
Writing Embedded Event Manager Policies Using
Tcl

This module describes how software developers can write and customize Embedded Event Manager (EEM)
policies using Tool command language (Tcl) scripts to handle Cisco software faults and events. EEM is a
policy-driven process by means of which faults in the Cisco software system are reported through a defined
application programing interface (API). The EEM policy engine receives notifications when faults and other
events occur. EEM policies implement recovery on the basis of the current state of the system and the actions
specified in the policy for a given event. Recovery actions are triggered when the policy is run.

• Finding Feature Information, page 1

• Prerequisites for Writing Embedded Event Manager Policies Using Tcl, page 2

• Information About Writing Embedded Event Manager Policies Using Tcl, page 2

• How to Write Embedded Event Manager Policies Using Tcl, page 9

• Configuration Examples for Writing Embedded Event Manager Policies Using Tcl, page 40

• Additional References, page 61

• Feature Information for Writing Embedded Event Manager 4.0 Policies Using Tcl, page 62

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and
feature information, see Bug Search Tool and the release notes for your platform and software release. To
find information about the features documented in this module, and to see a list of the releases in which each
feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
1

https://tools.cisco.com/bugsearch/search
http://www.cisco.com/go/cfn

Prerequisites for Writing Embedded Event Manager Policies
Using Tcl

• Before writing EEM policies, you should be familiar with the “ Embedded Event Manager Overview ”
module.

• If you want to write EEM policies using the command-line interface (CLI) commands, you should be
familiar with the “Writing Embedded Event Manager Policies Using the Cisco IOS CLI ” module.

Information About Writing Embedded Event Manager Policies
Using Tcl

EEM Policies
EEM offers the ability to monitor events and take informational or corrective action when the monitored
events occur or reach a threshold. An EEM policy is an entity that defines an event and the actions to be taken
when that event occurs. There are two types of EEM policies: an applet or a script. An applet is a simple form
of policy that is defined within the command-line interface (CLI) configuration. A script is a form of policy
that is written in Tool Command Language (Tcl).

EEM Applet

An EEM applet is a concise method for defining event screening criteria and the actions to be taken when
that event occurs. In EEM applet configuration mode, three types of configuration statements are supported.
The event commands are used to specify the event criteria to trigger the applet to run, the action commands
are used to specify an action to perform when the EEM applet is triggered, and the set command is used to
set the value of an EEM applet variable. Currently only the _exit_status variable is supported for the set
command.

Only one event configuration command is allowed within an applet configuration. When applet configuration
submode is exited and no event command is present, a warning is displayed stating that no event is associated
with the applet. If no event is specified, the applet is not considered registered. When no action is associated
with the applet, events are still triggered but no actions are performed.Multiple action configuration commands
are allowed within an applet configuration. Use the show event manager policy registered command to
display a list of registered applets.

Before modifying an EEM applet, be aware that the existing applet is not replaced until you exit applet
configuration mode. While you are in applet configuration mode modifying the applet, the existing applet
may be executing. It is safe to modify the applet without unregistering it, because changes are written to a
temporary file. When you exit applet configuration mode, the old applet is unregistered and the new version
is registered.

Action configuration commands within an applet are uniquely identified using the label argument, which can
be any string value. Actions are sorted within an applet in ascending alphanumeric key sequence using the
label argument as the sort key, and they are run using this sequence. The same label argument can be used in
different applets; the labels must be unique only within one applet.

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
2

Writing Embedded Event Manager Policies Using Tcl
Prerequisites for Writing Embedded Event Manager Policies Using Tcl

The Embedded Event Manager schedules and runs policies on the basis of an event specification that is
contained within the policy itself. When applet configuration mode is exited, EEM examines the event and
action commands that are entered and registers the applet to be run when a specified event occurs.

For more details about writing EEM policies using the Cisco IOS CLI, see the “Writing Embedded Event
Manager Policies Using the Cisco IOS CLI” module.

EEM Script

All Embedded Event Manager scripts are written in Tcl. Tcl is a string-based command language that is
interpreted at run time. The version of Tcl supported is Tcl version 8.3.4 plus added script support. Scripts
are defined using an ASCII editor on another device, not on the networking device. The script is then copied
to the networking device and registered with EEM. Tcl scripts are supported by EEM. As an enforced rule,
Embedded Event Manager policies are short-lived run time routines that must be interpreted and executed in
less than 20 seconds of elapsed time. If more than 20 seconds of elapsed time are required, the maxrun
parameter may be specified in the event_register statement to specify any desired value.

EEM policies use the full range of the Tcl language’s capabilities. However, Cisco provides enhancements to
the Tcl language in the form of Tcl command extensions that facilitate the writing of EEM policies. The main
categories of Tcl command extensions identify the detected event, the subsequent action, utility information,
counter values, and system information.

EEM allows you to write and implement your own policies using Tcl. Writing an EEM script involves:

• Selecting the event Tcl command extension that establishes the criteria used to determine when the
policy is run.

• Defining the event detector options associated with detecting the event.

• Choosing the actions to implement recovery or respond to the detected event.

EEM Policy Tcl Command Extension Categories
There are different categories of EEM policy Tcl command extensions.

The Tcl command extensions available in each of these categories for use in all EEM policies are described
in later sections in this document.

Note

Table 1: EEM Policy Tcl Command Extension Categories

DefinitionCategory

This category is represented by the event_register_
xxx family of event-specific commands. There is a
separate event information Tcl command extension
in this category as well: event_reqinfo. This is the
command used in policies to query the EEM for
information about an event. There is also an EEM
event publish Tcl command extension
event_publish> that publishes an application-specific
event.

EEM event Tcl command extensions (three types:
event information, event registration, and event
publish)

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
3

Writing Embedded Event Manager Policies Using Tcl
EEM Policy Tcl Command Extension Categories

DefinitionCategory

These Tcl command extensions (for example,
action_syslog) are used by policies to respond to or
recover from an event or fault. In addition to these
extensions, developers can use the Tcl language to
implement any action desired.

EEM action Tcl command extensions

These Tcl command extensions are used to retrieve,
save, set, or modify application information, counters,
or timers.

EEM utility Tcl command extensions

This category is represented by the sys_reqinfo _ xxx
family of system-specific information commands.
These commands are used by a policy to gather
system information.

EEM system information Tcl command extensions

These Tcl command extensions are used to store and
retrieve a Tcl context (the visible variables and their
values).

EEM context Tcl command extensions

General Flow of EEM Event Detection and Recovery
EEM is a flexible, policy-driven framework that supports in-box monitoring of different components of the
system with the help of software agents known as event detectors. The figure below shows the relationship
between the EEM server, the core event publishers (event detectors), and the event subscribers (policies).
Basically, event publishers screen events and publish them when there is a match on an event specification
that is provided by the event subscriber. Event detectors notify the EEM server when an event of interest
occurs.

When an event or fault is detected, Embedded Event Manager determines from the event publishers--an
example would be the OIR events publisher in the figure below--if a registration for the encountered fault or
event has occurred. EEM matches the event registration information with the event data itself. A policy
registers for the detected event with the Tcl command extension event_register _ xxx. The event information

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
4

Writing Embedded Event Manager Policies Using Tcl
General Flow of EEM Event Detection and Recovery

Tcl command extension event_reqinfo is used in the policy to query the Embedded Event Manager for
information about the detected event.

Figure 1: Embedded Event Manager Core Event Detectors

Safe-Tcl
Safe-Tcl is a safety mechanism that allows untrusted Tcl scripts to run in an interpreter that was created in
the safe mode. The safe interpreter has a restricted set of commands that prevent accessing some system
resources and harming the host and other applications. For example, it does not allow commands to access
critical Cisco IOS file system directories.

Cisco-defined scripts run in full Tcl mode, but user-defined scripts run in Safe-Tcl mode. Safe-Tcl allows
Cisco to disable or customize individual Tcl commands. For more details about Tcl commands, go to http://
www.tcl.tk/man/ .

The following list of Tcl commands are restricted with a few exceptions. Restrictions are noted against each
command or command keyword:

• cd --Change directory is not allowed to one of the restricted Cisco directory names.

• encoding --The commands encoding names, encoding convertfrom, and encoding convertto are
permitted. The encoding system command with no arguments is permitted, but the encoding system
command with the ?encoding? keyword is not permitted.

• exec --Not permitted.

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
5

Writing Embedded Event Manager Policies Using Tcl
Safe-Tcl

http://www.tcl.tk/man/
http://www.tcl.tk/man/

• fconfigure --Permitted.

• file --The following are permitted:

• file dirname

• file exists

• file extension

• file isdirectory

• file join

• file pathtype

• file rootname

• file split

• file stat

• file tail

• file --The following are not permitted:

• file atime

• file attributes

• file channels

• file copy

• file delete

• file executable

• file isfile

• file link

• file lstat

• file mkdir

• file mtime

• file nativename

• file normalize

• file owned

• file readable

• file readlink

• file rename

• file rootname

• file separator

• file size

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
6

Writing Embedded Event Manager Policies Using Tcl
Safe-Tcl

• file system

• file type

• file volumes

• file writable

• glob --The glob command is not permitted when searching in one of the restricted Cisco directories.
Otherwise, it is permitted.

• load --Only files that are in the user policy directory or the user library directory are permitted to be
loaded. Static packages (for example, libraries that consist of C code) are not permitted to be loaded
with the load command.

• open --The open command is not allowed for a file that is located in one of the restricted Cisco directories.

• pwd --The pwd command is not permitted.

• socket --The socket command is permitted.

• source --The source command is permitted for files that are in the user policy directory or the user
library directory.

Bytecode Support for EEM 2.4
EEM 2.4 introduces bytecode language (BCL) support by accepting files with the standard bytecode script
extension .tbc. Tcl version 8.3.4 defines a BCL and includes a compiler that translates Tcl scripts into BCL.
Valid EEM policy file extensions in EEM 2.4 for user and system policies are .tcl (Tcl Text files) and .tbc
(Tcl bytecode files).

Storing Tcl scripts in bytecode improves the execution speed of the policy because the code is precompiled,
creates a smaller policy size, and obscures the policy code. Obfuscation makes it a little more difficult to
modify scripts and hides logic to preserve intellectual property rights.

Support for bytecode is being added to provide another option for release of supported and trusted code. We
recommend that you only run well understood, or trusted and supported software on network devices. To
generate Tcl bytecode for IOS EEM support, use TclPro versions 1.4 or 1.5.

To translate a Tcl script to bytecode you can use procomp, part of Free TclPro Compiler, or Active State Tcl
Development Kit. When a Tcl script is compiled using procomp, the code is scrambled and a .tbc file is
generated. The bytecode files are platform-independent and can be generated on any operating system on
which TclPro is available, including Windows, Linux, and UNIX. Procomp is part of TclPro and available
from http://www.tcl.tk/software/tclpro.

Registration Substitution
In addition to regular Tcl substitution, EEM 2.3 permits the substitution of an individual parameter in an EEM
event registration statement line with an environment variable.

EEM 2.4 introduces the ability to replace multiple parameters in event registration statement lines with a
single environment variable.

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
7

Writing Embedded Event Manager Policies Using Tcl
Bytecode Support for EEM 2.4

http://www.tcl.tk/software/tclpro

Only the first environment variable supports multiple parameter substitution. Individual parameters can
still be specified with additional environment variables after the initial variable.

Note

To illustrate the substitution, a single environment variable, $_eem_syslog_statement is configured as:

::cisco::eem::event_register_syslog pattern COUNT
Using the registration substitution, the $_eem_syslog_statement environment variable is used in the following
EEM user policy:

$_eem_syslog_statement occurs $_eem_occurs_val
action_syslog “this is test 3”
Environment variables must be defined before a policy using them is registered. To define the
$_eem_syslog_statement environment variable:

Device(config)# event manager environment eem_syslog_statement
::cisco::eem::event_register_syslog pattern COUNT
Device(config)# event manager environment eem_occurs_val 2

Cisco File Naming Convention for EEM
All Embedded Event Manager policy names, policy support files (for example, e-mail template files), and
library filenames are consistent with the Cisco file naming convention. In this regard, Embedded Event
Manager policy filenames adhere to the following specification:

• An optional prefix--Mandatory.--indicating, if present, that this is a system policy that should be registered
automatically at boot time if it is not already registered. For example: Mandatory.sl_text.tcl.

• A filename body part containing a two-character abbreviation (see the table below) for the first event
specified; an underscore part; and a descriptive field part that further identifies the policy.

• A filename suffix part defined as .tcl.

Embedded Event Manager e-mail template files consist of a filename prefix of email_template, followed by
an abbreviation that identifies the usage of the e-mail template.

Embedded Event Manager library filenames consist of a filename body part containing the descriptive field
that identifies the usage of the library, followed by _lib, and a filename suffix part defined as .tcl.

Table 2: Two-Character Abbreviation Specification

event_register_applap

event_register_clicl

event_register_counterct

event_register_goldgo

event_register_interfaceif

event_register_ioswdsysmonio

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
8

Writing Embedded Event Manager Policies Using Tcl
Cisco File Naming Convention for EEM

event_register_ipslala

event_register_nfnf

event_register_noneno

event_register_oiroi

event_register_processpr

event_register_rfrf

event_register_resourcers

event_register_routingrt

event_register_rpcrp

event_register_syslogsl

event_register_snmpsn

event_register_snmp_notificationst

event_register_snmp_objectso

event_register_timertm

event_register_tracktr

event_register_timer_subscriberts

event_register_wdsysmonwd

How to Write Embedded Event Manager Policies Using Tcl

Registering and Defining an EEM Tcl Script
Perform this task to configure environment variables and register an EEM policy. EEM schedules and runs
policies on the basis of an event specification that is contained within the policy itself. When an EEM policy
is registered, the software examines the policy and registers it to be run when the specified event occurs.

Before You Begin

Youmust have a policy available that is written in the Tcl scripting language. Sample policies are provided--see
the details in the Sample EEM Policies, on page 20 to see which policies are available for the Cisco IOS
release image that you are using--and these sample policies are stored in the system policy directory.

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
9

Writing Embedded Event Manager Policies Using Tcl
How to Write Embedded Event Manager Policies Using Tcl

SUMMARY STEPS

1. enable
2. show event manager environment [all| variable-name]
3. configure terminal
4. event manager environment variable-name string
5. Repeat Registering and Defining an EEM Tcl Script to configure all the environment variables required

by the policy to be registered in Registering and Defining an EEM Tcl Script.
6. event manager policy policy-filename [type {system| user}] [trap]
7. exit

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:

Device> enable

• Enter your password if prompted.

(Optional) Displays the name and value of EEM environment
variables.

show event manager environment [all|
variable-name]

Step 2

Example:

Device# show event manager environment all

• The optional all keyword displays all the EEM environment
variables.

• The optional variable-nameargument displays information
about the specified environment variable.

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 3

Configures the value of the specified EEM environment variable.eventmanager environment variable-name stringStep 4

Example:

Device(config)# event manager environment
_cron_entry 0-59/2 0-23/1 * * 0-6

• In this example, the software assigns a CRON timer
environment variable to be set to the second minute of every
hour of every day.

