show ipv6 nat translations

To display active Network Address Translation—Protocol Translation (NAT-PT) translations, use the **show ip nat translations** command in user EXEC or privileged EXEC mode.

show ipv6 nat translations [icmp | tcp | udp] [verbose]

Syntax Description

icmp	(Optional) Displays detailed information about NAT-PT ICMP translation events.
tcp	(Optional) Displays detailed information about NAT-PT TCP translation events.
udp	(Optional) Displays detailed information about NAT-PT User Datagram Protocol (UDP) translation events.
verbose	(Optional) Displays additional information for each translation table entry, including how long ago the entry was created and used.

Command Modes

User EXEC Privileged EXEC

Command History

Release	Modification
12.2(13)T	This command was introduced.

Examples

The following is sample output from the **show ip nat translations** command. Two static translations have been configured between an IPv4 source address and an IPv6 destination, and vice versa.

Router# show ipv6 nat translations

Prot	IPv4 source IPv4 destination	IPv6 source IPv6 destination
	192.168.123.2	2001::2
	192.168.122.10	2001::10
tcp	192.168.124.8,11047 192.168.123.2,23	3002::8,11047 2001::2,23
udp	192.168.124.8,52922 192.168.123.2,69	3002::8,52922 2001::2,69
udp	192.168.124.8,52922 192.168.123.2,52922	3002::8,52922 2001::2,52922
	192.168.124.8 192.168.123.2	3002::8 2001::2

```
--- 192.168.124.8 3002::8
--- 192.168.121.4 5001::4
```

The following is sample output that includes the **verbose** keyword:

Router# show ipv6 nat translations verbose

```
Prot IPv4 source
                                 IPv6 source
      IPv4 destination
                               IPv6 destination
      192.168.123.2
                                 2001::2
      create 00:04:24, use 00:03:24,
     192.168.122.10
                                2001::10
      create 00:04:24, use 00:04:24,
tcp 192.168.124.8,11047 3002::8,11047 192.168.123.2,23 2001::2,23
      create 00:03:24, use 00:03:20, left 00:16:39,
udp 192.168.124.8,52922
                               3002::8,52922
      192.168.123.2,69 2001::2,69
      create 00:02:51, use 00:02:37, left 00:17:22,

    udp
    192.168.124.8,52922
    3002::8,52922

    192.168.123.2,52922
    2001::2,52922

      create 00:02:48, use 00:02:30, left 00:17:29,
    192.168.124.8
                                 3002::8
      192.168.123.2
                                 2001::2
      create 00:03:24, use 00:02:34, left 00:17:25,
    192.168.124.8
                                 3002::8
      create 00:04:24, use 00:03:24,
      192.168.121.4
                                 5001::4
      create 00:04:25, use 00:04:25,
```

Table 204 describes the significant fields shown in the display.

Table 204 show ipv6 nat translations Field Descriptions

Field	Description
Prot	Protocol of the port identifying the address.
IPv4 source/IPv6 source	The IPv4 or IPv6 source address to be translated.
IPv4 destination/IPv6 destination	The IPv4 or IPv6 destination address.
create	How long ago the entry was created (in hours:minutes:seconds).
use	How long ago the entry was last used (in hours:minutes:seconds).
left	Time before the entry times out (in hours:minutes:seconds).

Command	Description
clear ipv6 nat translation	Clears dynamic NAT-PT translations from the translation state table.

show ipv6 nd raguard counters

To display information about RA guard counters, use the **show ipv6 nd raguard policy** command in privileged EXEC mode.

show ipv6 nd raguard counters [interface type number]

Syntax Description	interface type number	(Optional) Displays RA guard policy information for the specified interface
		type and number

Command Modes Privileged EXEC (#)

Command History

Release	Modification
12.2(5th)SXI	This command was introduced.

Usage Guidelines

The **show ipv6 nd raguard counters** command displays information about RA guard counters, such as packets sent, packets received, and packets droped. This command also provides information on why a packet was dropped.

show ipv6 nd raguard policy

To display router advertisements (RAs) guard policy on all interfaces configured with RA guard, use the **show ipv6 nd raguard policy** command in privileged EXEC mode.

show ipv6 nd raguard policy [interface type number]

Syntax Description

interface type number	(Optional) Displays RA guard policy information for the specified interface
	type and number.

Command Modes

Privileged EXEC (#)

Command History

Release	Modification
12.2(50)SY	This command was introduced.

Usage Guidelines

The **show ipv6 nd raguard policy** command hows the options configured for the policy on interfaces where the feature is enabled.

Examples

The following example shows the policy configuration for a policy named raguard1, as well as all the interfaces where the policy is applied:

Router# show ipv6 nd raguard policy raguard1

Policy raguard1 configuration: device-role host

Policy applied on the following interfaces:

Et0/0 vlan all Et1/0 vlan all

Table 205 describes the significant fields shown in the display.

Table 205 show ipv6 nd raguard policy Field Descriptions

Field	Description
Policy raguard1 configuration:	Configuration of the specified policy.
device-role host	The role of the device attached to the port. This device configuration is that of host.
Policy applied on the following interfaces:	The specified interface on which RA guard is configured.

show ipv6 neighbor binding

To display contents of a binding table, use the **show ipv6 neighbor binding** command in privileged EXEC mode.

show ipv6 neighbor binding [vlan *vlan-id* | **interface** *type number* | **ipv6** *ipv6-address* | **mac** *mac-address*]

Syntax Description

vlan vlan-id	(Optional) Displays the binding table entries that match the specified VLAN.
interface type number	(Optional) Displays the binding table entries that match the specified interface type and number.
ipv6 ipv6-address	(Optional) Displays the binding table entries that match the specified IPv6 address.
mac mac-address	(Optional) Displays the binding table entries that match the specified Media Access Control (MAC) address.

Command Modes

Privileged EXEC (#)

Command History

Release	Modification
12.2(50)SY	This command was introduced.

Usage Guidelines

The **show ipv6 neighbor binding** command displays the contents of the binding table. The display output can be specified by the specified VLAN, interface, IPv6 address, or MAC address. If no keywords or arguments are entered, all binding table contents are displayed.

The following keyword and argument combinations are allowed:

- vlan vlan-id: Displays all entries for the specified VLAN
- interface type number: Displays all entries for the specified interface
- **ipv6** *ipv6-address* + **interface** *type number* + **vlan** *vlan-id*: Displays a single entry that matches these three keyword and argument combinations
- **ipv6** *ipv6-address* + **interface** *type number*: Displays all entries for the specified IPv6 address and interface.
- **ipv6** *ipv6-address*: Displays all entries for the specified IPv6 address.

Examples

The following example displays the contents of a binding table:

Router# show ipv6 neighbor binding

	IPv6 address	Link-Layer addr Inte	rface vlan	prlvl age	state 5	Time left
ND	FE80::A8BB:CCFF:FE01:F500	AABB.CC01.F500 E	t0/0 100	0002 0	REACHABLE	8850
L	FE80::21D:71FF:FE99:4900	001D.7199.4900 V	1100 100	0080 7203	DOWN	N/A
ND	2001:600::1	AABB.CC01.F500 E	t0/0 100	0003 0	REACHABLE	3181
ND	2001:300::1	AABB.CC01.F500 E	t0/0 100	0007 0	REACHABLE	9559
ND	2001:100::2	AABB.CC01.F600 E	t1/0 200	0002 0	REACHABLE	9196
L	2001:400::1	001D.7199.4900 V	1100 100	0080 7188	DOWN	N/A
S	2001.5001	000A 000B 000C F	a4/13 300	0080 8676	STALE	NI / A

Table 205 describes the significant fields shown in the display.

Table 206 show ipv6 neighbor binding Field Descriptions

Field	Description
address DB has 4 entries	Number of entries in the specified database.

Command	Description
ipv6 neighbor binding	Changes the defaults of neighbor binding entries in a binding table.

show ipv6 snooping capture-policy

To display message capture policies, use the **show ipv6 snooping capture-policy** command in user EXEC or privileged EXEC mode.

show ipv6 snooping capture-policy [interface type number]

Syntax Description

interface type number	(Optional) Displays first-hop message types on the specified interface type			
	and number.			

Command Modes

User EXEC Privileged EXEC (#)

Command History

Release	Modification
12.2(50)SY	This command was introduced.

Usage Guidelines

The **show ipv6 snooping capture-policy** command displays IPv6 first-hop message capture policies.

Examples

The following example shows **show ipv6 snooping capture-policy** command output on the Ethernet 0/0 interface, on which the IPv6 Neighbor Discovery Protocol (NDP) inspection and Router Advertisement (RA) Guard features are configured:

Router# show ipv6 snooping capture-policy

Hardware policy registered on Et0/0						
Protocol	Protocol value	Message	Value	Action	Feature	
ICMP	58	RS	85	punt	RA Guard	
				punt	ND Inspection	
ICMP	58	RA	86	drop	RA guard	
				punt	ND Inspection	
ICMP	58	NS	87	punt	ND Inspection	
ICMP	58	NA	88	punt	ND Inspection	
ICMP	58	REDIR	89	drop	RA Guard	
				punt.	ND Inspection	

Table 205 describes the significant fields shown in the display.

Table 207 show ipv6 snooping capture-policy Field Descriptions

Field	Description
Hardware policy registered on Fa4/11	A hardware policy contains a programmatic access list (ACL), with a list of access control entries (ACEs).
Protocol	The protocol whose packets are being inspected.
Message	The type of message being inspected.

Table 207 show ipv6 snooping capture-policy Field Descriptions (continued)

Field Description	
Action	Action to be taken on the packet.
Feature	The inspection feature for this information.

show ipv6 snooping counters

To display information about the packets counted by the interface counter, use the **show ipv6 snooping counters** command in user EXEC or privileged EXEC mode.

show ipv6 snooping counters [interface type number]

Syntax Description

interface type number	(Optional) Displays first hop packets that match the specified interface type			
	and number.			

Command Modes

User EXEC Privileged EXEC (#)

Command History

Release	Modification
12.2(50)SY	This command was introduced.

Usage Guidelines

The **show ipv6 snooping counters** command shows packets handled by the switcher that are being counted in interface counters. The switcher counts packets captured per interface and records whether the packet was received, sent, or dropped. If a packet is dropped, the reason for the drop and the feature that caused the drop are both also provided.

Examples

The following examples shows information about packets counted on interface FastEthernet4/12:

Router# show ipv6 snooping counters interface Fa4/12

Received messages on Fa4/12:							
Protocol	Protoco	ol messag	ge				
ICMPv6	RS	RA	NS	NA	REDIR	CPS	CPA
	0	4256	0	0	0	0	0
Bridged message	es from E	Fa4/12:					
Protocol	Protoco	ol messag	ge				
ICMPv6	RS	RA	NS	NA	REDIR	CPS	CPA
	0	4240	0	0	0	0	0
Dropped message	es on Fa4	1/12:					
Feature/Message	e RS	RA	NS	NA	REDIR	CPS	CPA
RA guard	0	16	0	0	0	0	0

Dropped reasons on Fa4/12:

RA guard 16 RA drop - reason:RA/REDIR received on un-authorized port

Table 205 describes the significant fields shown in the display:

Table 208 show ipv6 snooping counters Field Descriptions

Field	Description
Received messages on Fa4/12:	The messages received on an interface.
Protocol	The protocol for which messages are being counted.
Protocol message	The type of protocol messages being counted.
Bridged messages from Fa4/12:	Bridged messages from the interface.
Dropped messages an Fa4/12:	The messages dropped on the interface.
Feature/message	The feature that caused the drop, and the type and number of messages dropped.
RA drop - reason:RA/REDIR received on un-authorized port	The reason these messages were dropped.

show ipv6 snooping features

To display information about about snooping features configured on the router, use the **show ipv6 snooping features** command in user EXEC or privileged EXEC mode.

show ipv6 snooping features

Syntax Description

This command has no arguments or keywords.

Command Modes

User EXEC

Privileged EXEC (#)

Command History

Release	Modification
12.2(50)SY	This command was introduced.

Usage Guidelines

The **show ipv6 snooping features** command shows the first hop features that are configured on the router.

Examples

The following example shows that both IPv6 ND inspection and IPv6 RA Guard are configured on the router:

Router# show ipv6 snooping features

Feature name priority state RA guard 100 READY NDP inspection 20 READY

Table 205 describes the significant fields shown in the display.

Table 209 show ipv6 snooping features Field Descriptions

Field	Description
Feature name	The names of the IPv6 global policy features configured on the router.
Priority	The priority of the specified feature.
State	The state of the specified feature.

show ipv6 nd raguard policy

To display router advertisements (RAs) guard policy on all interfaces configured with RA guard, use the **show ipv6 nd raguard policy** command in privileged EXEC mode.

show ipv6 nd raguard policy [interface type number]

Syntax Description

interface type number	(Optional) Displays RA guard policy information for the specified interface
	type and number.

Command Modes

Privileged EXEC (#)

Command History

Release	Modification
12.2(50)SY	This command was introduced.

Usage Guidelines

The **show ipv6 nd raguard policy** command hows the options configured for the policy on interfaces where the feature is enabled.

Examples

The following example shows the policy configuration for a policy named raguard1, as well as all the interfaces where the policy is applied:

Router# show ipv6 nd raguard policy raguard1

Policy raguard1 configuration: device-role host

Policy applied on the following interfaces:

Et0/0 vlan all Et1/0 vlan all

Table 205 describes the significant fields shown in the display.

Table 210 show ipv6 nd raguard policy Field Descriptions

Field	Description
Policy raguard1 configuration:	Configuration of the specified policy.
device-role host	The role of the device attached to the port. This device configuration is that of host.
Policy applied on the following interfaces:	The specified interface on which RA guard is configured.

show ipv6 nd secured certificates

To display active IPv6 Secure Neighbor Discovery (SeND) certificates, use the **show ipv6 nd secured certificates** command in privileged EXEC mode.

show ipv6 nd secured certificates

Syntax Description

This command has no arguments or keywords.

Command Default

No SeND certificates are displayed.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.4(24)T	This command was introduced.

Usage Guidelines

The **show ipv6 nd secured certificates** command is used on hosts (routers configured in host mode) to display the certificates received over SeND (via Certificate Path Advertisement) and their state.

Examples

The following example displays active SeND certificates:

Router# show ipv6 nd secured certificates

```
Total number of entries: 1 / 32

Hash id RA certcnt certrcv state

DC0102E09FAF422D49ED79A846D2EBC1 0x00000778 no 1 1 CERT_VALIDATED

certificate No 0

subject hostname=sa14-72a,c=FR,st=fr,l=example,o=cisco,ou=nsstg,cn=72a

issuer c=FR,st=fr,l=example,o=cisco,ou=nsstg,cn=CA0
```

Table 205 describes the significant fields shown in the display.

Table 211 show ipv6 nd secured certificates Field Descriptions

Field	Description		
certcnt	Number of certificate for this chain.		
certrcv	Number of certifciate received in the chain.		
Hash	Key hash.		
id	Numero of the certificate.		
RA	Displays Yes if an RA is pending for this certificate.		
state	Current state of the certificate.		

Command	Description
show ipv6 cga modifier-db	Displays IPv6 CGA modifiers.
show ipv6 cga address-db	Displays IPv6 CGAs.
show ipv6 nd secured counters interface	Displays SeND counters on an interface.
show ipv6 nd secured nonce-db	Displays active SeND nonce entries.
show ipv6 nd secured timestamp-db	Displays active SeND time-stamp entries.

show ipv6 nd secured counters interface

To display IPv6 Secure Neighbor Discovery (SeND) counters on an interface, use the **show ipv6 nd secured counters interface** command in privileged EXEC mode.

show ipv6 nd secured counters interface interface

•	_		
Vuntav	Hac	Crin	tion
Syntax	DES	GIID	LIVII

interface

(Optional) Specifies the interface on which SeND counters are located.

Command Default

No SeND counter information is displayed.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.4(24)T	This command was introduced.

Examples

The following example displays SeND counters:

Router# show ipv6 nd secured counters interface ethernet0/0

e0/0 Received ND messages on Ethernet0/0:												
	rcvd	accept	SLLA	TLLA	PREFI	X MTU	CGA	RSA	TS	NO	NCE TA	CERT
	RA	66	65	63	0	62	63	63	63	63	0	0
	0											
	NS	8	8	8	0	0	0	8	8	8	8	0
	0											
	NA	20	20	0	8	0	0	19	19	19	14	0
	0											
	CPA	1	1	0	0	0	0	0	0	0	0	1
	1											

Dropped ND messages on Ethernet0/0:

Codes TIMEOUT: Timed out while waiting for rsp

	drop	TIMEOUT						
RA	1	1						
Sent ND	message	s on Eth	ernet0/0	:				
sent	aborted	SLLA	CGA	RSA	TS	NONCE	TA	
NS	14	0	14	14	14	14	14	0
NA	8	0	0	8	8	8	8	0
CPS	43	0	0	0	0	0	0	43
Router#								

Table 205 describes the significant fields shown in the display.

Table 212 show ipv6 nd secured counters interface Field Descriptions

Field	Description		
accept	Number of neighbor discovery (ND) messages accepted (messages that are not dropped).		
CERT	Number of messages received with the certificate option.		
CGA	Number of messages received with the CGA option.		
MTU	Number of messages received with the MTU option.		
NA	Number of NDP neighbor advertisements		
NONCE	Number of messages received with the NONCE option.		
NS	Number of NDP neighbor solicitions.		
PREFIX	Number of messages received with the PREFIX option.		
rcvd	Number of ND messages received on the interface.		
RA	Number of router advertisements.		
REDIR	Number of NDP redirect messages.		
RS	Router Solicit.		
RSA	Number of messages received with the RSA option.		
SLLA	Number of messages received with the ND SLLA option.		
TA	Number of messages received with the trust anchor option.		
TS	Number of messages received with the time stamp option.		

Command	Description
show ipv6 cga address-db	Displays IPv6 CGAs.
show ipv6 cga modifier-db	Displays IPv6 CGA modifiers.
show ipv6 nd secured certificates	Displays active SeND certificates.
show ipv6 nd secured nonce-db	Displays active SeND nonce entries.
show ipv6 nd secured timestamp-db	Displays active SeND timestamp entries.

show ipv6 nd secured nonce-db

To display active IPv6 Secure Neighbor Discovery (SeND) nonce database entries, use the **show ipv6 nd secured nonce-db** command in privileged EXEC mode.

show ipv6 nd secured nonce-db

Syntax Description

This command has no arguments or keywords.

Command Default

No SeND nonce information is displayed.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.4(24)T	This command was introduced.

Usage Guidelines

The **show ipv6 nd secured nonce-db** command is used to display the pending solicitations. There are rarely any pending solicitations because the solicitations are quickly answered and removed from the database.

Examples

The following example displays active SeND nonce entries. The output is self-explanatory.

Router# show ipv6 nd secured nonce-db

Total number of entries: 0

Command	Description
show ipv6 cga address-db	Displays IPv6 CGAs.
show ipv6 cga modifier-db	Displays IPv6 CGA modifiers.
show ipv6 nd secured certificates	Displays active SeND certificates.
show ipv6 nd secured counters interface	Displays SeND counters on an interface.
show ipv6 nd secured timestamp-db	Displays active SeND time stamp entries.

show ipv6 nd secured solicit-db

To display pending SEcure Neighbor Discovery (SEND) solicitations from peers, use the **show ipv6 nd secured solicit-db** command in privileged EXEC configuration mode.

show ipv6 nd secured solicit-db

Syntax Description This command has no arguments or keywords.

Command Default No pending SEND solicitation information is displayed.

Command Modes Privileged EXEC

Command History	Release	Modification	
	12.4(24)T	This command was introduced.	

Usage Guidelines Use this command to display pending SEND solicitations.

ExamplesThe following example displays pending SEcure Neighbor Discovery (SEND) solicitations from peers:

Router# show ipv6 nd secured solicit-db

show ipv6 nd secured timestamp-db

To display active Secure Neighbor Discovery (SeND) time-stamp database entries, use the **show ipv6 nd secured timestamp-db** command in privileged EXEC mode.

show ipv6 nd secured timestamp-db

Syntax Description

This command has no arguments or keywords.

Command Default

No pending SeND solicitation information is displayed.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.4(24)T	This command was introduced.

Usage Guidelines

The **show ipv6 nd secured timestamp-db** command displays the content of the time-stamp databse, which contains last received messages from peers. It also displays the delta and fuzz values.

