排除FTD中的OSPF配置故障

目錄
<u>必要條件</u>
<u>需求</u>
<u>採用元件</u>
<u>OSPF背景</u>
基本配置
<u>重分發</u>
<u>篩選</u>
介面引數
 Hello和Dead計時器
MTU Ignore-OSPF
<u>內部FTD</u>
<u>外部FTD</u>
<u>疑難排解指令</u>
show running-config router
show route
show ospf neighbor
show ospf interface
SILOW OSPT GATADASE
<u>化阏貝矶</u>

簡介

本檔案介紹如何使用FMC作為管理員驗證FTD裝置上的OSPF組態並疑難排解。

必要條件

需求

思科建議您瞭解以下主題:

- 開放最短路徑優先(OSPF)概念和功能
- 思科安全防火牆管理中心(FMC)
- 思科安全防火牆威脅防禦(FTD)

採用元件

本文中的資訊係根據以下軟體和硬體版本:

- 虛擬FTD 7.2.5
- 虛擬FMC 7.2.5

本文中的資訊是根據特定實驗室環境內的裝置所建立。文中使用到的所有裝置皆從已清除(預設))的組態來啟動。如果您的網路運作中,請確保您瞭解任何指令可能造成的影響。

OSPF背景

可以在FMC上設定OSPF,以便在FTD裝置與其他OSPF功能裝置之間使用動態路由。

FMC允許針對不同的介面集同時運行兩個OSPF進程。

每台裝置都有一個路由器ID,這類似於OSPF過程中的裝置名稱。預設情況下,這是設定為較低介面IP,但可以自定義為不同的IP。

需要注意的重要一點是,這些引數必須在鄰居上匹配才能形成OSPF鄰接關係:

- 介面屬於同一個IP網路
- 子網路遮罩
- 區域
- Hello間隔和Dead間隔
- MTU
- 區域型別(正常/NSSA/末節)
- 驗證

基本配置

本部分顯示為OSPF配置的基本引數,這些引數用於開始搜尋與其鄰居的鄰接關係。

1. 導航到裝置>裝置管理>編輯裝置

- 2. 按一下Routing頁籤。
- 3. 按一下左側選單欄上的OSPF。
- 4. 選擇Process 1以啟用OSPF配置。FTD可以在不同的介面組上同時執行兩個處理。

區域邊界路由器(ABR)位於兩個不同區域之間,而自治系統邊界路由器(ASBR)位於使用其他路由協 定的裝置之間。

5. 選擇OSPF role作為Internal、ABR、ASBR以及ABR and ASBR。

Device	Routing	Interfaces	Inline Sets	DHCP	VTEP	
Proce	ss 1	ID:	1			
OSPF Role	:					
ASBR		•	Enter Desc	ription here		Advanced
Proce	ss 2	ID:				
OSPF Role	:					
Internal F	Router	Ŧ	Enter Desc	ription here		Advanced

角色選擇

6. (可選)更改自動路由器ID。選擇OSPF role旁邊的Advanced,然後選擇Router ID作為IP address進行自定義。

Advanced			
General	Non Stop Forwarding		
Router ID			
IP Address	-	3.3.3.3	
路由器ID選擇			
7. 選取區域>新增。			
8. 輸入「區域」資	訊:		
・ OSPF進程 ・ 區域ID ・ 區域型別			

• 可用的網路

9. 按一下確定儲存配置。

Edit Area

Area Range Virtual L	ink		
OSPF Process:			
1	*		
Area ID:*			
0			
Area Type:			
Normal	Ψ.		
Metric Value:			
Metric Type:			
Z Available Network +	¢.		Selected Network
Q Search		Add	3.11.0.0_24
0.0.0.0			10.3.11.0_27
10.10.10.0_24			
10.24.197.100 < < Viewing 1-100 of 14	12 > >1		
Authentication:			
			Cancel OK