--Repeat Registering and Defining an EEM Tcl Script
to configure all the environment variables required

Step 5

by the policy to be registered in Registering and
Defining an EEM Tcl Script.

Registers the EEM policy to be run when the specified event
defined within the policy occurs.

event manager policy policy-filename [type
{system| user}] [trap]

Step 6

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
10

Writing Embedded Event Manager Policies Using Tcl
Registering and Defining an EEM Tcl Script

PurposeCommand or Action

Example:

Device(config)# event manager policy
tm_cli_cmd.tcl type system

• Use the system keyword to register a Cisco-defined system
policy.

• Use the user keyword to register a user-defined system
policy.

• Use the trap keyword to generate an SNMP trap when the
policy is triggered.

• In this example, the sample EEM policy named
tm_cli_cmd.tcl is registered as a system policy.

Exits global configuration mode and returns to privileged EXEC
mode.

exit

Example:

Device(config)# exit

Step 7

Examples

In the following example, the show event manager environment privileged EXEC command is used to
display the name and value of all EEM environment variables.

Device# show event manager environment all
No. Name Value
1 _cron_entry 0-59/2 0-23/1 * * 0-6
2 _show_cmd show ver
3 _syslog_pattern .*UPDOWN.*Ethernet1/0.*
4 _config_cmd1 interface Ethernet1/0
5 _config_cmd2 no shut

Displaying EEM Registered Policies
Perform this optional task to display EEM registered policies.

SUMMARY STEPS

1. enable
2. show eventmanager policy registered [event-type event-name] [time-ordered| name-ordered] [detailed

policy-filename]

DETAILED STEPS

Step 1 enable
Enables privileged EXEC mode. Enter your password if prompted.

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
11

Writing Embedded Event Manager Policies Using Tcl
Displaying EEM Registered Policies

Example:

Device> enable

Step 2 show event manager policy registered [event-type event-name] [time-ordered| name-ordered] [detailed
policy-filename]
Use this command with the time-ordered keyword to display information about currently registered policies sorted by
time, for example:

Example:

Device# show event manager policy registered time-ordered
No. Type Event Type Trap Time Registered Name
1 system timer cron Off Wed May11 01:43:18 2005 tm_cli_cmd.tcl
name {crontimer2} cron entry {0-59/1 0-23/1 * * 0-7}
nice 0 priority normal maxrun 240
2 system syslog Off Wed May11 01:43:28 2005 sl_intf_down.tcl
occurs 1 pattern {.*UPDOWN.*Ethernet1/0.*}
nice 0 priority normal maxrun 90
3 system proc abort Off Wed May11 01:43:38 2005 pr_cdp_abort.tcl
instance 1 path {cdp2.iosproc}
nice 0 priority normal maxrun 20

Use this command with the name-ordered keyword to display information about currently registered policies sorted by
name, for example:

Example:

Device# show event manager policy registered name-ordered
No. Type Event Type Trap Time Registered Name
1 system proc abort Off Wed May11 01:43:38 2005 pr_cdp_abort.tcl
instance 1 path {cdp2.iosproc}
nice 0 priority normal maxrun 20
2 system syslog Off Wed May11 01:43:28 2005 sl_intf_down.tcl
occurs 1 pattern {.*UPDOWN.*Ethernet1/0.*}
nice 0 priority normal maxrun 90
3 system timer cron Off Wed May11 01:43:18 2005 tm_cli_cmd.tcl
name {crontimer2} cron entry {0-59/1 0-23/1 * * 0-7}
nice 0 priority normal maxrun 240

Use this command with the event-type keyword to display information about currently registered policies for the event
type specified in the event-name argument, for example:

Example:

Device# show event manager policy registered event-type syslog
No. Type Event Type Time Registered Name
1 system syslog Wed May11 01:43:28 2005 sl_intf_down.tcl
occurs 1 pattern {.*UPDOWN.*Ethernet1/0.*}
nice 0 priority normal maxrun 90

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
12

Writing Embedded Event Manager Policies Using Tcl
Displaying EEM Registered Policies

Unregistering EEM Policies
Perform this task to remove an EEM policy from the running configuration file. Execution of the policy is
canceled.

SUMMARY STEPS

1. enable
2. show event manager policy registered [event-type event-name][system| user] [time-ordered|

name-ordered] [detailed policy-filename]
3. configure terminal
4. no event manager policy policy-filename
5. exit
6. Repeat Unregistering EEM Policies to ensure that the policy has been removed.

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:

Device> enable

• Enter your password if prompted.

(Optional) Displays the EEM policies that are currently
registered.

show event manager policy registered [event-type
event-name][system| user] [time-ordered|
name-ordered] [detailed policy-filename]

Step 2

• The optional systemor user keyword displays the
registered system or user policies.

Example:

Device# show event manager policy registered
• If no keywords are specified, EEM registered policies
for all event types are displayed in time order.

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 3

Removes the EEM policy from the configuration, causing
the policy to be unregistered.

no event manager policy policy-filename

Example:

Device(config)# no event manager policy
pr_cdp_abort.tcl

Step 4

• In this example, the no form of the command is used
to unregister a specified policy.

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
13

Writing Embedded Event Manager Policies Using Tcl
Unregistering EEM Policies

PurposeCommand or Action

Exits global configuration mode and returns to privileged
EXEC mode.

exit

Example:

Device(config)# exit

Step 5

--Repeat Unregistering EEM Policies to ensure that the
policy has been removed.

Step 6

Example:

Device# show event manager policy registered

Examples

In the following example, the show event manager policy registered privileged EXEC command is used to
display the three EEM policies that are currently registered:

Device# show event manager policy registered
No. Type Event Type Trap Time Registered Name
1 system timer cron Off Tue Oct11 01:43:18 2005 tm_cli_cmd.tcl
name {crontimer2} cron entry {0-59/1 0-23/1 * * 0-7}
nice 0 priority normal maxrun 240.000
2 system syslog Off Tue Oct11 01:43:28 2005 sl_intf_down.tcl
occurs 1 pattern {.*UPDOWN.*Ethernet1/0.*}
nice 0 priority normal maxrun 90.000
3 system proc abort Off Tue Oct11 01:43:38 2005 pr_cdp_abort.tcl
instance 1 path {cdp2.iosproc}
nice 0 priority normal maxrun 20.000
After the current policies are displayed, it is decided to delete the pr_cdp_abort.tcl policy using the no form
of the event manager policy command:

Device# configure terminal
Device(config)# no event manager policy pr_cdp_abort.tcl
Device(config)# exit
The show event manager policy registered privileged EXEC command is entered again to display the EEM
policies that are currently registered. The policy pr_cdp_abort.tcl is no longer registered.

Device# show event manager policy registered
No. Type Event Type Trap Time Registered Name
1 system timer cron Off Tue Oct11 01:45:17 2005 tm_cli_cmd.tcl
name {crontimer2} cron entry {0-59/1 0-23/1 * * 0-7}
nice 0 priority normal maxrun 240.000
2 system syslog Off Tue Oct11 01:45:27 2005 sl_intf_down.tcl
occurs 1 pattern {.*UPDOWN.*Ethernet1/0.*}
nice 0 priority normal maxrun 90.000

Suspending EEM Policy Execution
Perform this task to immediately suspend the execution of all EEM policies. Suspending policies, instead of
unregistering them, might be necessary for reasons of temporary performance or security.

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
14

Writing Embedded Event Manager Policies Using Tcl
Suspending EEM Policy Execution

SUMMARY STEPS

1. enable
2. show event manager policy registered [event-type event-name][system| user] [time-ordered|

name-ordered] [detailed policy-filename]
3. configure terminal
4. event manager scheduler suspend
5. exit

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:

Device> enable

• Enter your password if prompted.

(Optional) Displays the EEM policies that are currently
registered.

show event manager policy registered [event-type
event-name][system| user] [time-ordered|
name-ordered] [detailed policy-filename]

Step 2

• The optional systemor user keyword displays the
registered system or user policies.

Example:

Device# show event manager policy registered
• If no keywords are specified, EEM registered policies
for all event types are displayed in time order.

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 3

Immediately suspends the execution of all EEM policies.event manager scheduler suspend

Example:

Device(config)# event manager scheduler suspend

Step 4

Exits global configuration mode and returns to privileged
EXEC mode.

exit

Example:

Device(config)# exit

Step 5

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
15

Writing Embedded Event Manager Policies Using Tcl
Suspending EEM Policy Execution

Examples

In the following example, the show event manager policy registered privileged EXEC command is used to
display all the EEM registered policies:

Device# show event manager policy registered
No. Type Event Type Trap Time Registered Name
1 system timer cron Off Sat Oct11 01:43:18 2003 tm_cli_cmd.tcl
name {crontimer2} cron entry {0-59/1 0-23/1 * * 0-7}
nice 0 priority normal maxrun 240.000
2 system syslog Off Sat Oct11 01:43:28 2003 sl_intf_down.tcl
occurs 1 pattern {.*UPDOWN.*Ethernet1/0.*}
nice 0 priority normal maxrun 90.000
3 system proc abort Off Sat Oct11 01:43:38 2003 pr_cdp_abort.tcl
instance 1 path {cdp2.iosproc}
nice 0 priority normal maxrun 20.000
The event manager scheduler suspend command is entered to immediately suspend the execution of all
EEM policies:

Device# configure terminal
Device(config)# event manager scheduler suspend
*Nov 2 15:34:39.000: %HA_EM-6-FMS_POLICY_EXEC: fh_io_msg: Policy execution has been
suspended

Managing EEM Policies
Perform this task to specify a directory to use for storing user library files or user-defined EEM policies.

This task applies only to EEM policies that are written using Tcl scripts.Note

SUMMARY STEPS

1. enable
2. show event manager directory user [library| policy]
3. configure terminal
4. event manager directory user {library path| policy path}
5. exit

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:

Device> enable

• Enter your password if prompted.

(Optional) Displays the directory to use for storing EEM user
library or policy files.

show event manager directory user [library|
policy]

Step 2

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
16

Writing Embedded Event Manager Policies Using Tcl
Managing EEM Policies

PurposeCommand or Action

Example:

Device# show event manager directory user
library

• The optional librarykeyword displays the directory to use
for user library files.

• The optional policykeyword displays the directory to use
for user-defined EEM policies.

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 3

Specifies a directory to use for storing user library files or
user-defined EEM policies.

event manager directory user {library path|
policy path}

Step 4

Example:

Device(config)# event manager directory
user library bootflash:/user_library

• Use the pathargument to specify the absolute pathname to
the user directory.

Exits global configuration mode and returns to privileged EXEC
mode.

exit

Example:

Device(config)# exit

Step 5

Examples

In the following example, the show event manager directory user privileged EXEC command is used to
display the directory, if it exists, to use for storing EEM user library files:

Device# show event manager directory user library
bootflash:/user_library

Modifying History Table Size and Displaying EEM History Data
Perform this optional task to change the size of the history tables and to display EEM history data.

SUMMARY STEPS

1. enable
2. configure terminal
3. event manager history size {events | traps} [size]
4. exit
5. show event manager history events [detailed] [maximum number]
6. show event manager history traps [server | policy]

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
17

Writing Embedded Event Manager Policies Using Tcl
Modifying History Table Size and Displaying EEM History Data

DETAILED STEPS

Step 1 enable
Enables privileged EXEC mode. Enter your password if prompted.

Example:

Device> enable

Step 2 configure terminal
Enters global configuration mode.

Example:

Device# configure terminal

Step 3 event manager history size {events | traps} [size]
Use this command to change the size of the EEM event history table or the size of the EEM SNMP trap history table.
In the following example, the size of the EEM event history table is changed to 30 entries:

Example:

Device(config)# event manager history size events 30

Step 4 exit
Exits global configuration mode and returns to privileged EXEC mode.

Example:

Device(config)# exit

Step 5 show event manager history events [detailed] [maximum number]
Use this command to display information about each EEM event that has been triggered.

Example:

Device# show event manager history events
No. Time of Event Event Type Name
1 Fri Sep 9 13:48:40 2005 syslog applet: one
2 Fri Sep 9 13:48:40 2005 syslog applet: two
3 Fri Sep 9 13:48:40 2005 syslog applet: three
4 Fri Sep 9 13:50:00 2005 timer cron script: tm_cli_cmd.tcl
5 Fri Sep 9 13:51:00 2005 timer cron script: tm_cli_cmd.tcl

Step 6 show event manager history traps [server | policy]
Use this command to display the EEM SNMP traps that have been sent either from the EEM server or from an EEM
policy.

Example:

Device# show event manager history traps
No. Time Trap Type Name

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
18

Writing Embedded Event Manager Policies Using Tcl
Modifying History Table Size and Displaying EEM History Data

1 Fri Sep 9 13:48:40 2005 server applet: four
2 Fri Sep 9 13:57:03 2005 policy script: no_snmp_test.tcl

Displaying Software Modularity Process Reliability Metrics Using EEM
Perform this optional task to display reliability metrics for Cisco IOS Software Modularity processes. The
show event manager metric processes command is supported only in Software Modularity images.

SUMMARY STEPS

1. enable
2. show event manager metric process {all| process-name}

DETAILED STEPS

Step 1 enable
Enables privileged EXEC mode. Enter your password if prompted.

Example:

Device> enable

Step 2 show event manager metric process {all| process-name}
Use this command to display the reliability metric data for processes. The system keeps a record of when processes start
and end, and this data is used as the basis for reliability analysis. In this partial example, the first and last entries showing
the metric data for the processes on all the cards inserted in the system are displayed.

Example:

Device# show event manager metric process all
=====================================
process name: devc-pty, instance: 1
sub_system id: 0, version: 00.00.0000

last event type: process start
recent start time: Fri Oct10 20:34:40 2005
recent normal end time: n/a
recent abnormal end time: n/a
number of times started: 1
number of times ended normally: 0
number of times ended abnormally: 0
most recent 10 process start times:

Fri Oct10 20:34:40 2005

most recent 10 process end times and types:
cumulative process available time: 6 hours 30 minutes 7 seconds 378 milliseconds
cumulative process unavailable time: 0 hours 0 minutes 0 seconds 0 milliseconds
process availability: 0.100000000
number of abnormal ends within the past 60 minutes (since reload): 0
number of abnormal ends within the past 24 hours (since reload): 0
number of abnormal ends within the past 30 days (since reload): 0

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
19

Writing Embedded Event Manager Policies Using Tcl
Displaying Software Modularity Process Reliability Metrics Using EEM

.

.

.
=====================================
process name: cdp2.iosproc, instance: 1
sub_system id: 0, version: 00.00.0000

last event type: process start
recent start time: Fri Oct10 20:35:02 2005
recent normal end time: n/a
recent abnormal end time: n/a
number of times started: 1
number of times ended normally: 0
number of times ended abnormally: 0
most recent 10 process start times:

Fri Oct10 20:35:02 2005

most recent 10 process end times and types:

cumulative process available time: 6 hours 29 minutes 45 seconds 506 milliseconds
cumulative process unavailable time: 0 hours 0 minutes 0 seconds 0 milliseconds
process availability: 0.100000000
number of abnormal ends within the past 60 minutes (since reload): 0
number of abnormal ends within the past 24 hours (since reload): 0
number of abnormal ends within the past 30 days (since reload): 0

Troubleshooting Tips
Use the debug eventmanager command in privileged EXECmode to troubleshoot EEM command operations.
Use any debugging commandwith caution because the volume of output generated can slow or stop the device
operations. We recommend that this command be used only under the supervision of a Cisco engineer.

