QoS Hierachical Scheduling

In this chapter we will see how commands and their semantics as covered in the scheduling chapter can be
combined in different ways to achieve more complex outcomes.

Two distinct approaches are available to configure complex scheduling hierarchies: hierarchical policy-maps
and policy-maps attached to logical interfaces. Here, we illustrate how either can achieve the same outcome
and delineate the relative benefits of each approach.

*» About Hierarchical Schedules, on page 1

* Hierarchical Scheduling Operation, on page 6

* Priority Propagation, on page 12

* Bandwidth Command in Leaf Schedules, on page 18

» Bandwidth Command is Only Locally Significant, on page 23
* Policy-Maps Attached to Logical Interfaces, on page 28

* Hierarchical Policy-Maps, on page 38

* Verification, on page 46

About Hierarchical Schedules

Definitions

We assume that you are now familiar with the role of a schedule and how a schedule entry contains information
(packet handle, class queues, etc.) on how the child of that entry should be treated (see the Definitions discussion
in the scheduling chapter). Here, we build upon that discussion.

The fundamental difference between what we show here and in the previous chapter is the child schedule,
which may be a queue or another schedule. Hierarchical scheduling allows you to build complex structures
with bandwidth sharing at multiple layers.

The following figure shows the basic hierarchical scheduling structure:

QoS Hierachical Scheduling .

qos-mqc-xe-16-12-book_chapter6.pdf#nameddest=unique_72

QoS Hierachical Scheduling |
. Scheduling Decisions - Root to Leaf

Figure 1: Hierarchical Scheduling Definitions

«—— Qlueues

2 Packet
Handle
In Queue
—— —— '_‘—~—_.____
Min: O Min: 0 Mlin: U\ -q—ch”d
Max: 0 Max: O O Max: 0 Schedule
Ex: 1 Ex: 1 .~ Ex: ‘:/

o T e

Packet Handle

In Schedule Entry Hierarchy of

«— Schedules — No

Queues at
this Level
B _
< Ir;mx: 400M e +00M . Parent
X1 Lo Schedule

To Interface

35308

The first thing to notice from the diagram is that we implement a hierarchy of schedules and not a hierarchy
of queues. This means that queues exist only at the |leaf layers of the hierarchy and that packet handles (the
packet representation vehicle) never move from queue to queue. Instead, a single packet handle is loaded into
the parent schedule entry (provided a packet is waiting for transmission).

When detailing a scheduling hierarchy we describe schedules as parent or child (or indeed grandchild). These
descriptions are relative. A parent schedule is one closer to the root of the hierarchy (closer to the interface).
The child of a schedule could be either a schedule or a queue. We may also refer to schedules as a leaf or
non-leaf schedule. A leaf schedule has solely queues as children; a non-leaf schedule will have at least one
schedule as a child.

Looking at the diagram you can see that the schedule entry in the parent schedule (non-leaf)) has only two
parameters per schedule entry. The Minimum Bandwidth parameter is only supported in leaf schedules — not
in non-leaf schedules.

Scheduling Decisions - Root to Leaf

The following sequence of diagrams illustrates how the schedules in a hierarchy work in concert yet make
local decisions when selecting the next packet to send through an interface.

. QoS Hierachical Scheduling

| QoS Hierachical Scheduling

Scheduling Decisions - Root to Leaf .

Among the packets stored locally, the parent schedule will first decide on the most eligible packet to forward
to the interface. After sending the associated packet handle, it will have a free spot in its own schedule entry
— no packet handle from the child of that entry exists.

If the child is another schedule, the parent will send it a pop (a message that communicates "you pick your
most eligible packet and send me that packet handle"). The child schedule will review the configuration of
each entry, decide which packet should be sent next, and forward that packet handle to the parent schedule.
The child will now have a free spot in its schedule entry. As the child is a queue no decision is necessary -
the packet handle at the head of the queue will be loaded into the (child) schedule entry:

Figure 2: Scheduling Decision - Root to Leaf: Steps 1-2

Stap - Ilariace is roady kor a packel

Pagent {Irerface) s ready 1o
e eed packes handle

Stap2 - Pasond schadils ploks one packel

|

T,

o+ Parent Schedude
s fhe st
aligible packst
arvl sends d 1o
lha inlerface %

QoS Hierachical Scheduling .

QoS Hierachical Scheduling |

. Scheduling Decisions - Root to Leaf

Figure 3: Scheduling Decision - Root to Leaf: Steps 3-4

Stapa - Pasend will secisest packat handla frorm chid

; /f Fog !
A Fhave no packed handle
Send ma your mosl

] ediplie: el
£ -
ﬁ B ADEA P T
s Ex _F‘__,/I'
e

Shopd - Chad will solocl and Send a packo RanBs

" Child Sehedue pioks
tla Mosl sligibde paclet
atvl Serds it e pares

/
/ @ sohedide
¥

. QoS Hierachical Scheduling

| QoS Hierachical Scheduling
Concept of Priority Propagation .

Figure 4: Scheduling Decision - Root to Leaf: Step 5

Staph - Chald will sedoct and Send & packod Benco

de Froen qisate

.t

Concept of Priority Propagation

You will notice that thus far the descriptions have been somewhat simplistic in that they have only included
bandwidth queues. In truth, for each child, a parent schedule can hold a priority (queue) packet handle and a
bandwidth (queue) packet handle (we term this capability passing lanes). When a packet handle is sent from
a child schedule to the parent we indicate whether it arose from a priority or a bandwidth class and we also
indicate the priority level (we term this behavior priority propagation).

We will examine priority propagation later in this chapter. Here we merely introduce the concept so that the
rules of hierarchical scheduling make sense:

QoS Hierachical Scheduling .

QoS Hierachical Scheduling |
. Hierarchical Scheduling Operation

Figure 5: Parent Schedule can hold Priority and Bandwidth Handles (Passing Lanes)

We really hold 2 packet
handles in each parent
schedude entry

1 from pricty gueus and
1 from bandwidth queses

Y

Observe in this hierarchy that priority service does not require configuration in the parent schedule entry; the
(parent) schedule entry has only two parameters, Max and Excess Weight.

Hierarchical Scheduling Operation

In the scheduling chapter we describe how scheduling decisions are made for a flat policy attached to a physical
interface. Here, we describe the scheduling rules for a leaf schedule (a scenario addressing a schedule with
only queues as children). Those rules still hold.

We will now expand on that description to include the rules for the parent-child interaction:

* Priority traffic counts towards Max (shape command) configured at the parent schedule.
* Priority traffic is unaltered by Ex (bandwidth remaining ratio command) configured at parent.
* Priority packets at the parent schedule will always be scheduled before bandwidth packets.

* Priority will be scheduled proportionally to the shape rate configured at parent. We include this point
for completeness; it should not be a factor unless your priority load can oversubscribe the interface.

* Under priority propagation, a parent will know that a packet came from a priority queue but it will not
know whether it was P1 (priority level 1) or P2 (priority level 2).

* Traffic from queues configured with the bandwidth or the bandwidth remaining commands are treated
equally at the parent (no min bandwidth propagation). Henceforward, we refer to traffic from any
bandwidth queue as bandwidth traffic.

* Excess weight configuration at the parent controls the fairness between bandwidth traffic from multiple
children competing for any physical bandwidth not consumed by priority traffic.

. QoS Hierachical Scheduling

| QoS Hierachical Scheduling
Hierarchical Scheduling Operation .

To understand these rules, let's look at the following configuration example. Later, we will detail how a
configuration is mapped into a datapath configuration. For now, the diagram and schedule entries shown in
the diagram are sufficient to understand the behavior:

policy-map childl100
class priority
priority
police cir 400m
class data
bandwidth remaining ratio 4
1
policy-map parentl00
class class-default
shape average 900m
service-policy childl00
1
policy-map child200
class priority
priority
police cir 400m
class data
bandwidth remaining ratio 2
'
policy-map parent200
class class-default
shape average 900m
bandwidth remaining ratio 2
service-policy child200
1
int g1/0/4.100
encaps dotlqg 100
service-policy out parentl00
1
int gl1/0/4.200
encaps dotlg 200
service-policy out parent200

The following diagram shows the scheduling hierarchy associated with the previous configuration. As described
previously, the shape command in the parent policy(s) sets the Max parameter and the bandwidth remaining
ratio command sets the Ex parameter in the schedule entry (rules 1 and 2). The latter defaults to 1 if not
explicitly set:

QoS Hierachical Scheduling .

