IPsec Management Configuration Guide, Cisco IOS XE Release 2 **Americas Headquarters** Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 ### CONTENTS ``` IP Security VPN Monitoring 1 Finding Feature Information 1 Prerequisites for IP Security VPN Monitoring 1 Restrictions for IP Security VPN Monitoring 2 Information About IPsec VPN Monitoring 2 Background Crypto Sessions 2 Per-IKE Peer Description 2 Summary Listing of Crypto Session Status 2 Syslog Notification for Crypto Session Up or Down Status 3 IKE and IPsec Security Exchange Clear Command 3 How to Configure IP Security VPN Monitoring 3 Adding the Description of an IKE Peer 3 Verifying Peer Descriptions 4 Clearing a Crypto Session 5 Configuration Examples for IP Security VPN Monitoring 6 show crypto session Command Output Examples 6 Additional References 7 Related Documents 7 Standards 7 MIBs 7 RFCs 7 Technical Assistance 8 Feature Information for IP Security VPN Monitoring 8 IPsec SNMP Support 11 Finding Feature Information 11 Restrictions for IPsec SNMP Support 11 Information About IPsec SNMP Support 12 Related Features and Technologies 12 How to Configure IPsec SNMP Support 12 ``` ``` Enabling IPsec SNMP Notifications 13 Configuring IPsec Failure History Table Size 14 Configuring IPsec Tunnel History Table Size 14 Verifying IPsec MIB Configuration 15 Monitoring and Maintaining IPsec MIB 16 Configuration Examples for IPsec SNMP Support 16 Enabling IPsec Notifications Examples 17 Specifying History Table Size Examples 17 Additional References 17 Feature Information for IPsec SNMP Support 18 Glossary 19 IPsec VPN Accounting 21 Finding Feature Information 21 Prerequisites for IPsec VPN Accounting 21 Information About IPsec VPN Accounting 22 RADIUS Accounting 22 RADIUS Start Accounting 22 RADIUS Stop Accounting 23 RADIUS Update Accounting 24 IKE and IPsec Subsystem Interaction 24 Accounting Start 24 Accounting Stop 25 Accounting Updates 26 How to Configure IPsec VPN Accounting 26 Configuring IPsec VPN Accounting 26 Configuring Accounting Updates 31 Troubleshooting for IPsec VPN Accounting 32 Configuration Examples for IPsec VPN Accounting 32 Accounting and ISAKMP-Profile Example 33 Accounting Without ISAKMP Profiles Example 34 Additional References 36 Related Documents 36 Standards 37 MIBs 37 RFCs 37 ``` ``` Technical Assistance 38 Feature Information for IPsec VPN Accounting 38 Glossary 39 IPsec Usability Enhancements 41 Finding Feature Information 41 Prerequisites for IPsec Usability Enhancements 41 Information About IPsec Usability Enhancements 41 IPsec Overview 42 IPsecOperation 42 How to Utilize IPsec Usability Enhancements 43 Verifying IKE Phase-1 ISAKMP Default Policies 43 Default IKE Phase-1 Policies 43 User Configured IKE Policies 44 Easy VPN ISAKMP Policies 44 Verifying Default IPsec Transform-Sets 46 Default Transform Sets 47 Verifying and Troubleshooting IPsec VPNs 48 Verifying IKE Phase-1 ISAKMP 48 Verifying IKE Phase-2 52 Troubleshooting IPsec VPNs 56 Configuration Examples for IPsec Usability Enhancements 57 IKE Default Policies Example 58 Default Transform Sets Example 59 Additional References 60 Feature Information for IPsec Usability Enhancements 61 Glossary 62 ``` # **IP Security VPN Monitoring** The IP Security VPN Monitoring feature provides VPN session monitoring enhancements that will allow you to troubleshoot the Virtual Private Network (VPN) and monitor the end-user interface. Session monitoring enhancements include the following: - Ability to specify an Internet Key Exchange (IKE) peer description in the configuration file - Summary listing of crypto session status - Syslog notification for crypto session up or down status - Ability to clear both IKE and IP Security (IPsec) security associations (SAs) using one command-line interface (CLI) - Finding Feature Information, page 1 - Prerequisites for IP Security VPN Monitoring, page 1 - Restrictions for IP Security VPN Monitoring, page 2 - Information About IPsec VPN Monitoring, page 2 - How to Configure IP Security VPN Monitoring, page 3 - Configuration Examples for IP Security VPN Monitoring, page 6 - Additional References, page 7 - Feature Information for IP Security VPN Monitoring, page 8 ## Finding Feature Information Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document. Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required. # **Prerequisites for IP Security VPN Monitoring** - You should be familiar with IPSec and encryption. - Your router must support IPSec, and before using the IP Security VPN Monitoring feature, you must have configured IPSec on your router. ## **Restrictions for IP Security VPN Monitoring** You must be running Cisco IOS XE k8 or k9 crypto images on your router. ## Information About IPsec VPN Monitoring - Background Crypto Sessions, page 2 - Per-IKE Peer Description, page 2 - Summary Listing of Crypto Session Status, page 2 - Syslog Notification for Crypto Session Up or Down Status, page 3 - IKE and IPsec Security Exchange Clear Command, page 3 ### **Background Crypto Sessions** A crypto session is a set of IPSec connections (flows) between two crypto endpoints. If the two crypto endpoints use IKE as the keying protocol, they are IKE peers to each other. Typically, a crypto session consists of one IKE security association (for control traffic) and at least two IPSec security associations (for data traffic--one per each direction). There may be duplicated IKE security associations (SAs) and IPSec SAs or duplicated IKE SAs or IPSec SAs for the same session in the duration of rekeying or because of simultaneous setup requests from both sides. ## **Per-IKE Peer Description** The Per-IKE Peer Description function allows you to enter a description of your choosing for an IKE peer. The unique peer description, which can include up to 80 characters, can be used whenever you are referencing that particular IKE peer. To add the peer description, use the **description** command. IKE peers that "sit" behind a Network Address Translation (NAT) device cannot be uniquely identified; therefore, they have to share the same peer description. The primary application of this description field is for monitoring purposes (for example, when using **show** commands or for logging [syslog messages]). The description field is purely informational (for example, it cannot act as a substitute for the peer address or FQDN when defining crypto maps). ### **Summary Listing of Crypto Session Status** You can get a list of all the active VPN sessions by entering the **show crypto session** command. The listing will include the following: - Interface - IKE peer description, if available - IKE SAs that are associated with the peer by whom the IPSec SAs are created - IPSec SAs serving the flows of a session Multiple IKE or IPSec SAs may be established for the same peer (for the same session), in which case IKE peer descriptions will be repeated with different values for the IKE SAs that are associated with the peer and for the IPSec SAs that are serving the flows of the session. You can also use the **show crypto session detail** variant of this command to obtain more detailed information about the sessions. ### **Syslog Notification for Crypto Session Up or Down Status** The Syslog Notification for Crypto Session Up or Down Status function provides syslog notification every time the crypto session comes up or goes down. The following is a sample syslog notification showing that a crypto session is up: ``` %CRYPTO-5-SESSION_STATUS: Crypto session is UP. Peer 10.6.6.1:500 fvrf=name10 ivrf=name20 Description: SJC24-2-VPN-Gateway Id: 10.5.5.2 ``` The following is a sample syslog notification showing that a crypto session is down: ``` %CRYPTO-5-SESSION_STATUS: Crypto session is DOWN. Peer 10.6.6.1:500 fvrf=name10 ivrf=name20 Description: SJC24-2-VPN-Gateway Id: 10.5.5.2 ``` ### IKE and IPsec Security Exchange Clear Command The **clear crypto session** command allows you to clear both IKE and IPsec with a single command. To clear a specific crypto session or a subset of all the sessions (for example, a single tunnel to one remote site), you need to provide session-specific parameters, such as a local or remote IP address, a local or remote port, a front door VPN routing and forwarding (FVRF) name, or an inside VRF (IVRF) name. Typically, the remote IP address will be used to specify a single tunnel to be deleted. If a local IP address is provided as a parameter when you use the **clear crypto session** command, all the sessions (and their IKE SAs and IPsec SAs) that share the IP address as a local crypto endpoint (IKE local address) will be cleared. If you do not provide a parameter when you use the **clear crypto session** command, all IPsec SAs and IKE SAs that are in the router will be deleted. # **How to Configure IP Security VPN Monitoring** - Adding the Description of an IKE Peer, page 3 - Verifying Peer Descriptions, page 4 - Clearing a Crypto Session, page 5 ### Adding the Description of an IKE Peer To add the description of an IKE peer to an IPsec VPN session, perform the following steps. #### **SUMMARY STEPS** - 1. enable - 2. configure terminal - 3. crypto isakmp peer {ip-address ip-address} - 4. description #### **DETAILED STEPS** | | Command or Action | Purpose | |--------|---
---| | Step 1 | enable | Enables privileged EXEC mode. | | | | Enter your password if prompted. | | | Example: | | | | Router> enable | | | Step 2 | configure terminal | Enters global configuration mode. | | | | | | | Example: | | | | Router# configure terminal | | | Step 3 | crypto isakmp peer {ip-address ip-address} | Enables an IPsec peer for IKE querying of authentication, authorization, and accounting (AAA) for tunnel attributes in aggressive mode and enters ISAKMP peer configuration | | | Example: | mode. | | | Router (config)# crypto isakmp peer address 10.2.2.9 | | | Step 4 | description | Adds a description for an IKE peer. | | | | | | | Example: | | | | Router (config-isakmp-peer)# description connection from site A | | ## **Verifying Peer Descriptions** To verify peer descriptions, use the **show crypto isakmp peer** command. ### **SUMMARY STEPS** - 1. enable - 2. show crypto isakmp peer ### **DETAILED STEPS** | | Command or Action | Purpose | | |--------|-------------------|----------------------------------|--| | Step 1 | enable | Enables privileged EXEC mode. | | | | | Enter your password if prompted. | | | | Example: | | | | | Router> enable | | | Step 2 | Command or Action | Purpose | |---------------------------------|-----------------------------| | show crypto isakmp peer | Displays peer descriptions. | | | | | Example: | | | Router# show crypto isakmp peer | | #### **Examples** The following output example verifies that the description "connection from site A" has been added for IKE peer 10.2.2.9: ``` Router# show crypto isakmp peer Peer: 10.2.2.9 Port: 500 Description: connection from site A flags: PEER_POLICY ``` When the peer at address 10.2.2.9 connects and the session comes up, the syslog status will be shown as follows: %CRYPTO-5-SESSION_STATUS: Crypto tunnel is UP. Peer 10.2.2.9:500 Description: connection from site A Id: ezvpn The following output example verifies that the description "connection from site A" has been added for IKE peer 10.2.2.9: ``` Router# show crypto isakmp peer Peer: 10.2.2.9 Port: 500 Description: connection from site A flags: PEER_POLICY ``` When the peer at address 10.2.2.9 connects and the session comes up, the syslog status will be shown as follows: %CRYPTO-5-SESSION_STATUS: Crypto tunnel is UP. Peer 10.2.2.9:500 Description: connection from site A Id: ezvpn ## **Clearing a Crypto Session** To clear a crypto session, use the **clear crypto session** command from the router command line. No configuration statements are required in the configuration file to use this command. #### **SUMMARY STEPS** - 1. enable - 2. clear crypto session #### **DETAILED STEPS** | | Command or Action | Purpose | | |---------------|------------------------------|--|--| | Step 1 enable | | Enables privileged EXEC mode. | | | | | Enter your password if prompted. | | | | Example: | | | | | Router> enable | | | | Step 2 | clear crypto session | Deletes crypto sessions (IPSec and IKE SAs). | | | | | | | | | Example: | | | | | Router# clear crypto session | | | # Configuration Examples for IP Security VPN Monitoring • show crypto session Command Output Examples, page 6 ## show crypto session Command Output Examples The following is sample output for the **show crypto session** output without the **detail** keyword: ``` Router# show crypto session Crypto session current status Interface: FastEthernet0/1 Session status: UP-ACTIVE Peer: 172.0.0.2/500 IKE SA: local 172.0.0.1/500 remote 172.0.0.2/500 Active IPSEC FLOW: permit ip 10.10.10.0/255.255.255.0 10.30.30.0/255.255.255.0 Active SAs: 2, origin: crypto map ``` The following is sample output using the **show crypto session command and the detail** keyword: ## **Additional References** The following sections provide references related to IP Security VPN Monitoring. - Related Documents, page 7 - Standards, page 7 - MIBs, page 7 - RFCs, page 7 - Technical Assistance, page 8 ### **Related Documents** | Related Topic | Document Title | |----------------------------------|--| | IP security, encryption, and IKE | Configuring Internet Key Exchange for IPsec