Modifying the Sample EEM Policies
Perform this task to modify one of the sample policies. Cisco software contains some sample policies in the
images that contain the Embedded Event Manager. Developers of EEM policies may modify these policies
by customizing the event for which the policy is to be run and the options associated with logging and
responding to the event. In addition, developers may select the actions to be implemented when the policy
runs.

Sample EEM Policies
Cisco includes a set of sample policies shown in the table below. You can copy the sample policies to a user
directory and then modify the policies, or you can write your own policies. Tcl is currently the only
Cisco-supported scripting language for policy creation. Tcl policies can be modified using a text editor such
as Emacs. Policies must execute within a defined number of seconds of elapsed time, and the time variable
can be configured within a policy. The default is currently 20 seconds.

The table below describes the sample EEM policies.

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
20

Writing Embedded Event Manager Policies Using Tcl
Modifying the Sample EEM Policies

Table 3: Sample EEM Policy Descriptions

DescriptionName of Policy

Introduced with Cisco Software Modularity images.
This policy monitors for cdp2.iosproc process abort
events. It will log a message to SYSLOG and send
an e-mail with the details of the abort.

pr_cdp_abort.tcl

Introduced with Cisco Software Modularity images.
This policy monitors for all process abort events.
When an event occurs, the policy will send crash
information, including the crashdump file, to the
specified URLwhere a CGI script processes the data.

pr_crash_reporter.tcl

Introduced with Cisco Software Modularity images.
This policy monitors for iprouting.iosproc process
abort events. It will log a message to SYSLOG and
send an e-mail with the details of the abort.

pr_iprouting_abort.tcl

This policy runs when a configurable syslogmessage
is logged. It will execute a configurable CLI command
and e-mail the results.

sl_intf_down.tcl

This policy runs using a configurable CRON entry.
It will execute a configurable CLI command and
e-mail the results.

tm_cli_cmd.tcl

Introduced with Cisco Software Modularity images.
This policy runs at midnight every day and e-mails a
process crash history report to a specified e-mail
address.

tm_crash_history.tcl

This policy runs 5 seconds after it is registered. If the
policy is saved in the configuration, it will also run
each time that the device is reloaded. The policy will
prompt for the reload reason. If the reload was due
to a crash, the policy will search for the latest
crashinfo file and send this information to a specified
URL location.

tm_crash_reporter.tcl

Introduced with Cisco Software Modularity images.
This policy runs using a configurable CRON entry
andmonitors disk space usage. A syslogmessage will
be displayed if disk space usage crosses configurable
thresholds.

tm_fsys_usage.tcl

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
21

Writing Embedded Event Manager Policies Using Tcl
Modifying the Sample EEM Policies

DescriptionName of Policy

Introduced with Cisco Software Modularity images.
This policy reports on low systemmemory conditions
when the amount of memory available falls below 20
percent of the initial available system memory. A
syslog message will be displayed and, optionally, an
e-mail will be sent.

wd_mem_reporter.tcl

For more details about the sample policies available and how to run them, see the EEM Event Detector Demo
Examples, on page 41.

SUMMARY STEPS

1. enable
2. show event manager policy available detailed policy-filename
3. Cut and paste the contents of the sample policy displayed on the screen to a text editor.
4. Edit the policy and save it with a new filename.
5. Copy the new file back to the device flash memory.
6. configure terminal
7. event manager directory user {library path| policy path}
8. event manager policy policy-filename [type {system| user}] [trap]

DETAILED STEPS

Step 1 enable
Enables privileged EXEC mode. Enter your password if prompted.

Example:

Device> enable

Step 2 show event manager policy available detailed policy-filename
Displays the actual specified sample policy including details about the environment variables used by the policy and
instructions for running the policy. The detailed keyword was introduced for the show event manager policy available
and the show event manager policy registered commands. Depending on your release, you may need to copy one of
the two Tcl scripts from the configuration examples section in this document (see the Programming Policies with Tcl
Sample Scripts Example, on page 49). In the following example, details about the sample policy tm_cli_cmd.tcl are
displayed on the screen.

Example:

Device# show event manager policy available detailed tm_cli_cmd.tcl

Step 3 Cut and paste the contents of the sample policy displayed on the screen to a text editor.
Use the edit and copy functions to move the contents from the device to a text editor on another device.

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
22

Writing Embedded Event Manager Policies Using Tcl
Modifying the Sample EEM Policies

Step 4 Edit the policy and save it with a new filename.
Use the text editor to modify the policy as a Tcl script. For file naming conventions, see the Cisco File Naming Convention
for EEM, on page 8.

Step 5 Copy the new file back to the device flash memory.
Copy the file to the flash file system on the device--typically bootflash:. For more details about copying files, see the
“Using the Cisco IOS File System” chapter in the Configuration Fundamentals Configuration Guide.

Step 6 configure terminal
Enters global configuration mode.

Example:

Device# configure terminal

Step 7 event manager directory user {library path| policy path}
Specifies a directory to use for storing user library files or user-defined EEM policies. In the following example, the
user_library directory on bootflash is specified as the directory for storing user library files.

Example:

Device(config)# event manager directory user library bootflash:/user_library

Step 8 event manager policy policy-filename [type {system| user}] [trap]
Registers the EEM policy to be run when the specified event defined within the policy occurs. In the following example,
the new EEM policy named test.tcl is registered as a user-defined policy.

Example:

Device(config)# event manager policy test.tcl type user

Programming EEM Policies with Tcl
Perform this task to help you program a policy using Tcl command extensions. We recommend that you copy
an existing policy and modify it. There are two required parts that must exist in an EEM Tcl policy: the
event_register Tcl command extension and the body. All other sections shown in the Tcl Policy Structure
and Requirements, on page 24 concept are optional.

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
23

Writing Embedded Event Manager Policies Using Tcl
Programming EEM Policies with Tcl

Tcl Policy Structure and Requirements
All EEM policies share the same structure, shown in the figure below. There are two parts of an EEM policy
that are required: the event_register Tcl command extension and the body. The remaining parts of the policy
are optional: environment must defines, namespace import, entry status, and exit status.

Figure 2: Tcl Policy Structure and Requirements

The start of every policy must describe and register the event to detect using an event_register Tcl command
extension. This part of the policy schedules the running of the policy . The following example Tcl code shows
how to register the event_register_timer Tcl command extension:

::cisco::eem::event_register_timer cron name crontimer2 cron_entry $_cron_entry maxrun 240
The environment must defines section is optional and includes the definition of environment variables. The
following example Tcl code shows how to check for, and define, some environment variables.

Check if all the env variables that we need exist.
If any of them does not exist, print out an error msg and quit.
if {![info exists _email_server]} {

set result \
"Policy cannot be run: variable _email_server has not been set"

error $result $errorInfo
}
if {![info exists _email_from]} {

set result \
"Policy cannot be run: variable _email_from has not been set"

error $result $errorInfo
}
if {![info exists _email_to]} {

set result \
"Policy cannot be run: variable _email_to has not been set"

error $result $errorInfo
The namespace import section is optional and defines code libraries. The following example Tcl code shows
how to configure a namespace import section.

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*
The body of the policy is a required structure and might contain the following:

• The event_reqinfoevent information Tcl command extension that is used to query the EEM for
information about the detected event.

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
24

Writing Embedded Event Manager Policies Using Tcl
Programming EEM Policies with Tcl

• The action Tcl command extensions, such as action_syslog, that are used to specify EEM specific
actions.

• The system information Tcl command extensions, such as sys_reqinfo_routername, that are used to
obtain general system information.

• Use of the SMTP library (to send e-mail notifications) or the CLI library (to run CLI commands) from
a policy.

• The context_save and context_retrieve Tcl command extensions that are used to save Tcl variables for
use by other policies.

The following example Tcl code shows the code to query an event and log a message as part of the body
section.

Query the event info and log a message.
array set arr_einfo [event_reqinfo]

if {$_cerrno != 0} {
set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \

$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]
error $result

}

global timer_type timer_time_sec
set timer_type $arr_einfo(timer_type)
set timer_time_sec $arr_einfo(timer_time_sec)

Log a message.
set msg [format "timer event: timer type %s, time expired %s" \

$timer_type [clock format $timer_time_sec]]

action_syslog priority info msg $msg
if {$_cerrno != 0} {

set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}

EEM Entry Status
The entry status part of an EEM policy is used to determine if a prior policy has been run for the same event,
and to determine the exit status of the prior policy. If the _entry_status variable is defined, a prior policy has
already run for this event. The value of the _entry_status variable determines the return code of the prior
policy.

Entry status designations may use one of three possible values: 0 (previous policy was successful), Not=0
(previous policy failed), and Undefined (no previous policy was executed).

EEM Exit Status
When a policy finishes running its code, an exit value is set. The exit value is used by the Embedded Event
Manager to determine whether or not to apply the default action for this event, if any. A value of zero means
do not perform the default action. A value of nonzero means perform the default action. The exit status will
be passed to subsequent policies that are run for the same event.

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
25

Writing Embedded Event Manager Policies Using Tcl
Programming EEM Policies with Tcl

EEM Policies and Cisco Error Number
Some EEMTcl command extensions set a Cisco Error Number Tcl global variable _cerrno.Whenever _cerrno
is set, four other Tcl global variables are derived from _cerrno and are set along with it (_cerr_sub_num,
_cerr_sub_err, _cerr_posix_err, and _cerr_str).

For example, the action_syslog command in the example below sets these global variables as a side effect of
the command execution:

action_syslog priority warning msg “A sample message generated by action_syslog”
if {$_cerrno != 0} {

set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}
_cerrno: 32-Bit Error Return Values

The _cerrno set by a command can be represented as a 32-bit integer of the following form:

XYSSSSSSSSSSSSSEEEEEEEEPPPPPPPPP
For example, the following error return value might be returned from an EEM Tcl command extension:

862439AE
This number is interpreted as the following 32-bit value:

10000110001001000011100110101110
This 32-bit integer is divided up into the five variables shown in the table below.

Table 4: _cerrno: 32-Bit Error Return Value Variables

DescriptionVariable

The error class (indicates the severity of the error).
This variable corresponds to the first two bits in the
32-bit error return value; 10 in the case above, which
indicates CERR_CLASS_WARNING:

See the table below for the four possible error class
encodings specific to this variable.

XY

The subsystem number that generated the most recent
error (13 bits = 8192 values). This is the next 13 bits
of the 32-bit sequence, and its integer value is
contained in $_cerr_sub_num.

SSSSSSSSSSSSSS

DescriptionVariable

The subsystem specific error number (8 bits = 256
values). This segment is the next 8 bits of the 32-bit
sequence, and the string corresponding to this error
number is contained in $_cerr_sub_err.

EEEEEEEE

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
26

Writing Embedded Event Manager Policies Using Tcl
Programming EEM Policies with Tcl

DescriptionVariable

The pass-through POSIX error code (9 bits = 512
values). This represents the last of the 32-bit
sequence, and the string corresponding to this error
code is contained in $_cerr_posix_err.

PPPPPPPP

Error Class Encodings for XY

The first variable, XY, references the possible error class encodings shown in the table below.

Table 5: Error Class Encodings

CERR_CLASS_SUCCESS00

CERR_CLASS_INFO01

CERR_CLASS_WARNING10

CERR_CLASS_FATAL11

An error return value of zero means SUCCESS.

SUMMARY STEPS

1. enable
2. show event manager policy available detailed policy-filename
3. Cut and paste the contents of the sample policy displayed on the screen to a text editor.
4. Define the required event_register Tcl command extension.
5. Add the appropriate namespace under the ::cisco hierarchy.
6. Program the must defines section to check for each environment variable that is used in this policy.
7. Program the body of the script.
8. Check the entry status to determine if a policy has previously run for this event.
9. Check the exit status to determine whether or not to apply the default action for this event, if a default

action exists.
10. Set Cisco Error Number (_cerrno) Tcl global variables.
11. Save the Tcl script with a new filename, and copy the Tcl script to the device.
12. configure terminal
13. event manager directory user {library path| policy path}
14. event manager policy policy-filename [type {system| user}] [trap]
15. Cause the policy to execute, and observe the policy.
16. Use debugging techniques if the policy does not execute correctly.

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
27

Writing Embedded Event Manager Policies Using Tcl
Programming EEM Policies with Tcl

DETAILED STEPS

Step 1 enable
Enables privileged EXEC mode. Enter your password if prompted.

Example:

Device> enable

Step 2 show event manager policy available detailed policy-filename
Displays the actual specified sample policy including details about the environment variables used by the policy and
instructions for running the policy. The detailed keyword was introduced for the show event manager policy available
and the show event manager policy registered commands. Depending on your release, you must copy one of the two
Tcl scripts from the configuration examples section in this document (see the Programming Policies with Tcl Sample
Scripts Example, on page 49). In the following example, details about the sample policy tm_cli_cmd.tcl are displayed
on the screen.

Example:

Device# show event manager policy available detailed tm_cli_cmd.tcl

Step 3 Cut and paste the contents of the sample policy displayed on the screen to a text editor.
Use the edit and copy functions to move the contents from the device to a text editor on another device. Use the text
editor to edit the policy as a Tcl script.

Step 4 Define the required event_register Tcl command extension.
Choose the appropriate event_register Tcl command extension from the table below for the event that you want to
detect, and add it to the policy.

Table 6: EEM Event Registration Tcl Command Extensions

Event Registration Tcl Command Extensions

event_register_appl

event_register_cli

event_register_counter

event_register_gold

event_register_interface

event_register_ioswdsysmon

event_register_ipsla

event_register_nf

event_register_none

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
28

Writing Embedded Event Manager Policies Using Tcl
Programming EEM Policies with Tcl

Event Registration Tcl Command Extensions

event_register_oir

event_register_process

event_register_resource

event_register_rf

event_register_routing

event_register_rpc

event_register_snmp

event_register_snmp_notification

event_register_snmp_object

event_register_syslog

event_register_timer

event_register_timer_subscriber

event_register_track

event_register_wdsysmon

Step 5 Add the appropriate namespace under the ::cisco hierarchy.
Policy developers can use the new namespace ::cisco in Tcl policies in order to group all the extensions used by Cisco
IOS EEM. There are two namespaces under the ::cisco hierarchy, and the table below shows which category of EEM
Tcl command extension belongs under each namespace.

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
29

Writing Embedded Event Manager Policies Using Tcl
Programming EEM Policies with Tcl

Table 7: Cisco IOS EEM Namespace Groupings

Category of Tcl Command ExtensionNamespace

EEM event registration::cisco::eem

EEM event information

EEM event publish

EEM action

EEM utility

EEM context library

EEM system information

CLI library

SMTP library::cisco::lib

Make sure that you import the appropriate namespaces or use the qualified command names when using the
above commands.