QoS Hierachical Scheduling |

. Hierarchical Scheduling Operation

Figure 6: Scheduling Hierarchy Example - Forwarding the Entire Offered Priority Load

VLAN1T00 VLANZ200

priarity data class- priority data class-
default

default

P1

Max: 900M
Ex: 2

39EIS

Let's now look at the expected throughput for an offered load.

)

Note The following examples ignore overhead accounting — they are intended solely to illustrate how to calculate
expected throughput independent of minor details.

. QoS Hierachical Scheduling

| QoS Hierachical Scheduling

Hierarchical Scheduling Operation .

Figure 7: Calculating What is Offered to the Parent from Each Child Schedule

VLAMI00 WLANZ200
Offered 350Mm s500M 500M 350M 500M 500M
Load:
* Voo ﬁ .
3500 | 350M |
priority priority

Offered to
Parent:

350M priority 350M priority
1G bandwidth 1G bandwidth

HEI1E

In calculating expected throughput, the first step is to eyeball the offered load per class. The next step is to
aggregate them and observe the total loads from priority and bandwidth classes that will be offered to the
parent:

QoS Hierachical Scheduling .

. Hierarchical Scheduling Operation

Figure 8: Calculating the Remaining Bandwidth for Bandwidth Queues

QoS Hierachical Scheduling

VLAN100 VLAN200
Offered asops soou 500M 350M S00M EO0M
Lead; :
|
!
¥
|
—
—
delaull |
......... =
A MIn- - L #inT=
(mme [max-)
g TE e TE 1S
COrffered fo N e
Parem: 0y T ey
A AROR ity
401G bandwidhh

Expacted '\ ! / priost
Throughput¥ Y ¥ B TOOM will be
S5O0 " 350N sent Meaning
N | e 300K for
-"‘_"_Fu-._ s Bandwidin

JEEITF

Each child schedule is offering 350 Mbps of priority traffic to the parent. Because the interface has 1 Gbps
of available bandwidth it will forward the entire 700 Mbps offered priority load.

According to rule 3, we schedule priority traffic before bandwidth traffic. As the Max (rate) for each parent
schedule entry exceeds the offered priority load from that entry's child schedule, we forward the entire 350
Mbps of traffic.

With the scheduled priority load (350 Mbps + 350 Mbps of traffic), we can now calculate the (remaining)
bandwidth for bandwidth (queue) traffic (300 Mbps or 1 Gbps of total bandwidth available - 700 Mbps
consumed by priority load).

The parent schedule will use the Ex configuration to apportion the 300 Mbps (remaining) bandwidth. With
Ex values of 1 and 2, for VLAN100 and VLAN200, respectfully, the bandwidth will be shared 1:2. VLAN100
will receive 100 Mbps and VLAN200 will receive 200 Mbps of bandwidth traffic throughput:

. QoS Hierachical Scheduling

| QoS Hierachical Scheduling

Hierarchical Scheduling Operation .

Figure 9: Bandwidth Sharing based on the Excess Weights in the Child Schedule

VLAN100 VLAN200
Offered 350M 500M 500M 350M 500M 500M
Load: ¢ 4'
350M ! ' 350M §
priarity data class- priority
default

Offered to
Parent
350M priority J50M priority
1G bandwidth 1G bandwidth
Expected l l l
Throughput:
350M a0l 67M

3518

To calculate how this 100 Mbps will be apportioned, we can now examine the bandwidth queue's schedule
entries (in the schedule) for VLAN100.

No Min guarantees are configured (the bandwidth command is not supported in parent schedules), so all
sharing hinges on the scheduled Ex values in the child schedule. Based on the settings (4 for class data and 1
for class class-default) the 100 Mbps will be shared 4:1 (class data receives 80 Mbps; class class-default
receives 20 Mbps).

If we follow the same approach for VLAN200, the 200 Mbps available is split 2:1. Class data will receive
133 Mbps and class class-default will receive 67 Mbps.

You probably noticed that every class was oversubscribed. This means the expected throughput we calculated
was also the minimum guaranteed service rate for each class. Under hierarchical scheduling, bandwidth sharing
at the parent schedule ensures that we don’t waste bandwidth if any child schedule does not have packets

QoS Hierachical Scheduling .

QoS Hierachical Scheduling |
. Priority Propagation

waiting for transmission. Similar to bandwidth sharing in flat policies, bandwidth unused by one child is
available to others.

Priority Propagation

Regarding the Concept of Priority Propagation, on page 5, we will now use the following sample configuration
to highlight a few points:

policy-map child
class voice
priority
police cir 600m
class video
priority
police cir 600m
1
policy-map parentl00
class class-default
shape average 900m
service-policy child
1
policy-map parent200
class class-default
shape average 900m
bandwidth remaining ratio 2
service-policy child
1
int gl1/0/4.100
encaps dotlq 100
service-policy out parentl00
!
int g1/0/4.200
encaps dotlg 200
service-policy out parent200

\}

Note We are using the same child policy in both parent policy-maps. Unique policy-maps are unnecessary at any
level; if the requirements match, you can share child or even parent policy-maps.

A hierarchy created for this configuration would look as follows:

. QoS Hierachical Scheduling

| QoS Hierachical Scheduling

Priority Propagation .

Figure 10: Scheduling Hierarchy Example - Multi-level Priority Queuing in Child Schedule

VLAN100 VLANZ200

critical

O Mae: 900M
B 1

HEI19

The scenario differs from that in the Concept of Priority Propagation, on page 5. We now have multi-level

priority queuing in the child schedule (e.g., P1 [priority level 1] and P2 [priority level 2] classes). The following
diagram shows the load offered to each class:

QoS Hierachical Scheduling .

QoS Hierachical Scheduling |

. Priority Propagation

Figure 11: Multi-level Priority Queuing - Load Offered to each Class

VLAMN100 VLANZ00
Offered goom oM 500M 300M 300M 500M
Load: ¢ ¢ ¢ #
BOOM, ¥ | OM ¥ 300M, ¥, 300M; ¥
voice critical- class- voice critical- class-
data default data default
Mir: —= hir:
Or Ore Owmax- Or Ore Omaxe
Offered to = e
Parent:

BO0M priarity
\EUUM bandwidth / gtgﬂ E;ﬁggldlh

. ax: 900M e 9000
Ex: 1 Ex: 2

1G

385320

Now let's look at the total load offered from the priority and bandwidth queues (for each child) to the parent:

. QoS Hierachical Scheduling

| QoS Hierachical Scheduling

Priority Propagation .

Figure 12: Oversubscribed Priority Queues shared relative to the Parent's Max ratio

VLAN1T00 VLAN200

Offered BO0M o 500M 300 J00M 500M
Load: ¢ ¢

Offered to
Parent:

f‘?‘f‘:ﬁ' i B BOOM pricrity
U0 bancwcin 500M bandwidth

Over
subscribed
priority shared
in proportion
to parent's
max 900:900
P1 traffic
competes
equally with
1G P2 traffic

385321

In rule 4 (see Hierarchical Scheduling Operation, on page 6) we stipulated that a parent will schedule an
offered priority load proportional to the shape rate configured in its schedule entry. Here, each child has a
Max rate ("shape" in the parent policy) of 900 Mbps and offers 600M priority traffic (i.e. 1.2 Gbps [600M +
300M + 300M traffic] when only 1 Gbps is available). The parent schedule will apportion 500 Mbps to each
child. The key point to note here is that P1 from VLAN100 competes equally with P2 traffic from VLAN200.
(Recall from rule 5 that priority propagation alerts the parent that a packet arose from a priority queue but
does not indicate the priority level.)