0

區域選取

重分發

FTD可以將路由從一個OSPF程式重分配到另一個OSPF程式。重分配還可以從RIP、BGP、 EIGRP(7.2+版本)、靜態路由和連線路由到OSPF路由進程。

1. 要配置OSPF重分配,請導航到裝置>裝置管理>編輯裝置。

2. 按一下路由

3. 按一下OSPF。

4. 選擇重分配>增加。

- 5. 輸入重分配欄位:
 - OSPF進程
 - 路由型別(從重分發的位置)
 - 靜態
 - 。已連線
 - ◎ OSPF進程
 - BGP
 - ∘ RIP
 - EIGRP

對於BGP和EIGRP,請增加AS編號。

6. (可選)選擇是否使用子網。

7. 選取測量結果型態。

- 第1類使用外部度量並增加通向ASBR的每一跳的內部開銷。
- 型別2僅使用外部測量結果。
- 8. 按一下確定儲存更改。

Edit Redistribution

OSPF Process*:	1 *]
Route Type:	BGP v]
AS Number*:	312]
Optional		
Internal		
External1		
External2		
NSSA Exte	ernal1	
NSSA Exte	ernal2	
Use Subne	ets	
Metric Value:]
Metric Type:	2 *]
Tag Value:]
RouteMap:	•] +
	Cancel	ОК

ø

篩選

您可以執行區域間過濾,從而限制從某個區域傳送到另一個區域的入站或出站路由。此操作僅在 ABR上執行。

過濾使用字首清單進行配置,然後這些字首清單將連結到OSPF配置。這是可選功能,OSPF無需使 用此功能。

1. 要配置OSPF區域間過濾,請導航到Devices > Device Management > Edit裝置。

- 2. 按一下路由
- 3. 按一下OSPF。
- 4. 選擇區域間>增加。
- 5. 配置過濾欄位:
 - OSPF進程
 - ・ 區域ID
 - 字首清單
 - 流量方向-入站或出站

OSPF Process:*

1

Area ID:*

0

PrefixList:*

filter_4.4.4.0

Traffic Direction:

Inbound

6. 如果您已設定首碼清單,請移至步驟10。如果需要建立新字首,您可以從Objects > Object Management > Prefix Lists > IPv4 prefix list > Add選擇加號或建立該加號。

- 7. 按一下增加條目。
- 8. 使用以下欄位配置字首清單:
 - 序號
 - IP 位址
 - 動作
 - 最小/最大字首長度(可選)

Edit Prefix List Ob	oject				0
Name filter_4.4.4.0					
 Entries (2) 					
					Add
Sequence No A	IP Address	Permit	Min Prefix Length	Max Prefix Length	
5	4.4.4.0/24	Block			/1
10	0.0.0.0/0	 Allow 		32	11

字首清單對象編輯

9. 按一下確定儲存字首清單。

10. 按一下確定儲存區域間配置。

介面引數

對於參與OSPF的每個介面,可以修改某些引數。

1. 要配置OSPF介面引數,請導航到Devices > Device Management > Edit device。

- 2. 按一下路由
- 3. 按一下OSPF。
- 4. 選擇介面>增加。
- 5. 選取要修改的引數

Hello和Dead計時器

傳送OSPF Hello資料包是為了維護裝置之間的鄰接關係。這些資料包按可配置的間隔傳送。如果裝置在dead間隔內未收到來自鄰居的hello資料包(也可以配置),則該鄰居會變為關閉狀態。

預設情況下,Hello間隔為10秒,Dead間隔是Hello間隔的四倍,即40秒。這些間隔在鄰居之間必須 匹配。

Hello Interval:

10

Transmit Delay:

1

Retransmit Interval:

5

40

計時器配置

MTU Ignore-OSPF

MTU ignore覈取方塊是一個選項,用於避免由於鄰居介面之間的MTU不匹配而導致OSPF鄰接停滯 在EXSTART狀態。驗證MTU匹配,因為在該狀態下,DBD在鄰居之間傳送,大小差異會導致問題 。但是,最佳做法是取消選中此選項。

Interface*

inside

Default Cost:

10

Priority:

1

MTU Ignore:

MTU忽略檢查配置

驗證

您可以選擇三種不同型別的介面OSPF身份驗證。預設情況下,不啟用身份驗證。

- 無
- 密碼- 明文密碼
- MD5 使用MD5雜湊

建議使用MD5作為身份驗證,因為它是提供安全性的雜湊演算法。

配置MD5 ID和MD5金鑰,然後按一下確定進行儲存。

Authentication:

 MD5
 •

 + Add

 MD5 Id

 1

MD5金鑰配置

MD5金鑰或口令在經過身份驗證的鄰居的介面引數上必須匹配。

一般CLI驗證

示例拓撲

考慮將此網路拓撲作為示例:

網路拓撲範例

考慮以下因素:

- OSPF在外部FTD、內部FTD和內部路由器上設定。
- 外部FTD被選為ASBR角色,內部FTD被選為ABR,內部路由器被選為內部角色。
- 區域0建立於外部和內部FTD之間,而區域1建立於內部FTD和內部路由器之間。
- 外部FTD也在與另一個裝置執行BGP鄰居關係。
- 由自治系統312獲取的BGP路由被重分配到OSPF中。
- MTU和間隔均使用預設值進行配置。
- 內部FTD正在過濾從內部路由器獲知到區域0的傳入區域間路由。
- 在參與OSPF的所有裝置上,介面身份驗證配置為MD5。

內部FTD

內部FTD的組態如下所示:

使用MD5身份驗證的介面配置

```
interface GigabitEthernet0/0
nameif inside
security-level 0
ip address 10.6.11.1 255.255.255.0
ospf message-digest-key 1 md5 *****
ospf authentication message-digest
!
interface GigabitEthernet0/1
nameif outside
security-level 0
ip address 10.3.11.2 255.255.255.0
ospf message-digest-key 1 md5 *****
ospf authentication message-digest
!
```

OSPF配置表明,網路10.3.11.0/24會通告給區域0,網路10.6.11.0/24會通告給區域1上的鄰居。

區域間過濾將字首清單應用到進入區域0的入站路由。在此字首清單中,來自內部路由器的網路 192.168.4.0被拒絕,並且允許所有其他內容。

Proces	ss 1	ID:	1		
OSPF Role:					
ABR		•	Enter Description	n here	Advanced
Proce	ss 2	ID:			
OSPF Role					
Internal F	louter	Ψ.	Enter Description	n here	Advanced
Area	Redistribution	InterArea	Filter Rule	Summary Address	Interface

OSPF Process	Area ID	Area Type	Networks	Options	Authentication
1	0	normal	10.3.11.0_24	false	none
1	1	normal	10.6.11.0_24	false	none

內部FTD區域組態

Area	Redistribution	InterArea	Filter Rule	Summary Address	Interface		
OSPF Pr	ocess			Area ID		Prefix List Name	Traffic Direction
1				0		filter_192.168.4.0	Inbound

內部FTD篩選組態

Name					
filter_192.168.4.0					
▼ Entries (2)					
					Add
Sequence No A	IP Address	Permit	Min Prefix Length	Max Prefix Length	
5	192.168.4.0/24	Block			/1
10	0.0.0.0/0	Allow		32	11

內部FTD首碼清單

router ospf 1 network 10.3.11.0 255.255.255.0 area 0 network 10.6.11.0 255.255.255.0 area 1 area 0 filter-list prefix filter_192.168.4.0 in log-adj-changes

prefix-list filter_192.168.4.0 seq 5 deny 192.168.4.0/24 prefix-list filter_192.168.4.0 seq 10 permit 0.0.0.0/0 le 32

外部FTD

外部FTD的組態在CLI中顯示如下:

使用MD5身份驗證的介面配置。

```
interface GigabitEthernet0/0
nameif inside
security-level 0
ip address 10.3.11.1 255.255.255.0
ospf message-digest-key 1 md5 *****
ospf authentication message-digest
!
interface GigabitEthernet0/1
nameif outside
security-level 0
ip address 172.16.11.1 255.255.255.0
!
```