Note

Step 6 Program the must defines section to check for each environment variable that is used in this policy.
This is an optional step. Must defines are a section of the policy that tests whether any EEM environment variables that
are required by the policy are defined before the recovery actions are taken. The must defines section is not required if
the policy does not use any EEM environment variables. EEM environment variables for EEM scripts are Tcl global
variables that are defined external to the policy before the policy is run. To define an EEM environment variable, use
the Embedded Event Manager configuration command event manager environment CLI command. By convention all
Cisco EEM environment variables begin with “ _ ” (an underscore). In order to avoid future conflict, customers are urged
not to define new variables that start with “ _ ”.

You can display the Embedded Event Manager environment variables set on your system by using the show
event manager environment privileged EXEC command.

Note

For example, Embedded Event Manager environment variables defined by the sample policies include e-mail variables.
The sample policies that send e-mail must have the variables shown in the table below set in order to function properly.

The table below describes the e-mail-specific environment variables used in the sample EEM policies.

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
30

Writing Embedded Event Manager Policies Using Tcl
Programming EEM Policies with Tcl

Table 8: E-mail-Specific Environmental Variables Used by the Sample Policies

ExampleDescriptionEnvironment Variable

The e-mail server name can be in any
one of the following template formats:

• username:password@host

• username@host

• host

A Simple Mail Transfer Protocol
(SMTP) mail server used to send
e-mail.

_email_server

engineering@example.comThe address to which e-mail is sent._email_to

devtest@example.comThe address fromwhich e-mail is sent._email_from

manager@example.comThe address to which the e-mail must
be copied.

_email_cc

The following example of a must define section shows how to program a check for e-mail-specific environment variables.

Example of Must Defines

Example:

if {![info exists _email_server]} {
set result \

"Policy cannot be run: variable _email_server has not been set"
error $result $errorInfo

}
if {![info exists _email_from]} {

set result \
"Policy cannot be run: variable _email_from has not been set"

error $result $errorInfo
}
if {![info exists _email_to]} {

set result \
"Policy cannot be run: variable _email_to has not been set"

error $result $errorInfo
}
if {![info exists _email_cc]} {

set result \
"Policy cannot be run: variable _email_cc has not been set"

error $result $errorInfo
}

Step 7 Program the body of the script.
In this section of the script, you can define any of the following:

• The event_reqinfoevent information Tcl command extension that is used to query the EEM for information about
the detected event.

• The action Tcl command extensions, such as action_syslog, that are used to specify EEM specific actions.

• The system information Tcl command extensions, such as sys_reqinfo_routername, that are used to obtain general
system information.

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
31

Writing Embedded Event Manager Policies Using Tcl
Programming EEM Policies with Tcl

• The context_save and context_retrieve Tcl command extensions that are used to save Tcl variables for use by
other policies.

• Use of the SMTP library (to send e-mail notifications) or the CLI library (to run CLI commands) from a policy.

Step 8 Check the entry status to determine if a policy has previously run for this event.
If the prior policy is successful, the current policy may or may not require execution. Entry status designations may use
one of three possible values: 0 (previous policy was successful), Not=0 (previous policy failed), and Undefined (no
previous policy was executed).

Step 9 Check the exit status to determine whether or not to apply the default action for this event, if a default action exists.
A value of zero means do not perform the default action. A value of nonzero means perform the default action. The exit
status will be passed to subsequent policies that are run for the same event.

Step 10 Set Cisco Error Number (_cerrno) Tcl global variables.
Some EEM Tcl command extensions set a Cisco Error Number Tcl global variable _cerrno. Whenever _cerrno is set,
four other Tcl global variables are derived from _cerrno and are set along with it (_cerr_sub_num, _cerr_sub_err,
_cerr_posix_err, and _cerr_str).

For example, the action_syslog command in the example below sets these global variables as a side effect of the command
execution:

Example:

action_syslog priority warning msg “A sample message generated by action_syslog
if {$_cerrno != 0} {

set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}

Step 11 Save the Tcl script with a new filename, and copy the Tcl script to the device.
Embedded Event Manager policy filenames adhere to the following specification:

• An optional prefix--Mandatory.--indicating, if present, that this is a system policy that should be registered
automatically at boot time if it is not already registered. For example: Mandatory.sl_text.tcl.

• A filename body part containing a two-character abbreviation (see EEM Policies and Cisco Error Number, on
page 26) for the first event specified; an underscore character part; and a descriptive field part further identifying
the policy.

• A filename suffix part defined as .tcl.

For more details, see the Cisco File Naming Convention for EEM, on page 8.

Copy the file to the flash file system on the device--typically bootflash:. For more details about copying files, see the
“Using the Cisco IOS File System” chapter in the Cisco IOS Configuration Fundamentals Configuration Guide .

Step 12 configure terminal
Enters global configuration mode.

Example:

Device# configure terminal

Step 13 event manager directory user {library path| policy path}

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
32

Writing Embedded Event Manager Policies Using Tcl
Programming EEM Policies with Tcl

Specifies a directory to use for storing user library files or user-defined EEM policies. In the following example, the
user_library directory on bootflash is specified as the directory for storing user library files.

Example:

Device(config)# event manager directory user library bootflash:/user_library

Step 14 event manager policy policy-filename [type {system| user}] [trap]
Registers the EEM policy to be run when the specified event defined within the policy occurs. In the following example,
the new EEM policy named cl_mytest.tcl is registered as a user-defined policy.

Example:

Device(config)# event manager policy cl_mytest.tcl type user

Step 15 Cause the policy to execute, and observe the policy.
To test that the policy runs, generate the conditions that will cause the policy to execute and observe that the policy runs
as expected.

Step 16 Use debugging techniques if the policy does not execute correctly.
Use the Cisco IOS debug event manager CLI command with its various keywords to debug issues. Refer to the
Troubleshooting Tips, on page 33 for details about using Tcl-specific keywords.

Troubleshooting Tips
• Use the debug event manager tcl commands CLI command to debug issues with Tcl extension
commands. When enabled, this command displays all data that is passed in and read back from the TTY
session that handles the CLI interactions. This data helps ensure users that the commands they are passing
to the CLI are valid.

• The CLI library allows users to run CLI commands and obtain the output of commands in Tcl. Use the
debug event manager tcl cli-library CLI command to debug issues with the CLI library.

• The SMTP library allows users to send e-mail messages to an SMTP e-mail server. Use the debug event
manager tcl smtp_library CLI command to debug issues with the SMTP library. When enabled, this
command displays all data that is passed in and read back from the SMTP library routines. This data
helps ensure users that the commands they are passing to the SMTP library are valid.

• Tcl is a flexible language that allows you to override commands. For example, you can modify the set
command and create a version of the set command that displays a message when a scalar variable is set.
When the set command is entered in a policy, a message is displayed anytime a scalar variable is set,
and this provides a way to debug scalar variables. To view an example of this debugging technique, see
the Tracing Tcl set Command Operations Example, on page 59.

To view examples of the some of these debugging techniques, see the Debugging Embedded Event Manager
Policies Examples, on page 57.

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
33

Writing Embedded Event Manager Policies Using Tcl
Programming EEM Policies with Tcl

Creating an EEM User Tcl Library Index
Perform this task to create an index file that contains a directory of all the procedures contained in a library
of Tcl files. This task allows you to test library support in EEM Tcl. In this task, a library directory is created
to contain the Tcl library files, the files are copied into the directory, and an index tclIndex) is created that
contains a directory of all the procedures in the library files. If the index is not created, the Tcl procedures
will not be found when an EEM policy is run that references a Tcl procedure.

SUMMARY STEPS

1. On your workstation (UNIX, Linux, PC, or Mac) create a library directory and copy the Tcl library files
into the directory.

2. tclsh
3. auto_mkindex directory_name *.tcl
4. Copy the Tcl library files from Creating an EEM User Tcl Library Index, on page 34 and the tclIndex

file from Creating an EEM User Tcl Library Index, on page 34 to the directory used for storing user
library files on the target device.

5. Copy a user-defined EEM policy file written in Tcl to the directory used for storing user-defined EEM
policies on the target device. The directory can be the same directory used in Creating an EEM User Tcl
Library Index, on page 34.

6. enable
7. configure terminal
8. event manager directory user library path
9. event manager directory user policy path
10. event manager policy policy-name [type {system | user} [trap]
11. event manager run policy-name

DETAILED STEPS

Step 1 On your workstation (UNIX, Linux, PC, orMac) create a library directory and copy the Tcl library files into the directory.
The following example files can be used to create a tclIndex on a workstation running the Tcl shell:

lib1.tcl

Example:

proc test1 {} {
puts "In procedure test1"

}

proc test2 {} {
puts "In procedure test2"

}

lib2.tcl

Example:

proc test3 {} {

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
34

Writing Embedded Event Manager Policies Using Tcl
Creating an EEM User Tcl Library Index

puts "In procedure test3"
}

Step 2 tclsh
Use this command to enter the Tcl shell.

Example:

workstation% tclsh

Step 3 auto_mkindex directory_name *.tcl
Use the auto_mkindex command to create the tclIndex file. The tclIndex file that contains a directory of all the procedures
contained in the Tcl library files. We recommend that you run auto_mkindex inside a directory because there can only
be a single tclIndex file in any directory and you may have other Tcl files to be grouped together. Running auto_mkindex
in a directory determines which tcl source file or files are indexed using a specific tclIndex.

Example:

workstation% auto_mkindex eem_library *.tcl

The following example TclIndex is created when the lib1.tcl and lib2.tcl files are in a library file directory and the
auto_mkindex command is run.

tclIndex

Example:

Tcl autoload index file, version 2.0
This file is generated by the "auto_mkindex" command
and sourced to set up indexing information for one or
more commands. Typically each line is a command that
sets an element in the auto_index array, where the
element name is the name of a command and the value is
a script that loads the command.

set auto_index(test1) [list source [file join $dir lib1.tcl]]
set auto_index(test2) [list source [file join $dir lib1.tcl]]
set auto_index(test3) [list source [file join $dir lib2.tcl]]

Step 4 Copy the Tcl library files from Creating an EEM User Tcl Library Index, on page 34 and the tclIndex file from Creating
an EEM User Tcl Library Index, on page 34 to the directory used for storing user library files on the target device.

Step 5 Copy a user-defined EEM policy file written in Tcl to the directory used for storing user-defined EEM policies on the
target device. The directory can be the same directory used in Creating an EEM User Tcl Library Index, on page 34.
The directory for storing user-defined EEM policies can be the same directory used in Creating an EEMUser Tcl Library
Index, on page 34. The following example user-defined EEM policy can be used to test the Tcl library support in EEM.

libtest.tcl

Example:

::cisco::eem::event_register_none

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

global auto_index auto_path

puts [array names auto_index]

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
35

Writing Embedded Event Manager Policies Using Tcl
Creating an EEM User Tcl Library Index

if { [catch {test1} result]} {
puts "calling test1 failed result = $result $auto_path"

}

if { [catch {test2} result]} {
puts "calling test2 failed result = $result $auto_path"

}
if { [catch {test3} result]} {

puts "calling test3 failed result = $result $auto_path"
}

Step 6 enable
Enables privileged EXEC mode. Enter your password if prompted.

Example:

Device> enable

Step 7 configure terminal
Enables global configuration mode.

Example:

Device# configure terminal

Step 8 event manager directory user library path
Use this command to specify the EEM user library directory; this is the directory to which the files in Creating an EEM
User Tcl Library Index, on page 34 were copied.

Example:

Device(config)# event manager directory user library disk2:/eem_library

Step 9 event manager directory user policy path
Use this command to specify the EEM user policy directory; this is the directory to which the file in Creating an EEM
User Tcl Library Index, on page 34 was copied.

Example:

Device(config)# event manager directory user policy disk2:/eem_policies

Step 10 event manager policy policy-name [type {system | user} [trap]
Use this command to register a user-defined EEM policy. In this example, the policy named libtest.tcl is registered.

Example:

Device(config)# event manager policy libtest.tcl

Step 11 event manager run policy-name
Use this command to manually run an EEM policy. In this example, the policy named libtest.tcl is run to test the Tcl
support in EEM. The example output shows that the test for Tcl support in EEM was successful.

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
36

Writing Embedded Event Manager Policies Using Tcl
Creating an EEM User Tcl Library Index

Example:

Device(config)# event manager run libtest.tcl
The following output is displayed:
01:24:37: %HA_EM-6-LOG: libtest.tcl: In procedure test1
01:24:37: %HA_EM-6-LOG: libtest.tcl: In procedure test2
01:24:37: %HA_EM-6-LOG: libtest.tcl: In procedure test3

Creating an EEM User Tcl Package Index
Perform this task to create a Tcl package index file that contains a directory of all the Tcl packages and version
information contained in a library of Tcl package files. Tcl packages are supported, depending on your release,
using the Tcl package keyword.

Tcl packages are located in either the EEM system library directory or the EEM user library directory. When
a package require Tcl command is executed, the user library directory is searched first for a pkgIndex.tcl
file. If the pkgIndex.tcl file is not found in the user directory, the system library directory is searched. In this
task, a Tcl package directory--the pkgIndex.tcl file--is created in the appropriate library directory using the
pkg_mkIndex command to contain information about all of the Tcl packages contained in the directory along
with version information. If the index is not created, the Tcl packages will not be found when an EEM policy
is run that contains a package require Tcl command.

Using the Tcl package support in EEM, users can gain access to packages such as XML_RPC for Tcl. When
the Tcl package index is created, a Tcl script can easily make an XML-RPC call to an external entity.

Packages implemented in C programming code are not supported in EEM.Note

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
37

Writing Embedded Event Manager Policies Using Tcl
Creating an EEM User Tcl Package Index

SUMMARY STEPS

1. On your workstation (UNIX, Linux, PC, or Mac) create a library directory and copy the Tcl package files
into the directory.

2. tclsh
3. pkg_mkindex directory_name *.tcl
4. Copy the Tcl library files from Creating an EEM User Tcl Package Index, on page 37 and the pkgIndex

file from Creating an EEM User Tcl Package Index, on page 37 to the directory used for storing user
library files on the target device.

5. Copy a user-defined EEM policy file written in Tcl to the directory used for storing user-defined EEM
policies on the target device. The directory can be the same directory used in Creating an EEM User Tcl
Package Index, on page 37.

6. enable
7. configure terminal
8. event manager directory user library path
9. event manager directory user policy path
10. event manager policy policy-name [type {system | user} [trap]
11. event manager run policy-name

DETAILED STEPS

Step 1 On your workstation (UNIX, Linux, PC, or Mac) create a library directory and copy the Tcl package files into the
directory.

Step 2 tclsh
Use this command to enter the Tcl shell.

Example:

workstation% tclsh

Step 3 pkg_mkindex directory_name *.tcl
Use the pkg_mkindex command to create the pkgIndex file. The pkgIndex file contains a directory of all the packages
contained in the Tcl library files. We recommend that you run pkg_mkindex inside a directory because there can only
be a single pkgIndex file in any directory and you may have other Tcl files to be grouped together. Running pkg_mkindex
in a directory determines which Tcl package file or files are indexed using a specific pkgIndex.

