
Cisco MDS 9000 Series Programmability Guide, Release 9.x
First Published: 2022-09-02

Last Modified: 2023-08-18

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

© 2022 Cisco Systems, Inc. All rights reserved.

C O N T E N T S

Preface vP R E F A C E

Preface v

Audience v

Document Conventions v

Related Documentation vi

Obtaining Documentation and Submitting a Service Request vii

New and Changed Information 1C H A P T E R 1

New and Changed Information 1

NX-API 3C H A P T E R 2

About NX-API 3

NX-API Workflow 4

NX-API Performance 4

About NX-API Messages 5

Message Format 5

Security 6

Limitations 6

Structured Output 6

About JSON 7

Configuring NX-API CLI 7

Sample NX-API Scripts 11

Examples of Structured Output 12

NX-API Developer Sandbox 15

NX-API Request Elements 26

NX-API Response Elements 29

Cisco MDS 9000 Series Programmability Guide, Release 9.x
iii

Table of NX-API Response Codes 30

Default Settings 31

Additional References 32

Python API 33C H A P T E R 3

About the Python API 33

Supported Versions 33

Using Python 34

Cisco Python Package 34

Using the CLI Command APIs 35

Invoking the Python Interpreter from the CLI 36

Display Formats 37

Non-interactive Python 38

Running Scripts with Embedded Event Manager 39

Cisco MDS NX-OS Security with Python 40

Examples of Security and User Authority 40

Example of Running Script with Scheduler 42

Ansible 43C H A P T E R 4

Getting Started 44

Host File 44

Documentation 44

Example Playbook 44

Cisco MDS SDK 47C H A P T E R 5

Cisco MDS 9000 Series Programmability Guide, Release 9.x
iv

Contents

Preface

This preface includes the following sections:

• Preface, on page v

Preface
This preface describes the audience, organization of, and conventions used in the Cisco MDS 9000 Series
Configuration Guides. It also provides information on how to obtain related documentation, and contains the
following chapters:

Audience
This publication is for experienced network administrators who configure and maintain Cisco Multilayer
Director Switches (MDS) Devices.

Document Conventions
Command descriptions use the following conventions:

DescriptionConvention
Bold text indicates the commands and keywords that you enter literally,
as shown.

bold

Italic text indicates arguments for which a user supplies the values.Italic

Square brackets enclose an optional element (keyword or argument).[x]

Square brackets enclosing keywords or arguments separated by a vertical
bar indicate an optional choice.

[x | y]

Braces enclosing keywords or arguments separated by a vertical bar
indicate a required choice.

{x | y}

Nested set of square brackets or braces indicate optional or required
choices within optional or required elements. Braces and a vertical bar
within square brackets indicate a required choice within an optional
element.

[x {y | z}]

Cisco MDS 9000 Series Programmability Guide, Release 9.x
v

DescriptionConvention

Indicates a variable for which you supply values, in contexts where italics
cannot be used.

variable

A nonquoted set of characters. Do not use quotation marks around the
string or the string will include the quotation marks.

string

Examples use the following conventions:

DescriptionConvention
Terminal sessions and information the switch displays are in screen font.screen font

Information you must enter is in boldface screen font.boldface screen font

Arguments for which you supply values are in italic screen font.italic screen font

Nonprinting characters, such as passwords, are in angle brackets.< >

Default responses to system prompts are in square brackets.[]

An exclamation point (!) or a pound sign (#) at the beginning of a line
of code indicates a comment line.

!, #

This document uses the following conventions:

Means reader take note. Notes contain helpful suggestions or references to material not covered in the manual.Note

Means reader be careful. In this situation, you might do something that could result in equipment damage or
loss of data.

Caution

Related Documentation
The documentation set for the Cisco MDS 9000 Series Switches includes the following documents.

Release Notes

http://www.cisco.com/c/en/us/support/storage-networking/mds-9000-nx-os-san-os-software/
products-release-notes-list.html

Regulatory Compliance and Safety Information

http://www.cisco.com/c/en/us/td/docs/switches/datacenter/mds9000/hw/regulatory/compliance/RCSI.html

Compatibility Information

http://www.cisco.com/c/en/us/support/storage-networking/mds-9000-nx-os-san-os-software/
products-device-support-tables-list.html

Installation and Upgrade

Cisco MDS 9000 Series Programmability Guide, Release 9.x
vi

Preface
Related Documentation

http://www.cisco.com/c/en/us/support/storage-networking/mds-9000-nx-os-san-os-software/products-release-notes-list.html
http://www.cisco.com/c/en/us/support/storage-networking/mds-9000-nx-os-san-os-software/products-release-notes-list.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/mds9000/hw/regulatory/compliance/RCSI.html
http://www.cisco.com/c/en/us/support/storage-networking/mds-9000-nx-os-san-os-software/products-device-support-tables-list.html
http://www.cisco.com/c/en/us/support/storage-networking/mds-9000-nx-os-san-os-software/products-device-support-tables-list.html

http://www.cisco.com/c/en/us/support/storage-networking/mds-9000-nx-os-san-os-software/
products-installation-guides-list.html

Configuration

http://www.cisco.com/c/en/us/support/storage-networking/mds-9000-nx-os-san-os-software/
products-installation-and-configuration-guides-list.html

CLI

http://www.cisco.com/c/en/us/support/storage-networking/mds-9000-nx-os-san-os-software/
products-command-reference-list.html

Troubleshooting and Reference

http://www.cisco.com/c/en/us/support/storage-networking/mds-9000-nx-os-san-os-software/
tsd-products-support-troubleshoot-and-alerts.html

To find a document online, use the Cisco MDS NX-OS Documentation Locator at:

http://www.cisco.com/c/en/us/td/docs/storage/san_switches/mds9000/roadmaps/doclocater.html

Obtaining Documentation and Submitting a Service Request
For information on obtaining documentation, using the Cisco Bug Search Tool (BST), submitting a service
request, and gathering additional information, see What's New in Cisco Product Documentation, at:
http://www.cisco.com/c/en/us/td/docs/general/whatsnew/whatsnew.html.

Subscribe to What's New in Cisco Product Documentation, which lists all new and revised Cisco technical
documentation as an RSS feed and delivers content directly to your desktop using a reader application. The
RSS feeds are a free service.

Cisco MDS 9000 Series Programmability Guide, Release 9.x
vii

Preface
Obtaining Documentation and Submitting a Service Request

http://www.cisco.com/c/en/us/support/storage-networking/mds-9000-nx-os-san-os-software/products-installation-guides-list.html
http://www.cisco.com/c/en/us/support/storage-networking/mds-9000-nx-os-san-os-software/products-installation-guides-list.html
http://www.cisco.com/c/en/us/support/storage-networking/mds-9000-nx-os-san-os-software/products-installation-and-configuration-guides-list.html
http://www.cisco.com/c/en/us/support/storage-networking/mds-9000-nx-os-san-os-software/products-installation-and-configuration-guides-list.html
http://www.cisco.com/c/en/us/support/storage-networking/mds-9000-nx-os-san-os-software/products-command-reference-list.html
http://www.cisco.com/c/en/us/support/storage-networking/mds-9000-nx-os-san-os-software/products-command-reference-list.html
http://www.cisco.com/c/en/us/support/storage-networking/mds-9000-nx-os-san-os-software/tsd-products-support-troubleshoot-and-alerts.html
http://www.cisco.com/c/en/us/support/storage-networking/mds-9000-nx-os-san-os-software/tsd-products-support-troubleshoot-and-alerts.html
http://www.cisco.com/c/en/us/td/docs/storage/san_switches/mds9000/roadmaps/doclocater.html
http://www.cisco.com/c/en/us/td/docs/general/whatsnew/whatsnew.html
http://www.cisco.com/c/en/us/td/docs/general/whatsnew/whatsnew.html

Cisco MDS 9000 Series Programmability Guide, Release 9.x
viii

Preface
Obtaining Documentation and Submitting a Service Request

C H A P T E R 1
New and Changed Information

• New and Changed Information, on page 1

New and Changed Information
This table summarizes the new and changed features in the Cisco MDS 9000 Series Programmability Guide,
and the sections in which they are documented.

Table 1: New and Changed Features

Topic Where DocumentedIntroduced in Cisco MDS
NX-OS Release

DescriptionNew/Enhanced Features

Python API, on page 339.2(2)Support for Python
version 2.7.8 was
removed.

Python

NX-API, on page 38.5(1)Support for installing
NX-API certificates with
encrypted private key and
using trust point
certificate.

NX-API

Python API, on page 338.4(2)Support for Python 3.0 is
added.

Python

Ansible, on page 438.4(1)Support for Ansible is
added.

Ansible

Cisco MDS 9000 Series Programmability Guide, Release 9.x
1

Topic Where DocumentedIntroduced in Cisco MDS
NX-OS Release

DescriptionNew/Enhanced Features

NX-API, on page 38.4(1)The cli_show_array
command type support is
added.

The NX-API Developer
Sandbox was modified.
The Command
Reference option is
added.

Support for Java and
JavaScript code format is
added.

NX-API

NX-API, on page 38.3(1)TheNX-API over HTTPS
self-signed certificate
expiry time is modified in
the NX-OS 8.3(1) release.

NX-API

NX-API, on page 37.3(0)D1(1)NX-API feature was
introduced.

NX-API

Cisco MDS 9000 Series Programmability Guide, Release 9.x
2

New and Changed Information
New and Changed Information

C H A P T E R 2
NX-API

This chapter contains the following sections:

• About NX-API, on page 3
• NX-API Workflow, on page 4
• NX-API Performance, on page 4
• About NX-API Messages, on page 5
• Message Format, on page 5
• Security, on page 6
• Limitations, on page 6
• Structured Output, on page 6
• Configuring NX-API CLI, on page 7
• Sample NX-API Scripts, on page 11
• Examples of Structured Output , on page 12
• NX-API Developer Sandbox, on page 15
• NX-API Request Elements, on page 26
• NX-API Response Elements, on page 29
• Default Settings, on page 31
• Additional References, on page 32

About NX-API
NX-API is an enhancement to the Cisco MDS 9000 Series CLI system.

Cisco MDS 9000 NX-API is an RPC-style API, taking and executing CLI commands. Based on HTTP or
HTTPS protocols as common to other Representational State Transfer (REST) API frameworks, it allows
programmatic access to a CiscoMDS switch. NX-API provides the configuration andmanagement capabilities
of Cisco MDS NX-OS CLI with a modern web-based API, enabling users to control a Cisco MDS switch
using a web browser. When coupled with a programming language like Python and the appropriate libraries,
it facilitates storage networking automation.

Cisco MDS NX-API supports certain show commands and configuration commands that are noninteractive.

A noninteractive command is a command that does not prompt the user to enter an input from the keyboard
to proceed further.

Note

Cisco MDS 9000 Series Programmability Guide, Release 9.x
3

NX-API Workflow
The NX-API backend uses the NGINX HTTP server. The NGINX server interfaces between the external
client and the NXAPI server in the switch.

Figure 1: NX-API Workflow

NX-API Performance
NX-API throughput performance depends on the following factors:

• HTTP and HTTPS—NX-API performance on an HTTP server is better compared to that on an HTTPS
server. This is because an HTTPS server has an overhead of encrypting and decrypting data to provide
more security.

• Cisco MDS Switches (memory and process limitation)—NX-API performance is better in devices with
more memory.

• Command output size—NX-API performance is better when the command outputs are smaller.