OSPF配置顯示,路由10.3.11.0/24已通告給區域0中的內部FTD。

還可以觀察到BGP重分配到OSPF的情況。

Process 1	ID:	1		
OSPF Role: ASBR	•	Enter Descriptio	n here	Advanced
Process 2	ID:			
OSPF Role:				
Internal Router	Ŧ	Enter Descriptio	n here	Advanced
Area Dedictributic	interArea	Filter Pule	Summanı Addross	Interface

OSPF Process	Area ID	Area Type	Networks	Options	Authentication	Cost
1	0	normal	10.3.11.0_27	false	none	

外部FTD區域組態

Area	Redistribution	InterArea	Filter Rule	Summary Address	Interfa	ace		
OSPF P	rocess	Route Type		Match		Subnets	Metric Value	Metric Type
1		bgp		false		true		2

外部FTD重新發佈組態

router ospf 1 network 10.3.11.0 255.255.255.0 area 0 log-adj-changes redistribute bgp 312 subnets

疑難排解指令

有幾個命令可用於確定OSPF是否按預期工作。

注意:當FTD故障排除檔案是除OSPF配置之外生成的,並且需要從FTD CLI手動輸入時 ,show tech files上不會顯示這些命令。

show running-config router

此命令不僅顯示OSPF,還顯示動態路由協定的配置。

在CLI中檢查OSPF相關配置很有用。

show route

show route輸出顯示有關當前可用路由的重要資訊。

- 透過OSPF獲知的路由以字母O顯示。
- 區域間路由以字母O IA顯示。
- 透過重分配從其他路由協定獲知的路由會顯示O E1或O E2字母,具體取決於所選的度量型別

內部FTD的show route輸出顯示,存在三個已知來自ASBR鄰居10.3.11.1的外部路由。

它還顯示網路192.168.4.0/24從同一區域的鄰居10.6.11.2獲知。

<#root>

Internal-FTD#

show route

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, V - VPN i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route, + - replicated route SI - Static InterVRF Gateway of last resort is not set

С 10.3.11.0 255.255.255.0 is directly connected, outside 10.3.11.2 255.255.255.255 is directly connected, outside L. 10.5.11.0 255.255.255.224 [110/1] via 10.3.11.1, 6w5d, outside 0 E2 0 E2 10.5.11.32 255.255.255.224 [110/1] via 10.3.11.1, 6w5d, outside 10.5.11.64 255.255.255.224 [110/1] via 10.3.11.1, 6w5d, outside 0 E2 С 10.6.11.0 255.255.255.0 is directly connected, inside 10.6.11.1 255.255.255.255 is directly connected, inside L 0 192.168.4.0 255.255.255.0 [110/20] via 10.6.11.2, 02:19:24, inside

從外部FTD中,可以觀察到,路由10.6.11.0/24從鄰居10.3.11.2得知並屬於不同區域。

在此輸出中並未觀察到路由192.168.4.0/24,因為它是透過內部FTD篩選的。

此外,從其他裝置得知的三個BGP路由會重新分配到OSPF中,作為外部2型路由(如內部FTD所示)。

<#root>

External-FTD#

show route

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, V - VPN i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route, + - replicated route SI - Static InterVRF, BI - BGP InterVRF

C 10.3.11.0 255.255.255.0 is directly connected, inside

L	10.3.11.1 255.255.255.255 is directly connected, inside
В	10.5.11.0 255.255.255.224 [20/0] via 172.16.11.2, 6w5d
В	10.5.11.32 255.255.255.224 [20/0] via 172.16.11.2, 6w5d
В	10.5.11.64 255.255.255.224 [20/0] via 172.16.11.2, 6w5d
O IA	10.6.11.0 255.255.255.0 [110/20] via 10.3.11.2, 02:03:27, inside
С	172.16.11.0 255.255.255.0 is directly connected, outside
L	172.16.11.1 255.255.255.255 is directly connected, outside

