼、關聯的廣播地址和有效主機地址的範圍。

子網地址	子網路遮罩	廣播地址	有效主機範圍
172.16.0.0	255.255.224.0	172.16.31.255	172.16.0.1到172.16.31.254
172.16.32.0	255.255.224.0	172.16.63.255	172.16.32.1到172.16.63.254
172.16.64.0	255.255.224.0	172.16.95.255	172.16.64.1到172.16.95.254
172.16.96.0	255.255.224.0	172.16.127.255	172.16.96.1到172.16.127.254
172.16.128.0	255.255.224.0	172.16.159.255	172.16.128.1到172.16.159.254
172.16.160.0	255.255.224.0	172.16.191.255	172.16.160.1到172.16.191.254
172.16.192.0	255.255.224.0	172.16.223.255	172.16.192.1到172.16.223.254
172.16.224.0	255.255.224.0	172.16.255.255	172.16.224.1到172.16.255.254

在上一個示例中,第一個子網(子網172.16.0.0/19)稱為零子網。

劃分子網的網路類別和劃分子網後獲得的子網數量不能確定子網零。它是劃分子網網路地址時獲得的第一個子網。此外,當您寫出子網零地址的二進位制等效值時,所有子網位(本例中為14、15和16位)都為零。零子網也稱為全零子網。

全1子網

對網路地址劃分子網後,最後獲得的子網稱為全1子網。

對於前面的示例,對網路172.16.0.0(子網172.16.224.0/19)劃分子網時獲得的最後一個子網稱為全17名。

劃分子網的網路類別和劃分子網後獲得的子網數量並不能確定全1子網。此外,當您寫入全1子網地址的二進位制等效項時,所有子網位(在本例中為14、15和16位)都是1,因此命名為。

零子網和全1子網的問題

傳統上,強烈建議不要將零子網和全1子網用於IP地址。 基於<u>RFC 950</u>,「在經過子網劃分處理的網路中保留並擴展這些特殊(網路和廣播)地址的解釋非常有用。這意味著不能將子網欄位中的所有零和全部一的值分配給實際(物理)子網。」 這就是網路工程師需要計算借用3位時獲得的子網

數量時,計算出的子網數量為23-2 (6)而不是23 (8)的原因。-2知道零子網和全1子網在傳統上不使用

零子網問題

不建議使用零子網進行IP編址,因為網路與地址難以區分的子網存在固有混淆。

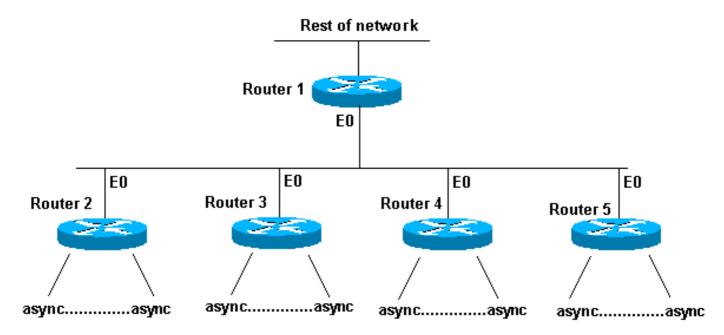
對於前面的示例,請考慮IP地址172.16.1.10。如果計算與此IP地址關聯的子網地址,您會發現答案 是子網172.16.0.0(零子網)。請注意,此子網地址與網路地址172.16.0.0相同,而網路地址最初經 過子網劃分,因此每次執行子網劃分時,您都會得到一個網路和一個地址難以區分的子網(零子網)。這曾經是引起巨大混亂的根源。

在Cisco IOS®軟體版本12.0之前,預設情況下,Cisco路由器不允許在介面上配置屬於零子網的 IP地址。但是,如果使用Cisco IOS軟體12.0版本以前版本的網路工程師發現使用全0子網很安全 ,全局配置模式的ip subnet-zero命令可以用來克服此限制。時至Cisco IOS軟體版本12.0的推出 ,Cisco路由器現在可以預設啟用ip subnet-zero,但是如果網路工程師認為使用零子網不安全,no ip subnet-zero命令則可以用來限制子網零地址的使用。

在Cisco IOS軟體版本8.3之前的版本中,使用了service subnet-zerocommand。

全1子網問題

過去不鼓勵使用全1子網進行IP編址,因為網路與具有相同廣播地址的子網存在固有混淆。


參考前面的示例,最後一個子網(子網172.16.224.0/19)的廣播地址是172.16.255.255,與網路 172.16.0.0的廣播地址相同,而後者首先進行了子網劃分,因此每當您執行子網劃分時,您都會得 到一個具有相同廣播地址的網路和一個子網(全1子網)。換句話說,網路工程師可以在路由器上配 置地址172.16.230.1/19, 但如果這樣做, 他就無法再區分本地子網廣播(172.16.255.255 (/19))和完 整的B類廣播(172.16.255.255(/16))。

雖然現在可以使用全1子網,但配置錯誤可能會引起問題。

◇ 註:請參閱<u>主機和子網數量</u>瞭解詳細資訊。

為了讓您知道會發生什麼,請考慮以下事項:

配置錯誤的多合一子網

路由器2至5是接入路由器,每個路由器都有多個傳入的非同步(或ISDN)連線。網路 (192.168.1.0/24)針對這些內送使用者分成四個部分。每個部分都分配給其中一台接入路由器。並且,這些非同步線路是configuredip unnum e0。路由器1的靜態路由指向正確的接入路由器,而每台接入路由器在路由器1上都有預設路由點。