Examples

The following example displays active SeND time-stamp database entries:

Router# show ipv6 nd secured timestamp-db

```
Total number of entries: 6 Number of unreached peer entries: 3 / 1024
FE80::289C:3308:4719:87F2 on Ethernet0/0, delta 300s, fuzz 1000ms
       Time to expire: 3h 41m 16s (reached)
        TSlast: 0x4936B97655FF = Wed Dec 3 16:53:10 2008
       RDlast: 0x4936B976438B = Wed Dec 3 16:53:10 2008
FE80::2441:88D1:22FC:3B77 on Ethernet0/0, delta 300s, fuzz 1000ms
       Time to expire: 3h 59m 53s (reached)
       TSlast: 0x4936BDD2E13E = Wed Dec 3 17:11:46 2008
       RDlast: 0x4936BDD2D0D6 = Wed Dec 3 17:11:46 2008
FE80::E2:F012:6F72:9E45 on Ethernet0/0, delta 300s, fuzz 1000ms
       Time to expire: 3h 4m 18s (unreached)
       TSlast: 0x4936B0CBB333 = Wed Dec 3 16:16:11 2008
       RDlast: 0x4936B0CBBD70 = Wed Dec 3 16:16:11 2008 2001:100::38C9:4A1A:2972:794E on
Ethernet0/0, delta 300s, fuzz 1000ms
        Time to expire: 3h 4m 19s (unreached)
        TSlast: 0x4936BA254FDA = Wed Dec 3 16:56:05 2008
       RDlast: 0x4936BA253F72 = Wed Dec 3 16:56:05 2008 2001:100::383E:6BD5:397:4A50 on
Ethernet0/0, delta 300s, fuzz 1000ms
       Time to expire: 3h 45m 0s (reached)
       TSlast: 0x4936BA55F2AA = Wed Dec 3 16:56:53 2008
       RDlast: 0x4936BA55E036 = Wed Dec 3 16:56:53 2008
2001:100::434:E62D:327D:B1E6 on Ethernet0/0, delta 300s, fuzz 1000ms
       Time to expire: 3h 4m 42s (unreached)
        TSlast: 0x4936B0E422D0 = Wed Dec 3 16:16:36 2008
        RDlast: 0x4936B0E42D0E = Wed Dec 3 16:16:36 2008
```

Table 213 describes the significant fields shown in the display.

Table 213 show ipv6 nd secured timestamp-db Field Descriptions

Field	Description
Total number of entries	Number of entries (peers) in the cache.
Time to expire	Remaining time before entry expires.
TSlast	Last peer timestamp value.
RDlast	Time when the last message was received from the peer.

Command	Description
show ipv6 cga address-db	Displays IPv6 CGAs.
show ipv6 cga modifier-db	Displays IPv6 CGA modifiers.
show ipv6 nd secured certificates	Displays active SeND certificates.
show ipv6 nd secured counters interface	Displays SeND counters on an interface.
show ipv6 nd secured nonce-db	Displays active SeND nonce entries.

show ipv6 neighbor binding

To display contents of a binding table, use the **show ipv6 neighbor binding** command in privileged EXEC mode.

show ipv6 neighbor binding [vlan vlan-id | **interface** type number | **ipv6** ipv6-address | **mac** mac-address]

Syntax Description

vlan vlan-id	(Optional) Displays the binding table entries that match the specified VLAN.
interface type number	(Optional) Displays the binding table entries that match the specified interface type and number.
ipv6 ipv6-address	(Optional) Displays the binding table entries that match the specified IPv6 address.
mac mac-address	(Optional) Displays the binding table entries that match the specified Media Access Control (MAC) address.

Command Modes

Privileged EXEC (#)

Command History

Release	Modification
12.2(50)SY	This command was introduced.

Usage Guidelines

The **show ipv6 neighbor binding** command displays the contents of the binding table. The display output can be specified by the specified VLAN, interface, IPv6 address, or MAC address. If no keywords or arguments are entered, all binding table contents are displayed.

The following keyword and argument combinations are allowed:

- vlan vlan-id: Displays all entries for the specified VLAN
- interface type number: Displays all entries for the specified interface
- **ipv6** *ipv6-address* + **interface** *type number* + **vlan** *vlan-id*: Displays a single entry that matches these three keyword and argument combinations
- **ipv6** *ipv6-address* + **interface** *type number*: Displays all entries for the specified IPv6 address and interface.
- **ipv6** *ipv6-address*: Displays all entries for the specified IPv6 address.

Examples

The following example displays the contents of a binding table:

Router# show ipv6 neighbor binding

	IPv6 address I	ink-Layer addr In	terface	vlan	prlvl age	state I	ime left
ND	FE80::A8BB:CCFF:FE01:F500	AABB.CC01.F500	Et0/0	100	0002 0	REACHABLE	8850
\mathbf{L}	FE80::21D:71FF:FE99:4900	001D.7199.4900	V1100	100	0080 7203	DOWN	N/A
ND	2001:600::1	AABB.CC01.F500	Et0/0	100	0003 0	REACHABLE	3181
ND	2001:300::1	AABB.CC01.F500	Et0/0	100	0007 0	REACHABLE	9559
ND	2001:100::2	AABB.CC01.F600	Et1/0	200	0002 0	REACHABLE	9196
L	2001:400::1	001D.7199.4900	V1100	100	0080 7188	DOWN	N/A
S	2001:500::1	000A.000B.000C	Fa4/13	300	0080 8676	STALE	N/A

Table 205 describes the significant fields shown in the display.

Table 214 show ipv6 neighbor binding Field Descriptions

Field	Description
address DB has 4 entries	Number of entries in the specified database.
Codes	

Command	Description
ipv6 neighbor binding	Changes the defaults of neighbor binding entries in a binding table.

show ipv6 neighbors

To display IPv6 neighbor discovery (ND) cache information, use the **show ipv6 neighbors** command in user EXEC or privileged EXEC mode.

show ipv6 neighbors [interface-type interface-number | ipv6-address | ipv6-hostname | **statistics**]

Syntax Description

interface-type	(Optional) Specifies the type of the interface from which IPv6 neighbor information is to be displayed.	
interface-number	(Optional) Specifies the number of the interface from which IPv6 neighbor information is to be displayed.	
ipv6-address	(Optional) Specifies the IPv6 address of the neighbor.	
	This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.	
ipv6-hostname	(Optional) Specifies the IPv6 hostname of the remote networking device.	
statistics	(Optional) Displays ND cache statistics.	

Command Default

All IPv6 ND cache entries are listed.

Command Modes

User EXEC (>)
Privileged EXEC (#)

Command History

Release	Modification
12.2(2)T	This command was introduced.
12.2(8)T	This command was modified. Support for static entries in the IPv6 neighbor discovery cache was added to the command output.
12.0(21)ST	This command was integrated into Cisco IOS Release 12.0(21)ST.
12.0(22)S	This command was integrated into Cisco IOS Release 12.0(22)S.
12.2(14)S	This command was integrated into Cisco IOS Release 12.2(14)S.
12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.
12.2(25)SG	This command was integrated into Cisco IOS Release 12.2(25)SG.
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
12.2(33)SXH	This command was integrated into Cisco IOS Release 12.2(33)SXH.
Cisco IOS XE Release 2.1	This command was integrated into Cisco IOS XE Release 2.1 and introduced on Cisco ASR 1000 Series Routers.
Cisco IOS XE	This command was modified. This command was updated to display the
Release 2.6	number and the limit of ND cache entries on a particular interface.
15.1(3)T	This command was integrated into Cisco IOS Release 15.1(3)T.

Usage Guidelines

When the *interface-type* and *interface-number* arguments are not specified, cache information for all IPv6 neighbors is displayed. Specifying the *interface-type* and *interface-number* arguments displays only cache information about the specified interface.

Specifying the **statistics** keyword displays ND cache statistics.

Examples

The following is sample output from the **show ipv6 neighbors** command when entered with an interface type and number:

Router# show ipv6 neighbors ethernet 2

```
      IPv6 Address
      Age Link-layer Addr State Interface

      2000:0:0:4::2
      0 0003.a0d6.141e
      REACH Ethernet2

      FE80::203:A0FF:FED6:141E
      0 0003.a0d6.141e
      REACH Ethernet2

      3001:1::45a
      - 0002.7d1a.9472
      REACH Ethernet2
```

The following is sample output from the **show ipv6 neighbors** command when entered with an IPv6 address:

Router# show ipv6 neighbors 2000:0:0:4::2

```
IPv6 Address Age Link-layer Addr State Interface 2000:0:0:4::2 0 0003.a0d6.141e REACH Ethernet2
```

Table 215 describes the significant fields shown in the displays.

Table 215 show ipv6 neighbors Field Descriptions

Field	Description
IPv6 Address	IPv6 address of neighbor or interface.
Age	Time (in minutes) since the address was confirmed to be reachable. A hyphen (-) indicates a static entry.
Link-layer Addr	MAC address. If the address is unknown, a hyphen (-) is displayed.

Table 215 show ipv6 neighbors Field Descriptions (continued)

Field	Description
State	The state of the neighbor cache entry. Following are the states for dynamic entries in the IPv6 neighbor discovery cache:
	• INCMP (Incomplete)—Address resolution is being performed on the entry. A neighbor solicitation message has been sent to the solicited-node multicast address of the target, but the corresponding neighbor advertisement message has not yet been received.
	• REACH (Reachable)—Positive confirmation was received within the last ReachableTime milliseconds that the forward path to the neighbor was functioning properly. While in REACH state, the device takes no special action as packets are sent.
	• STALE—More than ReachableTime milliseconds have elapsed since the last positive confirmation was received that the forward path was functioning properly. While in STALE state, the device takes no action until a packet is sent.
	DELAY—More than ReachableTime milliseconds have elapsed since the last positive confirmation was received that the forward path was functioning properly. A packet was sent within the last DELAY_FIRST_PROBE_TIME seconds. If no reachability confirmation is received within DELAY_FIRST_PROBE_TIME seconds of entering the DELAY state, send a neighbor solicitation message and change the state to PROBE.
	 PROBE—A reachability confirmation is actively sought by resending neighbor solicitation messages every RetransTimer milliseconds until a reachability confirmation is received.
	• ????—Unknown state.
	Following are the possible states for static entries in the IPv6 neighbor discovery cache:
	• INCMP (Incomplete)—The interface for this entry is down.
	• REACH (Reachable)—The interface for this entry is up.
	Note Reachability detection is not applied to static entries in the IPv6 neighbor discovery cache; therefore, the descriptions for the INCMP (Incomplete) and REACH (Reachable) states are different for dynamic and static cache entries.
Interface	Interface from which the address was reachable.

The following is sample output from the **show ipv6 neighbors** command with the **statistics** keyword:

Router# show ipv6 neighbor statistics

```
IPv6 ND Statistics
Entries 2, High-water 2, Gleaned 1, Scavenged 0
Entry States
   INCMP 0   REACH 0   STALE 2   GLEAN 0   DELAY 0   PROBE 0
Resolutions (INCMP)
   Requested 1, timeouts 0, resolved 1, failed 0
   In-progress 0, High-water 1, Throttled 0, Data discards 0
Resolutions (PROBE)
```

Requested 3, timeouts 0, resolved 3, failed 0

Table 216 describes the significant fields shown in this display:

Table 216 show ipv6 neighbors statistics Field Descriptions

Field	Description		
Entries	Total number of ND neighbor entries in the ND cache.		
High-Water	Maximum amount (so far) of ND neighbor entries in ND cache.		
Gleaned	Number of ND neighbor entries gleaned (that is, learned from a neighbor NA or other ND packet).		
Scavenged	Number of stale ND neighbor entries that have timed out and been removed from the cache.		
Entry States ¹	Number of ND neighbor entries in each state.		
Resolutions (INCMP)	Statistics for neighbor resolutions attempted in INCMP state ¹ (that is, resolutions prompted by a data packet). Details about the resolutions attempted in INCMP state are follows:		
	Requested—Total number of resolutions requested.		
	• Timeouts—Number of timeouts during resolutions.		
	• Resolved—Number of successful resolutions.		
	• Failed—Number of unsuccessful resolutions.		
	• In-progress—Number of resolutions in progress.		
	• High-water—Maximum number (so far) of resolutions in progress.		
	• Throttled—Number of times resolution request was ignored due to maximum number of resolutions in progress limit.		
	 Data discards—Number of data packets discarded that are awaiting neighbor resolution. 		
Resolutions (PROBE)	Statistics for neighbor resolutions attempted in PROBE state (that is, re-resolutions of existing entries prompted by a data packet):		
	Requested—Total number of resolutions requested.		
	Timeouts—Number of timeouts during resolutions.		
	Resolved—Number of successful resolutions.		
	• Failed—Number of unsuccessful resolutions.		

^{1.} Reachability detection is not applied to static entries in the IPv6 neighbor discovery cache. A static entry is always in the REACH (Reachable) state unless the associated interface is down or IPv6 is not enabled on the interface.

The following example shows the ND cache limit on port-channel 1.11:

Router# show ipv6 neighbor port-channel1.11

Interface Port-channel1.11, entries 4, static 0, limit 4, ignored 0

IPv6 Address	Age	Link-layer Addr	State	Interface
2001:2::93	0	aabb.cc00.5d02	REACH	Po1.11
FE80::A8BB:CCFF:FE00:5D02	0	aabb.cc00.5d02	DELAY	Po1.11
2001:2::92	0	aabb.cc00.5d01	STALE	Po1.11
2001:2::95	0	aabb.cc00.5d01	STALE	Po1.11

show ipv6 nhrp

To display Next Hop Resolution Protocol (NHRP) mapping information, use the **show ipv6 nhrp** command in user EXEC or privileged EXEC mode.

show ipv6 nhrp [dynamic [ipv6-address] | incomplete | static] [address | interface] [brief | detail] [purge]

Syntax Description

dynamic	(Optional) Displays dynamic (learned) IPv6-to-nonbroadcast multiaccess address (NBMA) mapping entries. Dynamic NHRP mapping entries are obtained from NHRP resolution/registration exchanges. See Table 217 for types, number ranges, and descriptions.
ipv6-address	(Optional) The IPv6 address of the cache entry.
incomplete	(Optional) Displays information about NHRP mapping entries for which the IPv6-to-NBMA is not resolved. See Table 217 for types, number ranges, and descriptions.
static	(Optional) Displays static IPv6-to-NBMA address mapping entries. Static NHRP mapping entries are configured using the ipv6 nhrp map command. See Table 217 for types, number ranges, and descriptions.
address	(Optional) NHRP mapping entry for specified protocol addresses.
interface	(Optional) NHRP mapping entry for the specified interface. See Table 217 for types, number ranges, and descriptions.
brief	(Optional) Displays a short output of the NHRP mapping.
detail	(Optional) Displays detailed information about NHRP mapping.
purge	(Optional) Displays NHRP purge information.

Command Modes

User EXEC (>)
Privileged EXEC (#)

Command History

Release	Modification
12.4(20)T	This command was introduced.

Usage Guidelines

Table 217 lists the valid types, number ranges, and descriptions for the optional interface argument.

The valid types can vary according to the platform and interfaces on the platform.

Table 217 Valid Types, Number Ranges, and Interface Description

Valid Types	Number Ranges	Interface Descriptions
async	1	Async
atm	0 to 6	ATM

Table 217 Valid Types, Number Ranges, and Interface Description (continued)

Valid Types	Number Ranges	Interface Descriptions
bvi	1 to 255	Bridge-Group Virtual Interface
cdma-ix	1	CDMA Ix
ctunnel	0 to 2147483647	C-Tunnel
dialer	0 to 20049	Dialer
ethernet	0 to 4294967295	Ethernet
fastethernet	0 to 6	FastEthernet IEEE 802.3
lex	0 to 2147483647	Lex
loopback	0 to 2147483647	Loopback
mfr	0 to 2147483647	Multilink Frame Relay bundle
multilink	0 to 2147483647	Multilink-group
null	0	Null
port-channel	1 to 64	Port channel
tunnel	0 to 2147483647	Tunnel
vif	1	PGM multicast host
virtual-ppp	0 to 2147483647	Virtual PPP
virtual-template	1 to 1000	Virtual template
virtual-tokenring	0 to 2147483647	Virtual Token Ring
xtagatm	0 to 2147483647	Extended tag ATM

Examples

The following is sample output from the show ipv6 nhrp command:

Router# show ipv6 nhrp

2001:0db8:3c4d:0015::1a2f:3d2c/48 via 2001:0db8:3c4d:0015::1a2f:3d2c Tunnel0 created 6d05h, never expire

Table 218 describes the significant fields shown in the display.

Table 218 show ipv6 nhrp Field Descriptions

Field	Description
2001:0db8:3c4d:0015::1a2f: 3d2c/48	Target network.
2001:0db8:3c4d:0015::1a2f:3d2c	Next hop to reach the target network.
Tunnel0	Interface through which the target network is reached.
created 6d05h	Length of time since the entry was created (dayshours).
never expire	Indicates that static entries never expire.

The following is sample output from the show ipv6 nhrp command using the brief keyword:

Router# show ipv6 nhrp brief

2001:0db8:3c4d:0015:0000:0000:1a2f:3d2c/48
via 2001:0db8:3c4d:0015:0000:0000:1a2f:3d2c
Interface: Tunnel0 Type: static
NBMA address: 10.11.11.99

Table 219 describes the significant fields shown in the display.

Table 219 show ipv6 nhrp brief Field Descriptions

Field	Description	
2001:0db8:3c4d:0015:0000:0000: 1a2f:3d2c/48	Target network.	
via 2001:0db8:3c4d:0015:0000:0000: 1a2f:3d2c	Next Hop to reach the target network.	
Interface: Tunnel0	Interface through which the target network is reached.	
Type: static	Type of tunnel. The types can be one of the following:	
	• dynamic—NHRP mapping is obtained dynamically. The mapping entry is created using information from the NHRP resolution and registrations.	
	• static—NHRP mapping is configured statically. Entries configured by the ipv6 nhrp map command are marked static.	
	• incomplete—The NBMA address is not known for the target network.	

Command	Description
ipv6 nhrp map	Statically configures the IPv6-to-NBMA address mapping of IP destinations connected to an NBMA network.

show ipv6 nhrp multicast

To display Next Hop Resolution Protocol (NHRP) multicast mapping information, use the **show ipv6 nhrp multicast** command in user EXEC or privileged EXEC mode.

show ipv6 nhrp multicast [ipv6-address | interface]

Syntax Description

ipv6-address	(Optional) The IPv6 address of the multicast mapping entry.
interface	(Optional) All multicast mapping entries of the NHRP network for the interface. See Table 220 for interface types, number ranges, and descriptions.

Command Modes

User EXEC (>)
Privileged EXEC (#)

Command History

Release	Modification
12.4(20)T	This command was introduced.

Usage Guidelines

Table 220 lists the valid types, number ranges, and descriptions for the optional *interface* argument.

The valid types can vary according to the platform and interfaces on the platform.

Table 220 Valid Types, Number Ranges, and Interface Descriptions

Valid Types	Number Ranges	Interface Descriptions
async	1	Async
atm	0 to 6	ATM
bvi	1 to 255	Bridge-Group Virtual Interface
cdma-ix	1	CDMA Ix
ctunnel	0 to 2147483647	C-Tunnel
dialer	0 to 20049	Dialer
ethernet	0 to 4294967295	Ethernet
fastethernet	0 to 6	FastEthernet IEEE 802.3
lex	0 to 2147483647	Lex
loopback	0 to 2147483647	Loopback
mfr	0 to 2147483647	Multilink Frame Relay bundle
multilink	0 to 2147483647	Multilink-group
null	0	Null

Table 220 Valid Types, Number Ranges, and Interface Descriptions (continued)

Valid Types	Number Ranges	Interface Descriptions
port-channel	1 to 64	Port channel
tunnel	0 to 2147483647	Tunnel
vif	1	PGM multicast host
virtual-ppp	0 to 2147483647	Virtual PPP
virtual-template	1 to 1000	Virtual template
virtual-tokenring	0 to 2147483647	Virtual Token Ring
xtagatm	0 to 2147483647	Extended tag ATM

Command	Description
ipv6 nhrp map	Statically configures the IPv6-to-NBMA address mapping of IPv6 destinations connected to an NBMA network.

show ipv6 nhrp nhs

To display Next Hop Resolution Protocol (NHRP) next hop server (NHS) information, use the **show ipv6 nhrp nhs** command in user EXEC or privileged EXEC mode.

show ipv6 nhrp nhs [interface-type interface-number] [detail | redundancy [cluster number | preempted | running | waiting]

Syntax Description

interface-type	(Optional) Type of interface for which NHS information should be displayed. See Table 220 for types, number ranges, and descriptions.
interface-number	(Optional) Interface or subinterface number. For more information about the numbering syntax for your networking device, use the question mark (?) online help function.
detail	(Optional) Displays detailed NHS information.
redundancy	(Optional) Displays NHS recovery information.
cluster number	(Optional) Displays NHS recovery cluster information. The range is from 0 to 10.
preempted	(Optional) Displays NHSs that come up and are preempted.
running	(Optional) Displays NHSs that are responding or expecting replies.
waiting	(Optional) Displays NHSs that are waiting to be scheduled.