show ospf neighbor

此命令有助於驗證OSPF鄰接的狀態是什麼,以及該鄰居是指定路由器(DR)、備用指定路由器 (BDR)還是其他(DROTHER)。

DR是在網路發生變化時更新同一子網中其餘裝置的裝置。如果不再提供,BDR將擔任DR角色。

此命令也很有用,因為它顯示了鄰居的路由器ID,以及獲知鄰居的IP地址和介面。

也會觀察停頓時間倒計時。如果您有預設計時器,在傳送新的hello資料包並重新啟動計時器之前 ,您可以看到時間從00:40縮短到00:30。

如果此時間一直為零,則鄰接將丟失。

在本範例中,內部FTD輸出顯示,此裝置是一個BDR處於FULL狀態,且有兩個可從每個介面連線的 DR,作為回報。它們的路由器ID分別為10.3.11.1和192.168.4.1。

<#root>

Internal-FTD#

show ospf neighbor

Neighbor ID	Pri	State	Dead Time	Address	Interface
10.3.11.1	1	FULL/DR	0:00:38	10.3.11.1	outside
192.168.4.1	1	FULL/DR	0:00:33	10.6.11.2	inside

show ospf interface

show ospf interface輸出顯示詳細資訊,並更廣泛地展示了每個已配置介面上的OSPF進程。

以下是此輸出顯示的部分引數:

- OSPF進程ID
- 路由器ID
- 度量(成本)
- 狀態- DR、BDR或DROTHER
- 誰是DR和BDR。
- Hello和Dead計時器間隔

- 鄰居摘要
- 身份驗證詳細資訊

在內部FTD的下一個輸出中,可以觀察到,此裝置確實是兩個介面上的BDR,且鄰居與來自show ospf neighbors的資訊相符。

<#root>

Internal-FTD#

show ospf interface

outside is up, line protocol is up Internet Address 10.3.11.2 mask 255.255.255.0, Area 0 Process ID 1, Router ID 10.6.11.1, Network Type BROADCAST, Cost: 10 Transmit Delay is 1 sec, State BDR, Priority 1 Designated Router (ID) 10.3.11.1, Interface address 10.3.11.1 Backup Designated router (ID) 10.6.11.1, Interface address 10.3.11.2 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5 oob-resync timeout 40 Hello due in 0:00:04 Supports Link-local Signaling (LLS) Cisco NSF helper support enabled IETF NSF helper support enabled Index 1/1, flood queue length 0 Next 0x0(0)/0x0(0) Last flood scan length is 1, maximum is 2 Last flood scan time is 0 msec, maximum is 0 msec Neighbor Count is 1, Adjacent neighbor count is 1 Adjacent with neighbor 10.3.11.1 (Designated Router) Suppress hello for 0 neighbor(s) Cryptographic authentication enabled Youngest key id is 1 inside is up, line protocol is up Internet Address 10.6.11.1 mask 255.255.255.0, Area 1 Process ID 1, Router ID 10.6.11.1, Network Type BROADCAST, Cost: 10 Transmit Delay is 1 sec, State BDR, Priority 1 Designated Router (ID) 192.168.4.1, Interface address 10.6.11.2 Backup Designated router (ID) 10.6.11.1, Interface address 10.6.11.1 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5 oob-resync timeout 40 Hello due in 0:00:03 Supports Link-local Signaling (LLS) Cisco NSF helper support enabled IETF NSF helper support enabled Index 1/2, flood queue length 0 Next 0x0(0)/0x0(0) Last flood scan length is 1, maximum is 2 Last flood scan time is 0 msec, maximum is 0 msec Neighbor Count is 1, Adjacent neighbor count is 1 Adjacent with neighbor 192.168.4.1 (Designated Router) Suppress hello for 0 neighbor(s) Cryptographic authentication enabled Youngest key id is 1