VPNs Configuring Security for VPNs with IPsec | | Security commands | Cisco IOS Security Command Reference | ### **Standards** | Standards | Title | |--|-------| | No new or modified standards are supported by this feature, and support for exiting standards has not been modified by this feature. | | ## **MIBs** | MIBs | MIBs Link | |--|---| | No new or modified MIBs are supported by this feature, and support for exiting MIBs has not been modified by this feature. | To locate and download MIBs for selected platforms, Cisco IOS XE software releases, and feature sets, use Cisco MIB Locator found at the following URL: | | | http://www.cisco.com/go/mibs | ### **RFCs** | RFCs | Title | |--|-------| | No new or modified RFCs are supported by this feature, and support for exiting RFCs has not been modified by this feature. | | ### **Technical Assistance** | Description | Link | |---|----------------------------------| | The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. | http://www.cisco.com/techsupport | | To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. | | | Access to most tools on the Cisco Support website requires a Cisco.com user ID and password. | | # **Feature Information for IP Security VPN Monitoring** The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature. Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required. Table 1 Feature Information for IP Security VPN Monitoring | Feature Name | Releases | Feature Information | |----------------------------|--------------------------|--| | IP Security VPN Monitoring | Cisco IOS XE Release 2.1 | The IP Security VPN Monitoring feature provides VPN session monitoring enhancements that will allow you to troubleshoot the VPN and monitor the end-user interface. Session monitoring enhancements include the following: | | | | Ability to specify an IKE peer description in the configuration file Summary listing of crypto session status Syslog notification for crypto session up or down status | | | | Ability to clear both IKE and IPsec SAs using one CLI | | | | The following commands
were introduced or modified:
clear crypto session,
description (isakmp peer),
show crypto isakmp peer,
show crypto session. | Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R) Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental. # **IPsec SNMP Support** The IP Security (IPsec) SNMP Support feature introduces support for industry-standard IPsec MIBs and Cisco IOS XE-software specific IPsec MIBs. The commands in this feature allow you to examine the version of the IPsec MIB feature, to enable and disable SNMP traps, and to monitor and control the size of the buffers used by this feature. This document focuses on Cisco IOS XE CLI support for the Cisco IPsec MIBs. This document also lists which elements of the MIBs are currently supported. This document does not describe SNMP configuration (from a Network Management Station) of the Cisco IPsec MIBs. - Finding Feature Information, page 11 -
Restrictions for IPsec SNMP Support, page 11 - Information About IPsec SNMP Support, page 12 - How to Configure IPsec SNMP Support, page 12 - Configuration Examples for IPsec SNMP Support, page 16 - Additional References, page 17 - Feature Information for IPsec SNMP Support, page 18 - Glossary, page 19 ## **Finding Feature Information** Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document. Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required. # **Restrictions for IPsec SNMP Support** - Only the following tunnel setup failure logs are supported with the IPsec--SNMP Support feature: - NOTIFY_MIB_IPSEC_PROPOSAL_INVALID - "A tunnel could not be established because the peer did not supply an acceptable proposal." - NOTIFY MIB IPSEC ENCRYPT FAILURE - "A tunnel could not be established because it failed to encrypt a packet to be sent to a peer." - NOTIFY_MIB_IPSEC_SYSCAP_FAILURE - "A tunnel could not be established because the system ran out of resources." - NOTIFY_MIB_IPSEC_LOCAL_FAILURE - "A tunnel could not be established because of an internal error." Note that these failure notices are recorded in the failure tables, but are not available as SNMP notifications (traps). - The following functions are not supported with the IPsec MIB feature: - Checkpointing - The Dynamic Cryptomap table of the CISCO-IPSEC-MIB - The CISCO-IPSEC-POLICY-MAP-MIB (ciscoIpSecPolMap) defines no notifications (the "IPSec Policy Map Notifications Group" is empty). ## Information About IPsec SNMP Support The IP Security (IPsec) SNMP Support feature introduces support for industry-standard IPsec MIBs and Cisco IOS XE-software specific IPsec MIBs. The IPsec MIBs allow IPsec configuration monitoring and IPsec status monitoring using SNMP, and can be integrated in a variety of Virtual Private Network (VPN) management solutions. For example, this feature allows you to specify the desired size of a tunnel history table or a tunnel failure table using the Cisco IOS XE CLI. The history table archives attribute and statistic information about the tunnel; the failure table archives tunnel failure reasons along with the time failure occurred. A failure history table can be used as a simple method to distinguish between a normal and an abnormal tunnel termination. That is, if a tunnel entry in the tunnel history table has no associated failure record, the tunnel must have terminated normally. However, a tunnel history table does not accompany every failure table because every failure does not correspond to a tunnel. Thus, supported setup failures are recorded in the failure table, but an associated history table is not recorded because a tunnel was never set up. This feature also provides IPsec Simple Network Management Protocol (SNMP) notifications for use with network management systems. Related Features and Technologies, page 12 ## **Related Features and Technologies** The IPsec--SNMP Support feature was designed to support the VPN Device Manager (VDM). VDM enables network administrators to manage and configure site-to-site VPNs on a single device from a web browser and to see the effects of changes in real time. VDM implements a wizard-based graphical user interface (GUI) to simplify the process of configuring site-to-site VPNs using the IPsec protocol. VDM software is installed directly on Cisco VPN routers, and is designed for use and compatibility with future Device Manager products. ## **How to Configure IPsec SNMP Support** - Enabling IPsec SNMP Notifications, page 13 - Configuring IPsec Failure History Table Size, page 14 - Configuring IPsec Tunnel History Table Size, page 14 - Verifying IPsec MIB Configuration, page 15 - Monitoring and Maintaining IPsec MIB, page 16 ## **Enabling IPsec SNMP Notifications** To enable IPsec SNMP notifications, perform the following steps. #### **SUMMARY STEPS** - 1. enable - 2. configure terminal - 3. snmp-server enable traps ipsec cryptomap [add | delete | attach | detach] - 4. snmp-server enable traps isakmp [policy {add | delete} | tunnel {start | stop}] - 5. snmp-server host host-address traps community-string ipsec #### **DETAILED STEPS** | | Command or Action | Purpose | |--------|---|---| | Step 1 | enable | Enables privileged EXEC mode. | | | | Enter your password if prompted. | | | Example: | | | | Router> enable | | | Step 2 | configure terminal | Enters global configuration mode. | | | | | | | Example: | | | | Router# configure terminal | | | Step 3 | snmp-server enable traps ipsec cryptomap [add delete attach detach] | Enables a router to send IPsec SNMP notifications. | | | Example: | | | | Router (config)# snmp-server enable traps ipsec cryptomap add | | | Step 4 | $snmp-server\ enable\ traps\ isakmp\ [policy\ \{add\ \ delete\}\ \ tunnel\ \{start\ \ stop\}]$ | Enables a router to send IPsec ISAKMP SNMP notifications. | | | Example: | | | | Router (config)# snmp-server enable traps isakmp policy add | | | | Command or Action | Purpose | |--------|--|--| | Step 5 | | Specifies the recipient of IPsec SNMP notification operations. | | | Example: | | | | Router (config)# snmp-server host my.example.com traps version2c | | For more information on configuring SNMP, refer to the chapter "Configuring SNMP Support" in the Cisco IOS XE Configuration Fundamentals Configuration Guide . ### **Configuring IPsec Failure History Table Size** The default failure history table size is 200. To change the size of the failure history table, perform the following steps. #### **SUMMARY STEPS** - 1. enable - 2. configure terminal - 3. crypto mib ipsec flowmib history failure size number #### **DETAILED STEPS** | | Command or Action | Purpose | |--------|--|--| | Step 1 | enable | Enables privileged EXEC mode. | | | | Enter your password if prompted. | | | Example: | | | | Router> enable | | | Step 2 | configure terminal | Enters global configuration mode. | | | | | | | Example: | | | | Router# configure terminal | | | Step 3 | crypto mib ipsec flowmib history failure size number | Changes the size of the IPsec failure history table. | | | | | | | Example: | | | | Router (config)# crypto mib ipsec flowmib history failure size 220 | | ## **Configuring IPsec Tunnel History Table Size** The default tunnel history table size is 200. To change the size of the tunnel history table, perform the following steps. #### **SUMMARY STEPS** - 1. enable - 2. configure terminal - 3. crypto mib ipsec flowmib history tunnel size number #### **DETAILED STEPS** | | Command or Action | Purpose | |--------|---|---| | Step 1 | enable | Enables privileged EXEC mode. | | | | Enter your password if prompted. | | | Example: | | | | Router> enable | | | Step 2 | configure terminal | Enters global configuration mode. | | | | | | | Example: | | | | Router# configure terminal | | | Step 3 | crypto mib ipsec flowmib history tunnel size number | Changes the size of the IPsec tunnel history table. | | | | | | | Example: | | | | Router (config)# crypto mib ipsec flowmib history tunnel size | | ## **Verifying IPsec MIB Configuration** To verify that the IPsec MIB feature is configured properly, perform the following tasks: • Enter the **show crypto mib ipsec flowmib history failure size**privileged EXEC commandto display the size of the failure history table: Router# show crypto mib ipsec flowmib history failure size IPSec Failure Window Size: 140 • Enter the **show crypto mib ipsec flowmib history tunnel size** privileged EXEC command to display the size of the tunnel history table: Router# show crypto mib ipsec flowmib history tunnel size IPSec History Window Size: 130 • Enter the **show crypto mib ipsec flowmib version**privileged EXEC command to display the MIB version used by the management applications to identify the feature set: Router# show crypto mib ipsec flowmib version IPSec Flow MIB version: 1 • Enter the **debug crypto mib** command to display the IPsec MIB debug message notifications: Router# **debug crypto mib**Crypto IPSec Mgmt Entity debugging is on ## **Monitoring and Maintaining IPsec MIB** To monitor the status of IPsec MIB information, use any of the following commands. #### **SUMMARY STEPS** - 1. enable - 2. show crypto mib ipsec flowmib history failure size - 3. show crypto mib ipsec flowmib history tunnel size - 4. show crypto mib ipsec flowmib version #### **DETAILED STEPS** | | Command or Action | Purpose | |--------|--|---| | Step 1 | enable | Enables privileged EXEC mode. | | | | Enter your password if prompted. | | | Example: | | | | Router> enable | | | Step 2 | show crypto mib ipsec flowmib history failure size | Displays the size of the IPsec failure history table. | | | | | | | Example: | | | | Router# show crypto mib ipsec flowmib history failure size | | | Step 3 | show crypto mib ipsec flowmib history tunnel size | Displays the size of the IPsec tunnel history table. | | | | | | |