Example:

workstation% pkg_mkindex eem_library *.tcl

The following example pkgIndex is created when some Tcl package files are in a library file directory and the
pkg_mkindex command is run.

pkgIndex

Example:

Tcl package index file, version 1.1

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
38

Writing Embedded Event Manager Policies Using Tcl
Creating an EEM User Tcl Package Index

This file is generated by the "pkg_mkIndex" command
and sourced either when an application starts up or
by a "package unknown" script. It invokes the
"package ifneeded" command to set up package-related
information so that packages will be loaded automatically
in response to "package require" commands. When this
script is sourced, the variable $dir must contain the
full path name of this file's directory.
package ifneeded xmlrpc 0.3 [list source [file join $dir xmlrpc.tcl]]

Step 4 Copy the Tcl library files from Creating an EEM User Tcl Package Index, on page 37 and the pkgIndex file from
Creating an EEM User Tcl Package Index, on page 37 to the directory used for storing user library files on the target
device.

Step 5 Copy a user-defined EEM policy file written in Tcl to the directory used for storing user-defined EEM policies on the
target device. The directory can be the same directory used in Creating an EEM User Tcl Package Index, on page 37.
The directory for storing user-defined EEM policies can be the same directory used in Creating an EEMUser Tcl Package
Index, on page 37. The following example user-defined EEM policy can be used to test the Tcl package support in
EEM.

packagetest.tcl

Example:

::cisco::eem::event_register_none maxrun 1000000.000
#
test if xmlrpc available
#
#
Namespace imports
#
namespace import ::cisco::eem::*
namespace import ::cisco::lib::*
#
package require xmlrpc
puts "Did you get an error?"

Step 6 enable
Enables privileged EXEC mode. Enter your password if prompted.

Example:

Device> enable

Step 7 configure terminal
Enables global configuration mode.

Example:

Device# configure terminal

Step 8 event manager directory user library path
Use this command to specify the EEM user library directory; this is the directory to which the files in Creating an EEM
User Tcl Package Index, on page 37 were copied.

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
39

Writing Embedded Event Manager Policies Using Tcl
Creating an EEM User Tcl Package Index

Example:

Device(config)# event manager directory user library disk2:/eem_library

Step 9 event manager directory user policy path
Use this command to specify the EEM user policy directory; this is the directory to which the file in Creating an EEM
User Tcl Package Index, on page 37 was copied.

Example:

Device(config)# event manager directory user policy disk2:/eem_policies

Step 10 event manager policy policy-name [type {system | user} [trap]
Use this command to register a user-defined EEM policy. In this example, the policy named packagetest.tcl is registered.

Example:

Device(config)# event manager policy packagetest.tcl

Step 11 event manager run policy-name
Use this command to manually run an EEM policy. In this example, the policy named packagetest.tcl is run to test the
Tcl package support in EEM.

Example:

Device(config)# event manager run packagetest.tcl

Configuration Examples for Writing Embedded Event Manager
Policies Using Tcl

Assigning a Username for a Tcl Session Examples
The following example shows how to set a username to be associated with a Tcl session. If you are using
authentication, authorization, and accounting (AAA) security and implement authorization on a command
basis, you should use the event manager session cli username command to set a username to be associated
with a Tcl session. The username is used when a Tcl policy executes a CLI command. TACACS+ verifies
each CLI command using the username associated with the Tcl session that is running the policy. Commands
from Tcl policies are not usually verified because the device must be in privileged EXEC mode to register
the policy. In the example, the username is yourname, and this is the username that is used whenever a CLI
command session is initiated from within an EEM policy.

configure terminal
event manager session cli username yourname
end

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
40

Writing Embedded Event Manager Policies Using Tcl
Configuration Examples for Writing Embedded Event Manager Policies Using Tcl

EEM Event Detector Demo Examples

EEM Sample Policy Descriptions

This configuration example features some of the sample EEM policies:

• ap_perf_test_base_cpu.tcl--Is run to measure the the CPU performance of EEM policies.

• no_perf_test_init.tcl--Is run to measure the CPU performance of EEM policies.

• sl_intf_down.tcl--Is run when a configurable syslog message is logged. It executes up to two configurable
CLI commands and e-mails the results.

• tm_cli_cmd.tcl--Is run using a configurable CRON entry. It executes a configurable CLI command and
e-mails the results.

• tm_crash_reporter.tcl--Is run 5 seconds after it is registered and 5 seconds after the device boots up.
When triggered, the script attempts to find the reload reason. If the reload reason was due to a crash, the
policy searches for the related crashinfo file and sends this information to a URL location specified by
the user in the environment variable _crash_reporter_url.

• tm_fsys_usage.tcl--This policy runs using a configurable CRON entry and monitors disk space usage.
A syslog message is displayed if disk space usage crosses configurable thresholds.

Event Manager Environment Variables for the Sample Policies

Event manager environment variables are Tcl global variables that are defined external to the EEM policy
before the policy is registered and run. The sample policies require three of the e-mail environment variables
to be set (see EEM Event Detector Demo Examples, on page 41 for a list of the e-mail variables); only
_email_cc is optional. Other required and optional variable settings are outlined in the following tables.

The table below describes the EEM environment variables that must be set before the ap_perf_test_base_cpu.tcl
sample policy is run.

Table 9: Environment Variables Used in the ap_perf_test_base_cpu.tcl Policy

ExampleDescriptionEnvironment Variable

100The number of iterations over
which to run the measurement.

_perf_iterations

enableThe first non interactive CLI
command that is executed as part
of the measurement test. This
variable is optional and need not
be specified.

_perf_cmd1

show versionThe second non interactive CLI
command that is as part of the
measurement test. To use
_perf_cmd2, _perf_cmd1 must be
defined. This variable is optional
and need not be specified.

_perf_cmd2

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
41

Writing Embedded Event Manager Policies Using Tcl
EEM Event Detector Demo Examples

ExampleDescriptionEnvironment Variable

show interface counters protocol
status

The third non interactive CLI
command that is as part of the
measurement test. To use
_perf_cmd3, _perf_cmd1 must be
defined. This variable is optional
and need not be specified.

_perf_cmd3

The table below describes the EEM environment variables that must be set before the no_perf_test_init.tcl
sample policy is run.

Table 10: Environment Variables Used in the no_perf_test_init.tcl Policy

ExampleDescriptionEnvironment Variable

100The number of iterations over
which to run the measurement.

_perf_iterations

enableThe first non interactive CLI
command that is executed as part
of the measurement test. This
variable is optional and need not
be specified.

_perf_cmd1

show versionThe second non interactive CLI
command that is as part of the
measurement test. To use
_perf_cmd2, _perf_cmd1 must be
defined. This variable is optional
and need not be specified.

_perf_cmd2

show interface counters protocol
status

The third non interactive CLI
command that is as part of the
measurement test. To use
_perf_cmd3, _perf_cmd1 must be
defined. This variable is optional
and need not be specified.

_perf_cmd3

The table below describes the EEM environment variables that must be set before the sl_intf_down.tcl sample
policy is run.

Table 11: Environment Variables Used in the sl_intf_down.tcl Policy

ExampleDescriptionEnvironment Variable

interface Ethernet1/0The first configuration command
that is executed.

_config_cmd1

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
42

Writing Embedded Event Manager Policies Using Tcl
EEM Event Detector Demo Examples

ExampleDescriptionEnvironment Variable

no shutdownThe second configuration
command that is executed. This
variable is optional and need not
be specified.

_config_cmd2

.*UPDOWN.*FastEthernet0/0.*A regular expression pattern match
string that is used to compare
syslogmessages to determinewhen
the policy runs.

_syslog_pattern

The table below describes the EEM environment variables that must be set before the tm_cli_cmd.tcl sample
policy is run.

Table 12: Environment Variables Used in the tm_cli_cmd.tcl Policy

ExampleDescriptionEnvironment Variable

0-59/1 0-23/1 * * 0-7A CRON specification that
determines when the policy will
run.

_cron_entry

show versionThe CLI command to be executed
when the policy is run.

_show_cmd

The table below describes the EEM environment variables that must be set before the tm_crash_reporter.tcl
sample policy is run.

Table 13: Environment Variables Used in the tm_crash_reporter.tcl Policy

ExampleDescriptionEnvironment Variable

1A value that identifies whether
debug information for
tm_crash_reporter.tcl will be
enabled. This variable is optional
and need not be specified.

_crash_reporter_debug

http://www.example.com/fm/interface_tm.cgiThe URL location to which the
crash report is sent.

_crash_reporter_url

The table below describes the EEM environment variables that must be set before the tm_fsys_usage.tcl
sample policy is run.

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
43

Writing Embedded Event Manager Policies Using Tcl
EEM Event Detector Demo Examples

Table 14: Environment Variables Used in the tm_fsys_usage.tcl Policy

ExampleDescriptionEnvironment Variable

0-59/1 0-23/1 * * 0-7A CRON specification that is used
in the event_registerTcl command
extension. If unspecified, the
tm_fsys_usage.tcl policy is
triggered once per minute. This
variable is optional and need not
be specified.

_tm_fsys_usage_cron

1When this variable is set to a value
of 1, disk usage information is
displayed for all entries in the
system. This variable is optional
and need not be specified.

_tm_fsys_usage_debug

disk2:98000000Free byte threshold for systems or
specific prefixes. If free space falls
below a given value, a warning is
displayed. This variable is optional
and need not be specified.

_tm_fsys_usage_ freebytes

nvram:25 disk2:5Disk usage percentage thresholds
for systems or specific prefixes. If
the disk usage percentage exceeds
a given percentage, a warning is
displayed. If unspecified, the
default disk usage percentage is 80
percent for all systems. This
variable is optional and need not
be specified.

_tm_fsys_usage_percent

Registration of Some EEM Policies

Some EEM policies must be unregistered and then reregistered if an EEM environment variable is modified
after the policy is registered. The event_register_xxx statement that appears at the start of the policy contains
some of the EEM environment variables, and this statement is used to establish the conditions under which
the policy is run. If the environment variables are modified after the policy has been registered, the conditions
may become invalid. To avoid any errors, the policymust be unregistered and then reregistered. The following
variables are affected:

• _cron_entry in the tm_cli_cmd.tcl policy

• _syslog_pattern in the sl_intf_down.tcl policy

Basic Configuration Details for All Sample Policies

To allow e-mail to be sent from the Embedded EventManager, the hostname and ip domain-name commands
must be configured. The EEM environment variables must also be set. After a Cisco IOS image has been

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
44

Writing Embedded Event Manager Policies Using Tcl
EEM Event Detector Demo Examples

booted, use the following initial configuration, substituting appropriate values for your network. The
environment variables for the tm_fsys_usage sample policy (see the table above) are all optional and are not
listed here:

hostname cpu
ip domain-name example.com
event manager environment _email_server ms.example.net
event manager environment _email_to username@example.net
event manager environment _email_from engineer@example.net
event manager environment _email_cc projectgroup@example.net
event manager environment _cron_entry 0-59/2 0-23/1 * * 0-7
event manager environment _show_cmd show event manager policy registered
event manager environment _syslog_pattern .*UPDOWN.*FastEthernet0/0
event manager environment _config_cmd1 interface Ethernet1/0
event manager environment _config_cmd2 no shutdown
event manager environment _crash_reporter_debug 1
event manager environment _crash_reporter_url
http://www.example.com/fm/interface_tm.cgi
end

Using the Sample Policies

This section contains the following configuration scenarios to demonstrate how to use the some sample Tcl
policies:

Running the Mandatory.go_*.tcl Sample Policy

There are GOLD TCL scripts for each test which runs as a part of GOLD EEM Policy. You can modify the
TCL script for the test, specify the consecutive failure count, and also change the default corrective action.
For example, one could chose to power down a linecard card, instead of reset or other CLI based actions.

For each registered test, a default TCL script is available, which can be registered with the system, and matches
with the default action. This can be then overridden by modifying these scripts.

The following table shows a list of the mandatory polices that GOLD installed into EEM. Each of the policies
performs some sort of action such as resetting the card or disabling the port.

TestGOLD Tcl Scripts

TestAsicSyncMandatory.go_asicsync.tcl

Common for all bootup tests.Mandatory.go_bootup.tcl

TestFabricHealthMandatory.go_fabric.tcl

TestFabricCh0HealthMandatory.go_fabrich0.tcl

TestFabricCh1HealthMandatory.go_fabrich1.tcl

TestIPSecEncrypDecrypPktMandatory.go_ipsec.tcl

TestMacNotificationMandatory.go_mac.tcl

TestNonDisruptiveLoopbackMandatory.go_nondislp.tcl

TestScratchRegisterMandatory.go_scratchreg.tcl

TestSPRPInbandPingMandatory.go_sprping.tcl

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
45

Writing Embedded Event Manager Policies Using Tcl
EEM Event Detector Demo Examples

The following sample configuration demonstrates how to use this policy. Starting in user EXEC mode, enter
the enable command at the device prompt. The device enters privileged EXEC mode, where you can enter
the show event manager policy registered command to verify that no policies are currently registered. The
next command is the show event manager policy available command to display which policies are available
to be installed. After you enter the configure terminal command to reach global configuration mode, you
can register the mandatory.go_*.tcl policy with EEM using the event manager policy command. Exit from
global configuration mode and enter the show event manager policy registered command again to verify
that the policy has been registered.

enable
show event manager policy registered
show event manager policy available
configure terminal
event manager policy Mandatory.go_spuriousisr.tcl
end
show event manager policy registered
show event manager environment

Running the ap_perf_test_base_cpu.tcl and no_perf_test_init.tcl Sample Policies

These sample policies measures the CPU performance of EEM policies. The policies help find the average
execution time of each EEM policy and uses the CLI library to execute the configuration commands specified
in the EEM environment variables _perf_cmd1 and, optionally, _perf_cmd2 and _perf_cmd3.

The following sample configuration demonstrates how to use this policy. Starting in user EXEC mode, enter
the enable command at the device prompt. The device enters privileged EXEC mode, where you can enter
the show event manager policy registered command to verify that no policies are currently registered. The
next command is the show event manager policy available command to display which policies are available
to be installed. After you enter the configure terminal command to reach global configuration mode, enter
the service timestamps debug datetimemsec command and then you can register the ap_perf_test_base_cpu.tcl
and no_perf_test_init.tcl policies with EEM using the event manager policy command. Exit from global
configuration mode and enter the show event manager policy registered command again to verify that the
policy has been registered.

The policies ap_perf_test_base_cpu.tcl and no_perf_test_init.tcl need to be registered together, as they run as
a test suite. You can run the no_perf_test_init.tcl policy to start the tests. Analyze the results using the syslog
messages from each iteration. The total number of iteration is specified by the variable _perf_iterations. Take
the time difference and divide it by the total number of iterations to get the average execution time of each
EEM policy.

enable
show event manager policy registered
show event manager policy available
show event manager environment
configure terminal
service timestamps debug datetime msec
event manager environment _perf_iterations 100
event manager policy ap_perf_test_base_cpu.tcl
event manager policy no_perf_test_init.tcl
end
show event manager policy registered
show event manager policy available
show event manager environment
event manager run no_perf_test_init.tcl

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
46

Writing Embedded Event Manager Policies Using Tcl
EEM Event Detector Demo Examples

Running the no_perf_test_init.tcl Sample Policy

This sample policy measures the the cpu performance of EEM policies. The policy helps to find the average
execution time of each EEM policy and uses the CLI library to execute the configuration commands specified
in the EEM environment variables _perf_cmd1 and, optionally, _perf_cmd2 and _perf_cmd3.