此命令具有有關OSPF的鏈路狀態通告(LSA)型別的詳細資訊。輸出非常複雜,僅對更深層的故障排 除有用。

LSA是OSPF在裝置之間交換資訊和更新,而不是傳送完整路由表的方式。

最常見的LSA型別有:

第1類-路由器鏈路狀態-通告路由器的路由器ID

第2類-網路鏈路狀態-與指定路由器在同一鏈路中連線的介面。

第3類-總結網路鏈路狀態-區域邊界路由器(ABR)注入此區域的區域間路由。

第4類-彙總ASB鏈路狀態-自治系統邊界路由器(ASBR)的路由器ID。

第5類-AS外部鏈路狀態-從ASBR獲知的外部路由。

因此,此指令的輸出可從內部FTD範例中解釋。

- 資料庫按區域顯示。
- 連結ID欄包含要注意的重要資訊。
- 如前所述,第1類顯示區域中每個裝置的路由器ID,第2類顯示每個子網鏈路的DR。在本例中,10.3.11.1用於區域0,10.6.11.2用於區域1。
- 第3類顯示區域0的ABR 10.6.11.0和區域1的10.3.11.0注入各自區域的區域間路由。
- 第4類顯示ASBR的路由器ID。區域1認為10.3.11.1裝置是進程的ASBR。
- 第5類顯示ASBR重分配的路由。在本例中,有三條外部路由:10.5.11.0、10.5.11.32和 10.5.11.64。

<#root>

Internal-FTD#

show ospf database

OSPF Router with ID (10.6.11.1) (Process ID 1)

Router Link States (Area 0)

Link ID	ADV Router	Age	Seq#	Checksum Link cou	nt
10.3.11.1	10.3.11.1	234	0x8000002b	0x4c4d 1	
10.6.11.1	10.6.11.1	187	0x8000002e	0x157b 1	
	Net Link States	(Area 0)			
Link ID	ADV Router	Age	Seq#	Checksum	
10.3.11.1	10.3.11.1	234	0x80000029	Ox7f2b	

Summary Net Link States (Area 0)

Link ID	ADV Router	Age	Seq#	Checksum	
10.6.11.0	10.6.11.1	187	0x8000002a	0x7959	
	Router Link Sta	tes (Area 1)			
Link ID	ADV Router	Age	Seq#	Checksum Link coun	t
10.6.11.1	10.6.11.1	187	0x8000002c	0x513b 1	
192.168.4.1	192.168.4.1	1758	0x8000002a	0x70f1 2	
	Net Link States	(Area 1)			
Link ID	ADV Router	Age	Seq#	Checksum	
10.6.11.2	192.168.4.1	1759	0x80000028	Oxd725	
	Summary Net Lin	k States (Ar	ea 1)		
Link ID	ADV Router	Age	Seq#	Checksum	
10.3.11.0	10.6.11.1	189	0x80000029	0x9f37	
	Summary ASB Lin	k States (Ar	ea 1)		
Link ID	ADV Router	Age	Seq#	Checksum	
10.3.11.1	10.6.11.1	189	0x80000029	0x874d	
	Type-5 AS Extern	nal Link Sta	tes		
Link ID	ADV Router	Age	Seq#	Checksum Tag	
10.5.11.0	10.3.11.1	1726	0x80000028	0x152b 311	
10.5.11.32	10.3.11.1	1726	0x80000028	0xd34c 311	
10.5.11.64	10.3.11.1	1726	0x80000028	0x926d 311	
TO. J. TT. 04	TA12171	T1 20	070000020	UNJEUU JII	

相關資訊

- <u>思科技術支援與下載</u>
- <u>瞭解「優先開啟最短路徑」(OSPF) 設計指南</u>

關於此翻譯

思科已使用電腦和人工技術翻譯本文件,讓全世界的使用者能夠以自己的語言理解支援內容。請注 意,即使是最佳機器翻譯,也不如專業譯者翻譯的內容準確。Cisco Systems, Inc. 對這些翻譯的準 確度概不負責,並建議一律查看原始英文文件(提供連結)。