• Structured and unstructured outputs of the show commands—NX-API performance is better with
unstructured outputs. Commands that support structured outputs are also called as NX-API aware
commands in the document.

Cisco MDS 9000 Series Programmability Guide, Release 9.x
4

NX-API
NX-API Workflow

About NX-API Messages
HTTP Header

A header allows a client and a server to pass extra information as colon separated property-value pairs in
requests and responses.

This is where the content encoding is specified for an NX-API request. The supported content types are:

ValuesTypeDescriptionTag

application/json

application/json-rpc

application/xml

stringRequest encoding typecontent-type

HTTP Method

Cisco MDS NX-API uses the POST method.

Message Body

The message body or payload contains the data for the HTTP method. For a list of supported objects see the
NX-API Request Elements section.

Message Response

The message response is an HTTP return code and an HTTP response body that contains the data returned
by the method. For a list of supported elements see the NX-API Respone Elements section. For a list of
response codes refer to the NX-API Response Codes section.

Message Format
• Cisco NX-API output of supported commands can be viewed in XML, JSON, and JSON-RPC. This
message format can be used for both requests and responses.

• XML—Cisco NX-API proprietary protocol for delivering Cisco MDS NX-OS CLI commands in
an XML payload.

• JSON—Cisco NX-API proprietary protocol for delivering Cisco MDS NX-OS CLI commands in
a JSON payload.

• JSON-RPC—A standard lightweight remote procedure call (RPC) protocol that can be used to
deliver Cisco MDS NX-OS CLI commands in a JSON payload. The JSON-RPC 2.0 specification
is outlined by jsonrpc.org.

NX-API does not map directly to the Cisco NX-OS NETCONF implementation.

Cisco MDS 9000 Series Programmability Guide, Release 9.x
5

NX-API
About NX-API Messages

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/mds9000/sw/8_x/programmability/cisco_mds9000_programmability_guide_8x/nx_api.html#concept_596471F27D924ED8A0FEA827DCF9AF33
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/mds9000/sw/8_x/programmability/cisco_mds9000_programmability_guide_8x/nx_api.html#concept_6710871163C04D26A7CC0B542401F33E
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/mds9000/sw/8_x/programmability/cisco_mds9000_programmability_guide_8x/nx_api.html#concept_B7FB5FC0A7EB4BD897FEE5FCCA8899FF
http://www.jsonrpc.org/

Security
By default, Cisco MDS NX-API uses HTTP basic authentication (that is, all command requests must contain
the username and password of the device in the HTTP header). NX-API can also leverage HTTPS to secure
and encrypt data. An HTTPS connection provides more security over an HTTP connection. NX-API provides
session-based cookie authentication as an alternative to the HTTP authentication method.

On Cisco NX-OS Releases 8.1(x) and 8.2(x), when NX-API is enabled over HTTPS, a 2048-bit SHA-1
self-signed certificate is created. This certificate is valid for two years. When an expired certificate is used,
the browser displays a warning about security vulnerabilities. To avoid such vulnerabilities, we recommend
the use of a CA-signed certificate. From Cisco NX-OS Release 8.3(1) and later, the self-signed certificate
expires after 24 hours. We recommend that you use a CA-signed certificate.

For information on configuring CA-signed certificates, see the Configuring Certificate Authorities and Digital
Certificates section in the Cisco MDS 9000 Series Security Configuration Guide, Release 8.x.

NX-API is integrated into the CLI authentication system of the Cisco MDS switch. This means that users
must have the appropriate privilege to run CLI commands on the switch that are posted through NX-API. For
example, a user with read only privileges on a CiscoMDS 9000 switch, cannot execute configuration commands
through NX API.

NX-API performs authentication through a programmable authentication module (PAM) on a switch. Use
cookies to reduce the number of PAM authentications, which in turn reduces the load on the PAM.

NX-API provides a session-based cookie, nxapi_auth when users first authenticate successfully. An nxapi_auth
cookie expires in 600 seconds (10 minutes). This value is fixed and cannot be configured. The session cookie
is used to avoid reauthentication during communication. If the session-based cookie is not included with
subsequent requests, another session-based cookie is required; this is obtained through a full authentication
process. Avoiding unnecessary use of the authentication process helps to reduce the workload of the MDS
switch.

Limitations
• The XML output for FCIP interface related commands is not supported.

• The XML output for consistency checker commands is not supported.

Structured Output
The NX-OS supports redirecting the standard output of various show commands in the following structured
output formats:

• XML

• JSON. The limit for JSON output is 60 MB.

• JSON Native

Converting the standard Cisco MDS NX-OS output to any of these formats occurs on the Cisco MDS NX-OS
CLI by "piping" the output to a JSON, JSON Native, or a XML interpreter. The JSON and XML interpreters

Cisco MDS 9000 Series Programmability Guide, Release 9.x
6

NX-API
Security

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/mds9000/sw/8_x/config/security/cisco_mds9000_security_config_guide_8x/configuring_certificate_authorities_digital_certificates.html#con_2087600
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/mds9000/sw/8_x/config/security/cisco_mds9000_security_config_guide_8x/configuring_certificate_authorities_digital_certificates.html#con_2087600

are built-in into Cisco MDS NX OS software. For example, you can issue the show ip access command with
the logical pipe (|) and specify the output format.The Cisco MDS NX-OS command output is properly
structured and encoded in that format. This feature enables programmatic parsing of the data and supports
streaming data from the switch through software streaming telemetry.

For more information on how to select different output formats, see NX-API Developer Sandbox, on page
15 section.

From Cisco MDS NX-OS Release 8.3(1), Cisco has implemented an enhanced version of JSON called JSON
Native. This is a new CLI option to choose from. JSON Native displays the JSON output faster and more
efficiently by bypassing an extra layer of command interpretation. In fact, JSON Native preserves the data
type in the output; it displays integers as integers instead of converting them to a string for an output. We
recommend to use JSON Native.

About JSON
JavaScript Object Notation (JSON) is a light-weight text-based open standard that is designed for
human-readable data and is an alternative to XML. JSON was originally designed from JavaScript, but it is
language-independent data format. JSON and JSON Native are supported for command output.

The two primary data structures that are supported in some way by all modern programming languages are
as follows:

• Ordered List of values—Often known as Array or List (for example, it is List in Python)

• Collection of Key/Value pairs—Often known as Objects or Dictionary (for example, it is Dictionary in
Python)

CLI Execution
switch# show cdp neighbors | json
{
"TABLE_cdp_neighbor_brief_info": {
"ROW_cdp_neighbor_brief_info": {
"device_id": "SW-DRISHTI-ECBU-L13",
"interface": "mgmt0",
"ttl": "168",
"capability": [
"switch",
"IGMP_cnd_filtering"

],
"platform_id": "cisco",
"port_id": "GigabitEthernet0/7"

}
},
"neigh_count": "1"

}

Configuring NX-API CLI
The commands, command type, and output type for the Cisco MDS 9000 Series devices are entered using
Cisco MDS NX-API by encoding the CLIs into the body of a HTTP/HTTPS POST. The response to the
request is returned in XML or JSON output format.

For more details about NX-API response codes, see Table of NX-API Response Codes, on page 30.

Cisco MDS 9000 Series Programmability Guide, Release 9.x
7

NX-API
About JSON

After configuring NX-API on the MDS switch, it may be accessed through the following URLs:

• HTTP - http://switch_ip_address:port-number/ins

• HTTPs - https://switch_ip_address:port-number/ins

For default HTTP and HTTPS settings, refer the Default Settings, on page 31 section.

The following example shows how to configure and enable NX-API:

1. Ensure that the switch is accessible through the management interface.

Refer to the Configuring the Management Interface section in the Cisco MDS 9000 Series Fundamentals
Configuration Guide on how to enable the management interface.

2. Enable the NX-API feature.
switch# configure terminal
switch(config)# feature nxapi

3. (Optional) Disable the NX-API feature.
switch(config)# no feature nxapi

4. After configuring NX-API on the MDS switch, it may be accessed through the HTTP/HTTPS ports:

(Optional) Configure HTTP port for NX-API.
switch(config)# nxapi http port 8080

Use the no form of the command to disable it.

(Optional) Configure HTTPS port for NX-API.
switch(config)# nxapi https port 8443

Use the no form of the command to disable it.

5. (Optional) Install an identity certificate for NX-API HTTPS connections. Either a trust point or NX-API
certificate may be used. You cannot configure both sources at the same time.

a. Install a certificate with an unencrypted private key that is used only by the NX-API feature:
switch(config)# nxapi certificate certfile key keyfile

b. Install a certificate with an encrypted private key that is used only by the NX-API feature:
switch(config)# nxapi certificate certfile key keyfile password passphrase

c. Use an already installed certificate in the trustpoint repository that may be shared with other features:

switch(config)# nxapi trustpoint label

Installing a new NX-API certificate will reset the NX-API server. Installing a certificate from a host with
NX-API may cause the script to fail.

Note

For information about configuring trust points, see the Configuring Certificate Authorities and Digital
Certificates chapter in the Cisco MDS 9000 Series Security Configuration Guide, Release 8.x.

Cisco MDS 9000 Series Programmability Guide, Release 9.x
8

NX-API
Configuring NX-API CLI

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/mds9000/sw/8_x/config/fundamentals/cisco_mds9000_fundamentals_config_guide_8x/basic_device_management.html#task_F0F37F2F39A24B05915F307B85AD3E9E
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/mds9000/sw/8_x/config/security/cisco_mds9000_security_config_guide_8x/configuring_certificate_authorities_digital_certificates.html#con_2087600
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/mds9000/sw/8_x/config/security/cisco_mds9000_security_config_guide_8x/configuring_certificate_authorities_digital_certificates.html#con_2087600
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/mds9000/sw/8_x/config/security/cisco_mds9000_security_config_guide_8x.html

• certfile is a signed certificate for this switch in privacy-enhanced mail (PEM) format. PEM format
is a standard file format for storing and sending cryptographic RSA keys, certificates, and other data,
based on a set of 1993 IETF standards.

• keyfile is the private key for this switch in the PEM format. If the key is encrypted then the password
option must also be specified.

• passphrase is the password that is used to encrypt the private key.

• label is the name of an already configured cryptographic trust point.

• Certificates and keys installed using the nxapi certificate key command are not shared with any other
crytographic features on the switch.

• The password option used in the nxapi certificate key command is available only from Cisco MDS
NX-OS Release 8.5(1).

Note

6. (Optional) If required, allowweak SSL ciphers for NX-API HTTPS connections. This reduces the security
of SSL connections. However, this may be required for older devices to communicate with the switch.
switch(config)# nxapi ssl ciphers weak

7. (Optional) If required, configure SSL transports for NX-API HTTPS connections. Enabling non-default
older transports reduces the security of SSL connections. However, this may be required for older devices
to communicate with the switch. See Configuring SSL Transport for an LDAP Server to configure a SSL
between LDAP client and server.

• switch(config)# nxapi ssl protocols TLSv1.1 TLSv1.2 TLSv1.3

• switch(config)# nxapi ssl protocols TLSv1.3

Preparing an Identity Certificate for Use in NX-API

An identity certificate for NX-API must be created before it can be imported with the nxapi certificate
command. The certificate must consist of the switch identity certificate only; all CA and intermediate authority
certificates must be removed. The private key must be removed and the total size must be less than 4096 bytes.