The following sample configuration demonstrates how to use this policy. Starting in user EXEC mode, enter
the enable command at the device prompt. The device enters privileged EXEC mode, where you can enter
the show event manager policy registered command to verify that no policies are currently registered. The
next command is the show event manager policy available command to display which policies are available
to be installed. After you enter the configure terminal command to reach global configuration mode, you
can register the no_perf_test_init.tcl policy with EEM using the event manager policy command. Exit from
global configuration mode and enter the show event manager policy registered command again to verify
that the policy has been registered.

Analyze the results using the syslog messages from each iteration. The total number of iteration is specified
by the variable _perf_iterations. Take the time difference and divide it by the total number of iterations to get
the average execution time of each EEM policy.

enable
show event manager policy registered
show event manager policy available
configure terminal
event manager policy no_perf_test_init.tcl
end
show event manager policy registered
show event manager environment

Running the sl_intf_down.tcl Sample Policy

This sample policy demonstrates the ability to modify the configuration when a syslog message with a specific
pattern is logged. The policy gathers detailed information about the event and uses the CLI library to execute
the configuration commands specified in the EEM environment variables _config_cmd1 and, optionally,
_config_cmd2. An e-mail message is sent with the results of the CLI command.

The following sample configuration demonstrates how to use this policy. Starting in user EXEC mode, enter
the enable command at the device prompt. The device enters privileged EXEC mode, where you can enter
the show event manager policy registered command to verify that no policies are currently registered. The
next command is the show event manager policy available command to display which policies are available
to be installed. After you enter the configure terminal command to reach global configuration mode, you
can register the sl_intf_down.tcl policy with EEM using the event manager policy command. Exit from
global configuration mode and enter the show event manager policy registered command again to verify
that the policy has been registered.

The policy runs when an interface goes down. Enter the show event manager environment command to
display the current environment variable values. Unplug the cable (or configure a shutdown) for the interface
specified in the _syslog_pattern EEM environment variable. The interface goes down, prompting the syslog
daemon to log a syslog message about the interface being down, and the syslog event detector is called.

The syslog event detector reviews the outstanding event specifications and finds a match for interface status
change. The EEM server is notified, and the server runs the policy that is registered to handle this
event--sl_intf_down.tcl.

enable
show event manager policy registered
show event manager policy available
configure terminal
event manager policy sl_intf_down.tcl
end

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
47

Writing Embedded Event Manager Policies Using Tcl
EEM Event Detector Demo Examples

show event manager policy registered
show event manager environment

Running the tm_cli_cmd.tcl Sample Policy

This sample policy demonstrates the ability to periodically execute a CLI command and to e-mail the results.
The CRON specification “0-59/2 0-23/1 * * 0-7” causes this policy to be run on the second minute of each
hour. The policy gathers detailed information about the event and uses the CLI library to execute the
configuration commands specified in the EEM environment variable _show_cmd. An e-mail message is sent
with the results of the CLI command.

The following sample configuration demonstrates how to use this policy. Starting in user EXEC mode, enter
the enable command at the device prompt. The device enters privileged EXEC mode where you can enter
the show event manager policy registered command to verify that no policies are currently registered. The
next command is the show event manager policy available command to display which policies are available
to be installed. After you enter the configure terminal command to reach global configuration mode, you
can register the tm_cli_cmd.tcl policy with EEM using the event manager policy command. Exit from global
configuration mode and enter the show event manager policy registered command to verify that the policy
has been registered.

The timer event detector triggers an event for this case periodically according to the CRON string set in the
EEM environment variable _cron_entry. The EEM server is notified, and the server runs the policy that is
registered to handle this event--tm_cli_cmd.tcl.

enable
show event manager policy registered
show event manager policy available
configure terminal
event manager policy tm_cli_cmd.tcl
end
show event manager policy registered

Running the tm_crash_reporter.tcl Sample Policy

This sample policy demonstrates the ability to send an HTTP-formatted crash report to a URL location. If the
policy registration is saved in the startup configuration file, the policy is triggered 5 seconds after bootup.
When triggered, the script attempts to find the reload reason. If the reload reason was due to a crash, the policy
searches for the related crashinfo file and sends this information to a URL location specified by the user in
the environment variable _crash_reporter_url. A CGI script, interface_tm.cgi, has been created to receive the
URL from the tm_crash_reporter.tcl policy and save the crash information in a local database on the target
URL machine.

A Perl CGI script, interface_tm.cgi, has been created and is designed to run on a machine that contains an
HTTP server and is accessible by the device that runs the tm_crash_reporter.tcl policy. The interface_tm.cgi
script parses the data passed into it from tm_crash_reporter.tcl and appends the crash information to a text
file, creating a history of all crashes in the system. Additionally, detailed information on each crash is stored
in three files in a crash database directory that is specified by the user. Another Perl CGI script,
crash_report_display.cgi, has been created to display the information stored in the database created by the
interface_tm.cgi script. The crash_report_display.cgi script should be placed on the samemachine that contains
interface_tm.cgi. The machine should be running a web browser such as Internet Explorer or Netscape. When
the crash_report_display.cgi script is run, it displays the crash information in a readable format.

The following sample configuration demonstrates how to use this policy. Starting in user EXEC mode, enter
the enable command at the device prompt. The device enters privileged EXEC mode where you can enter
the show event manager policy registered command to verify that no policies are currently registered. The
next command is the show event manager policy available command to display which policies are available
to be installed. After you enter the configure terminal command to reach global configuration mode, you

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
48

Writing Embedded Event Manager Policies Using Tcl
EEM Event Detector Demo Examples

can register the tm_crash_reporter.tcl policy with EEM using the event manager policy command. Exit from
global configuration mode and enter the show event manager policy registered command to verify that the
policy has been registered.

enable
show event manager policy registered
show event manager policy available
configure terminal
event manager policy tm_crash_reporter.tcl
end
show event manager policy registered

Running the tm_fsys_usage.tcl Sample Policy

This sample policy demonstrates the ability to periodically monitor disk space usage and report through syslog
when configurable thresholds have been crossed.

The following sample configuration demonstrates how to use this policy. Starting in user EXEC mode, enter
the enable command at the device prompt. The device enters privileged EXEC mode, where you can enter
the show event manager policy registered command to verify that no policies are currently registered. The
next command is the show event manager policy available command to display which policies are available
to be installed. After you enter the configure terminal command to reach global configuration mode, you
can register the tm_fsys_usage.tcl policy with EEM using the event manager policy command. Exit from
global configuration mode and enter the show event manager policy registered command again to verify
that the policy has been registered. If you had configured any of the optional environment variables that are
used in the tm_fsys_usage.tcl policy, the show eventmanager environment command displays the configured
variables.

enable
show event manager policy registered
show event manager policy available
configure terminal
event manager policy tm_fsys_usage.tcl
end
show event manager policy registered
show event manager environment

Programming Policies with Tcl Sample Scripts Example
This section contains some of the sample policies that are included as EEM system policies. For more details
about these policies, see the EEM Event Detector Demo Examples, on page 41.

Mandatory.go_ipsec.tcl Sample Policy

The following sample policy for the TestIPSecEncrypDecrypPkt Test.

::cisco::eem::event_register_gold card all testing_type monitoring test_name Tes
tIPSecEncrypDecrypPkt consecutive_failure 6 platform_action 0 queue_priority las
t
#
GOLD TestIPSecEncrypDecrypPkt Test TCL script
#
March 2005, Hai Qiu
#
Copyright (c) 2005-2007 by cisco Systems, Inc.
All rights reserved.
#
#
Register for TestIPSecEncrypDecrypPkt test even
the elements for register the event

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
49

Writing Embedded Event Manager Policies Using Tcl
Programming Policies with Tcl Sample Scripts Example

card [all | card #]
sub_card [all | sub_card #]
severity_major | severity_minor | severity_normal default : severity_normal
new_failure [true | false] default: dont_care
testing_type [bootup | ondemand | schedule | monitoring]
test_name [test name]
test_id [test #]
consecutive_failure [consecutive_failure #]
platform_action [action_flag]
action_flag [0 | 1 | 2]
queue_priority [normal | low | high | last] default: normal
#
Note:
1: "card" element is required. If other elements are not specified,
treat them as dont care, or default.
#
2: action_flag is platform specific. It is up to platform to
determine what action need to be taken based on the value
For Cat6k platform
action_flag 0 : TCL script take action to reset card
action_flag 1 : TCL script doesn't take action to reset card
action_flag 2 : TCL script takes action to reset card for bootup diag
when there is major error
action_flag 3 : TCL script doesn't take action to reset card for
bootup diag when there is major error
#
3: "queue_priority last" would guarantee this policy will be executed last
if there are other EEM events in queue with queue priority other
than "last"
namespace import ::cisco::eem::*
namespace import ::cisco::lib::*
1. query the information of latest triggered eem event
array set arr_einfo [event_reqinfo]
if {$_cerrno != 0} {

set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}
puts "GOLD EEM TCL policy for TestIPSecEncrypDecrypPkt"
#set msg [format "array=%s", array names arr_einfo]
#puts "msg $msg"
#set msg $arr_einfo(msg)
set card $arr_einfo(card)
set sub_card $arr_einfo(sub_card)
#set overall_result $arr_einfo(overall_result)
#puts "GOLD event msg recieved: $card/$sub_card overall_result= $overall_result"
2. execute the user-defined config commands
if [catch {cli_open} result] {

error $result $errorInfo
} else {

array set cli1 $result
}
if [catch {cli_exec $cli1(fd) "en"} result] {

error $result $errorInfo
}
Use "diagn action mod mod# test testname default" command
for default platform action
if [catch {cli_exec $cli1(fd) "diagnostic action mod $card test TestIPSecEncrypD
ecrypPkt default"} result] {

error $result $errorInfo
} else {

set cmd_output $result
}
if [catch {cli_close $cli1(fd) $cli1(tty_id)} result] {

error $result $errorInfo
}

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
50

Writing Embedded Event Manager Policies Using Tcl
Programming Policies with Tcl Sample Scripts Example

ap_perf_test_base_cpu.tcl Sample Policy

The following sample policy measures the CPU performance of EEM policies.

::cisco::eem::event_register_appl sub_system 798 type 9999
#----------------------------------
EEM policy used for measuring the cpu performance of EEM policies.
#
July 2005, Cisco EEM team
#
Copyright (c) 2005, 2006 by cisco Systems, Inc.
All rights reserved.
#------------------
###
Input arguments:
###
arg1 $iter - current iteration count
###
The following EEM environment variables are used:
###
_perf_iterations (mandatory) - number of iterations over which we
will run our measurement.
Example:
event manager environment _perf_iterations 100
###
_perf_cmd1 (optional) - optional non interactive cli command
to be executed as part of the
measurement test.
Example:
event manager environment _perf_cmd1 enable
###
_perf_cmd2 (optional) - optional non interactive cli command
to be executed as part of the
measurement test.
To use _perf_cmd2, _perf_cmd1 MUST
be defined.
Example:
event manager environment _perf_cmd2 show ver
###
_perf_cmd3 (optional) - optional non interactive cli command
to be executed as part of the
measurement test.
To use _perf_cmd3, _perf_cmd1 MUST
be defined.
Example:
event manager environment _perf_cmd3 show int counters protocol status
###
Description:
Iterate through _perf_iterations of this policy.
It is up to the user to calculate the average
execution time based on the system timestamps.
Optional commands _perf_cmd1,
_perf_cmd2 and _perf_cmd3 are executed if defined.
###
A value of 100 is a good starting point.
###
Outputs:
Console output.
###
Usage example:
>conf t
>service timestamps debug datetime msec
>event manager environment _perf_iterations 100
>event manager policy ap_perf_base_cpu.tcl
>event manager policy no_perf_test_init.tcl
>end
2d19h: %SYS-5-CONFIG_I: Configured from console by console
>event manager run no_perf_test_init.tcl
###
Oct 16 14:57:17.284: %SYS-5-CONFIG_I: Configured from console by console
>event manager run no_perf_test_init.tcl
###

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
51

Writing Embedded Event Manager Policies Using Tcl
Programming Policies with Tcl Sample Scripts Example

Oct 16 19:32:02.772: %HA_EM-6-LOG:
eem_policy/no_perf_test_init.tcl: EEM performance test start
Oct 16 19:32:03.115: %HA_EM-6-LOG:
eem_policy/ap_perf_test_base_cpu.tcl: EEM performance test iteration 1
Oct 16 19:32:03.467: %HA_EM-6-LOG:
eem_policy/ap_perf_test_base_cpu.tcl: EEM performance test iteration 2
...
Oct 16 19:32:36.936: %HA_EM-6-LOG:
eem_policy/ap_perf_test_base_cpu.tcl: EEM performance test iteration 100
Oct 16 19:32:36.936: %HA_EM-6-LOG:
eem_policy/ap_perf_test_base_cpu.tcl: EEM performance test end
###
The user must calculate execution time and average time of execution.
In this example, total time = 19:32:36.936 - 19:32:02.772 = 34.164
Average script execution time = 341.64 milliseconds
###
check if all the env variables we need exist
If any of them doesn't exist, print out an error msg and quit
if {![info exists _perf_iterations]} {

set result \
"Policy cannot be run: variable _perf_iterations has not been set"

error $result $errorInfo
}
ensure our target iteration count > 0
if {$_perf_iterations <= 0} {

set result \
"Policy cannot be run: variable _perf_iterations <= 0"

error $result $errorInfo
}
namespace import ::cisco::eem::*
namespace import ::cisco::lib::*
query the event info
array set arr_einfo [event_reqinfo]
if {$_cerrno != 0} {

set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}
set iter $arr_einfo(data1)
set iter [expr $iter + 1]
if _perf_cmd1 is defined
if {[info exists _perf_cmd1]} {

open the cli library
if [catch {cli_open} result] {

error $result $errorInfo
} else {

array set cli1 $result
}
execute the comamnd defined in _perf_cmd1
if [catch {cli_exec $cli1(fd) $_perf_cmd1} result] {

error $result $errorInfo
}
if _perf_cmd2 is defined
if {[info exists _perf_cmd2]} {

execute the comamnd defined in _perf_cmd2
if [catch {cli_exec $cli1(fd) $_perf_cmd2} result] {

error $result $errorInfo
} else {

set cmd_output $result
}

}
if _perf_cmd3 is defined
if {[info exists _perf_cmd3]} {

execute the comamnd defined in _perf_cmd3
if [catch {cli_exec $cli1(fd) $_perf_cmd3} result] {

error $result $errorInfo
} else {

set cmd_output $result
}

}
close the cli library
if [catch {cli_close $cli1(fd) $cli1(tty_id)} result] {

error $result $errorInfo

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
52

Writing Embedded Event Manager Policies Using Tcl
Programming Policies with Tcl Sample Scripts Example

}
}

log a message
set msg [format "EEM performance test iteration %s" $iter]
action_syslog priority info msg $msg
if {$_cerrno != 0} {

set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}
use the context info from the previous run to determine when to end
if {$iter >= $_perf_iterations} {

#log the final messages
action_syslog priority info msg "EEM performance test end"
if {$_cerrno != 0} {

set result [format \
"component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}
exit 0

}
cause the next iteration to run
event_publish sub_system 798 type 9999 arg1 $iter
if {$_cerrno != 0} {

set result [format \
"component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}

tm_cli_cmd.tcl Sample Policy

The following sample policy runs a configurable CRON entry. The policy executes a configurable Cisco IOS
CLI command and e-mails the results. An optional log file can be defined to which the output is appended
with a timestamp.