Command Modes

User EXEC Privileged EXEC

Command History

Release	Modification
12.4(20)T	This command was introduced.
15.1(2)T	This command was modified. The redundancy , cluster <i>number</i> , preempted , running , and waiting keywords and argument were added.

Usage Guidelines

Table 220 lists the valid types, number ranges, and descriptions for the optional *interface-interface* argument.

The valid types can vary according to the platform and interfaces on the platform.

Table 221 Valid Types, Number Ranges, and Interface Descriptions

Valid Types	Number Ranges	Interface Descriptions
async	1	Async
atm	0 to 6	ATM
bvi	1 to 255	Bridge-Group Virtual Interface

Table 221 Valid Types, Number Ranges, and Interface Descriptions (continued)

Valid Types	Number Ranges	Interface Descriptions
cdma-ix	1	CDMA Ix
ctunnel	0 to 2147483647	C-Tunnel
dialer	0 to 20049	Dialer
ethernet	0 to 4294967295	Ethernet
fastethernet	0 to 6	Fast Ethernet IEEE 802.3
lex	0 to 2147483647	Lex
loopback	0 to 2147483647	Loopback
mfr	0 to 2147483647	Multilink Frame Relay bundle
multilink	0 to 2147483647	Multilink group
null	0	Null
port-channel	1 to 64	Port channel
tunnel	0 to 2147483647	Tunnel
vif	1	PGM multicast host
virtual-ppp	0 to 2147483647	Virtual PPP
virtual-template	1 to 1000	Virtual template
virtual-tokenring	0 to 2147483647	Virtual Token Ring
xtagatm	0 to 2147483647	Extended tag ATM

Examples

The following is sample output from the show ipv6 nhrp nhs command:

Router# show ipv6 nhrp nhs

```
Legend: E=Expecting replies, R=Responding, W=Waiting
Tunnel0:
192.0.2.1 W priority = 2 cluster = 0
192.0.2.2 RE priority = 0 cluster = 0
192.0.2.3 RE priority = 1 cluster = 0
```

The following is sample output from the **show ipv6 nhrp nhs redundancy** command:

Router# show ipv6 nhrp nhs redundancy

```
Legend: E=Expecting replies, R=Responding, W=Waiting
No. Interface Cluster NHS Priority Cur-State Cur-Queue Prev-State Prev-Queue
1 Tunnel0 5 2001::101 1 E Running RE Running
No. Interface Cluster Status Max-Con Total-NHS Responding Expecting Waiting Fallback
1 Tunnel0 5 Disable Not Set 1 0 1 0 0
```

Table 222 describes the significant field shown in the display.

Table 222 show ipv6 nhrp nhs Field Descriptions

Field	Description
Tunnel0	Interface through which the target network is reached.
priority	Priority value assigned to the NHS.
cluster	Group to which the NHS belong.
E=Expecting replies	NHSs that are active and expecting replies.
R=Responding	NHSs that are active and responding.
W=Waiting	NHSs that are preempted and are not in the active probe list.

Command	Description
ip nhrp map	Statically configures the IP-to-NBMA address mapping of IP destinations connected to an NBMA network.
show ip nhrp	Displays NHRP mapping information.
show ip nhrp multicast	Displays NHRP multicast mapping information.
show ip nhrp summary	Displays NHRP mapping summary information.
show ip nhrp traffic	Displays NHRP traffic statistics.

show ipv6 nhrp summary

To display Next Hop Resolution Protocol (NHRP) mapping summary information, use the **show ipv6 nhrp summary** command in user EXEC or privileged EXEC mode.

show ipv6 nhrp summary

Syntax Description

This command has no arguments or keywords.

Command Modes

User EXEC (>)
Privileged EXEC (#)

Command History

Release	Modification
12.4(20)T	This command was introduced.

Usage Guidelines

Use this command to monitor NHRP.

Examples

The following is sample output from the **show ipv6 nhrp summary** command:

Router# show ipv6 nhrp summary

```
IPV6 NHRP cache 1 entry, 256 bytes
1 static 0 dynamic 0 incomplete
```

Table 222 describes the significant field shown in the display.

Table 223 show ipv6 nhrp summary Field Descriptions

Field Output	Description
static	NHRP mapping is configured statically. Entries configured by the ipv6 nhrp map command are marked static.
dynamic	NHRP mapping is obtained dynamically. The mapping entry is created using information from the NHRP resolution and registrations
incomplete	The nonbroadcast multiaccess (NBMA) address is not known for the target network.

Command	Description
ip nhrp map	Statically configures the IPv6-to-NBMA address mapping of IP destinations connected to an NBMA network.
show ipv6 nhrp	Displays NHRP mapping information.

show ipv6 nhrp traffic

To display Next Hop Resolution Protocol (NHRP) traffic statistics, use the **show ipv6 nhrp traffic** command in privileged EXEC mode.

show ipv6 nhrp traffic [interface tunnel number]

Syntax Description

interface	(Optional) Displays NHRP traffic information for a given interface.
tunnel number	(Optional) Specifies the tunnel interface number.

Command Modes

Privileged EXEC (#)

Command History

Release	Modification
12.4(20)T	This command was introduced.

Usage Guidelines

Use this command to monitor NHRP traffic information.

Examples

The following example provides output for IPv6 NHRP traffic statistics:

Router# show ipv6 nhrp traffic

Tunnel0: Max-send limit:100Pkts/10Sec, Usage:0%
Sent: Total 8
1 Resolution Request 1 Resolution Reply 6 Registration Request
0 Registration Reply 0 Purge Request 0 Purge Reply
0 Error Indication 0 Traffic Indication
Rcvd: Total 5
1 Resolution Request 1 Resolution Reply 0 Registration Request
2 Registration Reply 0 Purge Request 0 Purge Reply
0 Error Indication 1 Traffic Indication

Table 222 describes the significant field shown in the display.

Table 224 show ipv6 nhrp traffic Field Descriptions

Field Output	Description
tunnel0:	Displays information about a specified tunnel; in thhis case, Tunnel0.
Max-send limit: 100Pkts/10Sec, Usage: 0%	The maximum number of packets allowed to be sent in a specified time, and the current usage.
Sent: Total 8	Number of packets sent.
1 Resolution Request 1 Resolution Reply 6 Registration Request 0 Registration Reply 0 Purge Request 0 Purge Reply	Description and breakdown of of the types of packets sent.

Table 224 show ipv6 nhrp traffic Field Descriptions (continued)

Field Output	Description
0 Error Indication 0 Traffic Indication	Number of errors in the sent packets.
Rcvd: Total 5	Number of packets received.
1 Resolution Request 1 Resolution Reply 0 Registration Request 2 Registration Reply 0 Purge Request 0 Purge Reply	Description and breakdown of the types of packets received.
0 Error Indication 1 Traffic Indication	Number of errors in the sent packets.

show ipv6 ospf

To display general information about Open Shortest Path First (OSPF) routing processes, use the **show ipv6 ospf** command in user EXEC or privileged EXEC mode.

show ipv6 ospf [process-id] [area-id] [rate-limit]

•		_	
51	/ntax	Descr	ıntı∩n
•	III CUA	D 0001	·puon

process-id	(Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here is the number assigned administratively when the OSPF routing process is enabled.
area-id	(Optional) Area ID. This argument displays information about a specified area only.
rate-limit	(Optional) Rate-limited link-state advertisements (LSAs). This keyword displays LSAs that are currently being rate limited, together with the remaining time to the next generation.

Command Modes

User EXEC Privileged EXEC

Command History

Release	Modification
12.0(24)S	This command was introduced.
12.2(15)T	This command was integrated into Cisco IOS Release 12.2(15)T.
12.2(18)S	This command was integrated into Cisco IOS Release 12.2(18)S.
12.3(4)T	Command output is changed when authentication is enabled.
12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.
12.2(25)SG	This command was integrated into Cisco IOS Release 12.2(25)SG.
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
12.4(9)T	Command output was updated to display OSPF for IPv6 encryption information.
12.4(15)XF	Command output was modified to include VMI PPPoE process-level values.
12.4(15)T	This command was integrated into Cisco IOS Release 12.4(15)T
12.2(33)SXH	This command was integrated into Cisco IOS Release 12.2(33)SXH.
12.2(33)SRC	The rate-limit keyword was added. Command output was modified to include the configuration values for SPF and LSA throttling timers.
12.2(33)SB	This command was integrated into Cisco IOS Release 12.2(33)SB.
Cisco IOS XE Release 2.1	This command was integrated into Cisco IOS XE Release 2.1.
15.0(1)M	This command was integrated into Cisco IOS Release 12.5(1)M.
15.1(2)T	This command was modified. Support for IPv6 was added to Cisco IOS Release 15.1(2)T.

Examples

show ipv6 ospf Output Example

The following is sample output from the **show ipv6 ospf** command:

Router# show ipv6 ospf

```
Routing Process "ospfv3 1" with ID 10.10.10.1
SPF schedule delay 5 secs, Hold time between two SPFs 10 secs
Minimum LSA interval 5 secs. Minimum LSA arrival 1 secs
LSA group pacing timer 240 secs
Interface flood pacing timer 33 msecs
Retransmission pacing timer 66 msecs
Number of external LSA 0. Checksum Sum 0x000000
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
   Area BACKBONE(0)
       Number of interfaces in this area is 1
       MD5 Authentication, SPI 1000
       SPF algorithm executed 2 times
       Number of LSA 5. Checksum Sum 0x02A005
       Number of DCbitless LSA 0
        Number of indication LSA 0
       Number of DoNotAge LSA 0
       Flood list length 0
```

Table 225 describes the significant fields shown in the display.

Table 225 show ipv6 ospf Field Descriptions

Field	Description
Routing process "ospfv3 1" with ID 10.10.10.1	Process ID and OSPF router ID.
LSA group pacing timer	Configured LSA group pacing timer (in seconds).
Interface flood pacing timer	Configured LSA flood pacing timer (in milliseconds).
Retransmission pacing timer	Configured LSA retransmission pacing timer (in milliseconds).
Number of areas	Number of areas in router, area addresses, and so on.

show ipv6 ospf With Area Encryption Example

The following sample output shows the **show ipv6 ospf** command with area encryption information:

Router# show ipv6 ospf

```
Routing Process "ospfv3 1" with ID 10.0.0.1
It is an area border router
SPF schedule delay 5 secs, Hold time between two SPFs 10 secs
Minimum LSA interval 5 secs. Minimum LSA arrival 1 secs
LSA group pacing timer 240 secs
Interface flood pacing timer 33 msecs
Retransmission pacing timer 66 msecs
Number of external LSA 0. Checksum Sum 0x000000
Number of areas in this router is 2. 2 normal 0 stub 0 nssa
Reference bandwidth unit is 100 mbps
   Area BACKBONE(0)
       Number of interfaces in this area is 2
        SPF algorithm executed 3 times
        Number of LSA 31. Checksum Sum 0x107493
        Number of DCbitless LSA 0
        Number of indication LSA 0
        Number of DoNotAge LSA 20
        Flood list length 0
```

```
Area 1

Number of interfaces in this area is 2

NULL Encryption SHA-1 Auth, SPI 1001

SPF algorithm executed 7 times

Number of LSA 20. Checksum Sum 0x095E6A

Number of DCbitless LSA 0

Number of indication LSA 0

Number of DONotAge LSA 0

Flood list length 0
```

Table 226 describes the significant fields shown in the display.

Table 226 show ipv6 ospf with Area Encryption Information Field Descriptions

Field	Description
Area 1	Subsequent fields describe area 1.
NULL Encryption SHA-1 Auth, SPI 1001	Displays the encryption algorithm (in this case, null, meaning no encryption algorithm is used), the authentication algorithm (SHA-1), and the security policy index (SPI) value (1001).

The following example displays the configuration values for SPF and LSA throttling timers:

```
Router# show ipv6 ospf
```

```
Routing Process "ospfv3 1" with ID 10.9.4.1

Event-log enabled, Maximum number of events: 1000, Mode: cyclic It is an autonomous system boundary router

Redistributing External Routes from, ospf 2

Initial SPF schedule delay 5000 msecs

Minimum hold time between two consecutive SPFs 10000 msecs

Maximum wait time between two consecutive SPFs 10000 msecs

Minimum LSA interval 5 secs

Minimum LSA arrival 1000 msecs
```

Table 227 describes the significant fields shown in the display.

Table 227 show ipv6 ospf with SPF and LSA Throttling Timer Field Descriptions

Field	Description
Initial SPF schedule delay	Delay time of SPF calculations.
Minimum hold time between two consecutive SPFs	Minimum hold time between consecutive SPF calculations.
Maximum wait time between two consecutive SPFs 10000 msecs	Maximum hold time between consecutive SPF calculations.
Minimum LSA interval 5 secs	Minimum time interval (in seconds) between link-state advertisements.
Minimum LSA arrival 1000 msecs	Maximum arrival time (in milliseconds) of link-state advertisements.

The following example shows information about LSAs that are currently being rate limited:

```
Router# show ipv6 ospf rate-limit
```

List of LSAs that are in rate limit Queue

```
LSAID: 0.0.0.0 Type: 0x2001 Adv Rtr: 10.55.55.55 Due in: 00:00:00.500 LSAID: 0.0.0.0 Type: 0x2009 Adv Rtr: 10.55.55.55 Due in: 00:00:00.500
```

Table 228 describes the significant fields shown in the display.

Table 228 show ipv6 ospf rate-limit Field Descriptions

Field	Description
LSAID	Link-state ID of the LSA.
Туре	Description of the LSA.
Adv Rtr	ID of the advertising router.
Due in:	Remaining time until the generation of the next event.

show ipv6 ospf border-routers

To display the internal Open Shortest Path First (OSPF) routing table entries to an Area Border Router (ABR) and Autonomous System Boundary Router (ASBR), use the **show ipv6 ospf border-routers** command in user EXEC or privileged EXEC mode.

show ip ospf [process-id] border-routers

•		
Syntax	Descri	ntınn
Officar	DUSUII	Pulli

process-id	(Optional) Internal identification. It is locally assigned and can be any
	positive integer. The number used here is the number assigned
	administratively when the OSPF routing process is enabled.

Command Modes

User EXEC Privileged EXEC

Command History

Release	Modification
12.0(24)S	This command was introduced.
12.2(15)T	This command was integrated into Cisco IOS Release 12.2(15)T.
12.2(18)S	This command was integrated into Cisco IOS Release 12.2(18)S.
12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
12.2(33)SXH	This command was integrated into Cisco IOS Release 12.2(33)SXH.

Examples

The following is sample output from the **show ipv6 ospf border-routers** command:

Router# show ipv6 ospf border-routers

```
OSPFv3 Process 1 internal Routing Table

Codes: i - Intra-area route, I - Inter-area route

i 172.16.4.4 [2] via FE80::205:5FFF:FED3:5808, FastEthernet0/0, ABR, Area 1, SPF 13 i 172.16.4.4 [1] via FE80::205:5FFF:FED3:5406, POS4/0, ABR, Area 0, SPF 8
```

i 172.16.3.3 [1] via FE80::205:5FFF:FED3:5808, FastEthernet0/0, ASBR, Area 1, SPF 3

Table 229 describes the significant fields shown in the display.

Table 229 show ipv6 ospf border-routers Field Descriptions

Field	Description
i - Intra-area route, I - Inter-area route	The type of this route.
172.16.4.4, 172.16.3.3	Router ID of the destination router.
[2], [1]	Metric used to reach the destination router.

Table 229 show ipv6 ospf border-routers Field Descriptions (continued)

Field	Description
FE80::205:5FFF:FED3:5808, FE80::205:5FFF:FED3:5406, FE80::205:5FFF:FED3:5808	Link-local routers.
FastEthernet0/0, POS4/0	The interface on which the IPv6 OSPF protocol is configured.
ABR	Area border router.
ASBR	Autonomous system boundary router.
Area 0, Area 1	The area ID of the area from which this route is learned.
SPF 13, SPF 8, SPF 3	The internal number of the shortest path first (SPF) calculation that installs this route.

show ipv6 ospf database

To display lists of information related to the Open Shortest Path First (OSPF) database for a specific router, use the **show ipv6 ospf database** command in user EXEC or privileged EXEC mode. The various forms of this command deliver information about different OSPF link-state advertisements (LSAs).

```
show ipv6 ospf [process-id [area-id]] database [adv-router router-id | self-originate] [internal]
show ipv6 ospf [process-id [area-id]] database [database-summary]
show ipv6 ospf [process-id [area-id]] database [external [ipv6-prefix] [link-state-id]] |
    [adv-router router-id | self-originate] [internal]
show ipv6 ospf [process-id [area-id]] database [grace]
show ipv6 ospf [process-id [area-id]] database [inter-area prefix [ipv6-prefix] [link-state-id]] |
    [adv-router router-id | self-originate] [internal]
show ipv6 ospf [process-id [area-id]] database [inter-area router [destination-router-id]
    [link-state-id]] | [adv-router router-id | self-originate] [internal]
show ipv6 ospf [process-id [area-id]] database [link [interface interface-name] [link-state-id]]
    [adv-router router-id | self-originate] [internal]
show ipv6 ospf [process-id [area-id]] database [network [link-state-id]] [adv-router router-id]
    self-originate] [internal]
show ipv6 ospf [process-id [area-id]] database [nssa-external [ipv6-prefix] [link-state-id]]
    [adv-router router-id | self-originate] [internal]
show ipv6 ospf [process-id [area-id]] database [prefix [ref-lsa {router | network }] [link-state-id]]
    [adv-router router-id | self-originate] [internal]
show ipv6 ospf [process-id [area-id]] database [router [link-state-id]] [adv-router router-id |
    self-originate] [internal]
show ipv6 ospf [process-id [area-id]] database [[router | network | [external ipv6-prefix |
    nssa-external ipv6-prefix | inter-area {prefix ipv6-prefix | router}] | link | prefix] |
    database-summary] [adv-router router-id | self-originate] [internal]
show ipv6 ospf [process-id [area-id]] database [unknown [{area | as | link} [link-state-id]]]
    [adv-router router-id | self-originate] [internal]
```

Syntax Description

process-id	(Optional) Displays information only about a specified process.	
area-id	(Optional) Displays information only about a specified area. The <i>area-id</i> argument can only be used if the <i>process-id</i> argument is specified.	
adv-router router-id	(Optional) Displays all the LSAs of the advertising router. This argument must be in the form documented in RFC 2740 where the address is specified in hexadecimal using 16-bit values between colons.	
self-originate	(Optional) Displays only self-originated LSAs (from the local router).	
internal	(Optional) Internal LSA information.	
database-summary	(Optional) Displays how many of each type of LSAs exist for each area in the database, and the total.	
external	(Optional) Displays information only about the external LSAs.	
ipv6-prefix	(Optional) Link-local IPv6 address of the neighbor. This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.	
link-state-id	(Optional) An integer used to differentiate LSAs. In network and link LSAs, the link-state ID matches the interface index.	
inter-area prefix	(Optional) Displays information only about LSAs based on inter-area prefix LSAs.	
inter-area router	(Optional) Displays information only about LSAs based on inter-area router LSAs.	
destination-router-id	(Optional) The specified destination router ID.	
link	(Optional) Displays information about the link LSAs.	
interface	(Optional) Displays information about the LSAs filtered by interface context.	
interface-name	(Optional) Specifies the LSA interface.	
network	(Optional) Displays information only about the network LSAs.	
nssa-external	(Optional) Displays information only about the not so stubby area (NSSA) external LSAs.	
prefix	(Optional) Displays information on the intra-area-prefix LSAs.	
ref-lsa {router network}	(Optional) Further filters the prefix LSA type.	
router	(Optional) Displays information only about the router LSAs.	
unknown	(Optional) Displays all LSAs with unknown types.	
area	(Optional) Filters unknown area LSAs.	
as	(Optional) Filters unknown autonomous system (AS) LSAs.	
link	(Optional) When following the unknown keyword, the link keyword filters link-scope LSAs.	