If a switch identity certificate is already installed in the switch crypto infrastructure under a trustpoint, this
may be exported and reformattted, and the private key extracted, to be used in NX-API. If there is no switch
identity certificate already installed, then it needs to be created by the CA.

For information on how to create a certificate, see the Configuring Certificate Authorities andDigital Certificates
chapter in the Cisco MDS 9000 Series Security Configuration Guide, Release 8.x.

The tools to prepare an existing identity certificate for NX-API use are not available on the switch. This must
be done on another device such as a host with OpenSSL installed.

Note

1. (Optional) If a switch identity certificate is already installed on the switch, export it in PKCS12 format
using the following command:
switch(config)# crypto ca export trustpoint_name pkcs12 mytpexport.pkcs12 my_passphrase

Cisco MDS 9000 Series Programmability Guide, Release 9.x
9

NX-API
Configuring NX-API CLI

https://www.cisco.com/c/en/us/td/docs/dcn/mds9000/sw/9x/configuration/security/cisco-mds-9000-nx-os-security-configuration-guide-9x/configuring_security_features_on_external_aaa_server.html?bookSearch=true#Cisco_Task.dita_b87f7693-b573-4537-b4c5-8bde835d8579
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/mds9000/sw/8_x/config/security/cisco_mds9000_security_config_guide_8x/configuring_certificate_authorities_digital_certificates.html#con_2087600

2. Upload the file to a host with OpenSSL installed on it:
switch# copy mytpexport.pkcs12 sftp://10.10.2.2

3. Extract the identity certificate:
host$ openssl pkcs12 -in mytpexport.pkcs12 -nokeys -clcerts -out idcert.pem
Enter Import Password: my_passphrase
host$

4. Extract unencrypted private key:
host$ openssl pkcs12 -in mytpexport.pkcs12 -nocerts -nodes | openssl rsa -out
unencryptedprivkey.pem
Enter Import Password:
writing RSA key
host$

5. Download the 2 files to the switch bootflash:
switch# copy sftp://10.10.2.2/idcert.pem bootflash:
switch# copy sftp://10.10.2.2/unencryptedprivkey.pem bootflash:

The files are now ready to be imported using the nxapi certificate command.

Using NX-API with cURL

Let us now examine the content of the show.version.json file on the host.
linux$ cat show.version.json
[{ "jsonrpc": "2.0", "method": "cli", "params": { "cmd": "show version", "version": 1 },
"id": 1 }]
EOF

Now use cURL on host to authenticate the switch and send it the desired POST request.

linux$ curl -v -u admin:cisco -H "Content-Type: application/json-rpc" -H "Cache-Control:
no-cache" -d @show.version.json -X POST http://10.10.2.2:80/ins

Note: Unnecessary use of -X or --request, POST is already inferred.
* Trying 10.10.2.2:80...
* Connected to 10.10.2.2:80 (10.10.2.2:80) port 80 (#0)
* Server auth using Basic with user 'admin'
> POST /ins HTTP/1.1
> Host: 10.10.2.2:80
> Authorization: Basic YWRtaW46bmJ2XzEyMzQ1
> User-Agent: curl/7.70.0
> Accept: */*
> Content-Type: application/json-rpc
> Cache-Control: no-cache
> Content-Length: 99
>
* upload completely sent off: 99 out of 99 bytes
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
< Server: nginx/1.7.10
< Date: Mon, 14 Jun 1976 13:28:43 GMT
< Content-Type: application/json-rpc; charset=UTF-8
< Transfer-Encoding: chunked
< Connection: keep-alive
< Set-Cookie: nxapi_auth=dzqnf:1fNa+E8KGq0ZZM6TRZTFKTWejBg=; Secure; HttpOnly;
< X-Frame-Options: SAMEORIGIN
< X-XSS-Protection: 1; mode=block

Cisco MDS 9000 Series Programmability Guide, Release 9.x
10

NX-API
Configuring NX-API CLI

< X-Content-Type-Options: nosniff
< Strict-Transport-Security: max-age=31536000; includeSubDomains
< Content-Security-Policy: block-all-mixed-content; base-uri 'self'; default-src 'self';
script-src 'self'; style-src 'self'; img-src 'self' ; connect-src 'self'; font-src 'self';
object-src 'none'; media-src 'self'; form-action 'self'; frame-ancestors 'self';
<
{

"jsonrpc": "2.0",
"result": {

"header_str": "Cisco Nexus Operating System (NX-OS) Software\nTAC support:
http://www.cisco.com/tac\nDocuments:
http://www.cisco.com/en/US/products/ps9372/tsd_products_support_series_home.html\nCopyright
(c) 2002-2020, Cisco Systems, Inc. All rights reserved.\nThe copyrights to certain works
contained herein are owned by\nother third parties and are used and distributed under
license.\nSome parts of this software are covered under the GNU Public\nLicense. A copy of
the license is available at\nhttp://www.gnu.org/licenses/gpl.html.\n",

"bios_ver_str": "2.1.17",
"loader_ver_str": "N/A",
"kickstart_ver_str": "8.4(1)SK(0) [build 8.4(1)SK(0.160)] [gdb]",
"sys_ver_str": "8.4(1)SK(0) [build 8.4(1)SK(0.160)] [gdb]",
"bios_cmpl_time": "01/08/14",
"kick_file_name": "bootflash:///kick-sky160",
"kick_cmpl_time": " 12/20/2020 12:00:00",
"kick_tmstmp": "09/08/2020 09:42:15",
"isan_file_name": "bootflash:///sky-sep14-02",
"isan_cmpl_time": " 12/20/2020 12:00:00",
"isan_tmstmp": "09/14/2020 05:56:35",
"chassis_id": "MDS 9250i 40 FC 2 IPS 8 FCoE (2 RU) Chassis",
"module_id": "40FC+8FCoE+2IPS Supervisor",
"cpu_name": "Motorola, e500v2",
"memory": 4088480,
"mem_type": "kB",
"proc_board_id": "JAF1852AAFC",
"host_name": "host",
"bootflash_size": 4001760,
"kern_uptm_days": 0,
"kern_uptm_hrs": 1,
"kern_uptm_mins": 25,
"kern_uptm_secs": 13,
"rr_usecs": 715180,
"rr_ctime": "Mon Jun 14 12:02:47 1976",
"rr_reason": "Reset Requested by CLI command reload",
"rr_sys_ver": "8.4(1)SK(0.160)",
"rr_service": "",
"manufacturer": "Cisco Systems, Inc."

},
"id": 1,
"cmd": "show version"

* Connection #0 to host 10.197.155.246 left intact

Sample NX-API Scripts
You can access sample scripts that demonstrate how to use a script with NX-API. To access a sample script,
click the following link then choose the directory that corresponds to the required software release:
https://github.com/datacenter/nxos/tree/master/nxapi/samples.

Cisco MDS 9000 Series Programmability Guide, Release 9.x
11

NX-API
Sample NX-API Scripts

https://github.com/datacenter/nxos/tree/master/nxapi/samples

Examples of Structured Output
This section lists a selected few examples of CiscoMDSNX-OS commands that are displayed as XML, JSON
and JSON Native output formats.

To check if a particular show command is NX-API-aware, enter the command along with | xml on the switch:

command | xml

If a command is NX-API-aware (supports structured output), the resulting output is in XML format:
switch# show device-alias merge status | xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns="http://www.cisco.com/nxos:8.4.1.SK.0.:ddas"
xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0">
<nf:data>
<show>
<device-alias>
<merge>
<status>
<__readonly__>
<result>Success</result>
<reason>None</reason>
</__readonly__>
</status>
</merge>
</device-alias>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>

If a command is not NX-API-aware, the resulting output has the following error:
switch# show logging logfile | xml

Error: This command does not support XML output.

This example shows how to display the show version command in the XML format:

switch(config)# show version | xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns="http://www.cisco.com/nxos:8.4.2.:sysmgrcli"
xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0">
<nf:data>
<show>
<version>
<__readonly__>
<header_str>Cisco Nexus Operating System (NX-OS) Software

TAC support: http://www.cisco.com/tac
Documents: http://www.cisco.com/en/US/products/ps9372/tsd_products_support_series_home.html
Copyright (c) 2002-2020, Cisco Systems, Inc. All rights reserved.
The copyrights to certain works contained in this software are
owned by other third parties and used and distributed under
license. Certain components of this software are licensed under
the GNU General Public License (GPL) version 2.0 or the GNU
Lesser General Public License (LGPL) Version 2.1. A copy of each
such license is available at
http://www.opensource.org/licenses/gpl-2.0.php and

Cisco MDS 9000 Series Programmability Guide, Release 9.x
12

NX-API
Examples of Structured Output

http://www.opensource.org/licenses/lgpl-2.1.php
</header_str>

<bios_ver_str>3.7.0</bios_ver_str>
<kickstart_ver_str>8.4(2) [build 8.4(2.191)] [gdb]</kickstart_ver_str>
<sys_ver_str>8.4(2) [build 8.4(2.191)] [gdb]</sys_ver_str>
<bios_cmpl_time>04/01/2019</bios_cmpl_time>
<kick_file_name>bootflash:///m9700-sf3ek9-kickstart-mzg.8.4.2.191.bin</kick_file_name>

<kick_cmpl_time> 2/5/2020 12:00:00</kick_cmpl_time>
<kick_tmstmp>01/08/2020 18:27:03</kick_tmstmp>
<isan_file_name>bootflash:///m9700-sf3ek9-mzg.8.4.2.191.bin</isan_file_name>
<isan_cmpl_time> 2/5/2020 12:00:00</isan_cmpl_time>
<isan_tmstmp>01/14/2020 05:36:15</isan_tmstmp>
<chassis_id>MDS 9706 (6 Slot) Chassis</chassis_id>
<module_id>Supervisor Module-3</module_id>
<cpu_name>Intel(R) Xeon(R) CPU C5528 @ 2.13GHz</cpu_name>
<memory>8167228</memory>
<mem_type>kB</mem_type>
<proc_board_id>JAE19220AQJ</proc_board_id>
<host_name>abc</host_name>
<bootflash_size>3915776</bootflash_size>
<slot0_size>0</slot0_size>
<kern_uptm_days>19</kern_uptm_days>
<kern_uptm_hrs>23</kern_uptm_hrs>
<kern_uptm_mins>16</kern_uptm_mins>
<kern_uptm_secs>11</kern_uptm_secs>
<rr_usecs>768558</rr_usecs>
<rr_ctime>Tue Jan 14 05:58:26 2020</rr_ctime>
<rr_reason>Reset Requested by CLI command reload</rr_reason>
<rr_sys_ver>8.4(2.171)</rr_sys_ver>
<rr_service></rr_service>
<manufacturer>Cisco Systems, Inc.</manufacturer>
</__readonly__>
</version>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>