Example: | | | | Router# show crypto mib ipsec flowmib history tunnel size | | | Step 4 | show crypto mib ipsec flowmib version | Displays the IPsec Flow MIB version used by the router. | | | Example: | | | | Router# show crypto mib ipsec flowmib version | | # **Configuration Examples for IPsec SNMP Support** • Enabling IPsec Notifications Examples, page 17 • Specifying History Table Size Examples, page 17 ## **Enabling IPsec Notifications Examples** In the following example, IPsec notifications are enabled: ``` snmp-server enable traps ipsec isakmp ``` In the following example, the router is configured to send IPsec notifications to the host nms1.example.com: ``` snmp-server host nms1.example.com public ipsec isakmp Translating "nms1.example.com"...domain server (172.00.0.01) [OK] ``` ## **Specifying History Table Size Examples** In the following example, the specified failure history table size is 140: ``` crypto mib ipsec flowmib history failure size 140 ``` In the following example, the specified tunnel history table size is 130: crypto mib ipsec flowmib history tunnel size 130 # **Additional References** The following sections provide references related to the IPsec--SNMP Support feature. #### **Related Documents** | Related Topic | Document Title | |--|---| | IPsec and related security information | "Configuring Security for VPNs with IPsec" module in the Cisco IOS XE Security Configuration Guide: Secure Connectivity | | Security commands | Cisco IOS Security Command Reference | | SNMP configuration information | "Configuring SNMP Support" module in the Cisco IOS XE Network Management Configuration Guide | | IOS command index, including SNMP commands | Cisco IOS Master Command List , All Releases | #### **Standards** | Standard | Title | |---|-------| | No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature. | | #### **MIBs** | МІВ | MIBs Link | |--|---| | The following MIBs are supported by the IPsecSNMP Support feature: CISCO-IPSEC-FLOW-MONITOR- MIB CISCO-IPSEC-MIB CISCO-IPSEC-POLICY-MAP-MIB | To locate and download MIBs for selected platforms, Cisco IOS XE software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs | #### **RFCs** | RFC | Title | |---|-------| | No new or modified RFCs are supported by this | | | feature, and support for existing RFCs has not been | | | modified by this feature. | | #### **Technical Assistance** | Description | Link | |---|----------------------------------| | The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. | http://www.cisco.com/techsupport | | To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. | | | Access to most tools on the Cisco Support website requires a Cisco.com user ID and password. | | # **Feature Information for IPsec SNMP Support** The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature. Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required. Table 2 Feature Information for IPsec SNMP Support | Feature Name | Releases | Feature Information | |--------------------|--------------------------|---| | IPsec SNMP Support | Cisco IOS XE Release 2.1 | The IP Security (IPsec) SNMP
Support feature introduces
support for industry-standard
IPsec MIBs and Cisco IOS XE-
software specific IPsec MIBs. | | | | The following commands were introduced or modified: crypto mib ipsec flowmib history failure size, crypto mib ipsec flowmib history tunnel size, debug crypto mib, show crypto mib ipsec flowmib history failure size, show crypto mib ipsec flowmib history tunnel size, show crypto mib ipsec flowmib version, snmp-server enable traps ipsec, snmp-server enable traps isakmp, snmp-server host. | ## **Glossary** **CA** --certificate authority. A certificate authority (CA) is an entity in a network that issues and manages security credentials and public keys (in the form of X509v3 certificates) for message encryption. As part of a public key infrastructure (PKI), a CA checks with a registration authority (RA) to verify information provided by the requestor of a digital certificate. If the RA verifies the requestor's information, the CA can then issue a certificate. Certificates generally include the owner's public key, the expiration date of the certificate, the owner's name, and other information about the public key owner. IP Security--See IPsec. IPsec--Internet Protocol Security. A framework of open standards that provides data confidentiality, data integrity, and data authentication between participating peers. IPsec provides these security services at the IP layer. IPsec uses Internet Key Exchange (IKE) to handle negotiation of protocols and algorithms based on local policy and to generate the encryption and authentication keys to be used by IPsec. IPsec can be used to protect one or more data flows between a pair of hosts, between a pair of security gateways, or between a security gateway and a host. Management Information Base--See MIB. MIB--Management Information Base. Database of network management information that is used and maintained by a network management protocol such as Simple Network Management Protocol (SNMP) or Common Management Information Protocol (MIP). The value of a MIB object can be changed or retrieved using SNMP or CMIP commands, usually through a graphical user interface (GUI) network management system (NMS). MIB objects are organized in a tree structure that includes public (standard) and private (proprietary) branches. Simple Network Management Protocol--See SNMP. SNMP--Simple Network Management Protocol. An application-layer protocol that provides a message format for communication between SNMP managers and agents. trap--Message sent by an SNMP agent to a network management system, console, or terminal to indicate the occurrence of a significant event, such as a specifically defined condition or a threshold that was reached. Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R) Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental. # **IPsec VPN Accounting** The IPsec VPN Accounting feature allows for a session to be accounted for by indicating when the session starts and when it stops. A VPN session is defined as an Internet Key Exchange (IKE) security association (SA) and the one or more SA pairs that are created by the IKE SA. The session starts when the first IP Security (IPsec) pair is created and stops when all IPsec SAs are deleted. Session identifying information and session usage information is passed to the Remote Authentication Dial-In User Service (RADIUS) server through standard RADIUS attributes and vendor-specific attributes (VSAs). - Finding Feature Information, page 21 - Prerequisites for IPsec VPN Accounting, page 21 - Information About IPsec VPN Accounting, page 22 - How to Configure IPsec VPN Accounting, page 26 - Configuration Examples for IPsec VPN Accounting, page 32 - Additional References, page 36 - Related Documents, page 36 - Feature Information for IPsec VPN Accounting, page 38 - Glossary, page 39 ## **Finding Feature Information** Your software release may not support all the features documented in this module. For the latest feature
information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document. Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required. # **Prerequisites for IPsec VPN Accounting** - Understand how to configure RADIUS and authentication, authorization, and accounting (AAA) accounting. - Understand how to configure IPsec accounting. # **Information About IPsec VPN Accounting** - RADIUS Accounting, page 22 - IKE and IPsec Subsystem Interaction, page 24 ## **RADIUS Accounting** For many large networks, it is required that user activity be recorded for auditing purposes. The method that is used most is RADIUS accounting. RADIUS accounting allows for a session to be accounted for by indicating when the session starts and when it stops. Additionally, session identifying information and session usage information is passed to the RADIUS server through RADIUS attributes and VSAs. - RADIUS Start Accounting, page 22 - RADIUS Stop Accounting, page 23 - RADIUS Update Accounting, page 24 ### **RADIUS Start Accounting** The RADIUS Start packet contains many attributes that generally identify who is requesting the service and of what the property of that service consists. The table below represents the attributes required for the start. Table 3 RADIUS Accounting Start Packet Attributes | RADIUS Attributes
Value | Attribute | Description | |----------------------------|-------------------|---| | 1 | user-name | Username used in extended authentication (XAUTH). The username may be NULL when XAUTH is not used. | | 4 | nas-ip-address | Identifying IP address of the network access server (NAS) that serves the user. It should be unique to the NAS within the scope of the RADIUS server. | | 5 | nas-port | Physical port number of the NAS that serves the user. | | 8 | framed-ip-address | Private address allocated for the IP Security (IPsec) session. | | 40 | acct-status-type | Status type. This attribute indicates whether this accounting request marks the beginning (start), the end (stop), or an update of the session. | | RADIUS Attributes
Value | Attribute | Description | |----------------------------|---------------------|--| | 41 | acct-delay-time | Number of seconds the client has been trying to send a particular record. | | 44 | acct-session-id | Unique accounting identifier that makes it easy to match start and stop records in a log file. | | 26 | vrf-id | String that represents the name of the Virtual Route Forwarder (VRF). | | 26 | isakmp-initiator-ip | Endpoint IP address of the remote Internet Key Exchange (IKE) initiator (V4). | | 26 | isakmp-group-id | Name of the VPN group profile used for accounting. | | 26 | isakmp-phase1-id | Phase 1 identification (ID) used
by IKE (for example, domain
name [DN], fully qualified
domain name [FQDN], IP
address) to help identify the
session initiator. | ### **RADIUS Stop Accounting** The RADIUS Stop packet contains many attributes that identify the usage of the session. Table 2 represents the additional attributes required for the RADIUS stop packet. It is possible that only the stop packet is sent without the start if configured to do so. If only the stop packet is sent, this allows an easy way to reduce the number of records going to the AAA server. Table 4 RADIUS Accounting Stop Packet Attributes | RADIUS Attributes
Value | Attribute | Description | |----------------------------|--------------------|---| | 42 | acct-input-octets | Number of octets that have been received from the Unity client over the course of the service that is being provided. | | 43 | acct-output-octets | Number of octets that have been sent to the Unity client in the course of delivering this service. | | RADIUS Attributes
Value | Attribute | Description | |----------------------------|-----------------------|---| | 46 | acct-session-time | Length of time (in seconds) that the Unity client has received service. | | 47 | acct-input-packets | Quantity of packets that have
been received from the Unity
client in the course of delivering
this service. | | 48 | acct-output-packets | Quantity of packets that have been sent to the Unity client in the course of delivering this service. | | 49 | acct-terminate-cause | For future use. | | 52 | acct-input-gigawords | How many times the Acct-Input-
Octets counter has wrapped
around the 232 (2 to the 32nd
power) over the course of this
service. | | 52 | acct-output-gigawords | How many times the Acct-Input-Octets counter has wrapped around the 232 (2 to the 32nd power) over the course of this service. | ### **RADIUS Update Accounting** RADIUS accounting updates are supported. Packet and octet counts are shown in the updates. ### **IKE and IPsec Subsystem Interaction** - Accounting Start, page 24 - Accounting Stop, page 25 - Accounting Updates, page 26 ### **Accounting Start** If IPsec accounting is configured, after IKE phases are complete, an accounting start record is generated for the session. New accounting records are not generated during a rekeying. The following is an account start record that was generated on a router and that is to be sent to the AAA server that is defined: ``` *Aug 23 04:06:20.131: RADIUS(00000002): sending *Aug 23 04:06:20.131: RADIUS(00000002): Send Accounting-Request to 10.1.1.4:1646 id 4, len 220 ``` ``` *Aug 23 04:06:20.131: RADIUS: authenticator 38 F5 EB 46 4D BE 4A 6F - 45 EB EF 7D B7 19 FB 3F *Aug 23 04:06:20.135: RADIUS: [44] 10 "0000001" Acct-Session-Id *Aug 23 04:06:20.135: RADIUS: Vendor, Cisco [26] 31 "isakmp-group-id=cclient" *Aug 23 04:06:20.135: RADIUS: Cisco AVpair [1] 2.5 *Aug 23 04:06:20.135: RADIUS: Framed-IP-Address [8] 6 10.13.13.1 *Aug 23 04:06:20.135: RADIUS: Vendor, Cisco 20 [26] *Aug 23 04:06:20.135: RADIUS: Cisco AVpair "vrf-id=cisco" [1] 14 *Aug 23 04:06:20.135: RADIUS: Vendor, Cisco [26] 35 *Aug 23 04:06:20.135: RADIUS: Cisco AVpair [1] 29 "isakmp-initator-ip=10.1.2.2" *Aug 23 04:06:20.135: RADIUS: Vendor, Cisco [26] 36 *Aug 23 04:06:20.135: RADIUS: Cisco AVpair [1] 30 "connect-progress=No Progress *Aug 23 04:06:20.135: RADIUS: User-Name [1] 13 "username1" *Aug 23 04:06:20.135: RADIUS: Acct-Status-Type [40] 6 Start [1] *Aug 23 04:06:20.135: RADIUS: Vendor, Cisco [26] 25 *Aug 23 04:06:20.135: RADIUS: [2] 19 "FastEthernet0/0.1" cisco-nas-port *Aug 23 04:06:20.135: RADIUS: 6 n NAS-Port [5] *Aug 23 04:06:20.135: RADIUS: NAS-IP-Address [4] 6 10.1.1.147 *Aug 23 04:06:20.135: RADIUS: Acct-Delay-Time [41] 6 0 *Aug 23 04:06:20.139: RADIUS: Received from id 21645/4 10.1.1.4:1646, Accounting- response, len 20 *Aug 23 04:06:20.139: RADIUS: authenticator B7 E3 D0 F5 61 9A 89 D8 - 99 A6 8A 8A 98 79 9D 5D ``` ### **Accounting Stop** An accounting stop packet is generated when there are no more flows (IPsec SA pairs) with the remote peer. The accounting stop records contain the following information: - Packets out - Packets in - · Octets out - · Gigawords in - Gigawords out Below is an account start record that was generated on a router. The account start record is to be sent to the AAA server that is defined. ``` *Aug 23 04:20:16.519: RADIUS(00000003): Using existing nas_port 0 *Aug 23 04:20:16.519: RADIUS(00000003): Config NAS IP: 100.1.1.147 *Aug 23 04:20:16.519: RADIUS(00000003): sending *Aug 23 04:20:16.519: RADIUS(00000003): Send Accounting-Request to 100.1.1.4:1646 id 19, len 238 *Aug 23 04:20:16.519: RADIUS: authenticator 82 65 5B 42 F0 3F 17 C3 - 23 F3 4C 35 A2 8A 3E E6 *Aug 23 04:20:16.519: RADIUS: Acct-Session-Id [44] 10 "00000002" *Aug 23 04:20:16.519: RADIUS: Vendor, Cisco [26] 20 *Aug 23 04:20:16.519: RADIUS: Cisco AVpair [1] 14 "vrf-id=cisco" *Aug 23 04:20:16.519: RADIUS: Vendor, Cisco [26] 35 *Aug 23 04:20:16.519: RADIUS: Cisco AVpair [1] 29 "isakmp-initator-ip=10.1.1.2" *Aug 23 04:20:16.519: RADIUS: Vendor, Cisco [26] 36 *Aug 23 04:20:16.519: RADIUS: Cisco AVpair "connect-progress=No [1] 30 Progress" *Aug 23 04:20:16.519: RADIUS: Acct-Session-Time [46] 6 709 *Aug 23 04:20:16.519: RADIUS: Acct-Input-Octets [42] 6 152608 *Aug 23 04:20:16.519: RADIUS: [43] 152608 Acct-Output-Octets 6 *Aug 23 04:20:16.519: RADIUS: 1004 Acct-Input-Packets [47] 6 *Aug 23 04:20:16.519: RADIUS: Acct-Output-Packets [48] 6 1004 *Apr 23 04:20:16.519: RADIUS: Acct-Input-Giga-Word[52] 0 *Apr 23 04:20:16.519: RADIUS: Acct-Output-Giga-Wor[53] [0] *Aug 23 04:20:16.519: RADIUS: Acct-Terminate-Cause[49] 6 none *Aug 23 04:20:16.519: RADIUS: Vendor, Cisco [26] 32 *Aug 23 04:20:16.519: RADIUS: Cisco AVpair [1] 26 "disc-cause-ext=No Reason" *Aug 23 04:20:16.519: RADIUS: [40] [2] Acct-Status-Type 6 Stop ``` ``` *Aug 23 04:20:16.519: RADIUS: Vendor, Cisco [26] *Aug 23 04:20:16.519: RADIUS: [2] 19 "FastEthernet0/0.1" cisco-nas-port *Aug 23 04:20:16.519: RADIUS: NAS-Port [5] 6 *Aug 23 04:20:16.519: RADIUS: NAS-TP-Address [4] 6 100.1.1.147 *Aug 23 04:20:16.519: RADIUS: Acct-Delay-Time [41] 6 0 *Aug 23 04:20:16.523: RADIUS: Received from id 21645/19 100.1.1.4:1646, Accounting- response, len 20 *Aug 23 04:20:16.523: RADIUS: authenticator F1 CA C1 28 CE A0 26 C9 - 3E 22 C9 DA EA B8 ``` ### **Accounting