QoS Hierachical Scheduling .

QoS Hierachical Scheduling |

. Priority Propagation

Figure 13: Parent Controls Total Priority Share for Child

YLANTOO VLAN20D

Offerad gnon O S00M 300N 3008 S00M
Load; +

ciags-
dalaull
-~ Tre
o L TTRE
{1 BEG TS
X —Ex 1.
Offered fo Te— e "

e,

A
4 a00RE prictity
fr".f' BOOM baplwickh

Parenl:

!
! [/ Total pricnty
Expectad l l l IKI share for
Thr:lughpu'--- S A e la's 1.1 / et] chifd is
::-'.:'..rr'l: \..':|.'1 .:l'..n..'r'.-i _f; r."'_n..'r'.-i l::{:lf'l':?':lli—if'i::
; A_———F———‘—v’—f '______ by parent
ff a“) Mtk 000~ Max. 400 “) iy
e SEx A R SRR
“““'"—-_,_____'______f"’ has locsl
rel Envain o
1G withiry child

The parent schedule accepts 500 Mbps of priority load from VLAN200. The child schedule is responsible for
apportioning bandwidth within that 500 Mbps. The child policy has P1 configured in the voice class, which
means that the child schedule will always pick packets from that queue first (i.e., priority levels have local

significance within a schedule). The expected throughput for the voice class in VLAN200 is 300 Mbps. The
class critical-data will receive 200 Mbps (the unused share of the 500 Mbps — 300 Mbps in this example):

. QoS Hierachical Scheduling

| QoS Hierachical Scheduling

Priority Propagation .

Figure 14: Child Schedule Apportions Bandwidth received from Parent Schedule

VLAMA00 WVLANZ0O
Offered goom oM 500M 300M 300M 500M
BOOM, ¥, OM § 300M, ¥ [300M, v
volce critical voice critical- class-

P1 O P2

BO0M priority
S500M bandwidth

Offerad to
FParent:

BO0M priority
500M bandwidth

Expected i l
Throughput:
500M

Max: 800M
Ex: 1

—

g

a

A
What about the expected throughput from the bandwidth queues? As the offered priority load exceeded the
physical bandwidth available, nothing remained for the bandwidth queues. This example effectively highlights
that priority classes can starve bandwidth queues completely. If control packets are not in priority queues,
you might experience network instability. In fact, failure to place control packets in priority queues could be
considered a misconfiguration!

Note

Ensure that the physical bandwidth available exceeds the sum of all priority class policers, so that the latter
can’t starve others of service.

Please be aware that the concept of priority propagation does not end in the scheduling hierarchy. When we

mark a packet as stemming from a priority class, that tag is carried to the egress interface. In egress carrier or

QoS Hierachical Scheduling .

QoS Hierachical Scheduling |
. Bandwidth Command in Leaf Schedules

interface cards, we find multiple places where passing lanes enable priority packets to arrive at the interface
as quickly as possible.

Bandwidth Command in Leaf Schedules
We have already stated that although the bandwidth command is not supported in parent schedules (and so

a Min setting is absent), it is supported in leaf schedules. With the following configuration, we will explain
the operation of the bandwidth command in a child policy-map. (Lines flagged with asterisks indicate how
this configuration compares with that presented in priority propagation.

policy-map childl00
class voice
priority
police cir 100m
class critical-data
bandwidth 300000 *hkk
1
policy-map child200
class voice
priority
police cir 100m
class critical-data
bandwidth 100000 *k kK
!
policy-map parentl00
class class-default
shape average 500m
service-policy childl00
!
policy-map parent200
class class-default
shape average 500m
bandwidth remaining ratio 2
service-policy child200
!
int g1/0/4.100
encaps dotlg 100
service-policy out parentl00
1
int gl1/0/4.200
encaps dotlqg 200
service-policy out parent200

A hierarchy created for this configuration would look as follows:

. QoS Hierachical Scheduling

| QoS Hierachical Scheduling

Bandwidth Command in Leaf Schedules .

Figure 15: Scheduling Hierarchy Example - Bandwidth Command Application in Leaf Schedules

VLAN100 VLAN200

critical- class-
data default

class-
default

Mir: 300
P1 Max: —
Ex: 1

Min: 1000
Max: —

385322

To explain the operation of this hierarchy let's consider the following offered loads (to each class):

QoS Hierachical Scheduling .

QoS Hierachical Scheduling |
. Bandwidth Command in Leaf Schedules

Figure 16: Load Offered to each Class

VLANTOD VLANZOD
Offersd qz0m sooM S00M E00M 500N
Load; |
* |
1 |
¥ ¥
| | Ha
e — o]
| 1 H Bl =
'm:\r:a| critcal- clasa- | -.I f,uasl_rl
| datal delault data) dalaul |

e X e —.l___
A Ao ?-'"”f-'/lx"ﬁ'“-. fI\ A M 100k L Wi
Pt : : | :

o

Ll i Lo [It - P e (121;?11)
: - - 1 Ex 1
Offered to . " T § T

h
a h

¢ BN prkorly

e

{3 bandwidh 4G bandwidie
'h\\ .;._K*__ [+ i
5
o | | !
Expacted | | A B50M left
Throughput ¥ \ X /" tor bandwidth
10064 " S0 ! Fea i
A —t
.--"'-'_F- .I"’ '_"-._\
¢ T M S M S00R
- LB o LI =
'ﬂ-_..______h_ it e F,_Fr"

v ‘
As with the previous example, we first examine the total load offered from the priority and bandwidth queues
for each child to the parent.

The total priority load in this example is 150M. Each child is offering less than their Max rate (shape in parent
policy) and the aggregate offered-priority load is less than the 1 Gbps total available bandwidth. (Recall the
example in schedule operation where the total offered priority traffic exceeded the total available bandwidth.)
This means the entire priority load offered from each child would be forwarded. With 150 Mbps scheduled
from priority queues, we have 850 Mbps available for bandwidth queues.

To calculate how to apportion the bandwidth between each child, let's first look at the excess weight configured
in each schedule entry in the parent:

. QoS Hierachical Scheduling

| QoS Hierachical Scheduling

Figure 17: Apportioning Bandwidth Share Between Children

VLAN100

Offered 150M 500M 500M

TEm |

100M | ¥

critical
data

Offered to
Parent:

100M priarity
1G bandwidth

Expected l
Throughput:
100M

Bandwidth Command in Leaf Schedules .

VLAN200
50M 500M 500M
v

50M | ¥

volce critical-

50M priority
1G bandwicth

B50M left
for
bandwidth
traffic If
shared 1:2

=—500M Max
means this
entry can't
1G use 567M
bandwidth
Share
based

on weight 3

If we focus exclusively on the excess weight, VLAN200 would be apportioned 567 Mbps of the interface
bandwidth (2/3 of 850 Mbps). However, we also need to factor in the Max value (500 Mbps) configured in
the schedule entry, which includes the 50 Mbps of priority traffic from that child. This means that VLAN 200
will actually forward 450 Mbps of bandwidth traffic and VLAN100 will forward 400 Mbps of bandwidth

traffic (850 Mbps - 450 Mbps for VLAN 200):

QoS Hierachical Scheduling .

QoS Hierachical Scheduling |

. Bandwidth Command in Leaf Schedules

Figure 18: How the Max value of the Parent's Schedule Entry influences Bandwidth Sharing

VLAN100 VLANZ200
Offered 450Mm 500M 500M 50M 500M 500M
100M | ¥ 50M | +
VOICE criticak VOICE critical-

data - default data

Mir: 300M
Max: -

Offered to
Parent:

100M priority
1G bandwidth

50M priority
1G bandwidth

Expected l
Throughput:
100M

G
i
A

As the sum of the Max values at the parent level is less than or equal to the available physical bandwidth, the
Ex values in the parent policies do not add value — each child will receive a total throughput matching its
shape rate (e.g., for VLAN100, 100M + 400M = 500M [the shape rate]). Observe that with such a configuration,
any bandwidth unused by one child would not be available to another. Any child is always limited to the
configured Max value.