This example shows how to display the show version in the JSON format:

switch(config)# show version | json

{
"header_str": "Cisco Nexus Operating System (NX-OS) Software\nTAC support:

http://www.cisco.com/tac\nDocuments: http://www.cisco.c
om/en/US/products/ps9372/tsd_products_support_series_home.html\nCopyright (c) 2002-2020,
Cisco Systems, Inc. All rights reserved.\nT
he copyrights to certain works contained in this software are\nowned by other third parties
and used and distributed under\nlicense.
Certain components of this software are licensed under\nthe GNU General Public License
(GPL) version 2.0 or the GNU\nLesser General
Public License (LGPL) Version 2.1. A copy of each\nsuch license is available
at\nhttp://www.opensource.org/licenses/gpl-2.0.php and
\nhttp://www.opensource.org/licenses/lgpl-2.1.php",
"bios_ver_str": "3.7.0",
"kickstart_ver_str": "8.4(2) [build 8.4(2.191)] [gdb]",
"sys_ver_str": "8.4(2) [build 8.4(2.191)] [gdb]",
"bios_cmpl_time": "04/01/2019",
"kick_file_name": "bootflash:///m9700-sf3ek9-kickstart-mzg.8.4.2.191.bin",
"kick_cmpl_time": "2/5/2020 12:00:00",
"kick_tmstmp": "01/08/2020 18:27:03",
"isan_file_name": "bootflash:///m9700-sf3ek9-mzg.8.4.2.191.bin",
"isan_cmpl_time": "2/5/2020 12:00:00",

Cisco MDS 9000 Series Programmability Guide, Release 9.x
13

NX-API
Examples of Structured Output

"isan_tmstmp": "01/14/2020 05:36:15",
"chassis_id": "MDS 9706 (6 Slot) Chassis",
"module_id": "Supervisor Module-3",
"cpu_name": "Intel(R) Xeon(R) CPU C5528 @ 2.13GHz",
"memory": 8167228,
"mem_type": "kB",
"proc_board_id": "JAE19220AQJ",
"host_name": "abc",
"bootflash_size": 3915776,
"slot0_size": 0,
"kern_uptm_days": 19,
"kern_uptm_hrs": 23,
"kern_uptm_mins": 16,
"kern_uptm_secs": 22,
"rr_usecs": 768558,
"rr_ctime": "Tue Jan 14 05:58:26 2020",
"rr_reason": "Reset Requested by CLI command reload",
"rr_sys_ver": "8.4(2.171)",
"rr_service": null,
"manufacturer": "Cisco Systems, Inc."

}

This example shows how to display the show version in the JSON Native format:

switch(config)# show version | json native

{
"header_str": "Cisco Nexus Operating System (NX-OS) Software\nTAC supp
ort: http://www.cisco.com/tac\nDocuments: http://www.cisco.com/en/US/products/ps
9372/tsd_products_support_series_home.html\nCopyright (c) 2002-2020, Cisco Syste
ms, Inc. All rights reserved.\nThe copyrights to certain works contained herein
are owned by\nother third parties and are used and distributed under license.\nS
ome parts of this software are covered under the GNU Public\nLicense. A copy of
the license is available at\nhttp://www.gnu.org/licenses/gpl.html.\n",
"bios_ver_str": "2.1.18",
"loader_ver_str": "N/A",
"kickstart_ver_str": "8.4(2a)",
"sys_ver_str": "8.4(2a)",
"bios_cmpl_time": "04/06/20",
"kick_file_name": "bootflash:///m9100-s5ek9-kickstart-mz.8.4.2a.bi
n",
"kick_cmpl_time": " 7/11/2020 12:00:00",
"kick_tmstmp": "06/20/2020 20:50:09",
"isan_file_name": "bootflash:///m9100-s5ek9-mz.8.4.2a.bin",
"isan_cmpl_time": " 7/11/2020 12:00:00",
"isan_tmstmp": "06/20/2020 22:05:47",
"chassis_id": "MDS 9148S 16G 48 FC (1 Slot) Chassis",
"module_id": "2/4/8/16 Gbps FC/Supervisor",
"cpu_name": "Motorola, e500v2",
"memory": 4088620,
"mem_type": "kB",
"proc_board_id": "JAF1751BGPS",
"host_name": "sw109-Mini",
"bootflash_size": 4001760,
"kern_uptm_days": 7,
"kern_uptm_hrs": 1,
"kern_uptm_mins": 13,
"kern_uptm_secs": 0,
"rr_usecs": 362070,
"rr_ctime": "Mon Sep 28 07:43:36 2020",
"rr_reason": "Reset due to upgrade",
"rr_sys_ver": "8.4(2b)",
"rr_service": "",

Cisco MDS 9000 Series Programmability Guide, Release 9.x
14

NX-API
Examples of Structured Output

"manufacturer": "Cisco Systems, Inc."
}

NX-API Developer Sandbox
The NX-API Developer Sandbox is a Cisco-developed web-based user interface that is used to make NX-API
requests and receive responses. Requests are in the form of show commands, and noninteractive configuration
commands.

Configuring NX-API Sandbox

1. Enable and configure the NX-API feature. For information on how to enable and configure the NX-API
feature, refer the Configuring NX-API CLI, on page 7 section.

2. Enable the NX-API sandbox:
switch# configure terminal
switch(config)# nxapi sandbox

To view the NX-API settings, use show nxapi command.
switch# show nxapi

NX-API: Enabled Sandbox: Enabled
HTTP Port: Disabled HTTPS Port: 8443

Certificate Information:
Issuer: C=US, ST=CA, L=San Jose, O=Cisco Systems Inc., OU=dcnxos, CN=nxos
Expires: Nov 26 09:26:12 2019 GMT
Content: -----BEGIN CERTIFICATE-----

MIIDpzCCAo+gAwIBAgIJAObmdczeHJL8MA0GCSqGSIb3DQEBCwUAMGoxCzAJBgNV
BAYTAlVTMQswCQYDVQQIDAJDQTERMA8GA1UEBwwIU2FuIEpvc2UxGzAZBgNVBAoM
EkNpc2NvIFN5c3RlbXMgSW5jLjEPMA0GA1UECwwGZGNueG9zMQ0wCwYDVQQDDARu
eG9zMB4XDTE5MTEyNTA5MjYxMloXDTE5MTEyNjA5MjYxMlowajELMAkGA1UEBhMC
VVMxCzAJBgNVBAgMAkNBMREwDwYDVQQHDAhTYW4gSm9zZTEbMBkGA1UECgwSQ2lz
Y28gU3lzdGVtcyBJbmMuMQ8wDQYDVQQLDAZkY254b3MxDTALBgNVBAMMBG54b3Mw
ggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDreVT3LAYarHxZxELwNwst
ZQqlmah5PJHBGUx+3YQcRi8v8wrEsRI7bZrQgDzXkFEH9yroJUghdc0nkM1GYHNF
avbj4qRaEveRejtGZNMPi11tAOWbRsU0ldxODV3+SeG/A220Bal58JzJjje5wyi8
Wu8UR8w4Lb32GYXI8ifBtlU0LrNsS0pE68yJt782y8IJIAEjGWX3L8dle4qwRqXg
6GBDPbwKFCvi+NX8JN48olONASSHXGdcmZSfiYUNKPD7+AwjG/luxSyIqnFW2w06
zwQLoIbXJx7zvl0Adt3H4ZnaRZOG5UvsWLgEdJZJkaqQPe0+7cpwcubN9/PJlO0l
AgMBAAGjUDBOMB0GA1UdDgQWBBTUI4IqOqmoKy5LEjygiJzd2nEGWzAfBgNVHSME
GDAWgBTUI4IqOqmoKy5LEjygiJzd2nEGWzAMBgNVHRMEBTADAQH/MA0GCSqGSIb3
DQEBCwUAA4IBAQC+7TPfDAz1t4yvG4rpypinU2Plp2FOBRdU85CIVREIplbRX8Vv
VMXYySnrKDjVRPcWtY+EtDW91BfS2I2usHkiKcnOYazDoxpamFI3D6lmb82JAAqG
NMV56hIJAYMpVqfbI+vtC93NR3F2fLD8/Hm/X4L8U6kdu2o+vgqYtc4OOl87lhJS
R8xA2N9kihOA1FUMVL89cFgRvxONjAyQImTB8uWl1stUGpH2kE3dABHC1sbZ1dNw
2/OxpfGnj1Qjvi4wKqjGpX/Kqc0AIx2zsKEX9hpPMQK/wlaRg8hlNCXJzzTQ7IVX
7PWJSqn7gpfyZIgZ9JQQ/WieCH32mQ2xGMDD
-----END CERTIFICATE-----

To access the NX-API Developer Sandbox, follow these steps:

When using the NX-API Developer Sandbox, we recommend that you use Firefox Release 24.0 or later. The
browser must be installed with the latest Adobe Flash player for the Copy and Python buttons in the NX-API
Developer Sandbox to function.

Note

Cisco MDS 9000 Series Programmability Guide, Release 9.x
15

NX-API
NX-API Developer Sandbox

1. Open a browser and enter http://switch_ip_address:port-number for HTTP, or
https://switch_ip_address:port-number for HTTPS in the address bar.

The NX-API Developer Sandbox Authentication window is displayed:

Figure 2: NX-API Developer Sandbox Authentication

2. Log in using your switch credentials.

The NX-API Developer Sandbox window is displayed.

The NX-API Developer Sandbox is a web form that is hosted on the switch. It translates NX-OSCLI commands
into equivalent XML or JSON payloads, and converts NX-API payloads into their CLI equivalents.

The web form is a single screen with three panes—Command (top pane), Request, and Response—as shown
in the Figure 3: NX-API Developer Sandbox.

Figure 3: NX-API Developer Sandbox

Cisco MDS 9000 Series Programmability Guide, Release 9.x
16

NX-API
NX-API Developer Sandbox

Lock Configuration—Provides an
exclusive lock to the configuration,
whereby no other management agent will
be able to modify the configuration.

10Command entry—Allows you
to enter a command. Type or
paste NX-OS CLI
configuration commands, one
command per line, into the
text entry box.

1

Error Action—Specifies the error action
options

• Stop-on-error—Stops at the first CLI
that fails.

• Continue-on-error—Ignores and
continues with other CLIs.

• Rollback-on-error—Performs a
rollback to the previous state the
system was in.

The rollback-on-error
option is removed from
Cisco MDS NX-OS
Release 9.2(2).

Note

11POST—Generates the output
for a given command.

2

Validation Type—Specifies validation
settings.

• Validate-Only—Validates the
configurations but does not apply the
configurations.

• Validate-and-Set—Validates the
configurations, and applies the
configurations on the switch if the
validation is successful.

12Reset—Clears the command
and the corresponding output

3

REQUEST—Displays the output for a
command that is entered in the selected
message format.

13Output Schema—Displays the
command schema for a
command entered in the
command pane.

4

Copy—Copies the data populated in the
REQUEST or RESPONSE area.

14Quick Start—Displays the
online help for Cisco MDS
NX-API.

5

Cisco MDS 9000 Series Programmability Guide, Release 9.x
17

NX-API
NX-API Developer Sandbox

Python15Command
Reference—Displays the
Command Reference pane.

The Command Reference
pane displays the command
schema details of the
command that is selected in
the Show commands pane.

Supported from
Cisco MDS
NX-OS Release
8.4(1).

Note

6

Java

Supported from Cisco MDS
NX-OS Release 8.4(1).

Note

16Logout—Logs the user out of
NX-API sandbox.

7

Javascript

Supported from Cisco MDS
NX-OS Release 8.4(1).

Note

17Message format—Provides
different message formats in
which the command output is
to be displayed.

8

Cisco MDS 9000 Series Programmability Guide, Release 9.x
18

NX-API
NX-API Developer Sandbox

RESPONSE—Displays the API response
for the command entered in the command
entry area.

18Command type

• cli— show or
configuration commands.

• cli_ascii — show or
configuration commands,
output without
formatting.

• cli_array —

CLI show commands.