Updates** If accounting updates are enabled, accounting updates are sent while a session is "up." The update interval is configurable. To enable the accounting updates, use the **aaa accounting update** command. The following is an accounting update record that is being sent from the router: ``` Router# *Aug 23 21:46:05.263: RADIUS(00000004): Using existing nas_port 0 *Aug 23 21:46:05.263: RADIUS(00000004): Config NAS IP: 100.1.1.147 *Aug 23 21:46:05.263: RADIUS(00000004): sending *Aug 23 21:46:05.263: RADIUS(00000004): Send Accounting-Request to 100.1.1.4:1646 id 22, len 200 *Aug 23 21:46:05.263: RADIUS: authenticator 30 FA 48 86 8E 43 8E 4B - F9 09 71 04 4A F1 52 25 *Aug 23 21:46:05.263: RADIUS: "00000003" Acct-Session-Id [44] *Aug 23 21:46:05.263: RADIUS: Vendor, Cisco [26] 2.0 *Aug 23 21:46:05.263: RADIUS: Cisco AVpair [1] 14 "vrf-id=cisco" *Aug 23 21:46:05.263: RADIUS: Vendor, Cisco [26] 35 "isakmp-initator-ip=10.1.1.2" *Aug 23 21:46:05.263: RADIUS: 29 Cisco AVpair [1] *Aug 23 21:46:05.263: RADIUS: Vendor, Cisco [26] 36 *Aug 23 21:46:05.263: RADIUS: Cisco AVpair [1] 30 "connect-progress=No Progress" *Aug 23 21:46:05.263: RADIUS: Acct-Session-Time [46] 109 6 *Aug 23 21:46:05.263: RADIUS: Acct-Input-Octets [42] 6 608 *Aug 23 21:46:05.263: RADIUS: Acct-Output-Octets [43] 6 608 *Aug 23 21:46:05.263: RADIUS: [47] Acct-Input-Packets 6 *Aug 23 21:46:05.263: RADIUS: Acct-Output-Packets [48] 6 *Aug 23 21:46:05.263: RADIUS: [3] Acct-Status-Type [40] 6 Watchdog 25 *Aug 23 21:46:05.263: RADIUS: Vendor, Cisco [26] *Aug 23 21:46:05.263: RADIUS: [2] 19 "FastEthernet0/0.1" cisco-nas-port *Aug 23 21:46:05.263: RADIUS: NAS-Port [5] 6 *Aug 23 21:46:05.263: RADIUS: NAS-IP-Address [4] 6 100.1.1.147 *Aug 23 21:46:05.263: RADIUS: Acct-Delay-Time [41] 6 *Aug 23 21:46:05.267: RADIUS: Received from id 21645/22 100.1.1.4:1646, Accounting- response, len 20 *Aug 23 21:46:05.267: RADIUS: authenticator 51 6B BB 27 A4 F5 D7 61 - A7 03 73 D3 0A AC ``` ## **How to Configure IPsec VPN Accounting** - Configuring IPsec VPN Accounting, page 26 - Configuring Accounting Updates, page 31 - Troubleshooting for IPsec VPN Accounting, page 32 ## **Configuring IPsec VPN Accounting** IPsec must be configured first before configuring IPsec VPN accounting. #### **SUMMARY STEPS** - 1. enable - 2. configure terminal - 3. aaa new-model - 4. aaa authentication login list-name method - 5. aaa authorization network list-name method - 6. aaa accounting network list-name start-stop [broadcast] group group-name - 7. aaa session-id common - 8. crypto isakmp profile profile-name - 9. vrf ivrf - 10. match identity group group-name - **11. client authentication list** *list-name* - 12. isakmp authorization list list-name - 13. client configuration address [initiate | respond] - **14. accounting** *list-name* - **15.** exit - **16. crypto dynamic-map** dynamic-map-name dynamic-seq-num - 17. set transform-set transform-set-name - **18. set isakmp-profile** *profile-name* - 19. reverse-route [remote-peer] - **20**. exit - 21. crypto map map-name ipsec-isakmp dynamic dynamic-template-name - **22.** radius-server host ip-address [auth-port port-number] [acct-port port-number] - 23. radius-server key string - 24. radius-server vsa send accounting - **25.** interface type slot / port - 26. crypto map map-name #### **DETAILED STEPS** | | Command or Action | Purpose | |--------|-------------------|----------------------------------| | Step 1 | enable | Enables privileged EXEC mode. | | | | Enter your password if prompted. | | | Example: | | | | Router> enable | | | | Command or Action | Purpose | |--------|---|---| | Step 2 | configure terminal | Enters global configuration mode. | | | Example: | | | | Router# configure terminal | | | Step 3 | aaa new-model | Enables periodic interim accounting records to be sent to the accounting server. | | | Example: | | | | Router (config)# aaa new-model | | | Step 4 | aaa authentication login list-name method | Enforces authentication, authorization, and accounting (AAA) authentication for extended authorization (XAUTH) through RADIUS or local. | | | Example: | (AACIII) unough KADICS of local. | | | Router (config)# aaa authentication login ciscoclient group radius | | | Step 5 | aaa authorization network list-name method | Sets AAA authorization parameters on the remote client from RADIUS or local. | | | Example: | | | | Router (config)# aaa authorization network ciscoclient group radius | | | Step 6 | aaa accounting network list-name start-stop [broadcast] group group-name | Enables AAA accounting of requested services for billing or security purposes when RADIUS or TACACS + is used. | | | Example: | | | | Router (config)# aaa accounting network acc start-
stop broadcast group radius | | | Step 7 | aaa session-id common | Specifies whether the same session ID is used for each AAA accounting service type within a call or whether a different session ID is assigned to each accounting | | | Example: | service type. | | | Router (config)# aaa session-id common | | | Step 8 | crypto isakmp profile profile-name | Audits IP security (IPsec) user sessions and enters isakmp-profile submode. | | | Example: | | | | Route (config)# crypto isakmp profile cisco | | | Command or Action | Purpose | |--|---| | vrf ivrf | Associates the on-demand address pool with a Virtual Private Network (VPN) routing and forwarding (VRF) instance name. | | Example: | | | Router (conf-isa-prof)# vrf cisco | | | match identity group group-name | Matches an identity from a peer in an ISAKMP profile. | | | | | Example: | | | Router(conf-isa-prof)# match identity group cisco | | | client authentication list list-name | Configures Internet Key Exchange (IKE) extended authentication (XAUTH) in an Internet Security Association and Key Management Protocol (ISAKMP) | | Example: | profile. | | Router(conf-isa-prof)# client authentication list cisco | | | isakmp authorization list list-name | Configures an IKE shared secret and other parameters using the AAA server in an ISAKMP profile. The shared secret and other parameters are generally pushed | | Example: | to the remote peer through mode configuration (MODECFG). | | Router(conf-isa-prof)# isakmp authorization list
cisco-client | | | client configuration address [initiate respond] | Configures IKE mode configuration (MODECFG) in the ISAKMP profile. | | Example: | | | Router(conf-isa-prof)# client configuration address respond | | | accounting list-name | Enables AAA accounting services for all peers that connect through this ISAKMP profile. | | Example: | | | Router(conf-isa-prof)# accounting acc | | | exit | Exits isakmp-profile submode. | | | | | Example: | | | Router(conf-isa-prof)# exit | | | | Example: Router (conf-isa-prof)# vrf cisco match identity group group-name Example: Router(conf-isa-prof)# match identity group cisco client authentication list list-name Example: Router(conf-isa-prof)# client authentication list cisco isakmp authorization list list-name Example: Router(conf-isa-prof)# isakmp authorization list cisco-client client configuration address [initiate respond] Example: Router(conf-isa-prof)# client configuration address respond accounting list-name Example: Router(conf-isa-prof)# accounting acc exit Example: | | | Command or Action | Purpose | |---------|---|--| | Step 16 | crypto dynamic-map dynamic-map-name dynamic-seq-num | Creates a dynamic crypto map template and enters the crypto map configuration command mode. | | | Example: | | | | Router(config)# crypto dynamic-map mymap 10 ipsecisakmp | | | Step 17 | set transform-set transform-set-name | Specifies which transform sets can be used with the crypto map template. | | | Example: | | | | Router(config-crypto-map)# set transform-set aswan | | | Step 18 | set isakmp-profile profile-name | Sets the ISAKMP profile name. | | | | | | | Example: | | | _ | Router(config-crypto-map)# set isakmp-profile cisco | | | Step 19 | reverse-route [remote-peer] | Allows routes (ip addresses) to be injected for destinations behind the VPN remote tunnel endpoint and may include a route to the tunnel endpoint itself | | | Example: | (using the remote-peer keyword for the crypto map. | | | Router(config-crypto-map)# reverse-route | | | Step 20 | exit | Exits dynamic crypto map configuration mode. | | | | | | | Example: | | | 0. 01 | Router(config-crypto-map)# exit | | | Step 21 | crypto map map-name ipsec-isakmp dynamic dynamic-
template-name | Enters crypto map configuration mode | | | | | | | Example: | | | | Router(config)# crypto map mymap ipsec-isakmp dynamic dmap | | | Step 22 | radius-server host <i>ip-address</i> [auth-port <i>port-number</i>] [acct-port <i>port-number</i>] | Specifies a RADIUS server host. | | | | | | | Example: | | | | Router(config)# radius-server host 172.16.1.4 | | | | Command or Action | Purpose | |---------
---|--| | Step 23 | radius-server key string | Sets the authentication and encryption key for all RADIUS communications between the router and the RADIUS daemon. | | | Example: | | | | Router(config)# radius-server key nsite | | | Step 24 | radius-server vsa send accounting | Configures the network access server to recognize and use vendor-specific attributes. | | | Example: | | | | Router(config)# radius-server vsa send accounting | | | Step 25 | interface type slot port | Configures an interface type and enters interface configuration mode. | | | Example: | | | | Router(config)# interface FastEthernet 1/0 | | | Step 26 | crypto map map-name | Applies a previously defined crypto map set to an interface. | | | Example: | | | | Router(config-if)# crypto map mymap | | ## **Configuring Accounting Updates** To send accounting updates while a session is "up," perform the following optional task: IPsec VPN accounting must be configured before accounting updates are configured. See Configuring IPsec VPN Accounting, page 26 for more information. #### **SUMMARY STEPS** - 1. enable - 2. configure terminal - 3. aaa accounting update periodic number ### **DETAILED STEPS** | | Command or Action | Purpose | |--------|-------------------|----------------------------------| | Step 1 | enable | Enables privileged EXEC mode. | | | | Enter your password if prompted. | | | Example: | | | | Router> enable | | | | Command or Action | Purpose | |--------|--|---| | Step 2 | configure terminal | Enters global configuration mode. | | | | | | | Example: | | | | Router# configure terminal | | | Step 3 | aaa accounting update periodic number | (Optional) Enables periodic interim accounting records to be sent to the accounting server. | | | Example: | | | | Router (config)# aaa accounting update periodic 1-2147483647 | | ## **Troubleshooting for IPsec VPN Accounting** To display messages about IPsec accounting events, perform the following optional task: #### **SUMMARY STEPS** - 1. enable - 2. debug crypto isakmp aaa #### **DETAILED STEPS** | | Command or Action | Purpose | | |--------|---------------------------------|---|--| | Step 1 | enable | Enables privileged EXEC mode. | | | | | Enter your password if prompted. | | | | Example: | | | | | Router> enable | | | | Step 2 | debug crypto isakmp aaa | Displays messages about Internet Key Exchange (IKE) events. | | | | | The aaa keyword specifies accounting events. | | | | Example: | | | | | Router# debug crypto isakmp aaa | | | # **Configuration Examples for IPsec VPN Accounting** - Accounting and ISAKMP-Profile Example, page 33 - Accounting Without ISAKMP Profiles Example, page 34 ## **Accounting and ISAKMP-Profile Example** The following