With the total throughput for bandwidth classes in each child, we can now calculate the throughput each
individual class in that child will receive. Recall from the schedule operation that Min bandwidth guarantees
are always serviced first and any excess bandwidth is shared based on the Ex values, which always default
to 1:

. QoS Hierachical Scheduling

| QoS Hierachical Scheduling
Bandwidth Command is Only Locally Significant .

Figure 19: Factoring Total Throughput to Apportion Bandwidth within each Child Schedule

VLAN100 VLAN200
Offered 150Mm 500M 500M 50M 500M 500M
Load: ¢ L
paicay | ! jpoies) | |
100M | ¥ S0M | y
voice critical class- voice critical- class-
data __ie-fault data o default

Mir: 1000 in:

P1 Max: — Max: —
\ Ex: 1 :

Mir: 300M Min: =

P1 Mz - Max: -—-
\\ Ex: 1 :
Offerad to -

T—— e

Parent:
100M priority S50M priority
1G bandwidth 1G bandwidth
Expected | l | l
Thrﬂughput:* \
1 00M 350M Ol 50M 175M
O Max: 500M M
Ex: 1
-.___________ __'_'_'_'_'__,_,_,-o—"
1G

WA

For example, the bandwidth apportioned to the class critical-data of VLAN200 would be 275M (100M (Min
guarantee) + Y2 (450M -100M), where we derive "%" from the Ex ratio of 1:1).

Bandwidth Command is Only Locally Significant

To highlight the risk of using the bandwidth command in hierarchical policies, we will modify the previous
configuration example by increasing the parent shapers so that they are no longer the constraining factor. In
the revised configuration, the sum of the parent shapers oversubscribes the physical bandwidth available.
(Commands flagged with asterisks indicate how this configuration differs from that presented in Bandwidth
Command in Leaf Schedules, on page 18.)

policy-map childl100
class voice

QoS Hierachical Scheduling .

QoS Hierachical Scheduling |
Bandwidth Command is Only Locally Significant

priority
police cir 100m
class critical-data
bandwidth 300000
1
policy-map child200
class voice
priority
police cir 100m
class critical-data
bandwidth 100000
!
policy-map parentl00
class class-default

shape average 900m Fdkedkk
service-policy childl00
!
policy-map parent200
class class-default
* %k %k Kk

shape average 900m
bandwidth remaining ratio 2
service-policy child200
1
int g1/0/4.100
encaps dotlg 100
service-policy out parentl00
1
int gl1/0/4.200
encaps dotlq 200
service-policy out parent200

If we apply the offered load profile from Bandwidth Command in Leaf Schedules, on page 18, the hierarchy
and load profile will appear as follows:

. QoS Hierachical Scheduling

| QoS Hierachical Scheduling

Bandwidth Command is Only Locally Significant .

Figure 20: Scheduling Hierarchy Example - Parent Shapers no Longer Constraining

VLAN100 VLAN200
Offered 150Mm 500M 500M 50M 500M 500M
100M | ¥ 50M | ¥
voice critical voice critical- class-

data data

Mir: 300M
MWax: -

Offerad to

Parent:
100M priority S50M pricrity
1G bandwidth 1G bandwidth
Expected l 850M left for
Throughput: bandwidth traffic
1 00M

Max: 800M
Ex: 1

W59

Similar to the previous example, 850 Mbps are available (remaining) for bandwidth queues. (Inspecting the
sum of priority load and bandwidth traffic share for each child, you notice that the Max value in each parent
schedule would not be exceeded.) Based on the excess weights configured in the parent schedule, we calculate
the bandwidth share each child would receive (from the parent schedule): 283 Mbps and 567 Mbps.

QoS Hierachical Scheduling .

QoS Hierachical Scheduling |

. Bandwidth Command is Only Locally Significant

Figure 21: Calculating Bandwidth Share for Each Child based on Excess Weight Configured in Parent Schedule

VLANTOD VLANZOD
Offersd qz0m sooM S00M E00M 500N
Load: 4
WozE crilazal - u:lc: {:rrl»::aj
i dafault d laull
{J-\ - 300M . bAin =, f lu'lln 1nn|u ?“
([:IPi e - ey 7 ;
e Ex 1 jEfJ’ ‘“-_h Ex
COrffered fo “'--____ - — F«f"
Parern: E—_—h_T_
A prical !r \ eEl'ﬂr‘ SETh f.f' ¢ GO priorily
{03 bandwwih 3‘\ f_(*f 16 Dl
| v -'-Il'
i
Expectad | b B50M fef for
Thr:rughpul ¥ ;’(-c ransdwidth traffic
oo \\ soM i sharad 1.0
ff a“) Maxc D00 Mepe 900K
. JEx 1 e 8
ﬂ-_________'_'__'__'_‘_'_,_,.o-"

)

Note In contrast to the previous example, because the shape values are no longer constraining, total throughput for
each child does not match the shape rate.

Let's examine the entries in each child schedule to see how bandwidth would be apportioned to each class:

. QoS Hierachical Scheduling

| QoS Hierachical Scheduling

Bandwidth Command is Only Locally Significant .

Figure 22: How Child Entries Dictate how Bandwidtth is Apportioned

VLAN100 VLAN200
Offered 150Mm 500M 500M 50M 500M 500M

U ||

Voo

100M | ¥ 50M | ¥

critical class- volce critical-
data default data

VOICE

Wir: 300M
MWax: -
BEx: 1

S50M priority
1G bandwidth

Offerad to
FParent:

100M priority

1G bandwidth

Expected l l
Throughput:

100M 283M

285N

Viewing the child schedule for VLAN100, you notice that the schedule entry for class critical-data has a Min
value of 300 Mbps configured. The 283 Mbps bandwidth apportioned to this schedule is insufficient to satisfy

this guarantee.

The key point of this discussion is that Min bandwidth guarantees are only locally relevant; Min bandwidth
propagation does not exist. Traffic from one child schedule competes equally with excess traffic from another.

Also, please note that using Min in scheduling hierarchies could starve other classes of service (in this example,
class-default in VLAN100). To avoid this, use only the bandwidth remaining command in child policies.
Tip

If you oversubscribe parent shapers in a hierarchical policy and want to avoid starving some classes of service,

ensure that the sum of policers on your priority queues does not exceed the bandwidth available. Furthermore,
consider using the bandwidth remaining over the bandwidth command.

QoS Hierachical Scheduling .

QoS Hierachical Scheduling |
. Policy-Maps Attached to Logical Interfaces

Policy-Maps Attached to Logical Interfaces

Earlier in this chapter, we delineated the two primary methods for creating scheduling hierarchies: QoS policies
attached to logical interfaces and hierarchical policy-maps. In prior examples, we outlined polices attached
to logical interfaces. Let's explore this scenario in more detail.

Interface Scheduling

Before looking at how a policy on a logical interface alters the hierarchy, we need to carefully examine the
interface schedule and hierarchy that exist before any QoS policy is applied:

Figure 23: Interface Schedule and Hierarchy before Application of QoS Policy

Gigl/0/0 Gigl/0/1 POS1/3/0

Interface
Default

Interface
Defaul

Interface
Defaul

quele queus
Min: 100M Min: 100M Min: 16M
- Max: — e s e Max: —
Ex: 1 Ex: 1
| Interface ~ Interface T Interface —
: Schedule Schedule Schedule

Max: 1.05G (5 Max: 1.05G O Max: 1.05G
Ex 105 Ec 05 *09 Ex 105 _

S 2 e

Carrier Card

Schedule
flow-control ¥

| status &
. from interface OPM @
' m

The OPM (Output Packet Module) sits at the root of the scheduling hierarchy. Upon receiving a packet handle,
it fetches the actual packet from memory and pushes it towards the physical interface.

. QoS Hierachical Scheduling

| QoS Hierachical Scheduling
Shape on Parent, or Queue on Child .

Directly below the OPM layer (from a decision-making perspective) you will find the carrier card schedule.
On modular platforms we find one such schedule per slot whereas on fixed systems we have one for the entire

system.