CLI show commands that
expect structured output.
Only for show
commands. If the
command does not
support XML output, an
error message is
returned. Similar to cli,
but with cli_array, data
is returned as a list of one
element, or an array,
within square brackets [
].

The
cli_array
command
type is
supported
from Cisco
MDS
NX-OS
Release
8.4(1).

Note

9

Controls in the Command pane allow you to choose a message format for a supported API, such as NX-API,
and a command type, such as XML or JSON. The available command type options vary depending on the
selected message format.

To generate an output of a command using the NX-API Developer Sandbox, follow these steps:

1. Click the Message format type (json-rpc, xml, json) in which the command output is to be displayed.
(By default, json-rpc is selected.)

2. Click the Command type you have entered. The options differ based on theMessage format type selected.
(By default, cli is selected.)

You can erase the contents of the text entry box (and the Request and Response panes) by clicking Reset
at the bottom of the top pane.

Cisco MDS 9000 Series Programmability Guide, Release 9.x
19

NX-API
NX-API Developer Sandbox

• If you select the xml Message format, you can enable chunk mode for the cli_show and cli_show_ascii
Command types. Check the Enable chunk mode check box to chunk large show command outputs. To
view the next chunk of the output, copy the session ID (SID) mentioned in between <sid> and </sid>
tags in the RESPONSE area and paste it in the SID box below the Enable chunk mode check box.

Note

3. Type or paste NX-OS CLI configuration commands, one command per line, into the text entry box in the
top pane.

4. The command that you entered is displayed in the selected Message format in the REQUEST area.

The Request pane also has a series of tabs. Each tab represents a different language: Python, Java, and
JavaScript. Each tab enables you to view the request in the respective language. For example, after
converting CLI commands into an XML or JSON payload, click the Python tab to view the request in
Python, which you can use to create scripts.

• To copy the data populated in the REQUEST area, click Copy.

• To generate a Python code for the command entered, click Python.

The xml Message format does not support the Python button.Note

5. Click POST to generate the output of the command.

The output of the command is displayed in the RESPONSE area.

• To copy the data populated in the RESPONSE area, click Copy.

To clear the command and the corresponding output, and reset the page, click Reset.

6. Click Command Reference to view the list of show commands that are supported for NX-API.

TheCommand Schema pane displays the details of the command that is selected in the Show commands
pane.

Currently, the Command Reference tab supports only the show commands.Note

Cisco MDS 9000 Series Programmability Guide, Release 9.x
20

NX-API
NX-API Developer Sandbox

Figure 4: NX-API Show Command Reference

Show commands—Displays the list of supported show commands.1

Command Schema—Displays the NX-API schema (keywords and
description) for a command selected in the Show commands pane.

2

Example: Displaying NX-API Status

The following example displays the NX-API status response in different output formats:

XML Format

show nxapi

Request:
<?xml version="1.0"?>
<ins_api>
<version>1.2</version>
<type>cli_show</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>show nxapi</input>
<output_format>xml</output_format>

</ins_api>

Response:
<ins_api>
<type>cli_show</type>

Cisco MDS 9000 Series Programmability Guide, Release 9.x
21

NX-API
NX-API Developer Sandbox

<version>1.2</version>
<sid>eoc</sid>
<outputs>
<output>
<body>
<nxapi_status>Enabled</nxapi_status>
<sandbox_status>Enabled</sandbox_status>
<http_port>8080</http_port>
</body>
<input>show nxapi</input>
<msg>Success</msg>
<code>200</code>

</output>
</outputs>

</ins_api>

JSON Format

show nxapi

Request:
{
"ins_api": {
"version": "1.2",
"type": "cli_show",
"chunk": "0",
"sid": "1",
"input": "show nxapi",
"output_format": "json"

}
}

Response:
{
"ins_api": {
"type": "cli_show",
"version": "1.2",
"sid": "eoc",
"outputs": {
"output": {
"input": "show nxapi",
"msg": "Success",
"code": "200",
"body": {
"nxapi_status": "Enabled",
"sandbox_status": "Enabled",
"http_port": "8080"

}
}

}
}

}

JSON-RPC Format

show nxapi

Request:
[
{
"jsonrpc": "2.0",

Cisco MDS 9000 Series Programmability Guide, Release 9.x
22

NX-API
NX-API Developer Sandbox

"method": "cli",
"params": {
"cmd": "show nxapi",
"version": 1.2

},
"id": 1

}
]

Response:
{
"jsonrpc": "2.0",
"result": {
"body": {
"nxapi_status": "Enabled",
"sandbox_status": "Enabled",
"http_port": "8080"

}
},
"id": 1

}

Example: Configuring VSAN to VLAN Mapping

The following example shows how to configure VSAN to VLAN mapping in global configuration mode
(cli_conf):
vlan 3
fcoe vsan 3
vsan database
vsan 3
vsan 3 interface vfc1/8

Request:
<?xml version="1.0"?>
<ins_api>
<version>1.2</version>
<type>cli_conf</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>vlan 3 ;fcoe vsan 3 ;vsan database ;vsan 3 ;vsan 3 interface vfc1/8</input>
<output_format>xml</output_format>

</ins_api>

Response:
<?xml version="1.0"?>
<ins_api>
<type>cli_conf</type>
<version>1.2</version>
<sid>eoc</sid>
<outputs>
<output>
<body/>
<input>vlan 3</input>
<code>200</code>
<msg>Success</msg>

</output>
<output>
<body/>
<input>fcoe vsan 3</input>

Cisco MDS 9000 Series Programmability Guide, Release 9.x
23

NX-API
NX-API Developer Sandbox

<code>200</code>
<msg>Success</msg>

</output>
<output>
<body/>
<input>vsan database</input>
<code>200</code>
<msg>Success</msg>

</output>
<output>
<body/>
<input>vsan 3</input>
<code>200</code>
<msg>Success</msg>

</output>
<output>
<body/>
<input>vsan 3 interface vfc1/8</input>
<code>200</code>
<msg>Success</msg>

</output>
</outputs>

</ins_api>

Example: Configuring Zones and Zonesets

The following example shows how to configure a zone in global configuration mode (cli_conf):
zone name zone2 vsan 1
member pwwn 10:00:00:23:45:67:89:ab
member pwwn 10:00:00:23:45:67:89:cd

Request:
<?xml version="1.0"?>
<ins_api>
<version>1.2</version>
<type>cli_conf</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>zone name zone2 vsan 1 ;member pwwn 10:00:00:23:45:67:89:ab ;member pwwn

10:00:00:23:45:67:89:cd</input>
<output_format>xml</output_format>

</ins_api>

Response:
<?xml version="1.0"?>
<ins_api>
<type>cli_conf</type>
<version>1.2</version>
<sid>eoc</sid>
<outputs>
<output>
<body/>
<input>zone name zone2 vsan 1</input>
<code>200</code>
<msg>Success</msg>

</output>
<output>
<body/>
<input>member pwwn 10:00:00:23:45:67:89:ab</input>
<code>200</code>
<msg>Success</msg>

</output>

Cisco MDS 9000 Series Programmability Guide, Release 9.x
24

NX-API
NX-API Developer Sandbox

<output>
<body/>
<input>member pwwn 10:00:00:23:45:67:89:cd</input>
<code>200</code>
<msg>Success</msg>

</output>
</outputs>

</ins_api>

The following example shows how to configure a zoneset in global configuration mode (cli_conf):
zoneset name Zoneset1 vsan 1
member zone2
zoneset activate name Zoneset1 vsan 1

Request:
<?xml version="1.0"?>
<ins_api>
<version>1.2</version>
<type>cli_conf</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>zoneset name Zoneset1 vsan 1 ;member zone2 ;zoneset activate name Zoneset1 vsan

1</input>
<output_format>xml</output_format>

</ins_api>

Response:
<?xml version="1.0"?>
<ins_api>
<type>cli_conf</type>
<version>1.2</version>
<sid>eoc</sid>
<outputs>
<output>
<body/>
<input>zoneset name Zoneset1 vsan 1</input>
<code>200</code>
<msg>Success</msg>

</output>
<output>
<body/>
<input>member zone2</input>
<code>200</code>
<msg>Success</msg>

</output>
<output>
<body>Zoneset activation initiated. check zone status

</body>
<input>zoneset activate name Zoneset1 vsan 1</input>
<code>200</code>
<msg>Success</msg>

</output>
</outputs>

</ins_api>

If a show command is not NX-API-aware, the output can still be accessed by setting the Command type
element to cli_show_ascii for JSON and XML encoded requests, or show_ascii for JSON-RPC encoded
requests. The command output is returned in the response body as a single flat string.

The following figure provides an example for a show command output that is not NX-API-aware, in the
NX-API Developer Sandbox.

Cisco MDS 9000 Series Programmability Guide, Release 9.x
25

NX-API
NX-API Developer Sandbox

NX-API Request Elements
NX-API request elements are sent to a device in XML, JSON, or JSON-RPC formats. The HTTP header of
the request must identify the content type of the request.

A lock will be released by the system if the session that holds the lock is terminated for any reason. The session
that acquired the lock can only perform necessary configurations.

Note

Table 2: NX-API Request Elements for XML or JSON Format

DescriptionNX-API Request Element

Specifies the NX-API version.version

Cisco MDS 9000 Series Programmability Guide, Release 9.x
26

NX-API
NX-API Request Elements

DescriptionNX-API Request Element

Specifies the command type to be executed.

The following command types are supported:

• cli—CLI configuration commands.

CLI show commands that expect structured output. If the command
does not support XML output, an error message is returned.

• cli_array—CLI show commands.

CLI show commands that expect structured output. Only for show
commands. If the command does not support XML output, an error
message is returned. Similar to cli, but with cli_array, data is
returned as a list of one element, or an array, within square brackets
[].

• cli_ascii —CLI configuration commands.

CLI show commands that expect ASCII output. This aligns with
existing scripts that parse ASCII output. Users can use existing
scripts with minimal changes.

• cli_show —CLI show commands that expect structured output. If
the command does not support XML output, an error message is
returned.

• cli_show_array—CLI configuration commands.

CLI show commands that expect structured output. Only for show
commands. Similar to cli_show, but with cli_show_array, data is
returned as a list of one element, or an array, within square brackets
[].

• cli_show_ascii —CLI show commands that expect ASCII output.
This aligns with existing scripts that parse ASCII output. Users
can use existing scripts with minimal changes.

• cli_conf —CLI configuration commands.

Note • Each command is executable only with the current
user's authority.

• A maximum of 10 consecutive show commands are
supported. If the number of show commands exceeds
10, the 11th and subsequent commands are ignored.

• No interactive commands are supported.

type

Cisco MDS 9000 Series Programmability Guide, Release 9.x
27

NX-API
NX-API Request Elements

DescriptionNX-API Request Element

Some show commands can return a large amount of output. For the
NX-API client to start processing the output before the entire command
completes, NX-API supports output chunking for show commands.

Enable or disable chunk with the following settings:

• 0—Do not chunk output.

• 1—Chunk output.

Note • Only show commands support chunking. When a
series of show commands are entered, only the first
command is chunked and returned.

The output message format is XML, which is the
default. Special characters, such as < or >, are
converted to form a valid XML message (< is
converted to < > is converted to >).

You can use XML SAX to parse the chunked output.

• When chunking is enabled, the message format is
limited to XML. JSON output format is not supported
when chunking is enabled.

When chunking is enabled, the maximum message size
supported is currently 200 MB of the chunked output.