Router 1的路由表如下所示:

Router 2 routing table:

```
C 192.168.2.0/24 E0
S 192.168.1.0/26 192.168.2.2
S 192.168.1.64/26 192.168.2.3
S 192.168.1.128/26 192.168.2.4
S 192.168.1.192/26 192.168.2.5
```

接入路由器具有相同的乙太網連線路由、相同的預設路由和若干條非同步線路的主機路由(由點對點協定(PPP)提供)。

Router 3 routing table:

C	192.168.2.0/24	E0	C	192.168.2.0/24	E0
S	10.0.0.0/0	192.168.2.1	S	10.0.0.0/0	192.168.2.1
C	192.168.1.2/32	async1	C	192.168.1.65/32	async1
C	192.168.1.5/32	async2	C	192.168.1.68/32	async2
C	192.168.1.8/32	async3	C	192.168.1.74/32	async3
C	192.168.1.13/32	async4	C	192.168.1.87/32	async4
C	192.168.1.24/32	async6	C	192.168.1.88/32	async6
C	192.168.1.31/32	async8	C	192.168.1.95/32	async8
C	192.168.1.32/32	async12	C	192.168.1.104/32	2 async12
C	192.168.1.48/32	async15	C	192.168.1.112/32	2 async15
C	192.168.1.62/32	async18	C	192.168.1.126/32	2 async18

Router 4 routing table: Router 5 routing table:

```
C 192.168.2.0/24
                                         C 192.168.2.0/24 E0
                F0
S 10.0.0.0/0
                 192.168.2.1
                                         S 10.0.0.0/0
                                                          192.168.2.1
                                        C 192.168.1.193/32 async1
C 192.168.1.129/32
                  async1
C 192.168.1.132/32
                                         C 192.168.1.197/32
                    async2
                                                             async2
C 192.168.1.136/32
                                         C 192.168.1.200/32
                    async3
                                                             async3
C 192.168.1.141/32
                                         C 192.168.1.205/32
                    async4
                                                             async4
C 192.168.1.152/32
                    async6
                                         C 192.168.1.216/32
                                                             async6
C 192.168.1.159/32
                                        C 192.168.1.223/32
                    async8
                                                             async8
                                        C 192.168.1.224/32
C 192.168.1.160/32
                    async12
                                                             async12
C 192.168.1.176/32
                                        C 192.168.1.240/32
                    async15
                                                             async15
                                        C 192.168.1.252/32
C 192.168.1.190/32
                    async18
                                                             async18
```

如果非同步線路上的主機配置不正確,掩碼為255.255.255.0而非255.255.255.192,結果會如何 ?一切正常嗎?

瞭解當其中一個主機(192.168.1.24)執行本地廣播(NetBIOS、WINS)時發生的情況。資料包如下所示:

```
s: 192.168.1.24 d: 192.168.1.255
```

Router 2會收到封包。路由器2將資料包傳送到路由器1,路由器1將資料包傳送到路由器5,路由器 5將資料包傳送到路由器1,路由器1將資料包傳送到路由器5,以此類推,直到生存時間(TTL)過期。

以下是另一個範例(主機192.168.1.240):

```
s: 192.168.1.240 d: 192.168.1.255
```

Router 5會收到此封包。路由器5將資料包傳送到路由器1,路由器1將資料包傳送到路由器5,路由器5將資料包傳送到路由器1,路由器1將資料包傳送到路由器5,以此類推,直到TTL過期。如果發生這種情況,您可能會認為自己受到了資料包攻擊。鑑於路由器5上的負載,這不是不合理的假設。

在此範例中,已建立路由回圈。由於Router 5處理全1子網,因此會遭到攻擊。路由器2至4只看到「 廣播」資料包一次。Router 1也遭命中,但如果是Cisco 7513,該路由器可以處理此情況呢?在這 種情況下,您需要使用正確的子網掩碼配置主機。

要防止未正確配置的主機,請在每個接入路由器上建立一個環回介面,將靜態路由192.168.1.255路由到該環回地址。您可以使用Null0介面,但是這會導致路由器產生網際網路控制訊息通訊協定 (ICMP)「無法連線」訊息。

使用零子網和全1子網

必須注意的是,即使不鼓勵這樣做,包含零子網和全1子網的整個地址空間始終都是可用的。從

Cisco IOS軟體版本12.0開始,明確允許使用全1子網,並且明確允許使用零子網。早在Cisco IOS軟 體版本12.0之前,如果輸入ip subnet-zero全局配置命令,就可以使用零子網

有關零子網和全1子網使用情況的問題,請參閱<u>RFC 1878</u>。目前,零子網和全1子網被普遍接受 ,大多數供應商都支援使用。但是,在某些網路(尤其是使用傳統軟體的網路)上,使用全0子網和 全1子網會導致問題。

◇ 附註:只有完成註冊的思科使用者能存取思科內部工具與資訊。

相關資訊

- IP路由通訊協定技術支援頁面
- 思科技術支援與下載

關於此翻譯

思科已使用電腦和人工技術翻譯本文件,讓全世界的使用者能夠以自己的語言理解支援內容。請注意,即使是最佳機器翻譯,也不如專業譯者翻譯的內容準確。Cisco Systems, Inc. 對這些翻譯的準確度概不負責,並建議一律查看原始英文文件(提供連結)。