example shows a configuration for supporting remote access clients with accounting and ISAKMP profiles: ``` version 2.1 service timestamps debug datetime msec service timestamps log datetime msec no service password-encryption hostname sheep aaa new-model aaa accounting network ipsecaaa start-stop group radius aaa accounting update periodic 1 aaa session-id common ip subnet-zero ip cef no ip domain lookup ip domain name cisco.com ip name-server 172.29.2.133 ip name-server 172.29.11.48 crypto isakmp policy 1 authentication pre-share group 2 crypto isakmp policy 10 hash md5 authentication pre-share lifetime 200 crypto isakmp key cisco address 172.31.100.2 crypto iakmp client configuration group cclient key jegjegjhrg pool addressA crypto-isakmp profile groupA vrf cisco match identity group cclient client authentication list cisco-client isakmp authorization list cisco-client client configuration address respond accounting acc crypto ipsec transform-set esp-des-md5 esp-des esp-md5-hmac crypto dynamic-map remotes 1 set peer 172.31.100.2 set security-association lifetime seconds 120 set transform-set esp-des-md5 reverse-route crypto map test 10 ipsec-isakmp dynamic remotes voice call carrier capacity active interface Loopback0 ip address 10.20.20.20 255.255.255.0 no ip route-cache no ip mroute-cache interface FastEthernet0/0 ip address 10.2.80.203 255.255.255.0 no ip mroute-cache ``` ``` load-interval 30 duplex full interface FastEthernet1/0 ip address 192.168.219.2 255.255.255.0 no ip mroute-cache duplex auto speed auto interface FastEthernet1/1 ip address 172.28.100.1 255.255.255.0 no ip mroute-cache duplex auto speed auto crypto map test no fair-queue ip default-gateway 10.2.80.1 ip classless ip route 10.0.0.0 0.0.0.0 10.2.80.1 ip route 10.20.0.0 255.0.0.0 10.2.80.56 ip route 10.10.10.0 255.255.255.0 172.31.100.2 ip route 10.0.0.2 255.255.255.255 10.2.80.73 ip local pool addressA 192.168.1.1 192.168.1.253 no ip http server ip pim bidir-enable ip access-list extended encrypt permit ip host 10.0.0.1 host 10.5.0.1 access-list 101 permit ip host 10.20.20.20 host 10.10.10.10 radius-server host 172.27.162.206 auth-port 1645 acct-port 1646 key cisco123 radius-server retransmit 3 radius-server authorization permit missing Service-Type radius-server vsa send accounting call rsvp-sync mgcp profile default dial-peer cor custom gatekeeper shutdown line con 0 exec-timeout 0 0 exec prompt timestamp line aux 0 line vty 5 15 ntp server 172.31.150.52 ``` ## **Accounting Without ISAKMP Profiles Example** The following example shows a full Cisco IOS XE configuration that supports accounting remote access peers when ISAKMP profiles are not used: ``` version 2.1 service timestamps debug datetime msec service timestamps log datetime msec no service password-encryption ! hostname sheep ! aaa new-model ``` ``` aaa accounting network ipsecaaa start-stop group radius aaa accounting update periodic 1 aaa session-id common ip subnet-zero ip cef ! no ip domain lookup ip domain name cisco.com ip name-server 172.29.2.133 ip name-server 172.29.11.48 crypto isakmp policy 1 authentication pre-share group 2 crypto isakmp policy 10 hash md5 authentication pre-share lifetime 200 crypto isakmp key cisco address 172.31.100.2 crypto ipsec transform-set esp-des-md5 esp-des esp-md5-hmac crypto map test client accounting list ipsecaaa crypto map test 10 ipsec-isakmp set peer 172.31.100.2 set security-association lifetime seconds 120 set transform-set esp-des-md5 match address 101 voice call carrier capacity active interface Loopback0 ip address 10.20.20.20 255.255.255.0 no ip route-cache no ip mroute-cache interface FastEthernet0/0 ip address 10.2.80.203 255.255.255.0 no ip mroute-cache load-interval 30 duplex full interface FastEthernet1/0 ip address 192.168.219.2 255.255.255.0 no ip mroute-cache duplex auto speed auto interface FastEthernet1/1 ip address 172.28.100.1 255.255.255.0 no ip mroute-cache duplex auto speed auto crypto map test no fair-queue ip default-gateway 10.2.80.1 ip classless ip route 10.0.0.0 0.0.0.0 10.2.80.1 ip route 10.30.0.0 255.0.0.0 10.2.80.56 ip route 10.10.10.0 255.255.255.0 172.31.100.2 ip route 10.0.0.2 255.255.255.255 10.2.80.73 no ip http server ip pim bidir-enable ip access-list extended encrypt ``` ``` permit ip host 10.0.0.1 host 10.5.0.1 access-list 101 permit ip host 10.20.20.20 host 10.10.10.10 radius-server host 172.27.162.206 auth-port 1645 acct-port 1646 key cisco123 radius-server retransmit 3 radius-server authorization permit missing Service-Type radius-server vsa send accounting call rsvp-sync mgcp profile default dial-peer cor custom gatekeeper shutdown line con 0 {\it exec-timeout} 0 0 exec prompt timestamp line aux 0 line vty 5 15 exception core-file ioscrypto/core/sheep-core exception dump 172.25.1.129 ntp clock-period 17208229 ntp server 172.71.150.52 \quad \text{end} \quad ``` # **Additional References** # **Related Documents** | Related Topic | Document Title | | | |----------------------------------|---|--|--| | Configuring AAA accounting | "Configuring Accounting" module in the Cisco IOS XE Security Configuration Guide: Securing User Services | | | | Configuring IPsec VPN accounting | "Configuring Security for VPNs with IPsec" module in the Cisco IOS XE Security Configuration Guide: Secure Connectivity | | | | Configuring basic AAA RADIUS | "Configuring RADIUS" module in the Cisco IOS XE Security Configuration Guide: Securing User Services | | | | Configuring ISAKMP profiles | "VRF-Aware IPsec" module in the Cisco IOS XE
Security Configuration Guide: Secure Connectivity | | | | Related Topic | Document Title | |--|---| | Privilege levels with TACACS+ and RADIUS | "Configuring TACACS+" module in the Cisco IOS XE Security Configuration Guide: Securing User Services "Configuring RADIUS" module in the Cisco IOS XE Security Configuration Guide: Securing User Services | | IP security, RADIUS, and AAA commands | Cisco IOS Security Command Reference | | Standards, page 37 | | | • MIBs, page 37 | | - RFCs, page 37 - Technical Assistance, page 38 # **Standards** | Standard | Title | |----------|-------| | None. | | # **MIBs** | MIB | MIBs Link | |-------|--| | None. | To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: | | |
http://www.cisco.com/go/mibs | # **RFCs** | RFC | Title | |-------|-------| | None. | | ## **Technical Assistance** | Description | Link | |---|---| | The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. | http://www.cisco.com/cisco/web/support/index.html | | To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. | | | Access to most tools on the Cisco Support website requires a Cisco.com user ID and password. | | # **Feature Information for IPsec VPN Accounting** The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature. Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required. Table 5 Feature Information for IPsec VPN Accounting | Feature Name | Releases | Feature Information | |----------------------|--------------------------|--| | IPsec VPN Accounting | Cisco IOS XE Release 2.1 | The IPsec VPN Accounting feature allows for a session to be accounted for by indicating when the session starts and when it stops. | | | | A VPN session is defined as an IKE SA and the one or more SA pairs that are created by the IKE SA. The session starts when the first IPsec pair is created and stops when all IPsec SAs are deleted. | | | | Session identifying information and session usage information is passed to the RADIUS server through standard RADIUS attributes and VSAs. | | | | The following commands were introduced or modified: client authentication list, client configuration address, crypto isakmp profile, crypto map (global IPsec), debug crypto isakmp, isakmp authorization list, match identity, set isakmp-profile, vrf. | # **Glossary** **IKE** --Internet Key Exchange. IKE establishes a shared security policy and authenticates keys for services (such as IP security [IPsec]) that require keys. Before any IPsec traffic can be passed, each router, firewall, and host must verify the identity of its peer. This can be done by manually entering preshared keys into both hosts or by a certification authority (CA) service. **IPsec** --IP security. IPsec is A framework of open standards that provides data confidentiality, data integrity, and data authentication between participating peers. IPsec provides these security services at the IP layer. IPsec uses IKE to handle the negotiation of protocols and algorithms based on local policy and to generate the encryption and authentication keys to be used by IPsec. IPsec can protect one or more data flows between a pair of hosts, between a pair of security gateways, or between a security gateway and a host. **ISAKMP** --Internet Security Association and Key Management Protocol. ISAKMP is an Internet IPsec protocol (RFC 2408) that negotiates, establishes, modifies, and deletes security associations. It also exchanges key generation and authentication data (independent of the details of any specific key generation technique), key establishment protocol, encryption algorithm, or authentication mechanism. **L2TP session** --Layer 2 Transport Protocol. L2TP are communications transactions between the L2TP access concentrator (LAC) and the L2TP network server (LNS) that support tunneling of a single PPP connection. There is a one-to-one relationship among the PPP connection, L2TP session, and L2TP call. NAS --network access server. A NAS is a Cisco platform (or collection of platforms, such as an AccessPath system) that interfaces between the packet world (for example, the Internet) and the circuit world (for example, the public switched telephone network [PSTN]). **PFS** --perfect forward secrecy. PFS is a cryptographic characteristic associated with a derived shared secret value. With PFS, if one key is compromised, previous and subsequent keys are not compromised because subsequent keys are not derived from previous keys. **QM** --Queue Manager. The Cisco IP Queue Manager (IP QM) is an intelligent, IP-based, call-treatment and routing solution that provides powerful call-treatment options as part of the Cisco IP Contact Center (IPCC) solution. **RADIUS** --Remote Authentication Dial-In User Service. RADIUS is a database for authenticating modem and ISDN connections and for tracking connection time. **RSA** --Rivest, Shamir, and Adelman. Rivest, Shamir, and Adelman are the inventors of the Public-key cryptographic system that can be used for encryption and authentication. **SA** --security association. A SA is an instance of security policy and keying material that is applied to a data flow. **TACACS**+ --Terminal Access Controller Access Control System Plus. TACACS+ is a security application that provides centralized validation of users attempting to gain access to a router or network access server. **VPN** --Virtual Private Network. A VPN enables IP traffic to travel securely over a public TCP/IP network by encrypting all traffic from one network to another. A VPN uses "tunneling" to encrypt all information at the IP level. **VRF** --A VPN routing/forwarding instance. A VRF consists of an IP routing table, a derived forwarding table, a set of interfaces that use the forwarding table, and a set of rules and routing protocols that determine what goes into the forwarding table. In general, a VRF includes the routing information that defines a customer VPN site that is attached to a PE router. **VSA** --vendor-specific attribute. A VSA is an attribute that has been implemented by a particular vendor. It uses the attribute Vendor-Specific to encapsulate the resulting AV pair: essentially, Vendor-Specific = protocol:attribute = value. **XAUTH** --Extended authentication. XAUTH is an optional exchange between IKE Phase 1 and IKE Phase 2, in which the router demands additional authentication information in an attempt to authenticate the actual user (as opposed to authenticating the peer). Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R) Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental. # **IPsec Usability Enhancements** The IPsec Usability Enhancements feature introduces functionality that eases the configuration and monitoring of your IPsec virtual private network (VPN). Benefits of this feature include intelligent defaults for IPsec and Internet Key Exchange (IKE) and the ability to easily verify and troubleshoot IPsec VPNs. - Finding Feature Information, page 41 - Prerequisites for IPsec Usability Enhancements, page 41 - Information About IPsec Usability Enhancements, page 41 - How to Utilize IPsec Usability Enhancements, page 43 - Configuration Examples for IPsec Usability Enhancements, page 57 - Additional References, page 60 - Feature Information for IPsec Usability Enhancements, page 61 - Glossary, page 62 # **Finding Feature Information** Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document. Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required. # **Prerequisites for IPsec Usability Enhancements** - You must be familiar with IPsec, IKE, and encryption. - You must have configured IPsec and enabled IKE on your router. - You must be running Cisco IOS XE k9 crypto image on your router. # **Information About IPsec Usability Enhancements** - IPsec Overview, page 42 - IPsecOperation, page 42 ### **IPsec Overview** IPsec is a framework of open standards developed by the Internet Engineering Task Force (IETF), which provides security for transmission of sensitive information over public networks. IPsec acts at the network layer, protecting and authenticating IP packets between participating IPsec devices (peers), such as Cisco routers. IPsec provides secure tunnels between two