Note

chunk

Specifies the configuration rollback options. Specify one of the following
options.

• Stop-on-error—Stops at the first CLI that fails.

• Continue-on-error—Ignores and continues with other CLIs.

• Rollback-on-error—Performs a rollback to the previous state the
system configuration was in.

The rollback-on-error option is removed from Cisco
MDS NX-OS Release 9.2(2).

Note

roll_back

Configuration validation settings. This element allows you to validate
the commands before you apply them on the switch. This enables you
to verify the consistency of a configuration (for example, the availability
of necessary hardware resources) before applying it. Choose the
validation type from the Validation Type drop-down list.

• Validate-Only—Validates the configurations, but does not apply
the configurations.

• Validate-and-Set —Validates the configurations, and applies the
configurations on the switch if the validation is successful.

validate

Cisco MDS 9000 Series Programmability Guide, Release 9.x
28

NX-API
NX-API Request Elements

DescriptionNX-API Request Element

An exclusive lock on the configuration can be specified, whereby no
other management or programming agent will be able to modify the
configuration if this lock is held.

lock

The session ID element is valid only when the response message is
chunked. To retrieve the next chunk of the message, you must specify
a sid to match the sid of the previous response message.

sid

Input can be one command or multiple commands. However, commands
that belong to different message types should not bemixed. For example,
show commands belong to the cli_show message format and are not
supported in cli_conf message format.

Multiple commands are separated with a semicolon (;).
(The ; must be surrounded with single blank characters.)

Note

The following are examples of multiple commands:

• cli_show

show version ; show interface brief ; show vsan

• cli_conf

interface fc4/1 ; no shut

input

The available output message formats are:

• xml—Specifies output in XML format.

• json—Specifies output in JSON format.

• json-rpc—Specifies output in JSON-RPC format.

The Cisco MDS 9000 device CLI supports XML output,
whichmeans that the JSONoutput is converted fromXML.
The conversion is processed on the switch.

To manage computational overhead, the JSON output is
determined by the amount of output. If the output exceeds
1 MB, the output is returned in XML format. When the
output is chunked, only XML output is supported.

The content-type header in the HTTP or HTTPS response
headers indicate the type of response format (XML, JSON,
or JSON-RPC).

Note

output_format

NX-API Response Elements
The following table lists the NX-API elements that respond to a CLI command:

Cisco MDS 9000 Series Programmability Guide, Release 9.x
29

NX-API
NX-API Response Elements

Table 3: NX-API Response Elements

DescriptionNX-API Response Element

NX-API version.version

Type of command to be executed.type

Session ID of the response. This element is valid only when the response
message is chunked.

sid

Tag that encloses all command outputs.

When multiple commands are either of cli_show or cli_show_ascii
command type, each command output is enclosed by a single output tag.

When the command type is cli_conf, there is a single output tag for all the
commands because cli_conf commands require context.

outputs

Tag that encloses the output of a single command output.

For cli_conf command type, this element contains the outputs of all the
commands.

output

Tag that encloses a single command specified in the request. This element
helps associate a request input element with the appropriate response output
element.

input

Body of the command response.body

Error code returned from command execution.

NX-API uses standard HTTP error codes as described by the HTTP Status
Code Registry
(http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml).

code

Error message associated with the returned error code.msg

Table of NX-API Response Codes
The following are the possible NX-API errors, error codes, and messages pertaining to an NX-API response.

Table 4: NX-API Response Codes

MessageCodeNX-API Response

Success.200SUCCESS

Output is piped elsewhere due to request.204CUST_OUTPUT_PIPED

Chunking allowed only to one command.400CHUNK_ALLOW_ONE_CMD_ERR

CLI execution error.400CLI_CLIENT_ERR

Input CLI command error.400CLI_CMD_ERR

Cisco MDS 9000 Series Programmability Guide, Release 9.x
30

NX-API
Table of NX-API Response Codes

http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml

Request message is invalid.400IN_MSG_ERR

No input command.400NO_INPUT_CMD_ERR

Permission denied.401PERM_DENY_ERR

Configuration mode does not allow show
command .

405CONF_NOT_ALLOW_SHOW_ERR

Show mode does not allow configuration.405SHOW_NOT_ALLOW_CONF_ERR

Maximum number of consecutive show
commands exceeded. The maximum is 10.

413EXCEED_MAX_SHOW_ERR

Response size too large.413MSG_SIZE_LARGE_ERR

Backend processing error.500BACKEND_ERR

System internal file operation error.500FILE_OPER_ERR

System internal LIBXML NS error.500LIBXML_NS_ERR

System internal LIBXML parse error.500LIBXML_PARSE_ERR

System internal LIBXML path context error.500LIBXML_PATH_CTX_ERR

System internal memory allocation error.500MEM_ALLOC_ERR

User not found from input or cache.500USER_NOT_FOUND_ERR

XML to JSON conversion error.500XML_TO_JSON_CONVERT_ERR

Chunking allows only XML output.501CHUNK_ALLOW_XML_ONLY_ERR

JSON not supported due to large amount of
output.

501JSON_NOT_SUPPORTED_ERR

Message type not supported.501MSG_TYPE_UNSUPPORTED_ERR

Pipe operation not supported.501PIPE_OUTPUT_NOT_SUPPORTED_ERR

Pipe XML is not allowed in input.501PIPE_XML_NOT_ALLOWED_IN_INPUT

Response has large amount of output. JSON not
supported.

501RESP_BIG_JSON_NOT_ALLOWED_ERR

Structured output unsupported.501STRUCT_NOT_SUPPORTED_ERR

Undefined.600ERR_UNDEFINED

Default Settings
The following table lists the default settings for HTTP and HTTPS for Cisco MDS Release versions:

Cisco MDS 9000 Series Programmability Guide, Release 9.x
31

NX-API
Default Settings

HTTPSHTTPCisco MDS NX-OS Release

DisabledEnabledCisco MDS NX-OS Release 8.2(2) and
earlier

EnabledEnabledCisco MDS NX-OS Release 8.3(1)

Cisco MDS NX-OS Release 8.3(2)

EnabledDisabledCisco MDS NX-OS Release 8.4(1) and
later

The Table 5: Supported HTTP and HTTPS Ports, on page 32 table lists the supported HTTP and HTTPS
ports for Cisco MDS Release versions:

Table 5: Supported HTTP and HTTPS Ports

HTTPS PortHTTP PortCisco MDS NX-OS Release

4438080CiscoMDSNX-OS Release 8.2(1)
and earlier

84438080CiscoMDSNX-OS Release 8.3(1)
and later

Additional References
This section provides additional information related to implementing NX-API.

• NX-API DevNet Community

• MDS NX-API Reference Guide

• NX-API Github (NX-OS Programmability scripts)

• CISCO DCNM API Reference Guide

Cisco MDS 9000 Series Programmability Guide, Release 9.x
32

NX-API
Additional References

https://developer.cisco.com/site/nx-api/
https://developer.cisco.com/docs/mds-9000-nx-api-reference/
https://github.com/datacenter/nxos
https://developer.cisco.com/site/data-center-network-manager/?version=11.1(1)#!overview/overview

C H A P T E R 3
Python API

• About the Python API , on page 33
• Supported Versions, on page 33
• Using Python, on page 34

About the Python API
Python is an easy to learn and powerful programming language. It has efficient high-level data structures and
a simple but effective approach to object-oriented programming. Python's syntax and dynamic typing, together
with its interpreted nature, make it an ideal language for scripting and rapid development for many applications.
The Python website www.python.org contains distributions of and pointers to many free third-party Python
modules, programs and tools, and additional documentation.

The Python interpreter is available in the Cisco MDS NX-OS command-line interface (CLI) along with
standard and Cisco Python modules. Both interactive and non-interactive (script) modes are supported. This
gives programmatic control of MDS devices to perform repetitive tasks. Some examples of where this can be
leveraged are PowerOn Auto Provisioning (POAP) scripts and Embedded Event Manager (EEM) actions. It
is also used in the Overlay CLI of the SAN Analytics feature to format analytics data.

Supported Versions
Table 6: Python Version History for MDS Platforms, on page 33 shows the milestones of Python on Cisco
MDS switches. It shows when changes in the supported and default versions occurred for each platform.

Table 6: Python Version History for MDS Platforms

Cisco NX-OS MDS PlatformRelease

97009396T9396S9250i9220i9148T9148S9132T

2.7———————6.2(29)

2.7.82.7.8———2.7.8—2.7.88.3(1)

2.7.8*

3.7.3

2.7.8*

3.7.3

———2.7.8*

3.7.3

—2.7.8*

3.7.3

8.4(2)

Cisco MDS 9000 Series Programmability Guide, Release 9.x
33

http://www.python.org

Cisco NX-OS MDS PlatformRelease

97009396T9396S9250i9220i9148T9148S9132T

2.7.8*

3.7.3

2.7.8*

3.7.3

——2.7.8*

3.7.3

2.7.8*

3.7.3

—2.7.8*

3.7.3

8.5(1)

2.7.8*

3.7.3

2.7.8*

3.7.3

——2.7.8*

3.7.3

2.7.8*

3.7.3

—2.7.8*

3.7.3

9.2(1)

3.7.3*3.7.3*——3.7.3*3.7.3*—3.7.3*9.2(2)

* indicated the default Python version.

Python API is not supported on Cisco MDS 16 Gbps Fabric switches such as Cisco MDS 9148S, Cisco MDS
9250i, and Cisco MDS 9396S.

Note

Using Python
This section describes how to write and execute Python scripts.

Cisco Python Package
Cisco MDS NX-OS provides a Cisco Python package that enables access to many core network device
modules, such as interfaces, VLANs, and routes. You can display the details of the Cisco Python package by
entering the help() command. To obtain additional information about the classes and methods in a module,
you can run the help command for a specific module. For example, help(cisco.interface) displays the properties
of the cisco.interface module.

The following is an example of how to display information about the Cisco python package:
>>> import cisco
>>> help(cisco)
Help on package cisco:

NAME
cisco

DESCRIPTION
##
#
File: cli.py
Name:
#
Description:
#
Copyright (c) 2015-2017, 2019-2020 by cisco Systems, Inc.
All rights reserved.
#
##

PACKAGE CONTENTS

Cisco MDS 9000 Series Programmability Guide, Release 9.x
34

Python API
Using Python

acl
bgp
buffer_depth_monitor
check_port_discards
cisco_secret
feature
history
interface
ipaddress
key
line_parser
mac_address_table
nxcli
ospf
routemap
routes
section_parser
ssh
system
tacacs
transfer
vlan
vrf

CLASSES
builtins.object

Using the CLI Command APIs
The Python programming language uses three APIs that can execute CLI commands. The APIs are available
from the Python CLI module.

These APIs are listed in the following table. You need to enable the APIs with the from cli import * command.
The arguments for these APIs are strings of CLI commands. To execute a CLI command through the Python
interpreter, you enter the CLI command as an argument string of one of the following APIs:

Table 7: CLI Command APIs

DescriptionAPI

Returns the raw output of CLI commands, including
control/special characters.

The interactive Python interpreter prints
control/special characters 'escaped'. A
carriage return is printed as '\n' and gives
results that might be difficult to read.
The clip() API gives results that are
more readable.

Note

cli()

Example:
string = cli (“cli-command”)

Cisco MDS 9000 Series Programmability Guide, Release 9.x
35

Python API
Using the CLI Command APIs

DescriptionAPI

For CLI commands that support XML, this API
returns JSON output.