::cisco::eem::event_register_timer cron name crontimer2 cron_entry $
_cron_entry maxrun 240
#--
EEM policy that will periodically execute a cli command and email the
results to a user.
#
July 2005, Cisco EEM team
#
Copyright (c) 2005 by cisco Systems, Inc.
All rights reserved.
#--
The following EEM environment variables are used:
###
_cron_entry (mandatory) - A CRON specification that determines
when the policy will run. See the
IOS Embedded Event Manager
documentation for more information
on how to specify a cron entry.
Example: _cron_entry 0-59/1 0-23/1 * * 0-7
###
_log_file (mandatory without _email_....)
- A filename to append the output to.
If this variable is defined, the
output is appended to the specified
file with a timestamp added.
Example: _log_file bootflash:/my_file.log
###
_email_server (mandatory without _log_file)
- A Simple Mail Transfer Protocol (SMTP)
mail server used to send e-mail.
Example: _email_server mailserver.example.com
###

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
53

Writing Embedded Event Manager Policies Using Tcl
Programming Policies with Tcl Sample Scripts Example

_email_from (mandatory without _log_file)
- The address from which e-mail is sent.
Example: _email_from devtest@example.com
###
_email_to (mandatory without _log_file)
- The address to which e-mail is sent.
Example: _email_to engineering@example.com
###
_email_cc (optional) - The address to which the e-mail must
be copied.
Example: _email_cc manager@example.com
###
_show_cmd (mandatory) - The CLI command to be executed when
the policy is run.
Example: _show_cmd show version
###
check if all required environment variables exist
If any required environment variable does not exist, print out an error msg and quit
if {![info exists _log_file]} {

if {![info exists _email_server]} {
set result \
"Policy cannot be run: variable _log_file or _email_server has not been set"
error $result $errorInfo

}
if {![info exists _email_from]} {

set result \
"Policy cannot be run: variable _log_file or _email_from has not been set"
error $result $errorInfo

}
if {![info exists _email_to]} {

set result \
"Policy cannot be run: variable _log_file ore _email_to has not been set"
error $result $errorInfo

}
if {![info exists _email_cc]} {

#_email_cc is an option, must set to empty string if not set.
set _email_cc ""

}
}
if {![info exists _show_cmd]} {

set result \
"Policy cannot be run: variable _show_cmd has not been set"

error $result $errorInfo
}
namespace import ::cisco::eem::*
namespace import ::cisco::lib::*
query the event info and log a message
array set arr_einfo [event_reqinfo]
if {$_cerrno != 0} {

set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}
global timer_type timer_time_sec
set timer_type $arr_einfo(timer_type)
set timer_time_sec $arr_einfo(timer_time_sec)
log a message
set msg [format "timer event: timer type %s, time expired %s" \

$timer_type [clock format $timer_time_sec]]
action_syslog priority info msg $msg
if {$_cerrno != 0} {

set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}
1. execute the command
if [catch {cli_open} result] {

error $result $errorInfo
} else {

array set cli1 $result
}
if [catch {cli_exec $cli1(fd) "en"} result] {

error $result $errorInfo

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
54

Writing Embedded Event Manager Policies Using Tcl
Programming Policies with Tcl Sample Scripts Example

}
save exact execution time for command
set time_now [clock seconds]
execute command
if [catch {cli_exec $cli1(fd) $_show_cmd} result] {

error $result $errorInfo
} else {

set cmd_output $result
format output: remove trailing router prompt
regexp {\n*(.*\n)([^\n]*)$} $result dummy cmd_output

}
if [catch {cli_close $cli1(fd) $cli1(tty_id)} result] {

error $result $errorInfo
}

2. log the success of the CLI command
set msg [format "Command \"%s\" executed successfully" $_show_cmd]
action_syslog priority info msg $msg
if {$_cerrno != 0} {

set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}
3. if _log_file is defined, then attach it to the file
if {[info exists _log_file]} {

attach output to file
if [catch {open $_log_file a+} result] {

error $result
}
set fileD $result
save timestamp of command execution
(Format = 00:53:44 PDT Mon May 02 2005)
set time_now [clock format $time_now -format "%T %Z %a %b %d %Y"]
puts $fileD "%%% Timestamp = $time_now"
puts $fileD $cmd_output
close $fileD

}
4. if _email_server is defined send the email out
if {[info exists _email_server]} {

set routername [info hostname]
if {[string match "" $routername]} {

error "Host name is not configured"
}
if [catch {smtp_subst [file join $tcl_library email_template_cmd.tm]} \
result] {

error $result $errorInfo
}
if [catch {smtp_send_email $result} result] {

error $result $errorInfo
}

}

sl_intf_down.tcl Sample Policy

The following sample policy runs when a configurable syslog message is logged. The policy executes a
configurable CLI command and e-mails the results.

::cisco::eem::event_register_syslog occurs 1 pattern $_syslog_pattern maxrun 90

#--
EEM policy to monitor for a specified syslog message.
Designed to be used for syslog interface-down messages.
When event is triggered, the given config commands will be run.
#
July 2005, Cisco EEM team
#
Copyright (c) 2005 by cisco Systems, Inc.
All rights reserved.
#--

The following EEM environment variables are used:

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
55

Writing Embedded Event Manager Policies Using Tcl
Programming Policies with Tcl Sample Scripts Example

###
_syslog_pattern (mandatory) - A regular expression pattern match string
that is used to compare syslog messages
to determine when policy runs
Example: _syslog_pattern .*UPDOWN.*FastEthernet0/0.*
###
_email_server (mandatory) - A Simple Mail Transfer Protocol (SMTP)
mail server used to send e-mail.
Example: _email_server mailserver.example.com
###
_email_from (mandatory) - The address from which e-mail is sent.
Example: _email_from devtest@example.com
###
_email_to (mandatory) - The address to which e-mail is sent.
Example: _email_to engineering@example.com
###
_email_cc (optional) - The address to which the e-mail must
be copied.
Example: _email_cc manager@example.com
###
_config_cmd1 (optional) - The first configuration command that
is executed.
Example: _config_cmd1 interface Ethernet1/0
###
_config_cmd2 (optional) - The second configuration command that
is executed.
Example: _config_cmd2 no shutdown
###

check if all the env variables we need exist
If any of them doesn't exist, print out an error msg and quit
if {![info exists _email_server]} {

set result \
"Policy cannot be run: variable _email_server has not been set"

error $result $errorInfo
}
if {![info exists _email_from]} {

set result \
"Policy cannot be run: variable _email_from has not been set"

error $result $errorInfo
}
if {![info exists _email_to]} {

set result \
"Policy cannot be run: variable _email_to has not been set"

error $result $errorInfo
}
if {![info exists _email_cc]} {

#_email_cc is an option, must set to empty string if not set.
set _email_cc ""

}

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

1. query the information of latest triggered eem event
array set arr_einfo [event_reqinfo]

if {$_cerrno != 0} {
set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}

set msg $arr_einfo(msg)
set config_cmds ""

2. execute the user-defined config commands
if [catch {cli_open} result] {

error $result $errorInfo
} else {

array set cli1 $result
}
if [catch {cli_exec $cli1(fd) "en"} result] {

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
56

Writing Embedded Event Manager Policies Using Tcl
Programming Policies with Tcl Sample Scripts Example

error $result $errorInfo
}
if [catch {cli_exec $cli1(fd) "config t"} result] {

error $result $errorInfo
}

if {[info exists _config_cmd1]} {
if [catch {cli_exec $cli1(fd) $_config_cmd1} result] {

error $result $errorInfo
}
append config_cmds $_config_cmd1

}

if {[info exists _config_cmd2]} {
if [catch {cli_exec $cli1(fd) $_config_cmd2} result] {

error $result $errorInfo
}
append config_cmds "\n"
append config_cmds $_config_cmd2

}

if [catch {cli_exec $cli1(fd) "end"} result] {
error $result $errorInfo

}
if [catch {cli_close $cli1(fd) $cli1(tty_id)} result] {

error $result $errorInfo
}

after 60000
3. send the notification email
set routername [info hostname]
if {[string match "" $routername]} {

error "Host name is not configured"
}

if [catch {smtp_subst [file join $tcl_library email_template_cfg.tm]} result] {
error $result $errorInfo

}
if [catch {smtp_send_email $result} result] {

error $result $errorInfo
}
The following e-mail template file is used with the EEM sample policy above:

email_template_cfg.tm
Mailservername: $_email_server
From: $_email_from
To: $_email_to
Cc: $_email_cc
Subject: From router $routername: Periodic $_show_cmd Output
$cmd_output

Debugging Embedded Event Manager Policies Examples
The following examples show how to debug the CLI library and the SMTP library.

Debugging the CLI Library

The CLI library allows users to run CLI commands and obtain the output of commands in Tcl. An Embedded
Event Manager debug command has been provided for users of this library. The command to enable CLI
library debugging is debug event manager tcl cli_library. When enabled, this command displays all data
that is passed in and read back from the TTY session that handles the CLI interactions. This data helps ensure
users that the commands that they are passing to the CLI are valid.

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
57

Writing Embedded Event Manager Policies Using Tcl
Debugging Embedded Event Manager Policies Examples

Example of the debug event manager tcl cli_library Command

This example uses the sample policy sl_intf_down.tcl.When triggered, sl_intf_down.tcl passes a configuration
command to the CLI through the CLI library. The command passed in below is show event manager
environment. This command is not a valid command in configuration mode. Without the debug command
enabled, the output is shown below:

00:00:57:sl_intf_down.tcl[0]:config_cmds are show eve man env
00:00:57:%SYS-5-CONFIG_I:Configured from console by vty0
Notice that with the output above the user would not know whether or not the command succeeded in the
CLI. With the debug event manager tcl cli_library command enabled, the user sees the following:

01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : CTL : cli_open called.
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : OUT : nelson>
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : IN : nelson>enable
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : OUT : nelson#
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : IN : nelson#configure terminal
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : OUT : Enter configuration commands, one
per line. End with CNTL/Z.
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : OUT : nelson(config)#
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : IN : nelson(config)#show event manager
environment
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : OUT : ^
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : OUT : % Invalid input detected at '^'
marker.
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : OUT : nelson(config)#
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : IN : nelson(config)#end
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : OUT : nelson#
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : CTL : cli_close called.
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : IN : nelson#exit
01:17:07: sl_intf_down.tcl[0]: config_cmds are show event manager environment
01:17:07: %SYS-5-CONFIG_I: Configured from console by vty0
The output above shows that show event manager environment is an invalid command in configuration
mode. The IN keyword signifies all data passed in to the TTY through the CLI library. The OUT keyword
signifies all data read back from the TTY through the CLI library. The CTL keyword signifies helper functions
used in the CLI library. These helper functions are used to set up and remove connections to the CLI.

Debugging the SMTP Library

The SMTP library allows users to send e-mail messages to an SMTP e-mail server. An Embedded Event
Manager debug command has been provided for users of this library. The command to enable SMTP library
debugging is debug event manager tcl smtp_library. When enabled, this command displays all data that is
passed in and read back from the SMTP library routines. This data helps ensure users that the commands that
they are passing to the SMTP library are valid.

Example of the debug event manager tcl smtp_library Command

This example uses the sample policy tm_cli_cmd.tcl.When triggered, tm_cli_cmd.tcl runs the command show
event manager policy available system through the CLI library. The result is then mailed to a user through
the SMTP library. The output will help debug any issues related to using the SMTP library.

With the debug event manager tcl smtp_library command enabled, the users see the following on the
console:

00:39:46: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_read : 220 XXXX.example.com ESMTP XXXX
1.1.0; Tue,
25 Jun 2002 14:20:39 -0700 (PDT)
00:39:46: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : HELO XXXX.example.com
00:39:46: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_read : 250 XXXX.example.com Hello
XXXX.example.com [XXXX],
pleased to meet you
00:39:46: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : MAIL FROM:<XX@example.com>

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
58

Writing Embedded Event Manager Policies Using Tcl
Debugging Embedded Event Manager Policies Examples

00:39:46: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_read : 250 <XX@example.com>... Sender
ok
00:39:46: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : RCPT TO:<XX@example.com>
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_read : 250 <XX@example.com>... Recipient
ok
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : RCPT TO:<XX@example.com>
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_read : 250 <XX@example.com>... Recipient
ok
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : DATA
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_read : 354 Enter mail, end with "."
on a line by itself
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : Date: 25 Jun 2002 14:35:00 UTC

00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : Message-ID:
<20020625143500.2387058729877@XXXX.example.com>
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : From: XX@example.com
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : To: XX@example.com
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : Cc: XX@example.com
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : Subject: From router nelson:
Periodic show eve man po ava system Output
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : No. Type Time Created

Name
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : 1 system Fri May3 20:42:34
2002 pr_cdp_abort.tcl
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : 2 system Fri May3 20:42:54
2002 pr_iprouting_abort.tcl
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : 3 system Wed Apr3 02:16:33
2002 sl_intf_down.tcl
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : 4 system Mon Jun24 23:34:16
2002 tm_cli_cmd.tcl
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : 5 system Wed Mar27 05:53:15
2002 tm_crash_hist.tcl
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : nelson#
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write :
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : .
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_read : 250 ADE90179 Message accepted
for delivery
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : QUIT
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_read : 221 XXXX.example.com closing
connection

Tracing Tcl set Command Operations Example
Tcl is a flexible language. One of the flexible aspects of Tcl is that you can override commands. In this
example, the Tcl set command is renamed as _set and a new version of the set command is created that displays
a message containing the text “setting” and appends the scalar variable that is being set. This example can be
used to trace all instances of scalar variables being set.

rename set _set
proc set {var args} {

puts [list setting $var $args]
uplevel _set $var $args

};
When this is placed in a policy, a message is displayed anytime a scalar variable is set, for example:

02:17:58: sl_intf_down.tcl[0]: setting test_var 1

RPC Event Detector Example

TCL script (rpccli.tcl):
::cisco::eem::event_register_rpc
namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
59