peers. You may define which packets are considered sensitive and should be sent through these secure tunnels. You may also define the parameters that should be used to protect these sensitive packets by specifying characteristics of the tunnels. When an IPsec peer detects a sensitive packet, it sets up the appropriate secure tunnel and sends the packet through the tunnel to the remote peer. ## **IPsecOperation** An IPsec operation involves five basic steps: identifying interesting traffic, IKE phase-1, IKE phase-2, establishing the tunnel or IPsec session, and finally tearing down the tunnel. #### Step 1: Identifying Interesting Traffic The VPN devices recognize the traffic, or sensitive packets, to detect. IPsec is either applied to the sensitive packet, the packet is bypassed, or the packet is dropped. Based on the traffic type, if IPsec is applied then IKE phase-1 is initiated. #### Step 2: IKE Phase-1 There are three exchanges between the VPN devices to negotiate an IKE security policy and establish a secure channel. During the first exchange, the VPN devices negotiate matching IKE transform sets to protect the IKE exchange resulting in establishing an Internet Security Association and Key Management Protocol (ISAKMP) policy to utilize. The ISAKMP policy consists of an encryption algorithm, a hash algorithm, an authentication algorithm, a Diffie-Hellman (DH) group, and a lifetime parameter. There are eight default ISAKMP policies supported. For more information on default ISAKMP policies, see the Verifying IKE Phase-1 ISAKMP Default Policies, page 43. The second exchange consists of a Diffie-Hellman exchange, which establishes a shared secret. The third exchange authenticates peer identity. After the peers are authenticated, IKE phase-2 begins. #### Step 3: IKE Phase-2 The VPN devices negotiate the IPsec security policy used to protect the IPsec data. IPsec transform sets are negotiated. A transform set is a combination of algorithms and protocols that enact a security policy for network traffic. For more information on default transform sets, see the Verifying Default IPsec Transform-Sets, page 46. A VPN tunnel is ready to be established. #### Step 4: Establishing the Tunnel--IPsec Session The VPN devices apply security services to IPsec traffic and then transmit the IPsec data. Security associations (SAs) are exchanged between peers. The negotiated security services are applied to the tunnel traffic while the IPsec session is active. #### **Step 5: Terminating the Tunnel** The tunnel is torn down when an IPsec SA lifetime time-out occurs or if the packet counter is exceeded. The IPsec SA is removed. # **How to Utilize IPsec Usability Enhancements** - Verifying IKE Phase-1 ISAKMP Default Policies, page 43 - Verifying Default IPsec Transform-Sets, page 46 - Verifying and Troubleshooting IPsec VPNs, page 48 ## **Verifying IKE Phase-1 ISAKMP Default Policies** When IKE negotiation begins, the peers try to find a common policy, starting with the highest priority policy as specified on the remote peer. The peers negotiate the policy sets until there is a match. If peers have more than one policy set in common, the lowest priority number is used. There are three groups of IKE phase-1, ISAKMP, policies as defined by policy priority ranges and behavior: - Default ISAKMP policies, which are automatically enabled. - User configured ISAKMP policies, which you may configure with the crypto isakmp policy command. - Easy VPN ISAKMP policies, which are made available during Easy VPN configuration. This section describes the three groups of ISAKMP policies, how they behave in relationship to one another, how to determine which policies are in use with the appropriate **show** command, and how to disable the default ISAKMP policies. - Default IKE Phase-1 Policies, page 43 - User Configured IKE Policies, page 44 - Easy VPN ISAKMP Policies, page 44 #### **Default IKE Phase-1 Policies** There are eight default IKE phase-1, ISAKMP, policies supported (see the table below) that are enabled automatically. If you have neither manually configured IKE policies with the **crypto isakmp policy** command nor disabled the default IKE policies with the **no crypto isakmp default policy** command, the default IKE policies will be used during peer IKE negotiations. You can verify that the default IKE policies are in use by issuing either the **show crypto isakmp policy** command or the **show crypto isakmp default policy** command. The default IKE policies define the following policy set parameters: - The priority, 65507-65514, where 65507 is the highest priority and 65514 is the lowest priority. - The authentication method, Rivest, Shamir, and Adelman (RSA) or preshared keys (PSK). - The encryption method, Advanced Encryption Standard (AES) or Triple Data Encryption Standard (3DES). - The hash function, Secure Hash Algorithm (SHA-1) or Message-Digest algorithm 5 (MD5). - The DH group specification DH2 or DH5 - DH2 specifies the 768-bit DH group. DH5 specifies the 1536-bit DH group. Table 6 Default IKE Phase-1, ISAKMP, Policies | Priority | Authentication | Encryption | Hash | Diffie-Hellman | |----------|----------------|------------|------|----------------| | 65507 | RSA | AES | SHA | DH5 | | 65508 | PSK | AES | SHA | DH5 | | 65509 | RSA | AES | MD5 | DH5 | | 65510 | PSK | AES | MD5 | DH5 | | 65511 | RSA | 3DES | SHA | DH2 | | 65512 | PSK | 3DES | SHA | DH2 | | 65513 | RSA | 3DES | MD5 | DH2 | | 65514 | PSK | 3DES | MD5 | DH2 | | | | | | | ## **User Configured IKE Policies** You may configure IKE policies with the **crypto isakmp policy** command. User configured IKE policies are uniquely identified and configured with a priority number ranging from 1-10000, where 1 is the highest priority and 10000 the lowest priority. Once you have configured one or more IKE policies with a priority of 1-10000: - The user configured policies will be used during peer IKE negotiations. - The default IKE policies will no longer used during peer IKE negotiations. - The user configured policies may be displayed by issuing the **show crypto isakmp policy** command. ## **Easy VPN ISAKMP Policies** If you have configured Easy VPN (see the Easy VPN ISAKMP Policies, page 44), the default Easy VPN ISAKMP policies in use are uniquely identified with a priority number ranging from 65515-65535, where 65515 is the highest priority and 65535 is the lowest priority. Once a user has configured Easy VPN: - The default Easy VPN ISAKMP policies and the default IKE policies will be used during peer IKE negotiations. - The Easy VPN ISAKMP policies and the default IKE policies will be displayed by issuing the show crypto isakmp policy command. - Default ISAKMP policies will be displayed by issuing the **show crypto isakmp default policy** command unless they have been disabled by issuing the **no crypto isakmp default policy** command. #### **SUMMARY STEPS** - 1. enable - 2. show crypto isakmp default policy - 3. configure terminal - 4. no crypto isakmp default policy #### **DETAILED STEPS** | | Command or Action | Purpose Enables privileged EXEC mode. | | | |--------|---|--|--|--| | Step 1 | enable | | | | | | | Enter your password if prompted. | | | | | Example: | | | | | | Router> enable | | | | | Step 2 | show crypto isakmp default policy | (Optional) Displays default ISAKMP policies if no policy with a priority of 1-10000 is configured. | | | | | Example: | | | | | | Router# show crypto isakmp default policy | | | | | Step 3 | configure terminal | Enters global configuration mode. | | | | | Example: | | | | | | Router# configure terminal | | | | | Step 4 | no crypto isakmp default policy | (Optional) Turns off default ISAKMP policies with priorities 65507-65514. | | | | | Example: | | | | | | Router(config)# no crypto isakmp default policy | | | | #### **Examples** Router# show crypto isakmp default policy The following is sample output of the **show crypto isakmp default policy** command. The default policies are displayed because the default policies have not been disabled. ``` Default IKE policy Default protection suite of priority 65507 encryption algorithm: AES - Advanced Encryption Standard (128 bit key. Secure Hash Standard hash algorithm: authentication method: Rivest-Shamir-Adleman Signature Diffie-Hellman group: #5 (1536 bit) lifetime: 86400 seconds, no volume limit Default protection suite of priority 65508 encryption algorithm: AES - Advanced Encryption Standard (128 bit key. hash algorithm: Secure Hash Standard authentication method: Pre-Shared Key Diffie-Hellman group: #5 (1536 bit) ``` ``` lifetime: 86400 seconds, no volume limit Default protection suite of priority 65509 encryption algorithm: AES - Advanced Encryption Standard (128 bit key. hash algorithm: Message Digest 5 authentication method: Rivest-Shamir-Adleman Signature Diffie-Hellman group: #5 (1536 bit) lifetime: 86400 seconds, no volume limit Default protection suite of priority 65510 encryption algorithm: AES - Advanced Encryption Standard (128 bit key. hash algorithm: Message Digest 5 authentication method: Pre-Shared Key Diffie-Hellman group: #5 (1536 bit) 86400 seconds, no volume limit lifetime: Default protection suite of priority 65511 encryption algorithm: Three key triple DES hash algorithm: Secure Hash Standard authentication method: Rivest-Shamir-Adleman Signature Diffie-Hellman group: #2 (1024 bit) lifetime: 86400 seconds, no volume limit Default protection suite of priority 65512 encryption algorithm: Three key triple DES hash algorithm: Secure Hash Standard authentication method: Pre-Shared Key Diffie-Hellman group: #2 (1024 bit) 86400 seconds, no volume limit lifetime: Default protection suite of priority 65513 encryption algorithm: Three key triple DES hash algorithm: Message Digest 5 authentication method: Rivest-Shamir-Adleman
Signature Diffie-Hellman group: #2 (1024 bit) lifetime: 86400 seconds, no volume limit Default protection suite of priority 65514 encryption algorithm: Three key triple DES hash algorithm: Message Digest 5 authentication method: Pre-Shared Key Diffie-Hellman group: #2 (1024 bit) 86400 seconds, no volume limit lifetime: ``` The following example disables the default IKE policies then shows the resulting output of the **show crypto isakmp default policy** command, which is blank: ``` Router# configure terminal Router(config)# no crypto isakmp default policy Router(config)# exit Router# show crypto isakmp default policy Router# !There is no output since the default IKE policies have been disabled. ``` The following is an example system log message that is generated whenever the default ISAKMP policies are in use: ``` %CRYPTO-6-IKMP_POLICY_DEFAULT: Using ISAKMP Default policies ``` ## **Verifying Default IPsec Transform-Sets** A transform set represents a certain combination of security protocols and algorithms. During the IPsec SA negotiation, the peers agree to use a particular transform set for protecting a particular data flow. During IPsec SA negotiations with IKE, the peers search for a transform set that is the same at both peers. When such a transform set is found, it is selected and is applied to the protected traffic as part of the IPsec SAs of both peers. • Default Transform Sets, page 47 #### **Default Transform Sets** A default transform set will be used by any crypto map or IPsec profile where no other transform set has been configured and if the following is true: - The default transform sets have not been disabled with the **no crypto ipsec default transform-set** command. - The crypto engine in use supports the encryption algorithm. The two default transform sets each define an Encapsulation Security Protocol (ESP) encryption transform type and an ESP authentication transform type as shown in the table below. Table 7 Default Transform Sets and Parameters | Default Transform Name | ESP Encryption Transform and Description | ESP Authentication Transform and Description | |-----------------------------|---|---| | #\$!default_transform_set_0 | esp-3des (ESP with the 168-bit 3DES or Triple DES encryption algorithm) | esp-sha-hmac | | #\$!default_transform_set_1 | esp-aes (ESP with the 128-bit AES encryption algorithm) | esp-sha-hmac (ESP with the SHA-1, hash message authentication code [HMAC] variant authentication algorithm) | #### **SUMMARY STEPS** - 1. enable - 2. show crypto ipsec default transform-set - 3. configure terminal - 4. no crypto ipsec default transform-set #### **DETAILED STEPS** | | Command or Action | Purpose | |--------|---|---| | Step 1 | enable | Enables privileged EXEC mode. | | | | Enter your password if prompted. | | | Example: | | | | Router> enable | | | Step 2 | show crypto ipsec default