Consider a modular chassis with one slot housing an SIP10 that has a 10 Gbps link over the backplane to the
ESP (Embedded Services Processor — also termed the forwarding processor). The SIP10 can hold 4 SPAs
(Shared Port Adapters) where each could have interface(s) totaling at most 10 Gbps capacity. If you combine
SPAs in the SIP that exceed the backplane capacity, that link might be a congestion point. Should this occur,
the carrier card schedule ensures fairness between interfaces; the excess weight for each interface is proportional
to the interface speed.

To condition traffic within a platform, we set the Max value in the carrier card schedule for each interface to
slightly exceed the interface’s bandwidth. We want to send enough traffic towards a physical interface such
that we never underrun (starve) that interface. Furthermore, we need to quit sending whenever the interface
indicates that its egress buffers are filling, which could happen when an interface receives a pause frame from
a downstream device, a serial interface expands its data by bit or byte stuffing, etc.

Here is the key: We push traffic towards a physical interface such that it always has data to send down the
wire and we temporarily pause sending whenever the interface indicates that it has sufficient data buffered.

An interface directs us to stop sending traffic through a flow-control message. By design, a schedule (not a
schedule entry) responds to this message - it stops sending. For this reason we must always have an interface
schedule for every physical interface in the box. The interface default queue (the queue used in absence of
QoS) is a child of this interface schedule.

Each interface can send distinct high and low priority flow control messages (to the interface schedule),
maintaining distinct buffers and queues for priority and bandwidth traffic:

If the schedule receives a message that bandwidth traffic buffers are filling it will pause such traffic but
continue to forward priority traffic.

If we receive a message that priority buffers are filling we will pause sending any packets until the
congestion clears.

This scheme extends the concept of priority propagation to the physical interface (recall that this connotes
whether a packet handle stems from a priority or bandwidth class) and minimizes jitter to industry leading
levels for latency sensitive traffic.

Shape on Parent, or Queue on Child

Now let’s look at a typical policy that might be attached to a logical interface (a construct referred to as shape
on parent or queue on child):

policy-map childl100
class voice
priority
police cir 100m
class critical-data
bandwidth 300000
]
policy-map parentl00
class class-default
shape average 900m
service-policy childl00
]
int g1/0/0.100
encaps dotlqg 100

QoS Hierachical Scheduling .

QoS Hierachical Scheduling |
. Shape on Parent, or Queue on Child

service-policy out parentl00

In this construct, you are required to configure a shaper in the parent policy(shape average 900M). The
original intent of this construct was to apportion bandwidth to each logical interface. We consider the shape
(Max) rate to be the bandwidth owned by that logical interface and allow the child policy to apportion bandwidth
within that owned share.

One useful application of this construct is to condition traffic for a remote site. For example, let's say that
your corporate hub has a GigabitEthernet link but is sending traffic to a remote branch with a T1 connection.
You want to send traffic at the rate the remote branch can receive it. To avoid potentially dropping packets
in the provider device that offers service to that branch, you would configure the parent shaper at a T1 rate
and queue packets on the hub. This maintains control of what is forwarded initially if that branch link were
a congestion point.

Customers have asked to over-provision the shapers on logical interfaces (representing either individual
subscribers or remote sites). The assumption is that all logical interfaces would not necessarily be active at
all times. As we want to cap the throughput of an individual subscriber, we don’t want to waste bandwidth if
an individual logical interface is not consuming its full allocated share.

So, do we oversubscribe? If yes, to provide fairness under congestion thru excess weight values, you should
configure abandwidth remaining ratio inthe parent. Furthermore, be aware of what service any individual
logical interface would receive under congestion.

Returning to the configuration, here is the resultant hierarchy:

Figure 24: Shape on Parent / Queue on Child Construct

GLA0/O - VEANTOD

Child Defines
Entrigs in
Class Scheduls
(ki B L Jmaw. | M -
Class ™ __ e 1 ey L
Schedde —— ——————
E Parent Defines
i Schedule Entry
(:_*:x *.:awq But Mot Where 5
o It Attaches ! §

As stated, a child policy defines bandwidth sharing within the logical interface. We usually refer to the queues
here (voice, etc.) as class queues (with treatment defined by classes within the policy-map) and the schedule
at this layer as the class layer schedule.

In the parent policy we define a parent shaper (Max: 900M) and also the implicit bandwidth share of ‘1’ (£x:
1). Observe that the QoS configuration does not explicitly specify where we should graft this logical interface
to the existing interface hierarchy (note the un-attached schedule entry) and the router must know which
physical interface a logical interface is associated with to determine where to build the hierarchy.

. QoS Hierachical Scheduling

| QoS Hierachical Scheduling

Shape on Parent, or Queue on Child .

For a policy on a VLAN, it is evident which interface is involved - we attach the (logical interface) policy in
the subinterface configuration. For other interface types (e.g., a tunnel interface), we may need to examine
routing information to determine the egress physical interface for that particular logical interface.

Figure 25: Existing Interface Hierarchy (The World Before the Graft)

Logical Interface
Aggregation Schedule

flow-control
status
from interface

—

Carrier Card
Schedule

—

Interface

Schedule
Gl/0/0

Giglf‘l:.l:ls

Interface
Default
gueue

385334

After we know which interface is involved, we can modify the hierarchy for that interface. First we create a
schedule (the logical interface aggregation) that will serve as a grafting spot for the logical interface hierarchy

defined in the shape on parent (or queue on child) policy.

QoS Hierachical Scheduling .

QoS Hierachical Scheduling |
. Shape on Parent, or Queue on Child

Initially, the interface schedule had a single child, the interface default queue. Now, we create a second child,
the logical interface aggregation schedule. Observe how the excess weight for this schedule matches that of
the interface default queue — it defaults to ‘1’ as always.

Figure 26: Existing Interface Hierarchy (The World After the Graft)

- Interface L —
-~ Default 7
s Cueue
Fetizdug Routing Irformation l{f
Y | Tells us Where to /
A | Graft VLAN Hisrarchy
:__.n--..._. Bda TR : .-'{
B 1| !
— ;
— e /
s T)
L)
s — e . }'rl
Logical Interface ™ /
Aggregation Schedule ™ /
S r—— mebian
T e = M JO0RE
», L e 1 W - ,:-‘
Tl _ B 1
Interface |
| Schedule
i G1/0/0
! flow-control
! status
i from interface [T e
i £ W 105G "
e B 1S e
Ea!“ar -E_ard = —-—--.__._._._._._._.i.._._ — LT
Schedule i
} 4
v g

Notice that in the shape on parent policy, we have only class-default with a child policy:

policy-map parentl00
class class-default
shape average 900m
service-policy childl00

This is a special case where we just define a schedule entry rather than create a schedule for this policy. We
refer to this entity as a collapsed class-default.

To grasp the significance of this concept, let's add a policy to another VLAN (VLAN200). (Relative to the
policy-map parent100 listed at the beginning of the topic, we have added asterisks):

. QoS Hierachical Scheduling

QoS Hierachical Scheduling
Shape on Parent, or Queue on Child .

policy-map child200
class voice
priority
police cir 100m
class critical-data
bandwidth 100000
1
policy-map parent200
class class-default
shape average 900m *kkk
bandwidth remaining ratio 2
service-policy child200
1
int gl1/0/0.200
encaps dotlq 200
service-policy out parent200

The complete scheduling hierarchy would now look as follows:

QoS Hierachical Scheduling .