Command Modes

User EXEC Privileged EXEC

Command History

Release	Modification
12.0(24)S	This command was introduced.
12.2(15)T	This command was integrated into Cisco IOS Release 12.2(15)T.
12.2(18)S	This command was integrated into Cisco IOS Release 12.2(18)S.
12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
12.2(33)SXH	This command was integrated into Cisco IOS Release 12.2(33)SXH.
Cisco IOS XE Release 2.1	The grace keyword was added to show information about OSPFv3 graceful restart.

Usage Guidelines

The **adv-router** keyword requires a router ID. The **self-originate** keyword displays only those LSAs that originated from the local router. Both of these keywords can be appended to all other keywords used with the **show ipv6 ospf** database command to provide more detailed information.

Examples

The following is sample output from the **show ipv6 ospf database** command when no arguments or keywords are used:

Router# show ipv6 ospf database

OSPFv3 Router with ID (172.16.4.4) (Process ID 1)

Router Link States (Area 0)

ADV Router	Age	Seq#	Fragment I	D Link cou	nt Bits
172.16.4.4	239	0x80000003	0	1	В
172.16.6.6	239	0x80000003	0	1	В
	Inter Area Prefix	k Link States	(Area 0)		
ADV Router	Age	Seq#	Prefix		
172.16.4.4	249	0x80000001	FEC0:3344:	:/32	
172.16.4.4	219	0x80000001	FEC0:3366:	:/32	
172.16.6.6	247	0x80000001	FEC0:3366:	:/32	
172.16.6.6	193	0x80000001	FEC0:3344:	:/32	
172.16.6.6	82	0x80000001	FEC0::/32		
	Inter Area Route	r Link States	(Area 0)		
ADV Router	Age	Seq#	Link ID	Dest RtrID	
172.16.4.4	219	0x80000001	50529027	172.16.3.3	
172.16.6.6	193	0x80000001	50529027	172.16.3.3	
	Link (Type-8) Lin	nk States (Are	ea 0)		
ADV Router	Age	Seq#	Link ID	Interface	
172.16.4.4	242	0x80000002	14	PO4/0	
172.16.6.6	252	0x80000002	14	PO4/0	
	Intra Area Prefix	k Link States	(Area 0)		
ADV Router	Age	Seq#	Link ID	Ref-lstype	Ref-LSID
172.16.4.4	242	0x80000002	0	0x2001	0
172.16.6.6	252	0x80000002	0	0x2001	0

Table 230 describes the significant fields shown in the display.

Table 230 show ipv6 ospf database Field Descriptions

Field	Description
ADV Router	Advertising router ID.
Age	Link-state age.
Seq#	Link-state sequence number (detects old or duplicate LSAs).
Link ID	Interface ID number.
Ref-lstype	Referenced link-state type.
Ref-LSID	Referenced link-state ID.

The following is sample output from the **show ipv6 ospf database** command with the **router self-originate** keywords:

Router# show ipv6 ospf database router self-originate

```
OSPFv3 Router with ID (172.16.6.6) (Process ID 1)
          Router Link States (Area 0)
LS age: 383
Options: (V6-Bit E-Bit R-bit DC-Bit)
LS Type: Router Links
Link State ID: 0
Advertising Router: 172.16.6.6
LS Seg Number: 80000003
Checksum: 0x7543
Length: 40
Area Border Router
Number of Links: 1
  Link connected to: another Router (point-to-point)
    Link Metric: 1
    Local Interface ID: 14
    Neighbor Interface ID: 14
    Neighbor Router ID: 172.16.4.4
```

The following is sample output from the **show ipv6 ospf database** command with the **network** keyword:

Router# show ipv6 ospf database network

```
OSPFv3 Router with ID (172.16.6.6) (Process ID 1)

Net Link States (Area 1)

LS age: 419
Options: (V6-Bit E-Bit R-bit DC-Bit)
LS Type: Network Links
Link State ID: 3 (Interface ID of Designated Router)
Advertising Router: 172.16.6.6
LS Seq Number: 80000001
Checksum: 0x8148
Length: 32

Attached Router: 172.16.6.6
Attached Router: 172.16.3.3
```

The following is sample output from the **show ipv6 ospf database** command with the **link self-originate** keywords:

Router# show ipv6 ospf database link self-originate

```
OSPFv3 Router with ID (172.16.6.6) (Process ID 1)
          Link (Type-8) Link States (Area 0)
LS age: 505
Options: (V6-Bit E-Bit R-bit DC-Bit)
LS Type: Link-LSA (Interface: POS4/0)
Link State ID: 14 (Interface ID)
Advertising Router: 172.16.6.6
LS Seq Number: 80000002
Checksum: 0xABF6
Length: 60
Router Priority: 1
Link Local Address: FE80::205:5FFF:FED3:6408
Number of Prefixes: 2
Prefix Address: FEC0:4466::
Prefix Length: 32, Options: None
Prefix Address: FEC0:4466::
Prefix Length: 32, Options: None
```

The following is sample output from the **show ipv6 ospf database** command with the **prefix self-originate** keywords:

Router# show ipv6 ospf database prefix self-originate

```
OSPFv3 Router with ID (172.16.6.6) (Process ID 1)
          Intra Area Prefix Link States (Area 0)
Routing Bit Set on this LSA
LS age: 552
LS Type: Intra-Area-Prefix-LSA
Link State ID: 0
Advertising Router: 172.16.6.6
LS Seq Number: 80000002
Checksum: 0xA910
Length: 48
Referenced LSA Type: 2001
Referenced Link State ID: 0
Referenced Advertising Router: 172.16.6.6
Number of Prefixes: 2
Prefix Address: FEC0:4466::
Prefix Length: 32, Options: None, Metric: 1
Prefix Address: FEC0:4466::
Prefix Length: 32, Options: None, Metric: 1
```

The following is sample output from the **show ipv6 ospf database** command with the **inter-area prefix self-originate** keywords:

Router# show ipv6 ospf database inter-area prefix self-originate

```
OSPFv3 Router with ID (172.16.6.6) (Process ID 1)

Inter Area Prefix Link States (Area 0)

LS age: 587
LS Type: Inter Area Prefix Links
Link State ID: 0

Advertising Router: 172.16.6.6
```

Cisco IOS IPv6 Command Reference

```
LS Seq Number: 8000001
Checksum: 0x1395
Length: 32
Metric: 1
Prefix Address: FEC0:3366::
Prefix Length: 32, Options: None
LS age: 532
LS Type: Inter Area Prefix Links
Link State ID: 1
Advertising Router: 172.16.6.6
LS Seg Number: 8000001
Checksum: 0x3197
Length: 32
Metric: 2
Prefix Address: FEC0:3344::
Prefix Length: 32, Options: None
LS age: 422
LS Type: Inter Area Prefix Links
Link State ID: 2
Advertising Router: 172.16.6.6
LS Seq Number: 8000001
Checksum: 0xCB74
Length: 32
Metric: 1
Prefix Address: FEC0::
Prefix Length: 32, Options: None
```

The following is sample output from the **show ipv6 ospf database** command with the **inter-area router self-originate** keywords:

Router# show ipv6 ospf database inter-area router self-originate

```
OSPFv3 Router with ID (172.16.6.6) (Process ID 1)

Inter Area Router Link States (Area 0)

LS age: 578
Options: (V6-Bit E-Bit R-bit DC-Bit)
LS Type: Inter Area Router Links
Link State ID: 50529027
Advertising Router: 172.16.6.6
LS Seq Number: 80000001
Checksum: 0x369F
Length: 32
Metric: 1
Destination Router ID: 172.16.3.3
```

The following is sample output from the show ipv6 ospf database command with the external keyword:

Router# show ipv6 ospf database external

```
OSPFv3 Router with ID (172.16.6.6) (Process ID 1)

Type-5 AS External Link States

Routing Bit Set on this LSA
LS age: 654
LS Type: AS External Link
Link State ID: 0

Advertising Router: 172.16.3.3
LS Seq Number: 80000001

Checksum: 0x218D
```

```
Length: 32
Prefix Address: FEC0:3333::
Prefix Length: 32, Options: None
Metric Type: 2 (Larger than any link state path)
Metric: 20
```

The following is sample output from the **show ipv6 ospf database** command for a graceful-restart-capable router:

Router# show ipv6 ospf 1 database

```
OSPFv3 Router with ID (10.2.2.2) (Process ID 1)
           Router Link States (Area 0)
ADV Router
              Age
                         Sea#
                                            Fragment ID Link count Bits
10.1.1.1
                1949
                           0x8000000e
                                               0
                                                           1
                                                                    None
10.2.2.2
                2007
                           0x80000011
                                               0
                                                            1
                                                                    None
           Link (Type-8) Link States (Area 0)
ADV Router
                         Sea#
                                            Link ID
                                                     Interface
             Age
10.1.1.1
                180
                           0x80000006
                                             1
                                                       PO0/2/0/0
10.2.2.2
               2007
                           0x80000006
                                                        PO0/2/0/0
           Intra Area Prefix Link States (Area 0)
ADV Router
                                             Link ID
                                                       Ref-lstype Ref-LSID
               Age
                           Sea#
10.1.1.1
               180
                           0x80000006
                                              0
                                                        0x2001
                                                                       0
10.2.2.2
               2007
                           0x80000006
                                               0
                                                        0x2001
                                                                       0
           Grace (Type-11) Link States (Area 0)
ADV Router
                           Sea#
                                               Link ID
                                                          Interface
               Age
10.2.2.2
               2007
                           0x80000005
                                                          PO0/2/0/0
                                                 1
```

The following is sample outpet from the **show ipv6 ospf database** command with the **grace** keyword:

Router# show ipv6 ospf database grace

```
OSPFv3 Router with ID (10.3.33.3) (Process ID 1)

Grace (Type-11) Link States (Area 0)

LS age: 2
LS Type: Grace Links (Interface: Ethernet0/0)
Link State ID: 3 (Interface ID)
Advertising Router: 10.2.2.2
LS Seq Number: 80000001
Checksum: 0xE3DD
Length: 36
Grace Period: 120
Graceful Restart Reason: Software reload/upgrade
```

Table 231 describes the significant fields shown in the display.

Table 231 show ipv6 ospf database Field Descriptions

Field	Description
Grace (Type-11)	Type 11 indicates that this router is graceful-restart capable.
LS Type: Grace Links (Interfece: Ethernet 0/0)	The link state type and interface used.

Table 231 show ipv6 ospf database Field Descriptions

Field	Description
Grace Period : 120	The graceful-restart interval, in seconds.
Graceful Restart Reason: Software reload/upgrade	The reason graceful restart was activated.

Related Commands

Command	Description
show ipv6 ospf	Displays general information about OSPFv3 routing processes.
show ipv6 ospf graceful-restart	Displays OSPFv3 graceful restart information.
show ipv6 ospf interface	Displays OSPFv3-related interface information.

show ipv6 ospf event

To display detailed information about IPv6 Open Shortest Path First (OSPF) events, use the **show ipv6 ospf event** command in privileged EXEC mode.

show ipv6 ospf [process-id] event [generic | interface | lsa | neighbor | reverse | rib | spf]

Syntax Description

process-id	(Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here is the number assigned administratively when the OSPF routing process is enabled.	
generic	(Optional) Generic information regarding OSPF for IPv6 events.	
interface	(Optional) Interface state change events, including old and new states.	
lsa	(Optional) LSA arrival and LSA generation events.	
neighbor	(Optional) Neighbor state change events, including old and new states.	
reverse	(Optional) Keyword to allow the display of events in reverse–from the latest to the oldest or from oldest to the latest.	
rib	(Optional) Routing Information Base (RIB) update, delete, and redistribution events.	
spf	(Optional) Scheduling and SPF run events.	

Command Modes

Privileged EXEC

Command History

Release	Modification
12.2(33)SRC	This command was introduced.
12.2(33)SB	This command was integrated into Cisco IOS Release 12.2(33)SB.
Cisco IOS XE Release 2.1	This command was introduced on Cisco ASR 1000 Series Routers.
12.2(33)XNE	This command was modified. It was integrated into Cisco IOS Release 12.2(33)XNE.

Usage Guidelines

An OSPF event log is kept for every OSPF instance. If you enter no keywords with the **show ipv6 ospf event** command, all information in the OSPF event log is displayed. Use the keywords to filter specific information.

Examples

The following example shows scheduling and SPF run events, LSA arrival and LSA generation events, in order from the oldest events to the latest generated events:

Router# show ipv6 ospf event spf lsa reverse

OSPFv3 Router with ID (10.0.0.1) (Process ID 1)

1 *Sep 29 11:59:18.367: Rcv Changed Type-0x2009 LSA, LSID 10.0.0.0, Adv-Rtr 192.168.0.1, Seq# 80007699, Age 3600

```
3 *Sep 29 11:59:18.367: Schedule SPF, Area 0, Change in LSID 10.0.0.0, LSA type P
4 *Sep 29 11:59:18.367: Rcv Changed Type-0x2001 LSA, LSID 10.0.0.0, Adv-Rtr 192.168.0.1,
Seg# 80007699, Age 2
5 *Sep 29 11:59:18.367: Schedule SPF, Area 0, Change in LSID 10.0.0.0, LSA type R
6 *Sep 29 11:59:18.367: Rcv Changed Type-0x2002 LSA, LSID 10.1.0.1, Adv-Rtr 192.168.0.1,
Seg# 80007699, Age 3600
8 *Sep 29 11:59:18.367: Schedule SPF, Area 0, Change in LSID 10.1.0.1, LSA type N
9 *Sep 29 11:59:18.367: Rcv Changed Type-0x2001 LSA, LSID 10.0.0.0, Adv-Rtr 1.1.1.1, Seq#
80007699, Age 2
10 *Sep 29 11:59:18.367: Schedule SPF, Area 0, Change in LSID 10.0.0.0, LSA type R
11 *Sep 29 11:59:18.867: Starting SPF
12 *Sep 29 11:59:18.867: Starting Intra-Area SPF in Area 0
16 *Sep 29 11:59:18.867: Starting Inter-Area SPF in area 0
17 *Sep 29 11:59:18.867: Starting External processing
18 *Sep 29 11:59:18.867: Starting External processing in area 0
19 *Sep 29 11:59:18.867: Starting External processing in area 1
20 *Sep 29 11:59:18.867: End of SPF
21 *Sep 29 11:59:19.367: Generate Changed Type-0x2003 LSA, LSID 10.0.0.4, Seq# 80000002,
Age 3600, Area 1, Prefix 3000:11:22::/64
23 *Sep 29 11:59:20.367: Rcv Changed Type-0x2009 LSA, LSID 10.0.0.0, Adv-Rtr 192.168.0.1,
Seq# 8000769A, Age 2
24 *Sep 29 11:59:20.367: Schedule SPF, Area 0, Change in LSID 10.0.0.0, LSA type P
25 *Sep 29 11:59:20.367: Rcv Changed Type-0x2001 LSA, LSID 10.0.0.0, Adv-Rtr 192.168.0.1,
Seq# 8000769A, Age 2
26 *Sep 29 11:59:20.367: Schedule SPF, Area 0, Change in LSID 10.0.0.0, LSA type R
27 *Sep 29 11:59:20.367: Rcv Changed Type-0x2002 LSA, LSID 10.1.0.1, Adv-Rtr 192.168.0.1,
Seg# 8000769A, Age 2
28 *Sep 29 11:59:20.367: Schedule SPF, Area 0, Change in LSID 10.1.0.1, LSA type N
29 *Sep 29 11:59:20.367: Rcv Changed Type-0x2001 LSA, LSID 10.0.0.0, Adv-Rtr 1.1.1.1, Seq#
8000769A, Age 2
30 *Sep 29 11:59:20.367: Schedule SPF, Area 0, Change in LSID 10.0.0.0, LSA type R
31 *Sep 29 11:59:20.867: Starting SPF
32 *Sep 29 11:59:20.867: Starting Intra-Area SPF in Area 0
36 *Sep 29 11:59:20.867: Starting Inter-Area SPF in area 0
37 *Sep 29 11:59:20.867: Starting External processing
38 *Sep 29 11:59:20.867: Starting External processing in area 0
39 *Sep 29 11:59:20.867: Starting External processing in area 1
40 *Sep 29 11:59:20.867: End of SPF
```

Table 232 describes the significant fields shown in the display.

Table 232 show ip ospf Field Descriptions

Field	Description
OSPFv3 Router with ID (10.0.0.1) (Process ID 1)	Process ID and OSPF router ID.
Rcv Changed Type-0x2009 LSA	Description of newly arrived LSA.
LSID	Link-state ID of the LSA.
Adv-Rtr	ID of the advertising router.
Seq#	Link state sequence number (detects old or duplicate link state advertisements).
Age	Link state age (in seconds).
Schedule SPF	Enables SPF to run.
Area	OSPF area ID.
Change in LSID	Changed link-state ID of the LSA.
LSA type	LSA type.

show ipv6 ospf flood-list

To display a list of Open Shortest Path First (OSPF) link-state advertisements (LSAs) waiting to be flooded over an interface, use the **show ipv6 ospf flood-list** command in user EXEC or privileged EXEC mode

show ipv6 ospf [process-id] [area-id] flood-list interface-type interface-number

Syntax Description

process-id	(Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here is the number assigned administratively when the OSPF routing process is enabled.	
area-id	(Optional) Displays information only about a specified area.	
interface-type	Interface type over which the LSAs will be flooded.	
interface-number	Interface number over which the LSAs will be flooded.	

Command Modes

User EXEC Privileged EXEC

Command History

Release	Modification
12.0(24)S	This command was introduced.
12.2(15)T	This command was integrated into Cisco IOS Release 12.2(15)T.
12.2(18)S	This command was integrated into Cisco IOS Release 12.2(18)S.
12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
12.2(33)SXH	This command was integrated into Cisco IOS Release 12.2(33)SXH.

Usage Guidelines

Use this command to display OSPF packet pacing.

Examples

The following is sample output from the **show ipv6 ospf flood-list** command:

Router# show ipv6 ospf flood-list

```
OSPFv3 Router with ID (172.16.6.6) (Process ID 1)
```

Interface POS4/0, Queue length 1

Link state retransmission due in 14 msec

Type LS ID ADV RTR Seq NO Age Checksum 0x2001 0 172.16.6.6 0x80000031 0 0x1971

Interface FastEthernet0/0, Queue length 0

Interface ATM3/0, Queue length 0

Table 233 describes the significant fields shown in the display.

Table 233 show ipv6 ospf flood-list Field Descriptions

Field	Description
OSPFv3 Router with ID (172.16.6.6) (Process ID 1)	Identification of the router for which information is displayed.
Interface POS4/0	Interface for which information is displayed.
Queue length	Number of LSAs waiting to be flooded.
Link state retransmission due in	Length of time before next link-state transmission.
Туре	Type of LSA.
LS ID	Link-state ID of the LSA.
ADV RTR	IP address of advertising router.
Seq NO	Sequence number of LSA.
Age	Age of LSA (in seconds).
Checksum	Checksum of LSA.

show ipv6 ospf graceful-restart

To display Open Shortest Path First for IPv6 (OSPFv3) graceful restart information, use the **show ipv6 ospf graceful-restart** command in privileged EXEC mode.

show ipv6 ospf graceful-restart

Syntax Description

This command has no arguments or keywords.

Command Modes

Privileged EXEC

Command History

Release	Modification	
Cisco IOS XE Release 2.1	This command was introduced.	
15.0(1)M	This command was integrated into Cisco IOS Release 12.5(1)M.	
12.2(33)SRE	This command was modified. It was integrated into Cisco IOS Release 12.2(33)SRE.	
12.2(33)XNE	This command was modified. It was integrated into Cisco IOS Release 12.2(33)XNE.	

Usage Guidelines

Use the **show ipv6 ospf graceful-restart** command to discover information about the OSPFv3 graceful restart feature.

Examples

The following example displays OSPFv3 graceful restart information:

Router# show ipv6 ospf graceful-restart

```
Routing Process "ospf 1"

Graceful Restart enabled

restart-interval limit: 120 sec, last restart 00:00:15 ago (took 36 secs)

Graceful Restart helper support enabled

Router status: Active

Router is running in SSO mode

OSPF restart state: NO_RESTART

Router ID 10.1.1.1, checkpoint Router ID 10.0.0.0
```

Table 230 describes the significant fields shown in the display.

Table 234 show ipv6 ospf graceful-restart Field Descriptions

Field	Description
Routing Process "ospf 1"	The OSPFv3 routing process ID.
Graceful Restart enabled	The graceful restart feature is enabled on this router.