transform-set | (Optional) Displays the default IPsec transform sets currently in use by IKE. | | | Example: | | | | Router# show crypto ipsec default transform-set | | | | Command or Action | Purpose | |--------|---|---| | Step 3 | configure terminal | Enters global configuration mode. | | | | | | | Example: | | | | Router# configure terminal | | | Step 4 | no crypto ipsec default transform-set | (Optional) Disables the default IPsec transform sets. | | | | | | | Example: | | | | Router(config)# no crypto ipsec default transform-set | | #### **Examples** ``` The following example displays output from the show crypto ipsec default transform-set command when the default transform sets are enabled, the default setting: Router# show crypto ipsec default transform-set Transform set #$!default_transform_set_1: { esp-aes esp-sha-hmac } will negotiate = { Transport, }, Transform set #$!default_transform_set_0: { esp-3des esp-sha-hmac } will negotiate = { Transport, }, ``` The following example displays output from the **show crypto ipsec default transform-set** command when the default transform sets have been disabled with the **no crypto ipsec default transform-set** command. ``` Router(config)# no crypto ipsec default transform-set Router(config)# exit Router# Router# show crypto ipsec default transform-set ! There is no output. Router# ``` The following is an example system log message that is generated whenever IPsec SAs have negotiated with a default transform set: %CRYPTO-5-IPSEC_DEFAULT_TRANSFORM: Using Default IPsec transform-set ## **Verifying and Troubleshooting IPsec VPNs** Perform one of the following optional tasks in this section, depending on whether you want to verify IKE phase-1 or IKE phase-2 tunnels or troubleshoot your IPsec VPN: - Verifying IKE Phase-1 ISAKMP, page 48 - Verifying IKE Phase-2, page 52 - Troubleshooting IPsec VPNs, page 56 ## **Verifying IKE Phase-1 ISAKMP** To display statistics for ISAKMP tunnels, use the following optional commands. #### **SUMMARY STEPS** - 1. show crypto mib isakmp flowmib failure [vrf vrf-name] - 2. show crypto mib isakmp flowmib global [vrf vrf-name] - 3. show crypto mib isakmp flowmib history [vrf vrf-name] - 4. show crypto mib isakmp flowmib peer [index peer-mib-index] [vrf vrf-name] - 5. show crypto mib isakmp flowmib tunnel [index tunnel-mib-index] [vrf vrf-name] #### **DETAILED STEPS** #### Step 1 show crypto mib isakmp flowmib failure [vrf vrf-name] For ISAKMP tunnel failures, this command displays event information. The following is sample output for this command: #### **Example:** ``` Router# show crypto mib isakmp flowmib failure vrf Global Index: peer lost Reason: 00:07:27 Failure time since reset: Local type: ID_IPV4_ADDR 192.0.2.1 Local value: ID_IPV4_ADDR Remote type: 192.0.2.2 Remote Value: Local Address: 192.0.2.1 Remote Address: 192.0.2.2 Index: peer lost Reason: Failure time since reset: 00:07:27 Local type: ID_IPV4_ADDR Local value: 192.0.3.1 Remote type: ID_IPV4_ADDR Remote Value: 192.0.3.2 192.0.3.1 Local Address: Remote Address: 192.0.3.2 Index: Reason: peer lost Failure time since reset: 00:07:32 ID_IPV4_ADDR Local type: Remote type: ID_IPV4_ADDR Remote Value: 192.0.2.2 Local Address: 192.0.2.1 192.0.2.2 Remote Address: ``` #### Step 2 show crypto mib isakmp flowmib global [vrf vrf-name] Global ISAKMP tunnel statistics are displayed by issuing this command. The following is sample output for this command: #### **Example:** # Router# show crypto mib isakmp flowmib global vrf Global Active Tunnels: 3 Previous Tunnels: 0 In octets: 2856 Out octets: 3396 In packets: 16 ``` 19 Out packets: In packets drop: 0 0 Out packets drop: In notifys: 7 Out notifys: In P2 exchg: 3 Out P2 exchg: 6 In P2 exchg invalids: Out P2 exchg invalids: Ω In P2 exchg rejects: Out P2 exchg rejects: 0 In IPSEC delete: Out IPSEC delete: SAs locally initiated: SAs locally initiated failed: 0 SAs remotely initiated failed: 0 System capacity failures: 0 Authentication failures: Decrypt failures: 0 Ω Hash failures: Invalid SPI: ``` #### Step 3 show crypto mib isakmp flowmib history [vrf vrf-name] For information about ISAKMP tunnels that are no longer active, this command displays event information including the reason that the tunnel was terminated. The following is sample output for this command: #### **Example:** ## Router# show crypto mib isakmp flowmib history vrf Global ``` Reason: peer lost Index: ID_IPV4_ADDR Local type: Local address: 192.0.2.1 ID_IPV4_ADDR Remote type: Remote address: 192.0.2.2 Negotiation mode: Main Mode Diffie Hellman Grp: Encryption algo: des Hash algo: sha Auth method: psk Lifetime: 86400 00:06:30 Active time: Policy priority: 1 Keepalive enabled: Yes 3024 In octets: In packets: 22 In drops: 0 In notifys: 18 In P2 exchanges: 1 0 In P2 exchg invalids: In P2 exchg rejected: 0 In P2 SA delete reqs: 0 Out octets: 4188 Out packets: 33 Ω Out drops: 28 Out notifys: Out P2 exchgs: 2 Out P2 exchg invalids: 0 Out P2 exchg rejects: Out P2 Sa delete requests: 0 Reason: peer lost Index: ID_IPV4_ADDR Local type: 192.0.3.1 Local address: Remote type: ID_IPV4_ADDR Remote address: 192.0.3.2 Negotiation mode: Main Mode Diffie Hellman Grp: ``` ``` des Encryption algo: Hash algo: sha Auth method: psk 86400 Lifetime: 00:06:25 Active time: Policy priority: Keepalive enabled: Yes In octets: 3140 In packets: 23 In drops: Ω In notifys: 19 In P2 exchanges: 1 0 In P2 exchg invalids: In P2 exchg rejected: 0 In P2 SA delete reqs: 0 Out octets: 4304 Out packets: 34 0 Out drops: 29 Out notifys: 2 Out P2 exchgs: Out P2 exchg invalids: 0 Out P2 exchg rejects: 0 Out P2 Sa delete requests: 0 ``` #### **Step 4 show crypto mib isakmp flowmib peer** [**index** *peer-mib-index*] [**vrf** *vrf-name*] For active ISAKMP peer associations, this command displays information including indexes, type of connection, and IP addresses. The following is sample output for this command: #### **Example:** ``` Router# show crypto mib isakmp flowmib peer vrf Global Index: ID_IPV4_ADDR Local type: Local address: 192.0.2.1 Remote type: ID_IPV4_ADDR Remote address: 192.0.2.2 Index: Local type: ID_IPV4_ADDR Local address: 192.0.3.1 ID_IPV4_ADDR Remote type: Remote address: 192.0.3.1 Index: Local type: ID_IPV4_ADDR Local address: 192.0.4.1 ID_IPV4_ADDR Remote type: Remote address: 192.0.4.1 ``` #### Step 5 show crypto mib isakmp flowmib tunnel [index tunnel-mib-index] [vrf-name] For active ISAKMP tunnels, this command displays tunnel statistics. The following is sample output for this command: #### **Example:** ``` Router# show crypto mib isakmp flowmib tunnel vrf Global Index: ID_IPV4_ADDR Local type: Local address: 192.0.2.1 ID_IPV4_ADDR Remote type: Remote
address: 192.0.2.2 Negotiation mode: Main Mode Diffie Hellman Grp: Encryption algo: des Hash algo: sha ``` ``` Auth method: psk Lifetime: 86400 Active time: 00:03:08 Policy priority: Keepalive enabled: Yes In octets: 2148 In packets: 15 In drops: In notifys: 11 In P2 exchanges: 1 In P2 exchg invalids: 0 In P2 exchg rejected: In P2 SA delete regs: Out octets: 2328 Out packets: 16 Out drops: Out notifys: 12 Out P2 exchgs: Out P2 exchg invalids: 0 Out P2 exchg rejects: 0 Out P2 Sa delete requests: 0 ``` ## **Verifying IKE Phase-2** To display statistics for IPsec phase-2 tunnels, use the following optional commands. #### **SUMMARY STEPS** - 1. show crypto mib ipsec flowmib endpoint [vrf vrf-name] - 2. show crypto mib ipsec flowmib failure [vrf vrf-name] - 3. show crypto mib ipsec flowmib global [vrf vrf-name] - 4. show crypto mib ipsec flowmib history [vrf vrf-name] - 5. show crypto mib ipsec flowmib spi [vrf vrf-name] - **6. show crypto mib ipsec flowmib tunnel** [**index** *tunnel-mib-index*] [**vrf** *vrf-name*] #### **DETAILED STEPS** #### **Step 1 show crypto mib ipsec flowmib endpoint** [vrf vrf-name] Information for each active endpoint, local or remote device, associated with an IPsec phase-2 tunnel is displayed by issuing this command. The following is sample output for this command: #### **Example:** ``` Router# show crypto mib ipsec flowmib endpoint vrf Global Index: 1 Local type: Single IP address Local address: 192.1.2.1 Protocol: 0 Local port: 0 Remote type: Single IP address Remote address: 192.1.2.2 Remote port: 0 Index: 2 ``` ``` Local type: Subnet Local address: 192.1.3.0 255.255.255.0 Protocol: 0 Local port: 0 Remote type: Subnet Remote address: 192.1.3.0 255.255.255.0 Remote port: 0 ``` #### Step 2 show crypto mib ipsec flowmib failure [vrf vrf-name] For ISAKMP tunnel failures, this command displays event information. The following is sample output for this command: #### **Example:** ``` Router# show crypto mib ipsec flowmib failure vrf Global Index: 1 Reason: Operation request Failure time since reset: 00:25:18 Src address: 192.1.2.1 Destination address: 192.1.2.2 SPI: 0 ``` #### Step 3 show crypto mib ipsec flowmib global [vrf vrf-name] Global IKE phase-2 tunnel statistics are displayed by issuing this command. The following is sample output for this command: #### **Example:** ``` Router# show crypto mib ipsec flowmib global vrf Global Active Tunnels: Ω Previous Tunnels: In octets: 800 Out octets: In packets: Out packets: 8 Uncompressed encrypted bytes: 1408 In packets drops: 0 Out packets drops: In replay drops: In authentications: Out authentications: In decrypts: Out encrypts: Compressed bytes: Uncompressed bytes: In uncompressed bytes: Out uncompressed bytes: In decrypt failures: Out encrypt failures: No SA failures: Number of SA Failures. Protocol use failures: System capacity failures: 0 In authentication failures: 0 Out authentication failures: ``` #### Step 4 show crypto mib ipsec flowmib history [vrf-name] For information about IKE phase-2 tunnels that are no longer active, this command displays event information including the reason that the tunnel was terminated. The following is sample output for this command: #### **Example:** ``` Router# show crypto mib ipsec flowmib history vrf Global Reason: Operation request Index: Local address: 192.1.2.1 Remote address: 192.1.2.2 IPSEC keying: IKE Encapsulation mode: 4608000 Lifetime (KB): Lifetime (Sec): 3600 00:24:32 Active time: Lifetime threshold (KB): 423559168 Lifetime threshold (Sec): 3590000 Total number of refreshes: Expired SA instances: 4 Current SA instances: 4 In SA DH group: In sa encrypt algorithm des In SA auth algorithm: rsia In SA ESP auth algo: ESP_HMAC_SHA In SA uncompress algorithm: None Out SA DH group: Out SA encryption algorithm: des Out SA auth algorithm: ESP_HMAC_SHA Out SA ESP auth algorithm: ESP_HMAC_SHA Out SA uncompress algorithm: None In octets: 400 400 Decompressed octets: In packets: 0 In drops: In replay drops: 0 In authentications: In authentication failures: 0 In decrypts: In decrypt failures: 0 Out octets: 704 Out uncompressed octets: Out packets: Out drops: 1 Out authentications: Out authentication failures: 0 Out encryptions: Out encryption failures: 0 0 Compressed octets: Decompressed octets: n Out uncompressed octets: 704 ``` #### Step 5 show crypto mib ipsec flowmib spi [vrf vrf-name] The security protection index (SPI) table contains an entry for each active and expiring security IKE phase-2 association. The following is sample output for this command, which displays the SPI table: #### **Example:** ``` Router# show crypto mib ipsec flowmib spi vrf Global Tunnel Index: SPI Index: SPI Value: 0xCC57D053 SPI Direction: In SPI Protocol: AΗ SPI Status: Active SPI Index: SPI Value: 0x68612DF SPI Direction: Out SPI Protocol: AΗ SPI Status: Active SPI Index: ``` ``` SPI Value: 0x56947526 SPI Direction: SPI Protocol: ESP SPI Status: Active SPI Index: 0x8D7C2204 SPI Value: SPI Direction: Out SPI Protocol: ESP SPI Status: Active ``` #### Step 6 show crypto mib ipsec flowmib tunnel [index tunnel-mib-index] [vrf vrf-name] For active IKE phase-2 tunnels, this command displays tunnel statistics. The following is sample output for this command: #### **Example:** #### Router# show crypto mib ipsec flowmib tunnel vrf Global Index: Local address: 192.0.2.1 Remote address: 192.0.2.2 IPSEC keying: IKE Encapsulation mode: 4608000 Lifetime (KB): Lifetime (Sec): 3600 Active time: 00:05:46 Lifetime threshold (KB): Lifetime threshold (Sec): 10 Total number of refreshes: Ω Expired SA instances: 0 Current SA instances: 4 In SA DH group: In sa encrypt algorithm: des In SA auth algorithm: rsig In SA ESP auth algo: ESP_HMAC_SHA In SA uncompress algorithm: None Out SA DH group: Out SA encryption algorithm: des ESP_HMAC_SHA Out SA auth algorithm: Out SA ESP auth algorithm: ESP_HMAC_SHA Out SA uncompress algorithm: None 400 In octets: Decompressed octets: 400 In packets: In drops: 0 0 In replay drops: In authentications: 0 In authentication failures: In decrypts: In decrypt failures: Out octets: 704 Out uncompressed octets: 704 Out packets: Out drops: 1 Out authentications: Out authentication failures: 0 Out encryptions: 4 Out encryption failures: n Compressed octets: 0 Decompressed octets: 704 Out uncompressed octets: #### Troubleshooting IPsec VPNs The **show tech-support ipsec** command simplifies the collection of the IPsec related information if you are troubleshooting a problem. #### **SUMMARY STEPS** 1. show tech-support ipsec #### **DETAILED STEPS** #### show tech-support ipsec There are three variations of the **show tech-support ipsec**command: - · show tech-support ipsec - show tech-support ipsec peer ipv4address - show tech-support ipsec vrf vrf-name For a sample display of the output from the **show tech-support ipsec** command for the individual **show** commands listed below for each variation see the Troubleshooting IPsec VPNs, page 56. #### Output of the show tech-support ipsec Command If you enter the **show tech-support ipsec**command without any keywords, the command output displays the following **show** commands, in order of output: - show version - · show running-config - show crypto isakmp sa count - show crypto ipsec sa count - show crypto session summary - · show crypto session detail - show crypto isakmp sa detail - show crypto ipsec sa detail - show crypto isakmp peers - show crypto ruleset detail - show processes memory | include Crypto IKMP - show processes cpu | include Crypto IKMP - · show crypto eli - show crypto engine accelerator statistic #### Output of the show tech-support ipsec peer Command If you enter the **show tech-support ipsec**command with the **peer** keyword and the *ipv4address* argument, the output displays the following **show** commands, in order of output for the specified peer: - show version - show running-config - show crypto session remote ipv4address detail - show crypto isakmp sa peer ipv4address detail - show crypto ipsec sa peer ipv4address detail - show crypto isakmp peers ipv4address - · show crypto ruleset detail - show processes memory | include Crypto IKMP - · show processes cpu | include Crypto IKMP - show crypto eli - show crypto engine accelerator statistic #### Output of the show tech-support ipsec vrf Command If you enter the **show tech-support ipsec**command with the **vrf** keyword and the *vrf-name*argument, the output displays the following **show** commands, in order of output for the specified Virtual Routing and Forwarding (VRF): - show version - · show running-config - show crypto isakmp sa count vrf vrf-name - show crypto ipsec sa count vrf vrf-name - show crypto session ivrf ivrf-name detail - show crypto session fvrf fvrf-name detail - show crypto isakmp sa vrf vrf-name detail - show crypto ipsec sa vrf vrf-name detail - show crypto ruleset detail - show processes memory | include Crypto IKMP - · show processes cpu | include Crypto IKMP - · show crypto eli - show crypto engine accelerator statistic | le: | |-----| | | # **Configuration Examples for IPsec Usability Enhancements** - IKE Default Policies Example, page 58 - Default Transform Sets Example, page 59 # **IKE Default Policies Example** In the following example, crypto maps are configured on RouterA and RouterB and default IKE policies are in use. Traffic is routed from Pagent A to Pagent B. Checking the system log on Peer A and Peer B confirms that the default IKE policies are in use on both peers (see the figure below). Figure 1 Example Site to Site Topology ``` ! Configuring RouterA. RouterA(config)# crypto isakmp key identity address 209.165.200.226 RouterA(config)# crypto map testmap 10 ipsec-isakmp % NOTE: This new crypto map will remain disabled until a peer and a valid access list have been configured. RouterA(config-crypto-map)# set peer 209.165.200.226 RouterA(config-crypto-map)# match address 101 RouterA(config-crypto-map)# exit RouterA(config)# ip route
209.165.200.225 255.255.255.224 209.165.200.226 RouterA(config)# access-list 101 permit ip host 209.165.200.227 host 209.165.200.225 RouterA(config)# end RouterA(config)# interface FastEthernet1/2 RouterA(config-if)# crypto map testmap RouterA(config-if)# end RouterA(config)# crypto ipsec transform test_transf esp-aes esp-sha-hmac RouterA(cfg-crypto-trans)# mode tunnel RouterA(cfg-crypto-trans)# end RouterA(config)# crypto map testmap 10 RouterA(config-crypto-map)# set transform-set test_transf RouterA(config-crypto-map)# end ! Configuring RouterB. RouterB(config)# crypto isakmp key identity address 209.165.200.228 RouterB(config)# crypto dynamic-map dyn_testmap 10 RouterB(config-crypto-map)# crypto map testmap 10 ipsec-isakmp dynamic dyn_testmap RouterB(config)# ip route 209.165.200.227 255.255.255.224 209.165.200.228 RouterB(config)# end RouterB(config)# interface GigabitEthernet0/1 RouterB(config-if)# crypto map testmap RouterB(config-if)# end RouterB(config)# crypto ipsec transform test_transf esp-aes esp-sha-hmac RouterB(cfg-crypto-trans)# mode tunnel RouterB(cfg-crypto-trans)# end RouterB(config)# crypto dynamic-map dyn_testmap 10 RouterB(config-crypto-map)# set transform-set test_transf RouterB(config-crypto-map)# end ! Routing traffic from PagentA to PagentB. PagentA(config)# ip route 209.165.200.225 255.255.255.224 209.165.200.229 PagentA(config)# end ! Routing traffic from PagentB to PagentA. PagentB(config)# ip route 209.165.200.227 255.255.255.224 209.165.200.230 PagentB(config)# end ! Checking the system log on RouterA confirms that the default IKE policies are in use. RouterA# show log | include %CRYPTO-6-IKMP_POLICY_DEFAULT* Jun 5 09:17:59.251 PDT: %CRYPTO-6-IKMP_POLICY_DEFAULT: Using ISAKMP Default policies ! Checking the system log on RouterB confirms that the default IKE policies are in use. RouterB# show log | include %CRYPTO-6-IKMP_POLICY_DEFAULT* Jun 5 09:17:59.979 PDT: %CRYPTO-6-IKMP_POLICY_DEFAULT: Using ISAKMP Default policies ``` ## **Default Transform Sets Example** In the following example, static crypto maps are configured on RouterA and dynamic crypto maps are configured on RouterB. Traffic is routed from Pagent A to Pagent B. The IPsec SAs negotiate with default transform sets and the traffic is encrypted. Executing the **show crypto map** command on both peers verifies that the default transform sets are in use (see Default Transform Sets Example, page 59). ``` ! Configuring RouterA. RouterA(config)# crypto isakmp key identify address 209.165.200.225 RouterA(config)# crypto map testmap 10 ipsec-isakmp % NOTE: This new crypto map will remain disabled until a peer and a valid access list have been configured. RouterA(config-crypto-map)# set peer 209.165.200.225 RouterA(config-crypto-map)# match address 101 RouterA(config-crypto-map)# exit RouterA(config)# ip route 209.165.200.226 255.255.255.255 209.165.200.225 RouterA(config)# access-list 101 permit ip host 209.165.200.227 host 209.165.200.226 RouterA(config)# end RouterA(config)# interface FastEthernet1/2 RouterA(config-if)# crypto map testmap RouterA(config-if)# end RouterA(config)# crypto isakmp policy 10 RouterA(config-isakmp)# encryption aes RouterA(config-isakmp)# authentication pre-share RouterA(config-isakmp)# hash sha RouterA(config-isakmp)# group 5 RouterA(config-isakmp)# end ! Configuring RouterB. RouterB(config)# crypto isakmp key identity address 209.165.200.229 RouterB(config)# crypto dynamic-map dyn_testmap 10 RouterB(config-crypto-map)# crypto map testmap 10 ipsec-isakmp dynamic dyn_testmap RouterB(config)# ip route 209.165.200.227 255.255.255 209.165.200.229 RouterB(config)# end RouterB(config)# interface GigabitEthernet0/1 RouterB(config-if)# crypto map testmap RouterB(config-if)# end RouterB(config)# crypto isakmp policy 10 RouterB(config-isakmp)# encryption aes RouterB(config-isakmp)# authentication pre-share RouterB(config-isakmp)# hash sha RouterB(config-isakmp)# group 5 RouterB(config-isakmp)# end ! The SA is using the default transform set and traffic is encrypted on RouterA. RouterA# show crypto isakmp sa detail | include 209.165.200.229.*209.165.200.225.*ACTIVE 209.165.200.225 13007 209.165.200.229 ACTIVE aes sha psk 5 23:59:56 13006 209.165.200.229 209.165.200.225 ACTIVE aes sha psk 5 0 13005 209.165.200.229 209.165.200.225 ACTIVE aes sha psk 5 0 ! The SA is using the default transform set and traffic is encrypted on RouterB. RouterB# show crypto isakmp sa detail | include 209.165.200.225.*209.165.200.229.*ACTIVE 209.165.200.229 7007 209.165.200.225 ACTIVE aes sha psk 5 23:59:55 7006 209.165.200.225 7005 209.165.200.225 209.165.200.229 ACTIVE aes sha psk 0 209.165.200.229 ACTIVE aes sha psk ! Verifying that the default transform sets are in use on RouterA. RouterA# show crypto map Crypto Map "testmap" 10 ipsec-isakmp Peer = 209.165.200.225 Extended IP access list 101 access-list 101 permit ip host 209.165.200.227 host 209.165.200.226 Current peer: 209.165.200.225 Security association lifetime: 4608000 kilobytes/3600 seconds PFS (Y/N): N Transform sets={ #$!default_transform_set_1: { esp-aes esp-sha-hmac { esp-3des esp-sha-hmac #$!default_transform_set_0: Interfaces using crypto map testmap: FastEthernet1/2 ! Verifying that the default transform sets are in use on RouterB. RouterB# show crypto map ``` ``` Crypto Map "testmap" 10 ipsec-isakmp Dynamic map template tag: dyn_testmap Crypto Map "testmap" 65536 ipsec-isakmp Peer = 209.165.200.229 Extended IP access list access-list permit ip host 209.165.200.226 host 209.165.200.227 dynamic (created from dynamic map dyn_testmap/10) Current peer: 209.165.200.229 Security association lifetime: 4608000 kilobytes/3600 seconds PFS (Y/N): N Transform sets={ #$!default_transform_set_1: { esp-aes esp-sha-hmac } , } Interfaces using crypto map testmap: GigabitEthernet0/1 ``` # **Additional References** The following sections provide references related to the IPsec Usability Enhancement feature. #### **Related Documents** | Related Topic | Document Title | | |--------------------------------|---|--| | IKE configuration | Configuring Internet Key Exchange for IPsec VPNs module in the Cisco IOS XE Security Configuration Guide: Secure Connectivity | | | IPsec configuration | Configuring Security for VPNs with IPsec module in the Cisco IOS XE Security Configuration Guide: Secure Connectivity | | | Easy VPN server | Easy VPN Server module in the Cisco IOS XE Security Configuration Guide: Secure Connectivity | | | Cisco IOS XE security commands | Cisco IOS Security Command Reference | | #### **Standards** | Standard | Title | |---|-------| | No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature. | | #### MIBs | MIB | MIBs Link | |---|--| | No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature. | To locate and download MIBs for selected platforms, Cisco IOS XE releases, and feature sets, use Cisco MIB Locator found at the following URL: | | | http://www.cisco.com/go/mibs | #### **RFCs** | RFC | Title | |---|-------| | No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature. | | #### **Technical Assistance** | Description | Link | |---|----------------------------------| | The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. | http://www.cisco.com/techsupport | | To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. | | | Access to most tools on the Cisco Support website requires a Cisco.com user ID and password. | | # **Feature Information for IPsec Usability Enhancements** The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature. Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required. Table 8 Feature Information for IPsec Usability Enhancements | Feature Name | Releases | Feature Information | |------------------------------|--------------------------
--| | IPsec Usability Enhancements | Cisco IOS XE Release 2.4 | This feature introduces intelligent defaults for IKE and IPsec, and show commands to access MIB statistics and to aid in troubleshooting. | | | | The following commands were introduced or modified: crypto ipsec default transform-set, crypto isakmp default policy, crypto isakmp policy, show crypto ipsec default transform-set, show crypto ipsec transform-set, show crypto isakmp default policy, show crypto isakmp policy, show crypto map (IPsec), show crypto mib ipsec flowmib endpoint, show crypto mib ipsec flowmib global, show crypto mib ipsec flowmib global, show crypto mib ipsec flowmib tunnel, show crypto mib isakmp flowmib tunnel, show crypto mib isakmp flowmib failure, show crypto mib isakmp flowmib global, show crypto mib isakmp flowmib global, show crypto mib isakmp flowmib global, show crypto mib isakmp flowmib peer, show crypto mib isakmp flowmib peer, show crypto mib isakmp flowmib tunnel, show tech-support ipsec. | # **Glossary** peer--In the context of this module, a router or other device that participates in IPsec. SA--security association. Description of how two or more entities use security services in the context of a particular security protocol (AH or ESP) to communicate securely on behalf of a particular data flow. The transform and the shared secret keys are used for protecting the traffic. transform--List of operations performed on a dataflow to provide data authentication, data confidentiality, and data compression. For example, one transform is the ESP protocol with the HMAC-MD5 authentication algorithm; another transform is the AH protocol with the 56-bit DES encryption algorithm and the ESP protocol with the HMAC-SHA authentication algorithm. tunnel--In the context of this module, a secure communication path between two peers, such as two routers. It does not refer to using IPsec in tunnel mode. Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R) Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.