QoS Hierachical Scheduling |
. Shape on Parent, or Queue on Child

Figure 27: A Complete Hierarchical Scheduling Framework to Handle Congestion and avoid Wasting Bandwidth

Gigl/0/0

B
=

B L |

- ot
voice | ol | sl '”mﬁa’:“‘?r-
data | delau | [refault ;
W B e] ! _queus
f""i\. e, W 300N l—-\h'-n S L Wi = If
[}pPd (Do [IMax - T
I'. L S *.._,-/I b)
BT = = 1 L
e LS g /
Schedule ™ o
“
e
P () Mk 90— Beoe: S00h /
L SEx 1 e 2/ -
B L o
-—._.__‘ _____ e _."
Logical interface . ,r’j
Aggregation Scheduls _ o _7;_-'_ -
S N o e 10
» L (wa:)
e 3 Ex: 1 ""FE'::.__F_!H, -
Interface A
Schedude
17050
| flow-control
| status
from intedace p__d_ﬂd__,.-——f—— ----------------- .
3 ¢ 7 M 1056 T
W o Bx: 105 gt
e e e e aeie PR
Schedule
A
1
OFM |
____!_____I a
v 7

Observe that in the second parent policy (the policy to VLAN200) we specified a bandwidth remaining ratio
of 2, controlling fairness between VLANS. Recall from the Qos Scheduling chapter the existence of peers in
the parent policy of flat policies, which enable us to use either the bandwidth remaining ratio or bandwidth
remaining percent command to specify the excess weight. In the shape on parent policy construct no peers
exist. When you configure a QoS policy-map, QoS cannot know what will materialize as peers in the logical
interface aggregation schedule. So, neither the bandwidth remaining ratio nor the bandwidth remaining
percent command is supported.

This complete scheduling hierarchy truly highlights the benefits of the Cisco Modular QoS CLI (MQC) and
the Hierarchical Scheduling Framework (HQF). For any given interface, the hierarchy is deterministic; we
know clearly which packet will be forwarded next. As we have schedules to handle all congestion points, no
bandwidth is wasted regardless of where congestion may occur.

. QoS Hierachical Scheduling

| QoS Hierachical Scheduling

Advantages of Policies on Logical Interfaces .

Advantages of Policies on Logical Interfaces

The ability to attach policy-maps to logical interfaces offers this significant advantage: management in scaled
environments and ease of configuration. For each logical interface, you can reuse or create policy-maps. That
is, you might attach a policy-map to each of 1000 VLANS configured on an Ethernet-type interface. To review
the QoS statistics for an individual logical interface, you can issue the show policy-map interface
interface-name.

Be aware that the advantages can also be perceived as dangers. If the physical bandwidth available exceeds
the sum of your parent shapers, then examining a single logical interface in isolation suffices. However, if

the sum of parent shapers exceeds the physical bandwidth available, you need to consider contention between
logical interfaces and how much bandwidth an individual interface is truly guaranteed. Viewing an individual
interface in isolation may be misleading.

Multiple Policies Definition and Restrictions

We use Multiple Policies (MPOL) to describe situations where a policy-map is attached to a logical interface
while the policy-map is simultaneously attached to the physical interface to which that logical interface is
bound (e.g., a VLAN subinterface and the physical Ethernet interface).

MPOL can also refer to instances where policy-maps are attached to different logical interface types that are
bound to the same physical interface. For example, imagine a policy attached to both a VLAN subinterface
and a tunnel interface, where both exit the same physical interface.

Currently, the ASR 1000 Series Aggregation Service Router supports a very limited implementation of MPOL.
If you have a policy-map attached to a logical interface the only policy you can attach to the physical interface
is flat with only class-default and a shaper configured, as in the example below. This topology supports
scenarios where the service rate (from a provider) differs from the physical access rate. For example, consider
a GigabitEthernet interface connection to your provider where you only pay for 200 Mbps of service. As the
service provider will police traffic above that rate, you will want to shape everything (you send) to 200 Mbps
and apportion that bandwidth locally.

Note

You must attach the policy to the physical interface before you attach it to any logical interface. Furthermore,
you can’t attach policy-maps to more than one logical interface type bound to a single physical interface.

Returning to the previous example of policies attached to two VLAN subinterfaces (see Shape on Parent, or
Queue on Child, on page 29), let's now add a 200 Mbps shaper to the physical interface. The complete
configuration would look as follows. The asterisks indicate how this and the previous configuration differ.

policy-map physical-shaper *kkk
class class-default Kk kK
shape average 200m Kk k K

]
policy-map childl00
class voice
priority
police cir 100m
class critical-data
bandwidth 300000
]
policy-map child200
class voice
priority

QoS Hierachical Scheduling .

QoS Hierachical Scheduling |
. Multiple Policies Definition and Restrictions

police cir 100m
class critical-data
bandwidth 100000
1
policy-map parentl00
class class-default
shape average 900m
service-policy childl00
!
policy-map parent200
class class-default
shape average 900m
bandwidth remaining ratio 2
service-policy child200
1
! Note - must attach physical policy before logical policies
!
int gl1/0/0 el
service-policy output physical-shaper F*kkk
!
int g1/0/0.100
encaps dotlg 100
service-policy out parentl00
1
int gl1/0/0.200
encaps dotlq 200
service-policy out parent200

Notice that we have introduced another schedule as well as a queue that will be used for any user traffic sent
through the physical interface. The logical interface aggregation schedule has now been created as a child of
the physical policy schedule rather than directly as a child of the interface schedule. The combination of traffic
through the logical interfaces and user traffic through the physical interface is now shaped to 200 Mbps.

The complete scheduling hierarchy would appear as follows:

. QoS Hierachical Scheduling

| QoS Hierachical Scheduling

Multiple Policies Definition and Restrictions .

Figure 28: Creating a Logical Interface Aggregation as a Child of the Physical Policy Schedule

G1/0/0-V0IANT0O G1/0/0-V0LAN20O Gigl/0/0 Gigl/0/0

Hatiwve Pak-

Traffie Prisrity
i Traffic

v .

voice | critical- class- voice | critical class- Class-
data default data default | Default /.o e o
») oo = queue / petault
L In: ==
. P1 Mg_lx: o Ma;(: - queue
Ex 1 Ex: 1
Class ——
Schedule
O e 900M Max: 900M
Ex: 1 Ex: 1
Logical Interface
Aggregation Schedule
. Max: — M —
Ex: 1 Ex: 1
Physical Policy —_—
Schedule
: Interface
. flow-control Scheduls
. status T
from interface
Carrier Card
Schedule

OPM

-—
e e]

QoS Hierachical Scheduling .

QoS Hierachical Scheduling |
. Hierarchical Policy-Maps

Hierarchical Policy-Maps

In the previous sections, we showed how hierarchies are constructed when policy-maps are attached to logical
interfaces. A second approach is to use hierarchical policy-maps and explicitly construct the hierarchy you
desire. Using this approach you gain some flexibility but loose some scale. (Recall that with policies on logical
interfaces you gained management in scaled environments.) The ASR 1000 Series Aggregation Service Router
supports up to 1,000 classes in a policy-map, which means that the largest number of logical interfaces you
could represent is 1,000.

To belong to a class within a hierarchical policy-map, a packet must match the child and (any) parent
classification rules. In an earlier VLAN example we showed how to use VLAN ID-based classification in a
parent class and DSCP-based classification in a child class.

The following configuration shows how we might achieve similar behavior to that with a MPOL-physical
shaper (see Multiple Policies Definition and Restrictions, on page 35). Here we use a three-level hierarchical
policy-map (the maximum number of layers we support).