Table 234 show ipv6 ospf graceful-restart Field Descriptions (continued)

Field	Description
restart-interval limit: 120 sec	The restart-interval limit.
last restart 00:00:15 ago (took 36 secs)	How long ago the last graceful restart occurred, and how long it took to occur.
Graceful Restart helper support enabled	Graceful restart helper mode is enabled. Because graceful restart mode is also enabled on this router, you can identify this router as being graceful-restart capable. A router that is graceful-restart-aware cannot be configured in graceful-restart mode.
Router status : Active	This router is in active, as opposed to standby, mode.
Router is running in SSO mode	The router is in stateful switchover mode.
OSPF restart state : NO_RESTART	The current OSPFv3 restart state.
Router ID 10.1.1.1, checkpoint Router ID 10.0.0.0	The IPv6 addresses of the current router and the checkpoint router.

Related Commands

Command	Description
show ipv6 ospf interface Displays OSPFv3-related interface information.	

show ipv6 ospf interface

To display Open Shortest Path First (OSPF)-related interface information, use the **show ipv6 ospf interface** command in user EXEC or privileged mode.

show ipv6 ospf [process-id] [area-id] **interface** [type number] [**brief**]

Syntax Description

process-id	(Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here is the number assigned administratively when the OSPF routing process is enabled.	
area-id	(Optional) Displays information about a specified area only.	
type number	(Optional) Interface type and number.	
brief	(Optional) Displays brief overview information for OSPF interfaces, states, addresses and masks, and areas on the router.	

Command Modes

User EXEC Privileged EXEC

Command History

Release	Modification	
12.0(24)S	This command was introduced.	
12.2(15)T	This command was integrated into Cisco IOS Release 12.2(15)T.	
12.2(18)S	This command was integrated into Cisco IOS Release 12.2(18)S.	
12.3(4)T	Command output is changed when authentication is enabled.	
12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.	
12.2(25)SG	This command was integrated into Cisco IOS Release 12.2(25)SG.	
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.	
12.4(9)T	Command output is changed when encryption is enabled.	
12.2(33)SRB	The brief keyword was added.	
12.4(15)XF	Output displays were modified so that VMI PPPoE interface-based local state values are displayed in the command output when a VMI interface is specified.	
12.4(15)T	This command was integrated into Cisco IOS Release 12.4(15)T	
12.2(33)SXH	This command was integrated into Cisco IOS Release 12.2(33)SXH.	
Cisco IOS XE Release 2.1	Command output was updated to display graceful restart information.	
12.2(33)SRE	This command was modified. It was integrated into Cisco IOS Release 12.2(33)SRE.	

Examples

show ipv6 ospf interface Standard Output Example

The following is sample output from the **show ipv6 ospf interface** command:

Router# show ipv6 ospf interface

```
ATM3/0 is up, line protocol is up
  Link Local Address 2001:0DB1:205:5FFF:FED3:5808, Interface ID 13
  Area 1, Process ID 1, Instance ID 0, Router ID 172.16.3.3
 Network Type POINT_TO_POINT, Cost: 1
  Transmit Delay is 1 sec, State POINT_TO_POINT,
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
   Hello due in 00:00:06
  Index 1/2/2, flood queue length 0
  Next 0x0(0)/0x0(0)/0x0(0)
  Last flood scan length is 12, maximum is 12
  Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 1, Adjacent neighbor count is 1
   Adjacent with neighbor 172.16.4.4
  Suppress hello for 0 neighbor(s)
FastEthernet0/0 is up, line protocol is up
  Link Local Address 2001:0DB1:205:5FFF:FED3:5808, Interface ID 3
  Area 1, Process ID 1, Instance ID 0, Router ID 172.16.3.3
  Network Type BROADCAST, Cost: 1
  Transmit Delay is 1 sec, State BDR, Priority 1
  Designated Router (ID) 172.16.6.6, local address 2001:0DB1:205:5FFF:FED3:6408
  Backup Designated router (ID) 172.16.3.3, local address 2001:0DB1:205:5FFF:FED3:5808
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
   Hello due in 00:00:05
  Index 1/1/1, flood queue length 0
  Next 0x0(0)/0x0(0)/0x0(0)
  Last flood scan length is 12, maximum is 12
  Last flood scan time is 0 msec, maximum is 0 msec
  Neighbor Count is 1, Adjacent neighbor count is 1
   Adjacent with neighbor 172.16.6.6 (Designated Router)
  Suppress hello for 0 neighbor(s)
```

Table 235 describes the significant fields shown in the display.

Table 235 show ipv6 ospf interface Field Descriptions

Field	Description
ATM3/0	Status of the physical link and operational status of protocol.
Link Local Address	Interface IPv6 address.
Area 1, Process ID 1, Instance ID 0, Router ID 172.16.3.3	The area ID, process ID, instance ID, and router ID of the area from which this route is learned.
Network Type POINT_TO_POINT, Cost: 1	Network type and link-state cost.
Transmit Delay	Transmit delay, interface state, and router priority.
Designated Router	Designated router ID and respective interface IP address.
Backup Designated router	Backup designated router ID and respective interface IP address.
Timer intervals configured	Configuration of timer intervals.
Hello	Number of seconds until the next hello packet is sent out this interface.
Neighbor Count	Count of network neighbors and list of adjacent neighbors.

Cisco IOS Release 12.2(33)SRB Example

The following is sample output of the **show ipv6 ospf interface** command when the **brief** keyword is entered.

Router# show ipv6 ospf interface brief

Interface	PID	Area	Intf ID	Cost	State	Nbrs F/	С
VL0	6	0	21	65535	DOWN	0/0	
Se3/0	6	0	14	64	P2P	0/0	
Lo1	6	0	20	1	LOOP	0/0	
Se2/0	6	6	10	62	P2P	0/0	
Tu0	1000	0	19	11111	DOWN	0/0	

OSPF with Authentication on the Interface Example

The following is sample output from the **show ipv6 ospf interface** command with authentication enabled on the interface:

Router# show ipv6 ospf interface

```
Ethernet0/0 is up, line protocol is up
 Link Local Address 2001:0DB1:A8BB:CCFF:FE00:6E00, Interface ID 2
 Area 0, Process ID 1, Instance ID 0, Router ID 10.10.10.1
 Network Type BROADCAST, Cost:10
 MD5 Authentication SPI 500, secure socket state UP (errors:0)
  Transmit Delay is 1 sec, State BDR, Priority 1
  Designated Router (ID) 10.11.11.1, local address 2001:0DB1:A8BB:CCFF:FE00:6F00
  Backup Designated router (ID) 10.10.10.1, local address
2001:0DB1:A8BB:CCFF:FE00:6E00
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
   Hello due in 00:00:01
  Index 1/1/1, flood queue length 0
 Next 0x0(0)/0x0(0)/0x0(0)
 Last flood scan length is 1, maximum is 1
  Last flood scan time is 0 msec, maximum is 0 msec
  Neighbor Count is 1, Adjacent neighbor count is 1
   Adjacent with neighbor 10.11.11.1 (Designated Router)
  Suppress hello for 0 neighbor(s)
```

OSPF with Null Authentication Example

The following is sample output from the **show ipv6 ospf interface** command with null authentication configured on the interface:

Router# show ipv6 ospf interface

```
Ethernet0/0 is up, line protocol is up
 Link Local Address 2001:0DB1:A8BB:CCFF:FE00:6E00, Interface ID 2
 Area 0, Process ID 1, Instance ID 0, Router ID 10.10.10.1
 Network Type BROADCAST, Cost:10
  Authentication NULL
 Transmit Delay is 1 sec, State BDR, Priority 1
 Designated Router (ID) 10.11.11.1, local address 2001:0DB1:A8BB:CCFF:FE00:6F00
 Backup Designated router (ID) 10.10.10.1, local address
2001:0DB1:A8BB:CCFF:FE00:6E00
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
   Hello due in 00:00:03
  Index 1/1/1, flood queue length 0
  Next 0x0(0)/0x0(0)/0x0(0)
 Last flood scan length is 1, maximum is 1
 Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 1, Adjacent neighbor count is 1
    Adjacent with neighbor 10.11.11.1 (Designated Router)
```

Cisco IOS IPv6 Command Reference

```
Suppress hello for 0 neighbor(s)
```

OSPF with Authentication for the Area Example

The following is sample output from the **show ipv6 ospf interface** command with authentication configured for the area:

Router# show ipv6 ospf interface

```
Ethernet0/0 is up, line protocol is up
 Link Local Address 2001:0DB1:A8BB:CCFF:FE00:6E00, Interface ID 2
  Area 0, Process ID 1, Instance ID 0, Router ID 10.10.10.1
  Network Type BROADCAST, Cost:10
 MD5 Authentication (Area) SPI 1000, secure socket state UP (errors:0)
  Transmit Delay is 1 sec, State BDR, Priority 1
  Designated Router (ID) 10.11.11.1, local address 2001:0DB1:A8BB:CCFF:FE00:6F00
  Backup Designated router (ID) 10.10.10.1, local address
FE80::A8BB:CCFF:FE00:6E00
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
   Hello due in 00:00:03
  Index 1/1/1, flood queue length 0
  Next 0x0(0)/0x0(0)/0x0(0)
  Last flood scan length is 1, maximum is 1
  Last flood scan time is 0 msec, maximum is 0 msec
  Neighbor Count is 1, Adjacent neighbor count is 1
    Adjacent with neighbor 10.11.11.1 (Designated Router)
  Suppress hello for 0 neighbor(s)
```

OSPF with Dynamic Cost Example

The following display shows sample output from the **show ipv6 ospf interface** command when the OSPF cost dynamic is configured.

Router1# show ipv6 ospf interface serial 2/0

```
Serial2/0 is up, line protocol is up
Link Local Address 2001:0DB1:A8BB:CCFF:FE00:100, Interface ID 10
Area 1, Process ID 1, Instance ID 0, Router ID 172.1.1.1
Network Type POINT_TO_MULTIPOINT, Cost: 64 (dynamic), Cost Hysteresis: 200
Cost Weights: Throughput 100, Resources 20, Latency 80, L2-factor 100
Transmit Delay is 1 sec, State POINT_TO_MULTIPOINT,
Timer intervals configured, Hello 30, Dead 120, Wait 120, Retransmit 5
Hello due in 00:00:19
Index 1/2/3, flood queue length 0
Next 0x0(0)/0x0(0)/0x0(0)
Last flood scan length is 0, maximum is 0
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 0, Adjacent neighbor count is 0
Suppress hello for 0 neighbor(s)
```

OSPF Graceful Restart Example

The following display shows sample output from the **show ipv6 ospf interface** command when the OSPF graceful restart feature is configured:

Router# show ipv6 ospf interface

```
Ethernet0/0 is up, line protocol is up
Link Local Address FE80::A8BB:CCFF:FE00:300, Interface ID 2
Area 0, Process ID 1, Instance ID 0, Router ID 10.3.3.3
Network Type POINT_TO_POINT, Cost: 10
Transmit Delay is 1 sec, State POINT_TO_POINT,
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Graceful Restart p2p timeout in 00:00:19
Hello due in 00:00:02
```

```
Graceful Restart helper support enabled Index 1/1/1, flood queue length 0 Next 0x0(0)/0x0(0)/0x0(0) Last flood scan length is 1, maximum is 1 Last flood scan time is 0 msec, maximum is 0 msec Neighbor Count is 1, Adjacent neighbor count is 1 Adjacent with neighbor 10.1.1.1 Suppress hello for 0 neighbor(s)
```

Example of an Enabled Protocol

The following display shows that the OSPF interface is enabled for Bidirectional Forwarding Detection (BFD):

Router# show ipv6 ospf interface

```
Serial10/0 is up, line protocol is up

Link Local Address FE80::A8BB:CCFF:FE00:6500, Interface ID 42

Area 1, Process ID 1, Instance ID 0, Router ID 10.0.0.1

Network Type POINT_TO_POINT, Cost: 64

Transmit Delay is 1 sec, State POINT_TO_POINT, BFD enabled

Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5

Hello due in 00:00:07

Index 1/1/1, flood queue length 0

Next 0x0(0)/0x0(0)/0x0(0)

Last flood scan length is 1, maximum is 1

Last flood scan time is 0 msec, maximum is 0 msec

Neighbor Count is 1, Adjacent neighbor count is 1

Adjacent with neighbor 10.1.0.1

Suppress hello for 0 neighbor(s)
```

Related Commands

Command	Description
show ipv6 ospf graceful-restart	Displays OSPFv3 graceful restart information.

show ipv6 ospf neighbor

To display Open Shortest Path First (OSPF) neighbor information on a per-interface basis, use the **show ipv6 ospf neighbor** command in user EXEC or privileged EXEC mode.

show ipv6 ospf [process-id] [area-id] **neighbor** [interface-type interface-number] [neighbor-id] [**detail**]

Syntax Description

process-id	(Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here is the number assigned administratively when the OSPF routing process is enabled.
area-id	(Optional) Displays information only about a specified area.
interface-type interface-number	(Optional) Interface type and number.
neighbor-id	(Optional) Neighbor ID.
detail	(Optional) Displays all neighbors in detail (lists all neighbors).

Command Modes

User EXEC Privileged EXEC

Command History

Release	Modification
12.0(24)S	This command was introduced.
12.2(15)T	This command was integrated into Cisco IOS Release 12.2(15)T.
12.2(18)S	This command was integrated into Cisco IOS Release 12.2(18)S.
12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
12.2(33)SXH	This command was integrated into Cisco IOS Release 12.2(33)SXH.
Cisco IOS XE Command output for the detail keyword was updated to display graceful-restart information.	

Examples

The following is sample output from the **show ipv6 ospf neighbor** command:

Router# show ipv6 ospf neighbor

Neighbor ID	Pri	State	Dead Time	Interface ID	Interface
172.16.4.4	1	FULL/ -	00:00:31	14	POS4/0
172.16.3.3	1	FULL/BDR	00:00:30	3	FastEthernet00
172.16.5.5	1	FULL/ -	00:00:33	13	ATM3/0

The following is sample output from the **show ipv6 ospf neighbor** command with the **detail** keyword:

Router# show ipv6 ospf neighbor detail

```
Neighbor 172.16.4.4

In the area 0 via interface POS4/0

Neighbor: interface-id 14, link-local address FE80::205:5FFF:FED3:5406
```

```
Neighbor priority is 1, State is FULL, 6 state changes
   Options is 0x63AD1B0D
   Dead timer due in 00:00:33
   Neighbor is up for 00:48:56
   Index 1/1/1, retransmission queue length 0, number of retransmission 1
   First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0)
   Last retransmission scan length is 1, maximum is 1
   Last retransmission scan time is 0 msec, maximum is 0 msec
Neighbor 172.16.3.3
   In the area 1 via interface FastEthernet0/0
   Neighbor: interface-id 3, link-local address FE80::205:5FFF:FED3:5808
   Neighbor priority is 1, State is FULL, 6 state changes
   DR is 172.16.6.6 BDR is 172.16.3.3
   Options is 0x63F813E9
   Dead timer due in 00:00:33
   Neighbor is up for 00:09:00
   Index 1/1/2, retransmission queue length 0, number of retransmission 2
   First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0)
   Last retransmission scan length is 1, maximum is 2
   Last retransmission scan time is 0 msec, maximum is 0 msec
Neighbor 172.16.5.5
   In the area 2 via interface ATM3/0
   Neighbor: interface-id 13, link-local address FE80::205:5FFF:FED3:6006
   Neighbor priority is 1, State is FULL, 6 state changes
   Options is 0x63F7D249
   Dead timer due in 00:00:38
   Neighbor is up for 00:10:01
   Index 1/1/3, retransmission queue length 0, number of retransmission 0
   First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0)
   Last retransmission scan length is 0, maximum is 0
   Last retransmission scan time is 0 msec, maximum is 0 msec
```

Table 236 describes the significant fields shown in the display.

Table 236 show ipv6 ospf neighbor Field Descriptions

Field	Description
Neighbor ID; Neighbor	Neighbor router ID.
In the area	Area and interface through which the OSPF neighbor is known.
Pri; Neighbor priority	Router priority of the neighbor, neighbor state.
State	OSPF state.
State changes	Number of state changes since the neighbor was created.
Options	Hello packet options field contents. (E-bit only. Possible values are 0 and 2; 2 indicates area is not a stub; 0 indicates area is a stub.)
Dead timer due in	Expected time before Cisco IOS software will declare the neighbor dead.
Neighbor is up for	Number of hours:minutes:seconds since the neighbor went into two-way state.
Index	Neighbor location in the area-wide and autonomous system-wide retransmission queue.
retransmission queue length	Number of elements in the retransmission queue.

Table 236 show ipv6 ospf neighbor Field Descriptions (continued)

Field	Description
number of retransmission	Number of times update packets have been re-sent during flooding.
First	Memory location of the flooding details.
Next	Memory location of the flooding details.
Last retransmission scan length	Number of link state advertisements (LSAs) in the last retransmission packet.
maximum	Maximum number of LSAs sent in any retransmission packet.
Last retransmission scan time	Time taken to build last retransmission packet.
maximum	Maximum time taken to build any retransmission packet.

The following is sample output from the **show ipv6 ospf neighbor** command with the **detail** keyword, displaying graceful-restart information:

Router# show ipv6 ospf neighbor detail

```
Neighbor 10.1.1.1

In the area 0 via interface Ethernet0/0
Neighbor: interface-id 3, link-local address FE80::A8BB:CCFF:FE00:200
Neighbor priority is 1, State is FULL, 6 state changes
DR is 10.1.1.1 BDR is 10.3.3.3
Options is 0x1C9AD11
Neighbor graceful restart timer due in 00:01:44
Last neighbor graceful restart 01:00:19 ago
Dead timer due in 00:00:36
Neighbor is up for 00:00:16
Index 1/1/1, retransmission queue length 0, number of retransmission 0
First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0)
Last retransmission scan length is 0, maximum is 0
Last retransmission scan time is 0 msec, maximum is 0 msec
```

show ipv6 ospf request-list

To display a list of all link-state advertisements (LSAs) requested by a router, use the **show ipv6 ospf** request-list command in user EXEC or privileged EXEC mode.

show ipv6 ospf [process-id] [area-id] **request-list** [neighbor] [interface] [interface-neighbor]

S۱	/ntax	Des	crit	ntion
-	,			,

process-id	(Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here is the number assigned administratively when the Open Shortest Path First (OSPF) routing process is enabled.
area-id	(Optional) Displays information only about a specified area.
neighbor (Optional) Displays the list of all LSAs requested by the retaining this neighbor.	
interface	(Optional) Displays the list of all LSAs requested by the router from this interface.
interface-neighbor	(Optional) Displays the list of all LSAs requested by the router on this interface, from this neighbor.

Command Modes

User EXEC Privileged EXEC

Command History

Release	Modification
12.0(24)S	This command was introduced.
12.2(15)T	This command was integrated into Cisco IOS Release 12.2(15)T.
12.2(18)S This command was integrated into Cisco IOS Release 12.2(18)S.	
12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
12.2(33)SXH	This command was integrated into Cisco IOS Release 12.2(33)SXH.

Usage Guidelines

The information displayed by the **show ipv6 ospf request-list** command is useful in debugging OSPF routing operations.

Examples

The following example shows information about the LSAs requested by the router:

Router# show ipv6 ospf request-list

OSPFv3 Router with ID (192.168.255.5) (Process ID 1)

Neighbor 192.168.255.2, interface Ethernet0/0 address FE80::A8BB:CCFF:FE00:6600

Type LS ID ADV RTR Seq NO Age Checksum 1 0.0.0.0 192.168.255.3 0x800000C2 1 0x0014C5

Cisco IOS IPv6 Command Reference

1	0.0.0.0	192.168.255.2	0x800000C8	0	0x000BCA
1	0.0.0.0	192.168.255.1	0x800000C5	1	0x008CD1
2	0.0.0.3	192.168.255.3	0x800000A9	774	0x0058C0
2	0.0.0.2	192.168.255.3	0x800000B7	1	0x003A63

Table 237 describes the significant fields shown in the display.