An exception is thrown when XML is
not used.

Note

This API can be useful when searching the output of
show commands.

clid()

Example:
json_string = clid (“cli-command”)

Prints the output of the CLI command directly to
stdout and returns nothing to Python.

clip (“cli-command”)

is equivalent to
r=cli(“cli-command”)
print r

Note

clip()

Example:
clip (“cli-command”)

When two or more commands are run individually, the state is not persistent from one command to subsequent
commands.

In the following example, the second command fails because the state from the first command does not persist
for the second command:
>>> cli("conf t")
>>> cli("interface fc4/1")

When two or more commands are run together, the state is persistent from one command to subsequent
commands.

In the following example, the second command is successful because the state persists for the second and
third commands:
>>> cli("conf t ; interface fc4/1 ; shut")

Commands are separated with " ; " as shown in the example. (The ; must be surrounded with single blank
characters.)

Note

Invoking the Python Interpreter from the CLI
The following example shows how to invoke Python from the CLI:

• The Python interpreter is designated with the ">>>" or "…" prompt.

• In Cisco MDS NX-OS Release 7.3(x) and later releases, the Python interpreter can be invoked only in
Privileged EXEC mode on Cisco MDS 9700 Series Switches.

• From Cisco MDS NX-OS Release 9.2(2), the python command runs Python 3.0.

Note

Cisco MDS 9000 Series Programmability Guide, Release 9.x
36

Python API
Invoking the Python Interpreter from the CLI

The following example shows how to invoke Python2 .7.5 from the CLI:
switch# python

Python 2.7.5 (default, Jun 3 2016, 03:57:06)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from cli import *
>>> cli("show clock")
'Time source is NTP\n06:32:20.023 UTC Tue Jan 31 2017\n'
>>> exit()

The following example shows how to invoke Python3 from the CLI:
switch# python3

Python 3.7.3 (default, Aug 26 2019, 23:20:10)
[GCC 4.6.3] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from cli import *
>>> cli("show clock")
'Time source is NTP\n07:46:50.923 UTC Tue Apr 28 2020\n'

Display Formats
The following examples show various display formats using the Python APIs:

Example 1:
>>> from cli import *
>>> cli("conf ; interface fc1/1")
''
clip('where detail')
mode:
username: admin

>>>

Example 2:
>>> from cli import *
>>> cli("conf ; interface fc1/1")
''
>>> cli('where detail')
' mode: \n username: admin\n'
>>>

Example 3:
>>> from cli import *
>>> cli("conf ; interface fc1/1")
''
>>> r = cli('where detail') ; print(r)
mode:
username: admin

>>>

Example 4:
>>> from cli import *
>>> import json

Cisco MDS 9000 Series Programmability Guide, Release 9.x
37

Python API
Display Formats

>>> out=json.loads(clid('show version'))
>>> for k in out.keys():
... print("%30s = %s" % (k, out[k]))
...

header_str = Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Documents: http://www.cisco.com/en/US/products/ps9372/tsd_products_support_series_home.html
Copyright (c) 2002-2022, Cisco Systems, Inc. All rights reserved.
The copyrights to certain works contained in this software are
owned by other third parties and used and distributed under
license. Certain components of this software are licensed under
the GNU General Public License (GPL) version 2.0 or the GNU
Lesser General Public License (LGPL) Version 2.1. A copy of each
such license is available at
http://www.opensource.org/licenses/gpl-2.0.php and
http://www.opensource.org/licenses/lgpl-2.1.php

bios_ver_str = 2.12.0
kickstart_ver_str = 9.2(2)

sys_ver_str = 9.2(2)
bios_cmpl_time = 05/26/2021
kick_file_name = bootflash:///m9700-sf4ek9-kickstart-mz.9.2.2.bin
kick_cmpl_time = 1/1/2022 12:00:00

kick_tmstmp = 01/20/2022 22:42:00
isan_file_name = bootflash:///m9700-sf4ek9-mz.9.2.2.bin
isan_cmpl_time = 1/1/2022 12:00:00

isan_tmstmp = 01/21/2022 00:12:45
chassis_id = MDS 9706 (6 Slot) Chassis
module_id = Supervisor Module-4
cpu_name = Intel(R) Xeon(R) CPU D-1548 @ 2.00GHz
memory = 14146356

mem_type = kB
proc_board_id = JAE22320AXJ

host_name = sw184-9706
bootflash_size = 3932160

slot0_size = 0
kern_uptm_days = 5
kern_uptm_hrs = 21
kern_uptm_mins = 39
kern_uptm_secs = 27

rr_usecs = 699796
rr_ctime = Tue Jan 25 10:40:02 2022
rr_reason = Reset Requested by CLI command reload
rr_sys_ver = 9.2(2)
rr_service = None

manufacturer = Cisco Systems, Inc.
>>>

Non-interactive Python
A Python script can run in non-interactive mode by providing the Python script name as an argument to the
Python CLI command. Python scripts must be placed under the bootflash or volatile scheme. A maximum of
32 command line arguments for the Python script are allowed with the Python CLI command.

The Cisco MDS 9000 Series device also supports the source CLI command for running Python scripts. The
bootflash:scripts directory is the default script directory for the source CLI command.

To run Python scripts using the Python3 interpreter, ensure the first line of the script contains python3 string
such as, #!/isan/bin/python3 OR #!/usr/bin/env python3.

Note

Cisco MDS 9000 Series Programmability Guide, Release 9.x
38

Python API
Non-interactive Python

The following example shows a script and how to run it:
switch# show file bootflash:flashCheck.py
#!/bin/env python
import re
import json
import cli
import syslog

threshold = 60
ignore_paths = ['bootflash']

allmodules = json.loads(cli.clid("show module"))['TABLE_modinfo']['ROW_modinfo']
if type(allmodules) is dict:

allmodules = [allmodules]
for eachmodule in allmodules:

mod = eachmodule['mod']
modtype = eachmodule['modtype']
cmd = "slot " + str(mod) + " show system internal flash"
if 'Supervisor' in modtype:

s = "Supervisor(Module " + str(mod) + ")"
regex_to_match =

r'(?P<mnton>\S+)\s+(?P<onekblks>\d+)\s+(?P<used>\d+)\s+(?P<avail>\d+)\s+(?P<useper>\d+)\s+(?P<fs>\S+)'

elif 'Sup' in modtype:
cmd = " show system internal flash"
s = "Sup and LC - Module 1"
regex_to_match =

r'(?P<mnton>\S+)\s+(?P<onekblks>\d+)\s+(?P<used>\d+)\s+(?P<avail>\d+)\s+(?P<useper>\d+)\s+(?P<fs>\S+)'

else:
s = "Module " + str(mod)
regex_to_match =

r'(?P<fs>\S+)\s+(?P<onekblks>\d+)\s+(?P<used>\d+)\s+(?P<avail>\d+)\s+(?P<useper>\d+)%\s+(?P<mnton>\S+)'

out = cli.cli(cmd)
alllines = out.splitlines()
for eachline in alllines:

match = re.search(regex_to_match,eachline)
if match:

grps = match.groupdict()
#print(grps)
sysstr = "Flash usage exceeds threshold({}%) on {} - Filesystem:

{}, Mounted-On: {}, Usage:
{}%".format(str(threshold),s,grps['fs'],grps['mnton'],grps['useper'])

for each_ignore_path in ignore_paths:
if each_ignore_path in grps['mnton']:

break
else:

if int(grps['useper']) > threshold:
syslog.syslog(2,sysstr)

Running Scripts with Embedded Event Manager
On Cisco MDS 9000 Series devices, embedded event manager (EEM) policies support Python scripts.

The following example shows how to run a Python script as an EEM action:

• An EEM applet can include a Python script with an action command.

Cisco MDS 9000 Series Programmability Guide, Release 9.x
39

Python API
Running Scripts with Embedded Event Manager

switch# show running-config eem

!Command: show running-config eem
!Time: Sun May 1 14:40:07 2011

version 6.1(2)I2(1)
event manager applet a1
event cli match "show clock"
action 1 cli python bootflash:pydate.py
action 2 event-default

• You can search for the action triggered by the event in the log file by running the show file
logflash:event_archive_1 command.
switch# show file logflash:event_archive_1 | last 33

eem_event_time:05/01/2011,19:40:28 event_type:cli event_id:8 slot:active(1)
vdc:1 severity:minor applets:a1
eem_param_info:command = "exshow clock"
Starting with policy a1
Python

2011-05-01 19:40:28.644891
Executing the following commands succeeded:

python bootflash:pydate.py

PC_VSH_CMD_TLV(7679) with q

Cisco MDS NX-OS Security with Python
Cisco MDS NX-OS resources are protected by the Cisco MDS NX-OS Sandbox layer of software and by the
CLI role-based access control (RBAC).

All users associated with a Cisco MDS NX-OS network-admin or dev-ops role are privileged users. Users
who are granted access to Python with a custom role are regarded as non-privileged users. Non-privileged
users have a limited access to Cisco MDS NX-OS resources, such as file system, guest shell, and Bash
commands. Privileged users have greater access to all the resources of Cisco MDS NX-OS.

Examples of Security and User Authority
The following example shows how a privileged user runs commands:
switch# python
Python 2.7.5 (default, Oct 8 2013, 23:59:43)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> os.system('whoami')
admin
0
>>> f=open('/tmp/test','w')
>>> f.write('hello from python')
>>> f.close()
>>> r=open('/tmp/test','r')
>>> print r.read()
hello from python
>>> r.close()

The following example shows a non-privileged user being denied access:

Cisco MDS 9000 Series Programmability Guide, Release 9.x
40

Python API
Cisco MDS NX-OS Security with Python

switch# python
Python 2.7.5 (default, Oct 8 2013, 23:59:43)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> os.system('whoami')
system(whoami): rejected!
-1
>>> f=open('/tmp/test','r')
Permission denied. Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IOError: [Errno 13] Permission denied: '/tmp/test'
>>>

RBAC controls CLI access based on the login user privileges. A login user's identity is given to Python that
is invoked from the CLI shell or from Bash. Python passes the login user's identity to any subprocess that is
invoked from Python.