The parent policy has only class-default, which means that all traffic through the interface belongs to this
class:
policy-map physicalshaper

class class—-default

shape average 200m
service-policy vlansharing

The child level has VLAN-based classification. Traffic belonging to VLAN 100 or VLAN200 will fall into
one of the user-defined classes. (Additionally, we have an implicit class-default in this policy that will capture
traffic from other VLANSs or with no VLAN tag.) Each VLAN class has a policy to further classify traffic
based on DSCP:

class-map v1anl00

match vlan 100
class-map v1an200

match vlan 200
class-map voice

match dscp ef
class-map critical-data

match dscp af2l

|

policy-map childl100
class voice
priority
police cir 100m
class critical-data
bandwidth 300000
|
policy-map child200
class voice
priority
police cir 100m
class critical-data
bandwidth 100000
|
policy-map vlansharing
class v1anl00
shape average 900m
bandwidth remaining ratio 1
service-policy childl100

. QoS Hierachical Scheduling

| QoS Hierachical Scheduling

Hierarchical Policy-Maps .

class v1an200
shape average 900m
bandwidth remaining ratio 2
service-policy child200
|
policy-map physicalshaper
class class—-default
shape average 200m
service-policy vlansharing
|
int gl/0/0
service-policy output physicalshaper

A hierarchy constructed based on the above configuration will look as follows:

Figure 29: Hierarchical Policy-Maps to Explicitly-Construct a Hierarchy

G100 - VLANTCGD G000 - VLANZO0 5ig1/0/ 0 Eigliosm
Hative Pak—
Tratfio Prilorlty
Traffiz

:! Cl g g
BES=
woce | CiEkcal- -
[refauit J Iﬁterfﬂ':ﬁ'

_quee / petayt/

Wb 00 MTITT““\ - 5 - Wi AR P =, ;
Cobee [e Wax - (¢ 1P M - b — !j queue;
N AT e UE“; » /
child100 child200 2 o
Schedule e Schedule ¥4 /
. ‘fﬁ\ /
T M S e A TEY
L C}Er 1 (Jex 2 e LA
T Lt
wiansharing 5,
Schedule !
2 /
\\ !
Y s
! —_
pES M S04
B 2008 - :
----------------------------- oL O™ Owe)
Imterface™—0 e
Hiior ceetro Schedule
Etatus ; e T
from interface | el () Max: 1056 5
i x_____________ R Eux: 1%_____ —
Carrier Card o
Scheduls
OP#M

v]

If you compare this hierarchy to the previous MPOL example (Figure 25), you will notice some slight
differences.

QoS Hierachical Scheduling .

QoS Hierachical Scheduling |
. Example 1. Add Queues for Different Classes of Traffic

Firstly, native interface traffic (traffic in neither VLAN 100 nor 200) now shares a vlansharing schedule with
the schedule entries for each VLAN. In the MPOL example, the native traffic received an equal share to that
of all (both) VLANS (1/2 the available bandwidth). In this hierarchy, in contrast, it is guaranteed only 1/(1 +
2 + 1) of available bandwidth as it competes with the VLANS in the same schedule.

Secondly, with a single policy-map on the physical interface you no longer have the ability to look at statistics
for a single VLAN only. Compare this code from the MPOL example:

int gl1/0/0
service-policy output physical-shaper
|

int gl1/0/0.100
encaps dotlg 100

service-policy out parentl00
|

int gl1/0/0.200
encaps dotlg 200
service-policy out parent200

with this:

int gl1/0/0
service-policy output physicalshaper

The output of the show policy-map interface GigabitEther net1/0/0 command would reflect all levels of the
hierarchical policy-map.

Hierarchical policy-maps can add flexibility that is unachievable with policy-maps on logical interfaces. The
following examples illustrate this.

Example 1. Add Queues for Different Classes of Traffic

In the discussion of the MPOL example (and captured in the code snippet below), we noted that the physical
interface policy could contain only class-default and a shaper in that class:

policy-map physical-shaper
class class—-default
shape average 200m

That is, you cannot provide different treatment to unique classes of traffic that were forwarded over the native
interface (traffic with no VLAN tag).

In contrast, with an hierarchical construct, we can add queues for different classes of traffic to forward (over
the physical interface). For example, if we wanted to add a priority class for voice traffic over the physical
interface, we could modify the vlansharing policy-map as follows (see the asterisks):

class—-map v1anl00

match vlan 100
class—-map v1an200

match vlan 200
class-map voice

match dscp ef
class-map critical-data

match dscp af2l

|

policy-map childl00
class voice
priority

police cir 100m

. QoS Hierachical Scheduling

QoS Hierachical Scheduling

class critical-data
bandwidth 300000
|
policy-map child200
class voice
priority
police cir 100m
class critical-data
bandwidth 100000
|
policy-map vlansharing
class v1anl00
shape average 900m
bandwidth remaining ratio 1
service-policy childl00
class v1an200
shape average 900m
bandwidth remaining ratio 2
service-policy child200

class voice * ok ok ok
priority * ok ok k
* Kk Kk Kk

police cir 50m
|
policy-map physicalshaper
class class—-default
shape average 200m
service-policy vlansharing

int gl1/0/0
service-policy output physicalshaper

The hierarchy for this configuration would look as follows:

Example 1. Add Queues for Different Classes of Traffic .

QoS Hierachical Scheduling .

QoS Hierachical Scheduling |

. Example 1. Add Queues for Different Classes of Traffic

Figure 30: Represent Queues for Different Traffic Classes with a Hierarchical Construct

G1/0/0-VLAN100 G1/0/0 -VLAN20Q Gigl/0/0 6igl/0/0gi 01 q/9

Vailca Natiwve Fak -
Traffic

Traffiec Pricrity
- l Traffic

¢ ¢ ¢

class-
default

voice | critical-

child100

Schedule

vlansharing

Schedule

Interface
flow-control Schedule
status : .
from interface |

Carrier Card
Schedule

OPM

v

Notice the new capture that captures any traffic marked with the DSCP codepoint of EF but not tagged with
VLAN ID of 100 or 200.

385348

Observe in this hierarchy that P1 traffic from a local queue (Gigl/0/0 Voice Traffic) competes with priority
propagation traffic in the VLAN sharing schedule. In such a scenario a local entry configured with priority

. QoS Hierachical Scheduling

| QoS Hierachical Scheduling
Example 2. Attaching a Policy to Different Logical Interface Types .

is serviced before priority propagation traffic. That is, voice packets from a physical interface (Gig1/0/0) have
a slightly higher priority than voice packets from VLAN 100 or 200. To avoid starvation of other classes, we
use admission control on the priority queues.

Example 2. Attaching a Policy to Different Logical Interface Types

In the section Policy-Maps Attached to Logical Interfaces, on page 28 we indicated that you cannot attach a
policy to different logical interface types on the same physical interface. This limitation does not apply to
hierarchical class-maps.

Let's say that we want one child schedule for VLAN100 and one child for QoS on a tunnel where both exit
the same physical interface. Within the same policy-map, we could classify tunnel traffic using an access list
and VLAN traffic using the VLAN ID (see the asterisks):

ip access-list extended tunnelltraffic
permit ip host 192.168.1.1 host 10.0.0.1
|
class-map v1anl00
match vlan 100
class-map tunnelltraffic
match access-group name tunnelltraffic
|
class-map voice
match dscp ef
class-map critical-data
match dscp af2l
|
policy-map child
class voice
priority
police cir 100m
class critical-data
bandwidth remaining ratio 1
|
policy-map logicalsharing * ok x
class v1anl00
shape average 900m
bandwidth remaining ratio 1
service-policy child
class tunnelltraffic
shape average 900m
bandwidth remaining ratio 2
service-policy child
|
policy-map physicalshaper
class class—-default
shape average 200m
service-policy vlansharing

int gl1/0/0
service-policy output physicalshaper

The hierarchy for this configuration would look as follows:

QoS Hierachical Scheduling .

. A Note on Overhead Accounting

Figure 31: Attaching a Policy to Different Logical Interface Types

- Tunmeld

GL/0/0

G100 - VLANTCGD

GFigliodn Eigliod

Hative Pak—
Tratfio Prilorlty
[T Ld"‘-: ic
|
i + | | | | *
= L ;
- - o
g H i
i Class-
ol | Gritical- | Glass- hass-
data| detas detau | Default |me;fa¢¢
T e g et
= L Wi - e, BT = _x"L ~Min-A Kdin
Jl._\ I;-__p' P [’:F/:'E‘!a:.: - (_:'1:1:1-; 1. ,.:i[, -C:} F1 {__,.-::MSHI - LJMax L2].JJII qu‘el,lalf-'
gt % T Ex 1 ’lf !
B T e P ol /
child100 childiunnel 1 T / /
Schedude G Scheduie S /
e . —/.L_ L By /
i ; = !
e T, W S0 ~ s SO0 I:"_‘\W'x”f
L e (e 2 B 1L
T S
logicalsharing ~— T /
Schedule ! ;
\-.\ /
h, /
Y e
_____________________________ o {EH* Bl 2 A', MM:: : S
Rt _J Ex 1 ar e i
Interface ™ B
Asii ral Schedule
tatLs : e TS
from intedface | el () Maxc 1.056G o
: — B 108 _
s SO S o, R
Carner Card
Scheduls

P

A Note on Overhead Accounting

HEMD

QoS Hierachical Scheduling |

In the policing chapter we introduced the concept of policing length (how we perceive a packet's length when
a policer evaluates conformance to a configured police rate; see What's Included in the Policer-Rate Calculation
(Overhead Accounting)). Similarly, in the scheduling chapter we introduced the concept of scheduling length
(how we consider a packet's length when evaluating conformance to a configured scheduler rate; see What's
Included in Scheduling Rate Calculations (Overhead Accounting).) By convention, in both cases we include
the Layer 2 header and datagram lengths and exclude CRC or interpacket overhead.