Table 237 show ipv6 ospf request-list Field Descriptions

Field	Description
OSPFv3 Router with ID (192.168.255.5) (Process ID 1)	Identification of the router for which information is displayed.
Interface Ethernet0/0	Interface for which information is displayed.
Type	Type of LSA.
LS ID	Link-state ID of the LSA.
ADV RTR	IP address of advertising router.
Seq NO	Sequence number of LSA.
Age	Age of LSA (in seconds).
Checksum	Checksum of LSA.

show ipv6 ospf retransmission-list

To display a list of all link-state advertisements (LSAs) waiting to be re-sent, use the **show ipv6 ospf retransmission-list** command in user EXEC or privileged EXEC mode.

show ipv6 ospf [process-id] [area-id] **retransmission-list** [neighbor] [interface] [interface-neighbor]

Syntax Description

process-id	(Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here is the number assigned administratively when the OSPF routing process is enabled.
area-id	(Optional) Displays information only about a specified area.
neighbor	(Optional) Displays the list of all LSAs waiting to be re-sent for this neighbor.
interface	(Optional) Displays the list of all LSAs waiting to be re-sent on this interface.
interface-neighbor	(Optional) Displays the list of all LSAs waiting to be re-sent on this interface, from this neighbor.

Command Modes

User EXEC Privileged EXEC

Command History

Release	Modification
12.0(24)S	This command was introduced.
12.2(15)T	This command was integrated into Cisco IOS Release 12.2(15)T.
12.2(18)S	This command was integrated into Cisco IOS Release 12.2(18)S.
12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
12.2(33)SXH	This command was integrated into Cisco IOS Release 12.2(33)SXH.

Usage Guidelines

The information displayed by the **show ipv6 ospf retransmission-list** command is useful in debugging Open Shortest Path First (OSPF) routing operations.

Examples

The following is sample output from the **show ipv6 ospf retransmission-list** command:

Router# show ipv6 ospf retransmission-list

OSPFv3 Router with ID (192.168.255.2) (Process ID 1)

Neighbor 192.168.255.1, interface Ethernet0/0

Link state retransmission due in 3759 msec, Queue length 1

Type LS ID ADV RTR Seq NO Age Checksum 0x2001 0 192.168.255.2 0x80000222 1 0x00AE52

Table 238 describes the significant fields shown in the display.

Table 238 show ipv6 ospf retransmission-list Field Descriptions

Field	Description
OSPFv3 Router with ID (192.168.255.2) (Process ID 1)	Identification of the router for which information is displayed.
Interface Ethernet0/0	Interface for which information is displayed.
Link state retransmission due in	Length of time before next link-state transmission.
Queue length	Number of elements in the retransmission queue.
Туре	Type of LSA.
LS ID	Link-state ID of the LSA.
ADV RTR	IP address of advertising router.
Seq NO	Sequence number of the LSA.
Age	Age of LSA (in seconds).
Checksum	Checksum of LSA.

show ipv6 ospf statistics

To display Open Shortest Path First for IPv6 (OSPFv6) shortest path first (SPF) calculation statistics, use the **show ipv6 ospf statistics** command in user EXEC or privileged EXEC mode.

show ipv6 ospf statistics [detail]

Syntax Description

detail	(Optional) Displays statistics separately for each OSPF area and includes
	additional, more detailed statistics.

Command Modes

User EXEC (>)
Privileged EXEC (#)

Command History

Release	Modification
12.2(33)SRC	This command was introduced.

Usage Guidelines

The **show ipv6 ospf statistics** command provides important information about SPF calculations and the events that trigger them. This information can be meaningful for both OSPF network maintenance and troubleshooting. For example, entering the **show ipv6 ospf statistics** command is recommended as the first troubleshooting step for link-state advertisement (LSA) flapping.

Examples

The following example provides detailed statistics for each OSPFv6 area:

Router# show ipv6 ospf statistics detail

```
Area 0: SPF algorithm executed 3 times
SPF 1 executed 00:06:57 ago, SPF type Full
 SPF calculation time (in msec):
        Prefix D-Int Sum
                                           D-Ext Total
                            D-Sum Ext
              0
                      0
                             0
                                    0
 RIB manipulation time (in msec):
 RIB Update
             RIB Delete
               0
 LSIDs processed R:1 N:0 Prefix:0 SN:0 SA:0 X7:0
 Change record R N SN SA L
 LSAs changed 1
 Changed LSAs. Recorded is Advertising Router, LSID and LS type:
 10.2.2.2/0(R)
SPF 2 executed 00:06:47 ago, SPF type Full
 SPF calculation time (in msec):
        Prefix D-Int Sum D-Sum Ext
                                           D-Ext Total
                            0
                                    0
                                           0
        0
              0
                    0
 RIB manipulation time (in msec):
 RIB Update
              RIB Delete
 LSIDs processed R:1 N:0 Prefix:1 SN:0 SA:0 X7:0
 Change record R L P
```

```
LSAs changed 4 Changed LSAs. Recorded is Advertising Router, LSID and LS type: 10.2.2.2/2(L)\ 10.2.2.2/0(R)\ 10.2.2.2/2(L)\ 10.2.2.2/0(P)
```

Table 205 describes the significant fields shown in the display.

Table 239 show ipv6 ospf statistics Field Descriptions

Field	Description	
Area	OSPF area ID.	
SPF	Number of SPF algorithms executed in the OSPF area. The number increases by one for each SPF algorithm that is executed in the area.	
Executed ago	Time in milliseconds that has passed between the start of the SPF algorithm execution and the current time.	
SPF type	SPF type can be Full or Incremental.	
SPT	Time in milliseconds required to compute the first stage of the SPF algorithm (to build a short path tree). The SPT time plus the time required to process links to stub networks equals the Intra time.	
Ext	Time in milliseconds for the SPF algorithm to process external and not so stubby area (NSSA) LSAs and to install external and NSSA routes in the routing table.	
Total	Total duration time in milliseconds for the SPF algorithm process.	
LSIDs processed	Number of LSAs processed during the SPF calculation:	
	N—Network LSA.	
	• R—Router LSA.	
	• SA—Summary Autonomous System Boundary Router (ASBR) (SA) LSA.	
	• SN—Summary Network (SN) LSA.	
	• Stub—Stub links.	
	• X7—External Type-7 (X7) LSA.	

show ipv6 ospf summary-prefix

To display a list of all summary address redistribution information configured under an OSPF process, use the **show ipv6 ospf summary-prefix** command in user EXEC or privileged EXEC mode.

show ipv6 ospf [process-id] summary-prefix

Syntax Description

process-id	(Optional) Internal identification. It is locally assigned and can be any
	positive integer. The number used here is the number assigned
	administratively when the OSPF routing process is enabled.

Command Modes

User EXEC
Privileged EXEC

Command History

Release	Modification
12.0(24)S	This command was introduced.
12.2(15)T	This command was integrated into Cisco IOS Release 12.2(15)T.
12.2(18)S	This command was integrated into Cisco IOS Release 12.2(18)S.
12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
12.2(33)SXH	This command was integrated into Cisco IOS Release 12.2(33)SXH.

Usage Guidelines

The process-id argument can be entered as a decimal number or as an IPv6 address format.

Examples

The following is sample output from the **show ipv6 ospf summary-prefix** command:

Router# show ipv6 ospf summary-prefix

OSPFv3 Process 1, Summary-prefix
FEC0::/24 Metric 16777215, Type 0, Tag 0

Table 240 describes the significant fields shown in the display.

Table 240 show ipv6 ospf summary-prefix Field Descriptions

Field	Description
OSPFv3 Process	Process ID of the router for which information is displayed.
Metric	Metric used to reach the destination router.
Туре	Type of link-state advertisement (LSA).
Tag	LSA tag.

show ipv6 ospf timers rate-limit

To display all of the link-state advertisements (LSAs) in the rate limit queue, use the **show ipv6 ospf** timers rate-limit command in privileged EXEC mode.

show ipv6 ospf timers rate-limit

Syntax Description

This command has no arguments or keywords.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.2(33)SRC	This command was introduced.
12.2(33)SB	This command was integrated into Cisco IOS Release 12.2(33)SB.

Usage Guidelines

Use the show ipv6 ospf timers rate-limit command to discover when LSAs in the queue will be sent.

Examples

show ipv6 ospf timers rate-limit Output Example

The following is sample output from the **show ipv6 ospf timers rate-limit** command:

Router# show ipv6 ospf timers rate-limit

```
List of LSAs that are in rate limit Queue

LSAID: 0.0.0.0 Type: 0x2001 Adv Rtr: 55.55.55.55 Due in: 00:00:00.500

LSAID: 0.0.0.0 Type: 0x2009 Adv Rtr: 55.55.55.55 Due in: 00:00:00.500
```

Table 225 describes the significant fields shown in the display.

Table 241 show ipv6 ospf timers rate-limit Field Descriptions

Field	Description
LSAID	ID of the LSA.
Type	Type of LSA.
Adv Rtr	ID of the advertising router.
Due in:	When the LSA is scheduled to be sent (in hours:minutes:seconds).

show ipv6 ospf traffic

To display IPv6 Open Shortest Path First Version 3 (OSPFv3) traffic statistics, use the **show ipv6 ospf traffic** command in privileged EXEC mode.

show ipv6 ospf [process-id] **traffic** [interface-type interface-number]

Syntax Description

process-id	(Optional) OSPF process ID for which you want traffic statistics (for example, queue statistics, statistics for each interface under the OSPF process, and per OSPF process statistics).
interface-type interface-number	(Optional) Type and number associated with a specific OSPF interface.

Command Default

When the **show ipv6 ospf traffic** command is entered without any arguments, global OSPF traffic statistics are displayed, including queue statistics for each OSPF process, statistics for each interface, and per OSPF process statistics.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.4(6)T	This command was introduced.
12.2(31)SB2	This command was integrated into Cisco IOS Release 12.2(31)SB2.
12.2(33)SRB	This command was integrated into Cisco IOS Release 12.2(33)SRB.
12.2(33)SXH	This command was integrated into Cisco IOS Release 12.2(33)SXH.

Usage Guidelines

You can limit the displayed traffic statistics to those for a specific OSPF process by entering a value for the *process-id* argument, or you can limit output to traffic statistics for a specific interface associated with an OSPF process by entering values for the *interface-type* and *interface-number* arguments. To reset counters and clear statistics, use the **clear ipv6 ospf traffic** command.

Examples

The following example shows the display output for the show ipv6 ospf traffic command for OSPFv3:

Router# show ipv6 ospf traffic

```
OSPFv3 statistics:
Rcvd: 32 total, 0 checksum errors
10 hello, 7 database desc, 2 link state req
9 link state updates, 4 link state acks
0 LSA ignored

Sent: 45 total, 0 failed
17 hello, 12 database desc, 2 link state req
8 link state updates, 6 link state acks
```

```
OSPFv3 Router with ID (10.1.1.4) (Process ID 6)
OSPFv3 queues statistic for process ID 6
Hello queue size 0, no limit, max size 2
Router queue size 0, limit 200, drops 0, max size 2
```

Interface statistics:

Interface Serial2/0

OSPFv3 packets received/sent

Туре	Packets	Bytes
RX Invalid	0	0
RX Hello	5	196
RX DB des	4	172
RX LS req	1	52
RX LS upd	4	320
RX LS ack	2	112
RX Total	16	852
TX Failed	0	0
TX Hello	8	304
TX DB des	3	144
TX LS req	1	52
TX LS upd	3	252
TX LS ack	3	148
TX Total	18	900

OSPFv3 header errors

Length 0, Checksum 0, Version 0, No Virtual Link 0, Area Mismatch 0, Self Originated 0, Duplicate ID 0, Instance ID 0, Hello 0, MTU Mismatch 0, Nbr Ignored 0, Authentication 0,

OSPFv3 LSA errors

Type 0, Length 0, Data 0, Checksum 0,

Interface Ethernet0/0

OSPFv3 packets received/sent

Type	Packets	Bytes
RX Invalid	0	0
RX Hello	6	240
RX DB des	3	144
RX LS req	1	52
RX LS upd	5	372
RX LS ack	2	152
RX Total	17	960
TX Failed	0	0
TX Hello	11	420
TX DB des	9	312
TX LS req	1	52
TX LS upd	5	376
TX LS ack	3	148
TX Total	29	1308

OSPFv3 header errors

```
Length 0, Checksum 0, Version 0, No Virtual Link 0,
  Area Mismatch 0, Self Originated 0, Duplicate ID 0,
  Instance ID 0, Hello 0, MTU Mismatch 0,
  Nbr Ignored 0, Authentication 0,
OSPFv3 LSA errors
  Type 0, Length 0, Data 0, Checksum 0,
Summary traffic statistics for process ID 6:
OSPFv3 packets received/sent
  Туре
                Packets
                                     Bytes
  RX Invalid
                                     0
                                     436
 RX Hello
               11
  RX DB des
                                     316
                7
  RX LS req
                2
                                     104
  RX LS upd
                9
                                     692
  RX LS ack
                4
                                     264
  RX Total
                33
                                     1812
  TX Failed
  TX Hello
               19
                                     724
  TX DB des
               12
                                     456
  TX LS req
                2.
                                     104
  TX LS upd
                8
                                     628
  TX LS ack
                6
                                     296
  TX Total
                47
                                     2208
OSPFv3 header errors
  Length 0, Checksum 0, Version 0, No Virtual Link 0,
  Area Mismatch 0, Self Originated 0, Duplicate ID 0,
  Instance ID 0, Hello 0, MTU Mismatch 0,
 Nbr Ignored 0, Authentication 0,
OSPFv3 LSA errors
  Type 0, Length 0, Data 0, Checksum 0,
```

The network administrator wants to start collecting new statistics, resetting the counters and clearing the traffic statistics by entering the **clear ipv6 ospf traffic** command as follows:

```
Router# clear ipv6 ospf traffic
```

Table 242 describes the significant fields shown in the display.

Table 242 show ipv6 ospf traffic Field Descriptions

Field	Description
OSPFv3 statistics	Traffic statistics accumulated for all OSPF processes running on the router. To ensure compatibility with the show ip traffic command, only checksum errors are displayed. Identifies the route map name.
OSPFv3 queues statistic for process ID	Queue statistics specific to Cisco IOS software.
Hello queue	Statistics for the internal Cisco IOS queue between the packet switching code (process IP Input) and the OSPF hello process for all received OSPF packets.

Table 242 show ipv6 ospf traffic Field Descriptions (continued)

Field	Description	
Router queue	Statistics for the internal Cisco IOS queue between the OSPF hello process and the OSPF router for all received OSPF packets except OSPF hellos.	
queue size	Actual size of the queue.	
queue limit	Maximum allowed size of the queue.	
queue max size	Maximum recorded size of the queue.	
Interface statistics	Per-interface traffic statistics for all interfaces that belong to the specific OSPFv3 process ID.	
OSPFv3 packets received/sent	Number of OSPFv3 packets received and sent on the interface, sorted by packet types.	
OSPFv3 header errors	Packet appears in this section if it was discarded because of an error in the header of an OSPFv3 packet. The discarded packet is counted under the appropriate discard reason.	
OSPFv3 LSA errors	Packet appears in this section if it was discarded because of an error in the header of an OSPF link-state advertisement (LSA). The discarded packet is counted under the appropriate discard reason.	
Summary traffic statistics for process ID	Summary traffic statistics accumulated for an OSPFv3 process.	
	Note The OSPF process ID is a unique value assigned to the OSPFv3 process in the configuration.	
	The value for the received errors is the sum of the OSPFv3 header errors that are detected by the OSPFv3 process, unlike the sum of the checksum errors that are listed in the global OSPF statistics.	

Command	Description
clear ip ospf traffic	Clears OSPFv2 traffic statistics.
clear ipv6 ospf traffic	Clears OSPFv3 traffic statistics.
show ip ospf traffic	Displays OSPFv2 traffic statistics.

show ipv6 ospf virtual-links

To display parameters and the current state of Open Shortest Path First (OSPF) virtual links, use the **show ipv6 ospf virtual-links** command in user EXEC or privileged EXEC mode.

show ipv6 ospf virtual-links

Syntax Description

This command has no arguments or keywords.

Command Modes

User EXEC Privileged EXEC

Command History

Release	Modification
12.0(24)S	This command was introduced.
12.2(15)T	This command was integrated into Cisco IOS Release 12.2(15)T.
12.2(18)S	This command was integrated into Cisco IOS Release 12.2(18)S.
12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
12.4(9)T	Command output was updated to display OSPF for IPv6 encryption information.
12.2(33)SXH	This command was integrated into Cisco IOS Release 12.2(33)SXH.

Usage Guidelines

The information displayed by the **show ipv6 ospf virtual-links** command is useful in debugging OSPF routing operations.

Examples

The following is sample output from the **show ipv6 ospf virtual-links** command:

Router# show ipv6 ospf virtual-links

```
Virtual Link OSPF_VLO to router 172.16.6.6 is up
Interface ID 27, IPv6 address FECO:6666:6666::
Run as demand circuit
DONotAge LSA allowed.
Transit area 2, via interface ATM3/0, Cost of using 1
Transmit Delay is 1 sec, State POINT_TO_POINT,
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Hello due in 00:00:06
```

Table 243 describes the significant fields shown in the display.

Table 243 show ipv6 ospf virtual-links Field Descriptions

Field	Description
Virtual Link OSPF_VL0 to router 172.16.6.6 is up	Specifies the OSPF neighbor, and if the link to that neighbor is up or down.
Interface ID	Interface ID and IPv6 address of the router.
Transit area 2	The transit area through which the virtual link is formed.
via interface ATM3/0	The interface through which the virtual link is formed.
Cost of using 1	The cost of reaching the OSPF neighbor through the virtual link.
Transmit Delay is 1 sec	The transmit delay (in seconds) on the virtual link.
State POINT_TO_POINT	The state of the OSPF neighbor.
Timer intervals	The various timer intervals configured for the link.
Hello due in 0:00:06	When the next hello is expected from the neighbor.

The following sample output from the **show ipv6 ospf virtual-links** command has two virtual links. One is protected by authentication, and the other is protected by encryption.

Router# show ipv6 ospf virtual-links

```
Virtual Link OSPFv3_VL1 to router 10.2.0.1 is up
   Interface ID 69, IPv6 address 2001:0DB8:11:0:A8BB:CCFF:FE00:6A00
   Run as demand circuit
   DoNotAge LSA allowed.
   Transit area 1, via interface Serial12/0, Cost of using 64
   NULL encryption SHA-1 auth SPI 3944, secure socket UP (errors: 0)
   Transmit Delay is 1 sec, State POINT_TO_POINT,
   Timer intervals configured, Hello 2, Dead 10, Wait 40, Retransmit 5
    Adjacency State FULL (Hello suppressed)
     Index 1/2/4, retransmission queue length 0, number of retransmission 1
     First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0)
     Last retransmission scan length is 1, maximum is 1
     Last retransmission scan time is 0 msec, maximum is 0 msec
Virtual Link OSPFv3_VL0 to router 10.1.0.1 is up
   Interface ID 67, IPv6 address 2001:0DB8:13:0:A8BB:CCFF:FE00:6700
   Run as demand circuit
   DoNotAge LSA allowed.
   Transit area 1, via interface Serial11/0, Cost of using 128
   MD5 authentication SPI 940, secure socket UP (errors: 0)
   Transmit Delay is 1 sec, State POINT_TO_POINT,
   Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
     Adjacency State FULL (Hello suppressed)
     Index 1/1/3, retransmission queue length 0, number of retransmission 1
First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0)
     Last retransmission scan length is 1, maximum is 1
     Last retransmission scan time is 0 msec, maximum is 0 msec
```

show ipv6 pim bsr

To display information related to Protocol Independent Multicast (PIM) bootstrap router (BSR) protocol processing, use the **show ipv6 pim bsr** command in user EXEC or privileged EXEC mode.

show ipv6 pim [vrf vrf-name] bsr {election | rp-cache | candidate-rp}

Syntax Description

vrf vrf-name	(Optional) Specifies a virtual routing and forwarding (VRF) configuration.
election	Displays BSR state, BSR election, and bootstrap message (BSM)-related timers.
rp-cache	Displays candidate rendezvous point (C-RP) cache learned from unicast C-RP announcements on the elected BSR.
candidate-rp	Displays C-RP state on routers that are configured as C-RPs.

Command Modes

User EXEC Privileged EXEC

Command History

Release	Modification
12.0(26)S	This command was introduced.
12.3(4)T	This command was integrated into Cisco IOS Release 12.3(4)T.
12.0(28)S	The election, rp-cache, and candidate-rp keywords were added.
12.2(25)S	This command was integrated into Cisco IOS Release 12.2(25)S.
12.3(11)T	The election , rp-cache , and candidate-rp keywords were added.
12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.
12.2(25)SG	This command was integrated into Cisco IOS Release 12.2(25)SG.
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
12.2(33)SXH	This command was integrated into Cisco IOS Release 12.2(33)SXH.
Cisco IOS XE	This command was introduced on Cisco ASR 1000 Series Routers.
Release 2.1	
15.1(4)M	The vrf vrf-name keyword and argument were added.