The following is an example for a privileged user:
>>> from cli import *
>>> cli('show clock')
'11:28:53.845 AM UTC Sun May 08 2011\n'
>>> cli('configure terminal ; vrf context myvrf')
''
>>> clip('show running-config l3vm')

!Command: show running-config l3vm
!Time: Sun May 8 11:29:40 2011

version 6.1(2)I2(1)

interface Ethernet1/48
vrf member blue

interface mgmt0
vrf member management

vrf context blue
vrf context management
vrf context myvrf

The following is an example for a non-privileged user:
>>> from cli import *
>>> cli('show clock')
'11:18:47.482 AM UTC Sun May 08 2011\n'
>>> cli('configure terminal ; vrf context myvrf2')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/isan/python/scripts/cli.py", line 20, in cli
raise cmd_exec_error(msg)

errors.cmd_exec_error: '% Permission denied for the role\n\nCmd exec error.\n'

The following example shows an RBAC configuration:
switch# show user-account
user:admin

this user account has no expiry date
roles:network-admin

user:pyuser
this user account has no expiry date
roles:network-operator python-role

Cisco MDS 9000 Series Programmability Guide, Release 9.x
41

Python API
Examples of Security and User Authority

switch# show role name python-role

Example of Running Script with Scheduler
The following example shows a Python script that is running the script with the scheduler feature:
#!/bin/env python
from cli import *
from nxos import *
import os

switchname = cli("show switchname")
try:

user = os.environ['USER']
except:

user = "No user"
pass

msg = user + " ran " + __file__ + " on : " + switchname
print msg
py_syslog(1, msg)
Save this script in bootflash:///scripts

switch# conf t
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# feature scheduler
switch(config)# scheduler job name testplan
switch(config-job)# python bootflash:///scripts/testplan.py
switch(config-job)# exit
switch(config)# scheduler schedule name testplan
switch(config-schedule)# job name testplan
switch(config-schedule)# time start now repeat 0:0:4
Schedule starts from Mon Mar 14 16:40:03 2011
switch(config-schedule)# end
switch# term mon
2011 Mar 14 16:38:03 switch %VSHD-5-VSHD_SYSLOG_CONFIG_I: Configured from vty by admin on
10.19.68.246@pts/2
switch# show scheduler schedule
Schedule Name : testplan

User Name : admin
Schedule Type : Run every 0 Days 0 Hrs 4 Mins
Start Time : Mon Mar 14 16:40:03 2011
Last Execution Time : Yet to be executed

Job Name Last Execution Status

testplan -NA-
==
switch#
switch# 2011 Mar 14 16:40:04 switch %USER-1-SYSTEM_MSG: No user ran
/bootflash/scripts/testplan.py on : switch - nxpython
2011 Mar 14 16:44:04 switch last message repeated 1 time
switch#

Cisco MDS 9000 Series Programmability Guide, Release 9.x
42

Python API
Example of Running Script with Scheduler

C H A P T E R 4
Ansible

Ansible is an open-source IT automation engine that automates cloud provisioning, configurationmanagement,
application deployment, intraservice orchestration, and other IT needs. Similar to Puppet, and Chef, Ansible
enables administrators to manage, automate, and orchestrate various types of server environments. Ansible
is agentless, and does not require a software agent to be installed on the target node (server or switch) in order
to automate the device. By default, Ansible requires SSH and Python support on the target servers it manages
but for MDS switches, Ansible was extended to use both SSH and NX-API and on-switch Python support is
not required. Ansible playbooks are written in YAML, that allows you to describe your automation jobs in
an easily readable format. Inside each Ansible playbook, we can use various Ansible modules.

The following are MDS specific modules within the cisco.nxos collection:

• nxos_vsan
(https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_vsan_module.html#ansible-collections-cisco-nxos-nxos-vsan-module)

• nxos_zone_zoneset
(https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_zone_zoneset_module.html#ansible-collections-cisco-nxos-nxos-zone-zoneset-module)

• nxos_devicealias
(https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_devicealias_module.html#ansible-collections-cisco-nxos-nxos-devicealias-module)

• nxos_fc_interfaces
(https://docs.ansible.com/ansible/devel/collections/cisco/nxos/nxos_fc_interfaces_module.html#ansible-collections-cisco-nxos-nxos-fc-interfaces-module)

To run any arbitrary command, use the nxos_command module
(https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_command_module.html#ansible-collections-cisco-nxos-nxos-command-module)

There are also other modules which have limited support for CiscoMDS. See individual module documentation
for compatibility with Cisco MDS: https://docs.ansible.com/ansible/latest/collections/cisco/nxos/
index.html#modules

Ansible modules make SSH connections or NX-API calls to gather real-time state data and to make
configuration changes on the Cisco MDS devices. For more information about Ansible, see Ansible's official
documentation.

For Cisco MDS Ansible modules, you do not need a Python interpreter on the target node.Note

For more information on the Cisco MDS modules supported on Ansible, see the Ansible Modules.

• Getting Started, on page 44

Cisco MDS 9000 Series Programmability Guide, Release 9.x
43

https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_vsan_module.html#ansible-collections-cisco-nxos-nxos-vsan-module
https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_zone_zoneset_module.html#ansible-collections-cisco-nxos-nxos-zone-zoneset-module
https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_devicealias_module.html#ansible-collections-cisco-nxos-nxos-devicealias-module
https://docs.ansible.com/ansible/devel/collections/cisco/nxos/nxos_fc_interfaces_module.html#ansible-collections-cisco-nxos-nxos-fc-interfaces-module
https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_command_module.html#ansible-collections-cisco-nxos-nxos-command-module
https://docs.ansible.com/ansible/latest/collections/cisco/nxos/index.html#modules
https://docs.ansible.com/ansible/latest/collections/cisco/nxos/index.html#modules
http://docs.ansible.com/ansible/list_of_network_modules.html#nxos
http://docs.ansible.com/ansible/list_of_network_modules.html#nxos
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/mds9000/sw/8_x/programmability/cisco_mds9000_ansible_modules.html

• Host File, on page 44
• Documentation, on page 44
• Example Playbook, on page 44

Getting Started
For information on Ansible installation, refer to the official Anisble installation guide
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html.

Host File
The host file is where the devices under management are listed. A single device can be in a single group or
included in multiple groups. In the below host file, a single group called edge, which has 2 devices, mds1 and
mds2 are used. The connection is set to NX-API which uses HTTPS connection to connect to target devices.
The username and password is stored in the host file. For further security, this host file can be encrypted using
the Ansible Vault, which we are not utilizing here.

From Ansibe 2.5, ansible_connection: local is deprecated. Use ansible_connection:
ansible.netcommon.network_cli or ansible_connection: ansible.netcommon.httpapi instead. The
httpapi connection plugin provides a variety of toggles. All the available options are specified in the Ansible
documentation. The network_cli connection plugin provides a variety of toggles. All the available options
are specified are specified in the Ansible documentation.

Note

$ cat /etc/ansible/hosts
[all:vars]
ansible_connection = ansible.netcommon.httpapi
ansible_httpapi_use_ssl=True
ansible_httpapi_port=8443
ansible_user=username
ansible_password=password

[edge]
mds1
mds2

Documentation
Documentation for all Cisco MDS NX-OS modules can be found at https://docs.ansible.com/ansible/latest/
collections/cisco/nxos/ or alternatively from the terminal, by utilizing the inbuilt documentation tool.
$ansible-doc

Example Playbook
In this initial playbook, we will provision a couple of VSANs and also delete a VSAN.Wewill use the Ansible
module called nxos_vsan to automate this task.

Cisco MDS 9000 Series Programmability Guide, Release 9.x
44

Ansible
Getting Started

https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/collections/ansible/netcommon/httpapi_connection.html
https://docs.ansible.com/ansible/latest/collections/ansible/netcommon/httpapi_connection.html
https://docs.ansible.com/ansible/latest/collections/ansible/netcommon/network_cli_connection.html
https://docs.ansible.com/ansible/latest/collections/cisco/nxos/
https://docs.ansible.com/ansible/latest/collections/cisco/nxos/

As you can see below, the playbook is defined in YAML.

- name: Test that vsan module works
gather_facts: no
hosts:
- mds1
cisco.nxos.nxos_vsan:
vsan:
- id: 922
interface:
- fc1/1
- fc1/2
- port-channel 1
name: vsan-SAN-A
remove: false
suspend: false

- id: 923
interface:
- fc1/11
- fc1/21
- port-channel 2
name: vsan-SAN-B
remove: false
suspend: true

- id: 1923
name: vsan-SAN-Old
remove: true

register: result
- debug: var=result

Assuming the above playbook is called vsan.yml, this task can then be run from the terminal as shown below.
$ ansible-playbook vsan.yml

PLAY [VSAN TEST (NXOS)] **

TASK [Test that vsan module works] ***
changed: [mds1]

TASK [debug] ***
ok: [mds1] => {

"result": {
"changed": true,
"cmds": [

"terminal dont-ask",
"vsan database",
"vsan 922",
"vsan 922 name vsan-SAN-A",
"no vsan 922 suspend",
"vsan database",
"vsan 922 interface fc1/1",
"vsan 922 interface fc1/2",
"vsan 922 interface port-channel 1",
"vsan database",
"vsan 923",
"vsan 923 name vsan-SAN-B",
"vsan 923 suspend",
"vsan database",
"vsan 923 interface fc1/11",
"vsan 923 interface fc1/21",
"vsan 923 interface port-channel 2",
"vsan database",
"no vsan 1923",
"no terminal dont-ask"

Cisco MDS 9000 Series Programmability Guide, Release 9.x
45

Ansible
Example Playbook

],
"failed": false,
"messages": [

"creating vsan 922",
"setting vsan name to vsan-SAN-A for vsan 922",
"no suspending the vsan 922",
"adding interface fc1/1 to vsan 922",
"adding interface fc1/2 to vsan 922",
"adding interface port-channel 1 to vsan 922",
"creating vsan 923",
"setting vsan name to vsan-SAN-B for vsan 923",
"suspending the vsan 923",
"adding interface fc1/11 to vsan 923",
"adding interface fc1/21 to vsan 923",
"adding interface port-channel 2 to vsan 923",
"deleting the vsan 1923"

]
}

}

PLAY RECAP ***
mds1 : ok=2 changed=1 unreachable=0 failed=0

Conclusion

We have just seen how we can configure/unconfigure VSANs using Ansible, this is a simple example but the
modules can be used in a variety of tasks that needs automation.

Cisco MDS 9000 Series Programmability Guide, Release 9.x
46

Ansible
Example Playbook

C H A P T E R 5
Cisco MDS SDK

Cisco MDS-SDK is a Python-based library for the Cisco MDS Switches.

This library is useful for automating day-to-day tasks or developing new tools which involve Cisco MDS
Switches.

Cisco MDS-SDK leverages NX-API to communciate with devices, but it can also use SSH for backward
compatibility. We recommend that you use NX-API for switches running CiscoMDSNX-OS Release 8.4(2a)
or later.

For more information on the CiscoMDS-SDK, see the GitHub page at, https://github.com/Cisco-SAN/mdssdk.

For Cisco MDS-SDK documentation, see http://mdssdk.readthedocs.io.

Cisco MDS 9000 Series Programmability Guide, Release 9.x
47

https://github.com/Cisco-SAN/mdssdk
http://mdssdk.readthedocs.io/

Cisco MDS 9000 Series Programmability Guide, Release 9.x
48

Cisco MDS SDK

	Cisco MDS 9000 Series Programmability Guide, Release 9.x
	Contents
	Preface
	Preface
	Audience
	Document Conventions
	Related Documentation
	Obtaining Documentation and Submitting a Service Request

	New and Changed Information
	New and Changed Information

	NX-API
	About NX-API
	NX-API Workflow
	NX-API Performance
	About NX-API Messages
	Message Format
	Security
	Limitations
	Structured Output
	About JSON

	Configuring NX-API CLI
	Sample NX-API Scripts
	Examples of Structured Output
	NX-API Developer Sandbox
	NX-API Request Elements
	NX-API Response Elements
	Table of NX-API Response Codes

	Default Settings
	Additional References

	Python API
	About the Python API
	Supported Versions
	Using Python
	Cisco Python Package
	Using the CLI Command APIs
	Invoking the Python Interpreter from the CLI
	Display Formats
	Non-interactive Python
	Running Scripts with Embedded Event Manager
	Cisco MDS NX-OS Security with Python
	Examples of Security and User Authority
	Example of Running Script with Scheduler

	Ansible
	Getting Started
	Host File
	Documentation
	Example Playbook

	Cisco MDS SDK