Writing Embedded Event Manager Policies Using Tcl
Tracing Tcl set Command Operations Example

proc run_cli { clist } {
set rbuf ""
if {[llength $clist] < 1} {
return -code ok $rbuf
}
if {[catch {cli_open} result]} {

return -code error $result
} else {
array set cliarr $result
}
if {[catch {cli_exec $cliarr(fd) "enable"} result]} {

return -code error $result
}
if {[catch {cli_exec $cliarr(fd) "term length 0"} result]} {

return -code error $result
}
foreach cmd $clist {
if {[catch {cli_exec $cliarr(fd) $cmd} result]} {

return -code error $result
}
append rbuf $result
}
if {[catch {cli_close $cliarr(fd) $cliarr(tty_id)} result]} {

puts "WARNING: $result"
}
return -code ok $rbuf

}
proc run_cli_interactive { clist } {

set rbuf ""
if {[llength $clist] < 1} {
return -code ok $rbuf
}
if {[catch {cli_open} result]} {

return -code error $result
} else {
array set cliarr $result
}
if {[catch {cli_exec $cliarr(fd) "enable"} result]} {

return -code error $result
}
if {[catch {cli_exec $cliarr(fd) "term length 0"} result]} {

return -code error $result
}
foreach cmd $clist {

array set sendexp $cmd
if {[catch {cli_write $cliarr(fd) $sendexp(send)} result]} {

return -code error $result
}
foreach response $sendexp(responses) {

array set resp $response
if {[catch {cli_read_pattern $cliarr(fd) $resp(expect)} result]} {

return -code error $result
}
if {[catch {cli_write $cliarr(fd) $resp(reply)} result]} {

return -code error $result
}

}
if {[catch {cli_read $cliarr(fd)} result]} {

return -code error $result
}
append rbuf $result
}
if {[catch {cli_close $cliarr(fd) $cliarr(tty_id)} result]} {

puts "WARNING: $result"
}
return -code ok $rbuf

}
array set arr_einfo [event_reqinfo]
set args $arr_einfo(argc)
set cmds [list]
for { set i 0 } { $i < $args } { incr i } {

set arg "arg${i}"
Split each argument on the '^' character. The first element is

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
60

Writing Embedded Event Manager Policies Using Tcl
RPC Event Detector Example

the command, and each subsequent element is a prompt followed by
a response to that prompt.
set cmdlist [split $arr_einfo($arg) "^"]
set cmdarr(send) [lindex $cmdlist 0]
set cmdarr(responses) [list]
if { [expr ([llength $cmdlist] - 1) % 2] != 0 } {
return -code 88
}
set cmdarr(responses) [list]
for { set j 1 } { $j < [llength $cmdlist] } { incr j 2 } {
set resps(expect) [lindex $cmdlist $j]
set resps(reply) [lindex $cmdlist [expr $j + 1]]
lappend cmdarr(responses) [array get resps]
}
lappend cmds [array get cmdarr]

}
set rc [catch {run_cli_interactive $cmds} output]
if { $rc != 0 } {

error $output $errorInfo
return -code 88

}
puts $output

Additional References
The following sections provide references related to writing Embedded Event Manager policies using Tcl.

Related Documents

Document TitleRelated Topic

Cisco IOS Master Commands List, All ReleasesCisco IOS commands

Cisco IOS Embedded Event Manager Command
Reference

EEMcommands: complete command syntax, defaults,
commandmode, command history, usage guidelines,
and examples

Embedded Event Manager Overview module.Embedded Event Manager overview

Writing Embedded Event Manager Policies Using
the Cisco IOS CLI module

Embedded Event Manager policy writing using the
CLI

Embedded Resource Manager moduleEmbedded Resource Manager

MIBs

MIBs LinkMIB

To locate and downloadMIBs for selected platforms,
Cisco IOS releases, and feature sets, use Cisco MIB
Locator found at the following URL:

http://www.cisco.com/go/mibs

CISCO-EMBEDDED-EVENT-MGR-MIB

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
61

Writing Embedded Event Manager Policies Using Tcl
Additional References

http://www.cisco.com/en/US/docs/ios/mcl/allreleasemcl/all_book.html
http://www.cisco.com/en/US/docs/ios-xml/ios/eem/command/eem-cr-book.html
http://www.cisco.com/en/US/docs/ios-xml/ios/eem/command/eem-cr-book.html
http://www.cisco.com/go/mibs

RFCs

TitleRFC

--No new or modified RFCs are supported by this
feature, and support for existing RFCs has not been
modified by this feature.

Technical Assistance

LinkDescription

http://www.cisco.com/cisco/web/support/index.htmlThe Cisco Support and Documentation website
provides online resources to download documentation,
software, and tools. Use these resources to install and
configure the software and to troubleshoot and resolve
technical issues with Cisco products and technologies.
Access to most tools on the Cisco Support and
Documentation website requires a Cisco.com user ID
and password.

Feature Information for Writing Embedded Event Manager 4.0
Policies Using Tcl

The following table provides release information about the feature or features described in this module. This
table lists only the software release that introduced support for a given feature in a given software release
train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
62

Writing Embedded Event Manager Policies Using Tcl
Feature Information for Writing Embedded Event Manager 4.0 Policies Using Tcl

http://www.cisco.com/cisco/web/support/index.html
http://www.cisco.com/go/cfn

Table 15: Feature Information for Writing Embedded Event Manager 4.0 Policies Using Tcl

Feature InformationReleasesFeature Name

EEM 1.0 introduced Embedded
EventManager applet creationwith
the SNMP and syslog event
detectors. EEM 1.0 also introduced
the following actions: generating
prioritized syslog messages,
generating a CNS event for
upstream processing by Cisco CNS
devices, reloading the Cisco
software, and switching to a
secondary processor in a fully
redundant hardware configuration.

The following commands were
introduced by this feature: action
cns-event, action
force-switchover, action reload,
action syslog, debug event
manager, event manager applet,
event snmp, event syslog, show
event manager policy registered.

12.0(26)S

12.3(4)T

Embedded Event Manager 1.0

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
63

Writing Embedded Event Manager Policies Using Tcl
Feature Information for Writing Embedded Event Manager 4.0 Policies Using Tcl

Feature InformationReleasesFeature Name

EEM 2.0 introduced the
application-specific event detector,
the counter event detector, the
interface counter event detector,
the timer event detector, and the
watchdog event detector. New
actions included modifying a
named counter, publishing an
application-specific event, and
generating an SNMP trap. The
ability to define environment
variables and to run EEM policies
written using Tcl was introduced,
and two sample policies were
included with the software.

The following commands were
introduced by this feature: action
counter, action publish-event,
action snmp-trap, event
application, event counter, event
interface, event ioswdsysmon,
event manager environment,
eventmanager history size, event
manager policy, event manager
scheduler suspend, event timer,
show event manager
environment, show event
manager history events, show
event manager history traps,
show event manager policy
available, show event manager
policy pending.

12.2(25)SEmbedded Event Manager 2.0

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
64

Writing Embedded Event Manager Policies Using Tcl
Feature Information for Writing Embedded Event Manager 4.0 Policies Using Tcl

Feature InformationReleasesFeature Name

EEM 2.1 introduced some new
event detectors and actions with
new functionality to allow EEM
policies to be run manually and the
ability to run multiple concurrent
policies. Support for Simple
Network Management Protocol
(SNMP) event detector rate-based
events was provided as was the
ability to create policies using Tool
Command Language (Tcl).

The following commands were
introduced or modified by this
feature: action cli, action counter,
action info, action mail, action
policy, debug event manager,
event cli, event manager
directory user, event manager
policy, eventmanager run, event
manager scheduler script, event
manager session cli username,
event none, event oir, event
snmp, event syslog, set(EEM),
show event manager directory
user, show event manager policy
registered, show event manager
session cli username.

12.3(14)T

12.2(18)SXF5

12.2(28)SB

12.2(33)SRA

Embedded Event Manager 2.1

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
65

Writing Embedded Event Manager Policies Using Tcl
Feature Information for Writing Embedded Event Manager 4.0 Policies Using Tcl

Feature InformationReleasesFeature Name

EEM 2.1 for Software Modularity
images introduced the GOLD,
system manager, and WDSysMon
(Cisco IOS Software Modularity
watchdog) event detectors, and the
ability to display Cisco IOS
SoftwareModularity processes and
process metrics.

The following commands were
introduced by this feature: event
gold, event process, show event
manager metric process.

EEM 2.1 for Software
Modularity images also
supports the resource and
RF event detectors
introduced in EEM2.2, but
it does not support the
enhanced object tracking
event detector or the
actions to read and set
tracked objects.

Note

12.2(18)SXF4

Cisco IOS Software Modularity
images

Embedded Event Manager 2.1
(Software Modularity)

EEM 2.2 introduced the enhanced
object tracking, resource, and RF
event detectors. The actions of
reading and setting the state of a
tracked object were also
introduced.

The following commands were
introduced or modified by this
feature: action track read, action
track set, default-state, event
resource, event rf, event track,
show track, track stub-object.

12.4(2)T

12.2(31)SB3

12.2(33)SRB

Embedded Event Manager 2.2

A new SNMP event detector
environment variable,
_snmp_oid_delta_val, was
introduced.

This is a minor enhancement.
Minor enhancements are not
typically listed in Feature
Navigator.

12.4(11)TSNMP event detector delta
environment variable

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
66

Writing Embedded Event Manager Policies Using Tcl
Feature Information for Writing Embedded Event Manager 4.0 Policies Using Tcl

Feature InformationReleasesFeature Name

EEM 2.3 introduced some new
features relative to the Generic
Online Diagnostics (GOLD) Event
Detector on the Cisco Catalyst
6500 Series switches.

The event gold command was
enhanced in addition to the Tcl
keywords--action-notify,
testing-type, test-name, test-id,
consecutive-failure,
platform-action, andmaxrun--for
improved reaction to GOLD test
failures and conditions

Read-only variables were added
under the GOLD Event Detector
category to provide access to
platform-wide and test-specific
GOLD event detector information
for a detected event.

12.2(33)SXH

12.2(33)SB

15.1(2)SY

Embedded Event Manager 2.3

EEM 2.4 introduced several new
features.

The following commands were
introduced by this feature:

attribute (EEM) , correlate, event
manager detector rpc, event
manager directory user
repository, event manager
update user policy, event
manager scheduler clear, event
manager update user policy,
event owner, event rpc, event
snmp-notification, show event
manager detector, show event
manager version, trigger (EEM).

12.4(20)T

12.2(33)SXI

12.2(33)SRE

15.1(2)SY

Embedded Event Manager 2.4

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
67

Writing Embedded Event Manager Policies Using Tcl
Feature Information for Writing Embedded Event Manager 4.0 Policies Using Tcl

Feature InformationReleasesFeature Name

EEM 3.0 introduced several new
features.

The following commands were
introduced or modified by this
feature:

action add , action append,
action break, action comment,
action context retrieve, action
context save, action continue,
action decrement, action divide,
action else, action elseif, action
end, action exit, action foreach,
action gets, action if, action if
goto, action increment, action
info type interface-names, action
info type snmp getid, action info
type snmp inform, action info
type snmp oid, action info type
snmp trap, action info type snmp
var, action multiply, action puts,
action regexp, action set (EEM),
action string compare, action
string equal, action string first,
action string index, action string
last, action string length, action
stringmatch, action string range,
action string replace, action
string tolower, action string
toupper, action string trim,
action string trimleft, action
string trimright, action subtract,
action while, event cli, event
ipsla, event manager detector
routing, event manager
scheduler, event manager
scheduler clear, event manager
scheduler hold, event manager
schedulermodify, eventmanager
scheduler release, event nf, event
routing, show event manager
policy active, show event
manager policy pending, and
show event manager scheduler.

12.4(22)T

12.2(33)SRE

12.2(50)SY

Embedded Event Manger 3.0

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
68

Writing Embedded Event Manager Policies Using Tcl
Feature Information for Writing Embedded Event Manager 4.0 Policies Using Tcl

Feature InformationReleasesFeature Name

EEM 3.1 introduced several new
features.

The following commands were
introduced or modified by this
feature: action syslog, description
(EEM) , event manager applet ,
event manager policy , event
snmp-notification , event
snmp-object , show event
manager policy registered , and
show event manager policy
available .

15.0(1)M

15.1(1)SY

15.1(2)SY

Embedded Event Manager 3.1

EEM is a distributed and
customized approach to event
detection and recovery offered
directly in a Cisco IOS device.

The following sections provide
information about this feature:

The following commands were
introduced or modified: debug
event manager, event identity,
event mat, event
neighbor-discovery, show event
manager detector.

12.2(52)SE

12.2(54)SG

15.1(3)T

15.1(1)SY

15.1(2)SY

Embedded Event Manager 3.2

EEM 4.0 introduced several new
features.

The following commands were
introduced or modified: action file,
action mail, action syslog, clear
eventmanager detector counters,
clear event manager server
counters, event cli, event
manager policy, event manager
scheduler, event syslog, show
event manager detector, show
event manager policy registered,
show event manager statistics.

15.2(2)T

15.1(1)SY

15.1(2)SY

12.2(2)E

Embedded Event Manager 4.0

Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
69

Writing Embedded Event Manager Policies Using Tcl
Feature Information for Writing Embedded Event Manager 4.0 Policies Using Tcl

Feature InformationReleasesFeature Name

EEM 4.0 introduced several new
features.

In Cisco IOSXERelease 3.6E, this
feature is supported on Cisco
Catalyst 3850 Series Switches.

The following commands were
introduced or modified: action file,
action mail, action syslog, clear
eventmanager detector counters,
clear event manager server
counters, event cli, event
manager policy, event manager
scheduler, event syslog, show
event manager detector, show
event manager policy registered,
show event manager statistics.

Cisco IOS XE Release 3.6EEmbedded Event Manager 4.0

 Embedded Event Manager Configuration Guide, Cisco IOS XE Release 3E
70

Writing Embedded Event Manager Policies Using Tcl
Feature Information for Writing Embedded Event Manager 4.0 Policies Using Tcl

	Writing Embedded Event Manager Policies Using Tcl
	Finding Feature Information
	Prerequisites for Writing Embedded Event Manager Policies Using Tcl
	Information About Writing Embedded Event Manager Policies Using Tcl
	EEM Policies
	EEM Policy Tcl Command Extension Categories
	General Flow of EEM Event Detection and Recovery
	Safe-Tcl
	Bytecode Support for EEM 2.4
	Registration Substitution
	Cisco File Naming Convention for EEM

	How to Write Embedded Event Manager Policies Using Tcl
	Registering and Defining an EEM Tcl Script
	Displaying EEM Registered Policies
	Unregistering EEM Policies
	Suspending EEM Policy Execution
	Managing EEM Policies
	Modifying History Table Size and Displaying EEM History Data
	Displaying Software Modularity Process Reliability Metrics Using EEM
	Troubleshooting Tips

	Modifying the Sample EEM Policies
	Sample EEM Policies

	Programming EEM Policies with Tcl
	Tcl Policy Structure and Requirements
	EEM Entry Status
	EEM Exit Status
	EEM Policies and Cisco Error Number
	Troubleshooting Tips

	Creating an EEM User Tcl Library Index
	Creating an EEM User Tcl Package Index

	Configuration Examples for Writing Embedded Event Manager Policies Using Tcl
	Assigning a Username for a Tcl Session Examples
	EEM Event Detector Demo Examples
	Programming Policies with Tcl Sample Scripts Example
	Debugging Embedded Event Manager Policies Examples
	Tracing Tcl set Command Operations Example
	RPC Event Detector Example

	Additional References
	Feature Information for Writing Embedded Event Manager 4.0 Policies Using Tcl