Usage Guidelines

Use the **show ipv6 pim bsr** command to display details of the BSR election-state machine, C-RP advertisement state machine, and the C-RP cache. Information on the C-RP cache is displayed only on the elected BSR router, and information on the C-RP state machine is displayed only on a router configured as a C-RP.

Examples

The following example displays BSM election information:

Router# show ipv6 pim bsr election

PIMv2 BSR information BSR Election Information

```
Scope Range List: ff00::/8
This system is the Bootstrap Router (BSR)
BSR Address: 60::1:1:4
Uptime: 00:11:55, BSR Priority: 0, Hash mask length: 126
RPF: FE80::A8BB:CCFF:FE03:C400,Ethernet0/0
BS Timer: 00:00:07
This system is candidate BSR
Candidate BSR address: 60::1:1:4, priority: 0, hash mask length: 126
```

Table 243 describes the significant fields shown in the display.

Table 244 show ipv6 pim bsr election Field Descriptions

Field	Description
Scope Range List	Scope to which this BSR information applies.
This system is the Bootstrap Router (BSR)	Indicates this router is the BSR and provides information on the parameters associated with it.
BS Timer	On the elected BSR, the BS timer shows the time in which the next BSM will be originated.
	On all other routers in the domain, the BS timer shows the time at which the elected BSR expires.
This system is candidate BSR	Indicates this router is the candidate BSR and provides information on the parameters associated with it.

The following example displays information that has been learned from various C-RPs at the BSR. In this example, two candidate RPs have sent advertisements for the FF00::/8 or the default IPv6 multicast range:

Router# show ipv6 pim bsr rp-cache

```
PIMv2 BSR C-RP Cache
BSR Candidate RP Cache
Group(s) FF00::/8, RP count 2
RP 10::1:1:3
    Priority 192, Holdtime 150
    Uptime: 00:12:36, expires: 00:01:55
RP 20::1:1:1
    Priority 192, Holdtime 150
    Uptime: 00:12:36, expires: 00:01:5
```

The following example displays information about the C-RP. This RP has been configured without a specific scope value, so the RP will send C-RP advertisements to all BSRs about which it has learned through BSMs it has received.

Router# show ipv6 pim bsr candidate-rp

```
PIMv2 C-RP information
Candidate RP: 10::1:1:3
All Learnt Scoped Zones, Priority 192, Holdtime 150
Advertisement interval 60 seconds
Next advertisement in 00:00:33
```

show ipv6 pim df

To display the designated forwarder (DF)-election state of each interface for each rendezvous point (RP), use the **show ipv6 pim df** command in user EXEC or privileged EXEC mode.

show ipv6 pim [vrf vrf-name] **df** [interface-type interface-number] [rp-address]

Syntax Description

vrf vrf-name	(Optional) Specifies a virtual routing and forwarding (VRF) configuration.
interface-type interface-number	(Optional) Interface type and number. For more information, use the question mark (?) online help function.
rp-address	(Optional) RP IPv6 address.

Command Default

If no interface or RP address is specified, all DFs are displayed.

Command Modes

User EXEC
Privileged EXEC

Command History

Release	Modification
12.3(7)T	This command was introduced.
12.2(25)S	This command was integrated into Cisco IOS Release 12.2(25)S.
12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.
12.2(25)SG	This command was integrated into Cisco IOS Release 12.2(25)SG.
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
12.2(33)SXH	This command was integrated into Cisco IOS Release 12.2(33)SXH.
Cisco IOS XE Release 2.1	This command was introduced on Cisco ASR 1000 Series Routers.
15.1(4)M	The vrf vrf-name keyword and argument were added.

Usage Guidelines

Use the **show ipv6 pim df** command to display the state of the DF election for each RP on each Protocol Independent Multicast (PIM)-enabled interface if the bidirectional multicast traffic is not flowing as expected.

Examples

The following example displays the DF-election states:

Router# show ipv6 pim df

Interface DF State Timer Metrics
Ethernet0/0 Winner 4s 8ms [120/2]
 RP :200::1
Ethernet1/0 Lose Os Oms [inf/inf]
 RP :200::1

The following example shows information on the RP:

Router# show ipv6 pim df

Interface	DF State	Timer	Metrics
Ethernet0/0	None:RP LAN	1 0s 0ms	[inf/inf]
RP :200::1			
Ethernet1/0	Winner	7s 600ms	[0/0]
RP :200::1			
Ethernet2/0	Winner	9s 8ms	[0/0]
RP :200::1			

Table 245 describes the significant fields shown in the display.

Table 245 show ipv6 pim df Field Descriptions

Field	Description
Interface	Interface type and number that is configured to run PIM.
DF State	The state of the DF election on the interface. The state can be:
	• Offer
	• Winner
	• Backoff
	• Lose
	None:RP LAN
	The None:RP LAN state indicates that no DF election is taking place on this LAN because the RP is directly connected to this LAN.
Timer	DF election timer.
Metrics	Routing metrics to the RP announced by the DF.
RP	The IPv6 address of the RP.

Command	Description
debug ipv6 pim df-election	Displays debug messages for PIM bidirectional DF-election message processing.
ipv6 pim rp-address	Configures the address of a PIM RP for a particular group range.
show ipv6 pim df winner	Displays the DF-election winner on each interface for each RP.

show ipv6 pim df winner

To display the designated forwarder (DF)-election winner on each interface for each rendezvous point (RP), use the **show ipv6 pim df winner** command in user EXEC or privileged EXEC mode.

show ipv6 pim [vrf vrf-name] **df winner** [interface-type interface-number] [rp-address]

Syntax Description

vrf vrf-name	(Optional) Specifies a virtual routing and forwarding (VRF) configuration.
interface-type interface-number	(Optional) Interface type and number. For more information, use the question mark (?) online help function.
rp-address	(Optional) RP IPv6 address.

Command Default

If no interface or RP address is specified, all DFs are displayed.

Command Modes

User EXEC Privileged EXEC

Command History

Release	Modification
12.3(7)T	This command was introduced.
12.2(25)S	This command was integrated into Cisco IOS Release 12.2(25)S.
12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.
12.2(25)SG	This command was integrated into Cisco IOS Release 12.2(25)SG.
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
12.2(33)SXH	This command was integrated into Cisco IOS Release 12.2(33)SXH.
Cisco IOS XE Release 2.1	This command was introduced on Cisco ASR 1000 Series Routers.
15.1(4)M	The vrf vrf-name keyword and argument were added.

Usage Guidelines

Use the **show ipv6 pim df winner** command to display the DF election winner for each RP on each Protocol Independent Multicast (PIM)-enabled interface if the bidirectional multicast traffic is not flowing as expected.

Examples

The following example shows the DF winner for the IPv6 address 200::1:

Router# show ipv6 pim df winner ethernet 1/0 200::1

Interface Metrics Ethernet1/0 [120/2]

RP : 200::1

DF Winner: FE80::A8BB:CCFF:FE00:601

Table 245 describes the significant fields shown in the display.

Table 246 show ipv6 pim df winner Field Descriptions

Field	Description
Interface	Interface type and number that is configured to run PIM.
Metrics	Routing metrics to the RP announced by the DF.
RP	The IPv6 address of the RP.
DF Winner	The IPv6 address of the DF election winner.

Command	Description
debug ipv6 pim df-election	Displays debug messages for PIM bidirectional DF-election message processing.
ipv6 pim rp-address	Configures the address of a PIM RP for a particular group range.
show ipv6 pim df	Displays the DF -election state of each interface for each RP.

show ipv6 pim group-map

To display an IPv6 Protocol Independent Multicast (PIM) group mapping table, use the **show ipv6 pim group-map** command in user EXEC or privileged EXEC mode.

show ipv6 pim [**vrf** vrf-name] **group-map** [group-name | group-address] | [group-range | group-mask] [**info-source** {**bsr** | **default** | **embedded-rp** | **static**}]

Syntax Description

vrf vrf-name	(Optional) Specifies a virtual routing and forwarding (VRF) configuration.
group-name group-address	(Optional) IPv6 address or name of the multicast group.
group-range group-mask	(Optional) Group range list. Includes group ranges with the same prefix or mask length.
info-source	(Optional) Displays all mappings learned from a specific source, such as the bootstrap router (BSR) or static configuration.
bsr	Displays ranges learned through the BSR.
default	Displays ranges enabled by default.
embedded-rp	Displays group ranges learned through the embedded rendezvous point (RP).
static	Displays ranges enabled by static configuration.

Command Modes

User EXEC Privileged EXEC

Command History

Release	Modification
12.3(2)T	This command was introduced.
12.2(18)S	This command was integrated into Cisco IOS Release 12.2(18)S.
12.0(26)S	This command was integrated into Cisco IOS Release 12.0(26)S.
12.0(28)S	The <i>group-range</i> and <i>group-mask</i> arguments were added, and the info-source bsr , static , and default keywords were added.
12.2(25)S	The <i>group-range</i> and <i>group-mask</i> arguments were added, and the info-source bsr , static , and default keywords were added.
12.3(11)T	The <i>group-range</i> and <i>group-mask</i> arguments were added, and the info-source bsr , static , and default keywords were added.
12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.
12.2(25)SG	This command was integrated into Cisco IOS Release 12.2(25)SG.
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
12.2(33)SXH	This command was integrated into Cisco IOS Release 12.2(33)SXH.
15.1(4)M	The vrf vrf-name keyword and argument were added.

Usage Guidelines

Use the **show ipv6 pim group-map** command to find all group mappings installed by a given source of information, such as BSR or static configuration.

You can also use this command to find which group mapping a router at a specified IPv6 group address is using by specifying a group address, or to find an exact group mapping entry by specifying a group range and mask length.

Examples

The following is sample output from the **show ipv6 pim group-map** command:

```
FF33::/32*
SSM
Info source:Static
Uptime:00:08:32, Groups:0
FF34::/32*
SSM
Info source:Static
Uptime:00:09:42, Groups:0
```

Router# show ipv6 pim group-map

Table 247 describes the significant fields shown in the display.

Table 247 show ipv6 pim group-map Field Descriptions

Field	Description
RP	Address of the RP router if the protocol is sparse mode or bidir.
Protocol	Protocol used: sparse mode (SM), Source Specific Multicast (SSM), link-local (LL), or NOROUTE (NO).
	LL is used for the link-local scoped IPv6 address range (ff[0-f]2::/16). LL is treated as a separate protocol type, because packets received with these destination addresses are not forwarded, but the router might need to receive and process them.
	NOROUTE or NO is used for the reserved and node-local scoped IPv6 address range (ff[0-f][0-1]::/16). These addresses are nonroutable, and the router does not need to process them.
Groups	How many groups are present in the topology table from this range.
Info source	Mappings learned from a specific source; in this case, static configuration.
Uptime	The uptime for the group mapping displayed.

The following example displays the group mappings learned from BSRs that exist in the PIM group-to-RP or mode-mapping cache. The example shows the address of the BSR from which the group mappings have been learned and the associated timeout.

Router# show ipv6 pim group-map info-source bsr

```
FF00::/8*
    SM, RP: 20::1:1:1
    RPF: Et1/0,FE80::A8BB:CCFF:FE03:C202
    Info source: BSR From: 60::1:1:4(00:01:42), Priority: 192
    Uptime: 00:19:51, Groups: 0
FF00::/8*
    SM, RP: 10::1:1:3
    RPF: Et0/0,FE80::A8BB:CCFF:FE03:C102
    Info source: BSR From: 60::1:1:4(00:01:42), Priority: 192
    Uptime: 00:19:51, Groups: 0
```

show ipv6 pim interface

To display information about interfaces configured for Protocol Independent Multicast (PIM), use the **show ipv6 pim interface** command in privileged EXEC mode.

show ipv6 pim [vrf vrf-name] interface [state-on] [state-off] [type number]

Syntax Description

vrf vrf-name	(Optional) Specifies a virtual routing and forwarding (VRF) configuration.
state-on	(Optional) Displays interfaces with PIM enabled.
state-off	(Optional) Displays interfaces with PIM disabled.
type number	(Optional) Interface type and number.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.3(2)T	This command was introduced.
12.2(18)S	This command was integrated into Cisco IOS Release 12.2(18)S.
12.0(26)S	The state-on and state-off keywords were added.
12.3(4)T	The state-on and state-off keywords were added.
12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.
12.2(25)SG	This command was integrated into Cisco IOS Release 12.2(25)SG.
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
12.2(33)SXH	This command was integrated into Cisco IOS Release 12.2(33)SXH.
15.1(4)M	The vrf vrf-name keyword and argument were added.

Usage Guidelines

The **show ipv6 pim interface** command is used to check if PIM is enabled on an interface, the number of neighbors, and the designated router (DR) on the interface.

Examples

The following is sample output from the **show ipv6 pim interface** command using the **state-on** keyword:

Router# show ipv6 pim interface state-on

```
Interface
                  PIM Nbr
                           Hello DR
                      Count Intvl
                                  Prior
Ethernet0
                      0
                  on
                            30
   Address:FE80::208:20FF:FE08:D7FF
   DR : this system
                     0
                  on
   Address:FE80::208:20FF:FE08:D554
   DR :this system
POS4/0
                            3.0
                 on 1
   Address:FE80::208:20FF:FE08:D554
```

```
DR :FE80::250:E2FF:FE8B:4C80

POS4/1 on 0 30 1

Address:FE80::208:20FF:FE08:D554

DR :this system

Loopback0 on 0 30 1

Address:FE80::208:20FF:FE08:D554

DR :this system
```

Table 248 describes the significant fields shown in the display.

Table 248 show ipv6 pim interface Field Descriptions

Field	Description
Interface	Interface type and number that is configured to run PIM.
PIM	Whether PIM is enabled on an interface.
Nbr Count	Number of PIM neighbors that have been discovered through this interface.
Hello Intvl	Frequency, in seconds, of PIM hello messages.
DR	IP address of the designated router (DR) on a network.
Address	Interface IP address of the next-hop router.

Command	Description
show ipv6 pim neighbor	Displays the PIM neighbors discovered by the Cisco IOS software.

show ipv6 pim join-prune statistic

To display the average join-prune aggregation for the most recently aggregated 1000, 10,000, and 50,000 packets for each interface, use the **show ipv6 pim join-prune statistic** command in user EXEC or privileged EXEC mode.

show ipv6 pim [vrf vrf-name] **join-prune statistic** [interface-type]

Syntax Description

vrf vrf-name	(Optional) Specifies a virtual routing and forwarding (VRF) configuration.
interface-type	(Optional) Interface type. For more information, use the question mark (?) online help function.

Command Modes

User EXEC Privileged EXEC

Command History

Release	Modification
12.0(26)S	This command was introduced.
12.3(4)T	This command was integrated into Cisco IOS Release 12.3(4)T.
12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.
12.2(25)SG	This command was integrated into Cisco IOS Release 12.2(25)SG.
Cisco IOS XE Release 2.1	This command was introduced on Cisco ASR 1000 Series Routers.
15.1(4)M	The vrf vrf-name keyword and argument were added.

Usage Guidelines

When Protocol Independent Multicast (PIM) sends multiple joins and prunes simultaneously, it aggregates them into a single packet. The **show ipv6 pim join-prune statistic** command displays the average number of joins and prunes that were aggregated into a single packet over the last 1000 PIM join-prune packets, over the last 10,000 PIM join-prune packets, and over the last 50,000 PIM join-prune packets.

Examples

The following example provides the join/prune aggregation on Ethernet interface 0/0/0:

Router# show ipv6 pim join-prune statistic Ethernet0/0/0

PIM Average Join/Prune Aggregation for last (1K/10K/50K) packets
Interface Transmitted Received

Ethernet0/0/0 0 / 0 / 0 1 / 0 / 0

Table 249 describes the significant fields shown in the display.

Table 249 show ipv6 pim join-prune statistics Field Descriptions

Field	Description
Interface	The interface from which the specified packets were transmitted or on which they were received.
Transmitted	The number of packets transmitted on the interface.
Received	The number of packets received on the interface.

show ipv6 pim limit

To display Protocol Independent Multicast (PIM) interface limit, use the **show ipv6 pim limit** command in privileged EXEC mode.

show ipv6 pim [vrf vrf-name] limit [interface]

Syntax Description

vrf vrf-name	(Optional) Specifies a virtual routing and forwarding (VRF) configuration.
interface	(Optional) Specific interface for which limit information is provided.

Command Modes

Privileged EXEC (#)

Command History

Release	Modification
12.2(33)SRE	This command was introduced.
15.1(4)M	The vrf vrf-name keyword and argument were added.

Usage Guidelines

The **show ipv6 pim limit** command checks interface statistics for limits. If the optional *interface* argument is enabled, only information for the specified interface is shown.

Examples

The following example displays s PIM interface limit information:

Router# show ipv6 pim limit

Command	Description
ipv6 multicast limit	Configures per-interface mroute state limiters in IPv6.
ipv6 multicast limit	Applies a cost to mroutes that match per interface mroute state limiters in
cost	IPv6.

show ipv6 pim limit

To display Protocol Independent Multicast (PIM) interface limit, use the **show ipv6 pim limit** command in privileged EXEC mode.

show ipv6 pim [vrf vrf-name] limit [interface]

Syntax Description

vrf vrf-name	(Optional) Specifies a virtual routing and forwarding (VRF) configuration.
interface	(Optional) Specific interface for which limit information is provided.

Command Modes

Privileged EXEC (#)

Command History

Release	Modification
12.2(33)SRE	This command was introduced.
15.1(4)M	The vrf vrf-name keyword and argument were added.

Usage Guidelines

The **show ipv6 pim limit** command checks interface statistics for limits. If the optional *interface* argument is enabled, only information for the specified interface is shown.

Examples

The following example displays s PIM interface limit information:

Router# show ipv6 pim limit

Command	Description
ipv6 multicast limit	Configures per-interface mroute state limiters in IPv6.
ipv6 multicast limit	Applies a cost to mroutes that match per interface mroute state limiters in
cost	IPv6.

show ipv6 pim range-list

To display information about IPv6 multicast range lists, use the **show ipv6 pim range-list** command in privileged EXEC mode.

show ipv6 pim [vrf vrf-name] range-list [config] [rp-address | rp-name]

Syntax Description

vrf vrf-name	(Optional) Specifies a virtual routing and forwarding (VRF) configuration.
config	(Optional) The client. Displays the range lists configured on the router.
rp-address rp-name	(Optional) The address of a Protocol Independent Multicast (PIM) rendezvous point (RP).

Command Modes

Privileged EXEC

Command History

Release	Modification
12.3(2)T	This command was introduced.
12.2(18)S	This command was integrated into Cisco IOS Release 12.2(18)S.
12.0(26)S	This command was integrated into Cisco IOS Release 12.0(26)S.
12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.
12.2(25)SG	This command was integrated into Cisco IOS Release 12.2(25)SG.
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
12.2(33)SXH	This command was integrated into Cisco IOS Release 12.2(33)SXH.
15.1(4)M	The vrf vrf-name keyword and argument were added.

Usage Guidelines

The **show ipv6 pim range-list** command displays IPv6 multicast range lists on a per-client and per-mode basis. A client is the entity from which the specified range list was learned. The clients can be config, and the modes can be Source Specific Multicast (SSM) or sparse mode (SM).

Examples

The following is sample output from the show ipv6 pim range-list command:

Router# show ipv6 pim range-list

```
config SSM Exp:never Learnt from :::
FF33::/32 Up:00:26:33
FF34::/32 Up:00:26:33
FF35::/32 Up:00:26:33
FF36::/32 Up:00:26:33
FF37::/32 Up:00:26:33
FF38::/32 Up:00:26:33
FF39::/32 Up:00:26:33
FF39::/32 Up:00:26:33
FF3B::/32 Up:00:26:33
FF3B::/32 Up:00:26:33
FF3B::/32 Up:00:26:33
FF3B::/32 Up:00:26:33
FF3C::/32 Up:00:26:33
FF3D::/32 Up:00:26:33
FF3D::/32 Up:00:26:33
```

```
FF3F::/32 Up:00:26:33

config SM RP:40::1:1:1 Exp:never Learnt from :::

FF13::/64 Up:00:03:50

config SM RP:40::1:1:3 Exp:never Learnt from :::

FF09::/64 Up:00:03:50
```

Table 250 describes the significant fields shown in the display.