With an hierarchical scheduling construct, you might encounter instances where the policing and scheduling
lengths differ. To understand this let's examine the execution order of features.

. QoS Hierachical Scheduling

qos-mqc-xe-16-12-book_chapter19.pdf#nameddest=unique_95
qos-mqc-xe-16-12-book_chapter19.pdf#nameddest=unique_95
qos-mqc-xe-16-12-book_chapter6.pdf#nameddest=unique_81
qos-mqc-xe-16-12-book_chapter6.pdf#nameddest=unique_81

| QoS Hierachical Scheduling

A Note on Overhead Accounting .

Pictorial Veiw of Qos

UCODE I
_ F— ¥
pL iy I'H Buffer’Queue
& 2l |= = Management
£ £ ;
CIN IS @ |3 _ .
THIHIHE s s up ey
= o m -
el <7 |8] |&] |3 W s T I
W0 = = Queue | / ;
& 3 = Depth ooy T e / Scheduling
- ro Inifc S o i
e ey % y ;
T <o 8
3 Congestion
H E Feedback
> 8
=i g \
""" & OPM
F-l.i'."n.' ﬁ
Control 2

On the ASR 1000 Series Aggregation Services Router, queuing and scheduling is performed in hardware.
After we enqueue a packet, hardware assumes control and no further processing is performed — the packet
must have all headers and be prepared to traverse the wire. As expected, non-queuing features are performed
in microcode on one of the processing elements (with hardware assists, in some instances).

Consider two scenarios.

Configuring a QoS-queuing policy on a GRE tunnel

When we classify an incoming IP packet (ultimately encapsulated in an outer IP/GRE header), we examine
just the original IP packet. Consequently, classification statistics will exclude the outer IP/GRE headers as
they are missing at the time. As the pictorial view indicates, we perform marking and evaluate policers at this
time. Similar to the classification length, the policing length will include neither the outer IP/GRE headers
nor any egress Layer 2 header, as we don’t yet know which physical interface or encapsulation type the packet
will egress. After QoS non-queuing features we continue processing the packet by adding the outer IP/GRE
header and appropriate Layer 2 header for the final egress interface. When all processing concludes, we pass
the packet to the WRED/Enqueue block. This action places the packet on the appropriate egress queue in
hardware with all headers added; the scheduling length now includes the outer IP/GRE and Layer 2 headers.

Configuring the QoS policy on the physical egress interface

The results differ. When we examine features on the tunnel no QoS is configured and so we proceed to feature
processing. Before reaching the QoS policy, we complete all tunnel processing and add egress headers. So,
the classification statistics and policing length will now include the outer headers; policing and scheduling
lengths will match.

QoS Hierachical Scheduling .

. Verification

Verification

QoS Hierachical Scheduling |

In all QoS configuration work, the primary tool to verify hierarchical scheduling configurations is the show
policy-map inter face interface-name command. The output of this command is organized hierarchally,

reflecting how we stratify the configuration.

For example, with a hierarchical policy attached to a physical interface you could use the show policy-map

inter face interface-name| include Class | to display that hierarchy:

show policy-map int gl/0/0 | inc Class
(match-any)
(match-all)
(match-all)
Class-map: critical-data (match-all)
Class-map: class-default (match-any)
Class-map: v1lan200 (match-all)
Class-map: (match-all)
Class-map: critical-data (match-all)
Class-map: class-default (match-any)
Class-map: v1an300 (match-all)
Class-map: (match-all)
Class-map: (match-any)
Class-map:
Class-map:

Class-map: class-default
Class-map: v1anl00

Class-map: voice

voice

voice
class-default
(match-all)
class-default (match-any)

voice

In this example we have attached a 3-level hierarchical policy to interface GigabitEthernet1/0/0. Indentation
in the class-map conveys that hierarchy. Within any class that includes a child policy, the service-policy:
<policy-map name> indicates that the next-indented section pertains to the child policy:

Class-map: v1lanl00 (match-all)
0 packets, 0 bytes
5 minute offered rate 0000 bps,
Match: vlan 100
Queueing
queue limit 3748 packets

drop rate 0000 bps

* ok Kk Kk

* ok Kk Kk

(queue depth/total drops/no-buffer drops) 0/0/0 *ok ok ok
(pkts output/bytes output) 0/0
shape (average) cir 900000000, bc 3600000, be 3600000

target shape rate 900000000
bandwidth remaining ratio 1
Service-policy : childl00
queue stats for all priority classes:
Queueing
queue limit 512 packets
(queue depth/total drops/no-buffer drops)
(pkts output/bytes output) 0/0

Class-map: voice (match-all)
0 packets, 0 bytes
5 minute offered rate 0000 bps,
Match: dscp ef (46)
Priority: Strict, b/w exceed drops: 0

police:
cir 100000000 bps,
conformed 0 packets,
transmit

bc 3125000 bytes
0 bytes; actions:

. QoS Hierachical Scheduling

0/0/0

drop rate 0000 bps

| QoS Hierachical Scheduling
Verification .

exceeded 0 packets, 0 bytes; actions:
drop
conformed 0000 bps, exceeded 0000 bps

Class-map: critical-data (match-all)
0 packets, 0 bytes
5 minute offered rate 0000 bps, drop rate 0000 bps
Match: dscp afll (10)
Match: dscp af2l (18)
Queueing
queue limit 1249 packets
(queue depth/total drops/no-buffer drops) 0/0/0
(pkts output/bytes output) 0/0
bandwidth 300000 kbps

Class-map: class-default (match-any)
0 packets, 0 bytes
5 minute offered rate 0000 bps, drop rate 0000 bps
Match: any

queue limit 3748 packets
(queue depth/total drops/no-buffer drops) 0/0/0
(pkts output/bytes output) 0/0

Regarding show command output for a policy containing hierarchical scheduling, observe that any queue-related
information in the parent class is meaningless (highlighted by asterisks in the example above). The output
format for the show policy-map interface command was created at a time when IOS truly implemented a
hierarchy of queues in software. The ASR 1000 Series Aggregation Services Router hardware implements a
hierarchy of schedules and queues, which only exist at the leaf. Although the IOS control plane still calculates
and displays a queue-limit, it never uses it. So tuning this value is fruitless.

QoS Hierachical Scheduling .

QoS Hierachical Scheduling |
. Verification

. QoS Hierachical Scheduling

	QoS Hierachical Scheduling
	About Hierarchical Schedules
	Definitions
	Scheduling Decisions - Root to Leaf
	Concept of Priority Propagation

	Hierarchical Scheduling Operation
	Priority Propagation
	Bandwidth Command in Leaf Schedules
	Bandwidth Command is Only Locally Significant
	Policy-Maps Attached to Logical Interfaces
	Interface Scheduling
	Shape on Parent, or Queue on Child
	Advantages of Policies on Logical Interfaces
	Multiple Policies Definition and Restrictions

	Hierarchical Policy-Maps
	Example 1. Add Queues for Different Classes of Traffic
	Example 2. Attaching a Policy to Different Logical Interface Types
	A Note on Overhead Accounting

	Verification