Table 250 show ipv6 pim range-list Field Descriptions

Field	Description
config	Config is the client.
SSM	Protocol being used.
FF33::/32	Group range.
Up:	Uptime.

show ipv6 pim topology

To display Protocol Independent Multicast (PIM) topology table information for a specific group or all groups, use the **show ipv6 pim topology** command in user EXEC or privileged EXEC mode.

show ipv6 pim [vrf vrf-name] **topology** [groupname-or-address [sourcename-or-address] | link-local | route-count [detail]]

Syntax Description

vrf vrf-name	(Optional) Specifies a virtual routing and forwarding (VRF) configuration.
groupname-or-address	(Optional) IPv6 address or name of the multicast group.
sourcename-or-address	(Optional) IPv6 address or name of the source.
link-local	(Optional) Displays the link-local groups.
route-count	(Optional) Displays the number of routes in PIM topology table.

Command Modes

User EXEC (>)
Privileged EXEC (#)

Command History

Release	Modification
12.3(2)T	This command was introduced.
12.2(18)S	This command was integrated into Cisco IOS Release 12.2(18)S.
12.0(26)S	This command was modified. The link-local keyword was added.
12.3(4)T	This command was modified. The link-local keyword was added.
12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.
12.2(25)SG	This command was integrated into Cisco IOS Release 12.2(25)SG.
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
12.2(33)SXH	This command was integrated into Cisco IOS Release 12.2(33)SXH.
Cisco IOS XE Release 2.1	This command was introduced on Cisco ASR 1000 Series Routers.
15.1(4)M	The vrf vrf-name keyword and argument were added.

Usage Guidelines

This command shows the PIM topology table for a given group—(*, G), (S, G), and (S, G) Rendezvous Point Tree (RPT)— as internally stored in a PIM topology table. The PIM topology table may have various entries for a given group, each with its own interface list. The resulting forwarding state is maintained in the Multicast Routing Information Base (MRIB) table, which shows which interface the data packet should be accepted on and which interfaces the data packet should be forwarded to for a given (S, G) entry. Additionally, the Multicast Forwarding Information Base (MFIB) table is used during forwarding to decide on per-packet forwarding actions.

The **route-count** keyword shows the count of all entries, including link-local entries.

PIM communicates the contents of these entries through the MRIB, which is an intermediary for communication between multicast routing protocols (such as PIM), local membership protocols (such as Multicast Listener Discovery [MLD]), and the multicast forwarding engine of the system.

For example, an interface is added to the (*, G) entry in PIM topology table upon receipt of an MLD report or PIM (*, G) join message. Similarly, an interface is added to the (S, G) entry upon receipt of the MLD INCLUDE report for the S and G or PIM (S, G) join message. Then PIM installs an (S, G) entry in the MRIB with the immediate olist (from (S, G)) and the inherited olist (from (*, G)). Therefore, the proper forwarding state for a given entry (S, G) can be seen only in the MRIB or the MFIB, not in the PIM topology table.

Examples

The following is sample output from the **show ipv6 pim topology** command:

Router# show ipv6 pim topology

```
IP PIM Multicast Topology Table
Entry state:(*/S,G)[RPT/SPT] Protocol Uptime Info
Entry flags: KAT - Keep Alive Timer, AA - Assume Alive, PA - Probe Alive,
   RA - Really Alive, LH - Last Hop, DSS - Don't Signal Sources,
   RR - Register Received, SR - Sending Registers, E - MSDP External,
   DCC - Don't Check Connected
Interface state: Name, Uptime, Fwd, Info
Interface flags:LI - Local Interest, LD - Local Dissinterest,
II - Internal Interest, ID - Internal Dissinterest,
LH - Last Hop, AS - Assert, AB - Admin Boundary
(*,FF05::1)
SM UP:02:26:56 JP:Join(now) Flags:LH
RP:40::1:1:2
RPF:Ethernet1/1,FE81::1
                       02:26:56 fwd LI LH
 Ethernet0/1
(50::1:1:200,FF05::1)
SM UP:00:00:07 JP:Null(never) Flags:
RPF:Ethernet1/1,FE80::30:1:4
  Ethernet1/1
                       00:00:07 off LI
```

Table 251 describes the significant fields shown in the display.

Table 251 show ipv6 pim topology Field Descriptions

Field	Description
Entry flags: KAT	The keepalive timer (KAT) associated with a source is used to keep track of two intervals while the source is alive. When a source first becomes active, the first-hop router sets the keepalive timer to 3 minutes and 30 seconds, during which time it does not probe to see if the source is alive. Once this timer expires, the router enters the probe interval and resets the timer to 65 seconds, during which time the router assumes the source is alive and starts probing to determine if it actually is. If the router determines that the source is alive, the router exits the probe interval and resets the keepalive timer to 3 minutes and 30 seconds. If the source is not alive, the entry is deleted at the end of the probe interval.
AA, PA	The assume alive (AA) and probe alive (PA) flags are set when the router is in the probe interval for a particular source.
RR	The register received (RR) flag is set on the (S, G) entries on the Route Processor (RP) as long as the RP receives registers from the source Designated Router (DR), which keeps the source state alive on the RP.
SR	The sending registers (SR) flag is set on the (S, G) entries on the DR as long as it sends registers to the RP.

Command	Description
show ipv6 mrib client	Displays information about the clients of the MRIB.
show ipv6 mrib route	Displays MRIB route information.

show ipv6 pim traffic

To display the Protocol Independent Multicast (PIM) traffic counters, use the **show ipv6 pim traffic** command in user EXEC or privileged EXEC mode.

show ipv6 pim [vrf vrf-name] traffic

Syntax Description

vrf vrf-name (Optional) Specifies a virtual routing and forw	warding (VRF) configuration.
---	------------------------------

Command Modes

User EXEC Privileged EXEC

Command History

Release	Modification
12.0(26)S	This command was introduced.
12.3(4)T	This command was integrated into Cisco IOS Release 12.3(4)T.
12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.
12.2(25)SG	This command was integrated into Cisco IOS Release 12.2(25)SG.
Cisco IOS XE Release 2.1	This command was introduced on Cisco ASR 1000 Series Routers.
15.1(4)M	The vrf vrf-name keyword and argument were added.

Usage Guidelines

Use the **show ipv6 pim traffic** command to check if the expected number of PIM protocol messages have been received and sent.

Examples

The following example shows the number of PIM protocol messages received and sent.

Router# show ipv6 pim traffic

PIM Traffic Counters

Elapsed time since counters cleared:00:05:29

	Received	Sen
Valid PIM Packets	22	22
Hello	22	22
Join-Prune	0	0
Register	0	0
Register Stop	0	0
Assert	0	0
Bidir DF Election	0	0
Errors:		
Malformed Packets		0
Bad Checksums		0
Send Errors		0
Packet Sent on Loopback Errors	5	0
Packets Received on PIM-disable	led Interface	0
Packets Received with Unknown	PIM Version	0

Table 252 describes the significant fields shown in the display.

Table 252 show ipv6 pim traffic Field Descriptions

Field	Description
Elapsed time since counters cleared	Indicates the amount of time (in hours, minutes, and seconds) since the counters cleared.
Valid PIM Packets	Number of valid PIM packets received and sent.
Hello	Number of valid hello messages received and sent.
Join-Prune	Number of join and prune announcements received and sent.
Register	Number of PIM register messages received and sent.
Register Stop	Number of PIM register stop messages received and sent.
Assert	Number of asserts received and sent.

show ipv6 pim tunnel

To display information about the Protocol Independent Multicast (PIM) register encapsulation and de-encapsulation tunnels on an interface, use the **show ipv6 pim tunnel** command in privileged EXEC mode.

show ipv6 pim [vrf vrf-name] **tunnel** [interface-type interface-number]

Syntax Description

vrf vrf-name	(Optional) Specifies a virtual routing and forwarding (VRF) configuration.
interface-type interface-number	(Optional) Tunnel interface type and number.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.3(2)T	This command was introduced.
12.2(18)S	This command was integrated into Cisco IOS Release 12.2(18)S.
12.0(26)S	This command was integrated into Cisco IOS Release 12.0(26)S.
12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.
12.2(25)SG	This command was integrated into Cisco IOS Release 12.2(25)SG.
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
12.2(33)SXH	This command was integrated into Cisco IOS Release 12.2(33)SXH.
15.1(4)M	The vrf vrf-name keyword and argument were added.

Usage Guidelines

If you use the **show ipv6 pim tunnel** command without the optional *interface* keyword, information about the PIM register encapsulation and de-encapsulation tunnel interfaces is displayed.

The PIM encapsulation tunnel is the register tunnel. An encapsulation tunnel is created for every known rendezvous point (RP) on each router. The PIM decapsulation tunnel is the register decapsulation tunnel. A decapsulation tunnel is created on the RP for the address that is configured to be the RP address.

Examples

The following is sample output from the **show ipv6 pim tunnel** command on the RP:

Router# show ipv6 pim tunnel

```
Tunnel0*

Type :PIM Encap
RP :100::1

Source:100::1

Tunnel0*

Type :PIM Decap
RP :100::1

Source: -
```

The following is sample output from the **show ipv6 pim tunnel** command on a non-RP:

Router# show ipv6 pim tunnel

```
Tunnel0*
Type :PIM Encap
RP :100::1
Source:2001::1:1:1
```

Table 253 describes the significant fields shown in the display.

Table 253 show ipv6 pim tunnel Field Descriptions

Field	Description
Tunnel0*	Name of the tunnel.
Type	Type of tunnel. Can be PIM encapsulation or PIM de-encapsulation.
source	Source address of the router that is sending encapsulating registers to the RP.

show ipv6 policy

To display IPv6 policy-based routing (PBR) configuration, use the **show ipv6 policy** command in user EXEC or privileged EXEC mode.

show ipv6 policy

Syntax Description

This command has no arguments or keywords.

Command Default

PBR configuration is not displayed.

Command Modes

User EXEC Privileged EXEC

Command History

Release	Modification
12.3(7)T	This command was introduced.
12.2(33)SXI4	This command was modified. It was integrated into Cisco IOS Release 12.2(33)SXI4.
Cisco IOS XE Release 3.2S	This command was modified. It was integrated into Cisco IOS XE Release 3.2S.

Usage Guidelines

IPv6 policy matches will be counted on route maps, as is done in IP version 4. Therefore, IPv6 policy matches can also be displayed on the **show route-map** command.

Examples

The following example displays the PBR configuration:

Router# show ipv6 policy

Interface Routemap
Ethernet0/0 src-1

Table 245 describes the significant fields shown in the display.

Table 254 show ipv6 policy Field Descriptions

Field	Description
Interface	Interface type and number that is configured to run PIM.
Routemap	The name of the route map on which IPv6 policy matches were counted.

Command	Description
show route-map	Displays all route maps configured or only the one specified.

show ipv6 port-map

To verify port-to-application mapping (PAM) configuration, use the **show ipv6 port-map** command in user EXEC or privileged EXEC mode.

show ipv6 port-map [application | **port** port-number]

Syntax Description

application	(Optional) Specifies the name of the application used in port mapping.
port port-number	(Optional) Specifies the port number that maps to the application.

Command Modes

User EXEC
Privileged EXEC

Command History

Release	Modification	
12.3(11)T	This command was introduced.	

Usage Guidelines

The **show ipv6 port-map** command displays the entire IPv6 port-mapping table or specific port-mapping information of a particular port number or application (protocol). Enabling the **show ipv6 port-map** command displays the entire IPv6 PAM table, including system-defined, user-defined, and host-specific port-mapping configurations.

To display port-mapping details of a specific port number, use the **show ipv6 port-map** command with the **port** *port-number* keyword and argument.

To display the port-mapping details of a specific application, use the **show ipv6 port-map** command with the *application* argument.

Examples

The following example displays the FTP application's PAM information:

Router# show ipv6 port-map ftp

The following example displays PAM information at port number 21:

Router# show ipv6 port-map port 21

Command	Description
ipv6 port-map	Establishes PAM for the system.

show ipv6 prefix-list

To display information about an IPv6 prefix list or IPv6 prefix list entries, use the **show ipv6 prefix-list** command in user EXEC or privileged EXEC mode.

show ipv6 prefix-list [detail | summary] [list-name]

show ipv6 prefix-list *list-name ipv6-prefix/prefix-length* [**longer** | **first-match**]

show ipv6 prefix-list list-name seq seq-num

Syntax Description

detail summary	(Optional) Displays detailed or summarized information about all IPv6 prefix lists.	
list-name	(Optional) The name of a specific IPv6 prefix list.	
ipv6-prefix	All prefix list entries for the specified IPv6 network.	
	This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.	
Iprefix-length	The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.	
longer	(Optional) Displays all entries of an IPv6 prefix list that are more specific than the given <i>ipv6-prefixlprefix-length</i> values.	
first-match	(Optional) Displays the entry of an IPv6 prefix list that matches the given <i>ipv6-prefixlprefix-length</i> values.	
seq seq-num	The sequence number of the IPv6 prefix list entry.	

Command Default

Displays information about all IPv6 prefix lists.

Command Modes

User EXEC Privileged EXEC

Command History

Release	Modification
12.2(2)T	This command was introduced.
12.0(21)ST	This command was integrated into Cisco IOS Release 12.0(21)ST.
12.0(22)S	This command was integrated into Cisco IOS Release 12.0(22)S.
12.2(14)S	This command was integrated into Cisco IOS Release 12.2(14)S.
12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.
12.2(25)SG	This command was integrated into Cisco IOS Release 12.2(25)SG.
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
12.2(33)SXH	This command was integrated into Cisco IOS Release 12.2(33)SXH.

Usage Guidelines

The **show ipv6 prefix-list** command provides output similar to the **show ip prefix-list** command, except that it is IPv6-specific.

Examples

The following example shows the output of the **show ipv6 prefix-list** command with the **detail** keyword:

Router# show ipv6 prefix-list detail

```
Prefix-list with the last deletion/insertion: bgp-in
ipv6 prefix-list 6to4:
  count: 1, range entries: 0, sequences: 5 - 5, refcount: 2
  seq 5 permit 2002::/16 (hit count: 313, refcount: 1)
ipv6 prefix-list aggregate:
  count: 2, range entries: 2, sequences: 5 - 10, refcount: 30
  seq 5 deny 3FFE:C00::/24 ge 25 (hit count: 568, refcount: 1)
   seq 10 permit ::/0 le 48 (hit count: 31310, refcount: 1)
ipv6 prefix-list bgp-in:
   count: 6, range entries: 3, sequences: 5 - 30, refcount: 31
  seq 5 deny 5F00::/8 le 128 (hit count: 0, refcount: 1)
  seq 10 deny ::/0 (hit count: 0, refcount: 1)
  seq 15 deny ::/1 (hit count: 0, refcount: 1)
  seq 20 deny ::/2 (hit count: 0, refcount: 1)
  seq 25 deny ::/3 ge 4 (hit count: 0, refcount: 1)
  seq 30 permit ::/0 le 128 (hit count: 240664, refcount: 0)
```

Table 255 describes the significant fields shown in the display.

Table 255 show ipv6 prefix-list Field Descriptions

Field	Description
Prefix list with the latest deletion/insertion:	Prefix list that was last modified.
count	Number of entries in the list.
range entries	Number of entries with matching range.
sequences	Sequence number for the prefix entry.
refcount	Number of objects currently using this prefix list.
seq	Entry number in the list.
permit, deny	Granting status.
hit count	Number of matches for the prefix entry.

The following example shows the output of the **show ipv6 prefix-list** command with the **summary** keyword:

Router# show ipv6 prefix-list summary

```
Prefix-list with the last deletion/insertion: bgp-in
ipv6 prefix-list 6to4:
    count: 1, range entries: 0, sequences: 5 - 5, refcount: 2
ipv6 prefix-list aggregate:
    count: 2, range entries: 2, sequences: 5 - 10, refcount: 30
ipv6 prefix-list bgp-in:
    count: 6, range entries: 3, sequences: 5 - 30, refcount: 31
```

Command	Description	
clear ipv6 prefix-list	Resets the hit count of the prefix list entries.	
distribute-list in	Filters networks received in updates.	
distribute-list out	Suppresses networks from being advertised in updates.	
ipv6 prefix-list	Creates an entry in an IPv6 prefix list.	
ipv6 prefix-list description	Adds a text description of an IPv6 prefix list.	
match ipv6 address	Distributes IPv6 routes that have a prefix permitted by a prefix list.	
neighbor prefix-list	Distributes BGP neighbor information as specified in a prefix list.	
remark (prefix-list)	Adds a comment for an entry in a prefix list.	

show ipv6 protocols

To display the parameters and current state of the active IPv6 routing protocol processes, use the **show ipv6 protocols** command in user EXEC or privileged EXEC mode.

show ipv6 protocols [summary]

Syntax Description

summary	(Optional) Displays the configured routing protocol process	names.
---------	---	--------

Command Modes

User EXEC Privileged EXEC

Command History

Release	Modification
12.2(8)T	This command was introduced.
12.0(21)ST	This command was integrated into Cisco IOS Release 12.0(21)ST.
12.0(22)S	This command was integrated into Cisco IOS Release 12.0(22)S.
12.2(14)S	This command was integrated into Cisco IOS Release 12.2(14)S.
12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.
12.2(25)SG	This command was integrated into Cisco IOS Release 12.2(25)SG.
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
12.4(15)T	The command output was modified to provide EIGRP information, including the vector metric.
12.2(33)SXH	This command was integrated into Cisco IOS Release 12.2(33)SXH.
Cisco IOS XE Release 2.4	This command was introduced on Cisco ASR 1000 Series Routers.

Usage Guidelines

The information displayed by the **show ipv6 protocols** command is useful in debugging routing operations.

Examples

The following is sample output from the **show ipv6 protocols** command, showing Intermediate System-to-Intermediate System (IS-IS) routing protocol information:

Router# show ipv6 protocols

```
IPv6 Routing Protocol is "connected"
IPv6 Routing Protocol is "static"
IPv6 Routing Protocol is "isis"
Interfaces:
Ethernet0/0/3
Ethernet0/0/1
Serial1/0/1
Loopback1 (Passive)
Loopback2 (Passive)
Loopback3 (Passive)
Loopback4 (Passive)
```

```
Loopback5 (Passive)
Redistribution:
Redistributing protocol static at level 1
Inter-area redistribution
Redistributing L1 into L2 using prefix-list word
Address Summarization:
L2: 33::/16 advertised with metric 0
L2: 44::/16 advertised with metric 20
L2: 66::/16 advertised with metric 10
L2: 77::/16 advertised with metric 10
```

Table 256 describes the significant fields shown in the display.

Table 256 show ipv6 protocols Field Descriptions for IS-IS Processes

Field	Description
IPv6 Routing Protocol is	Specifies the IPv6 routing protocol used.
Interfaces	Specifies the interfaces on which the IPv6 IS-IS protocol is configured.
Redistribution	Lists the protocol that is being redistributed.
Inter-area redistribution	Lists the IS-IS levels that are being redistributed into other levels.
using prefix-list	Names the prefix list used in the interarea redistribution.
Address Summarization	Lists all the summary prefixes. If the summary prefix is being advertised then "advertised with metric x" will be displayed after the prefix.

The following is sample output from the **show ipv6 protocols** command, showing Border Gateway Protocol (BGP) routing protocol information for autonomous system 30:

```
Router# show ipv6 protocols
```

```
IPv6 Routing Protocol is "bgp 30"
  IGP synchronization is disabled
 Redistribution:
   Redistributing protocol connected
  Neighbor(s):
   Address
                              FiltIn FiltOut Weight RoutemapIn RoutemapOut
    2002:3000::36C
                                   5
                                          7
                                                200
    5000::1
                                                     rmap-in
                                                               rmap-out
    7000::36C
                                                     rmap-in
                                                               rmap-out
```

Table 257 describes the significant fields shown in the display.

Table 257 show ipv6 protocols Field Descriptions for BGP Process

Field	Description
IPv6 Routing Protocol is	Specifies the IPv6 routing protocol used.
Redistribution	Lists the protocol that is being redistributed.
Address	Neighbor IPv6 address.
FiltIn	AS-path filter list applied to input.
FiltOut	AS-path filter list applied to output.

Cisco IOS IPv6 Command Reference

Table 257 show ipv6 protocols Field Descriptions for BGP Process (continued)

Field	Description
Weight	Neighbor weight value used in BGP bestpath selection.
RoutemapIn	Neighbor route map applied to input.
RoutemapOut	Neighbor route map applied to output.

The following is sample output from the **show ipv6 protocols** command with the **summary** keyword:

Router# show ipv6 protocols summary

```
Index Process Name
0    connected
1    static
2    rip myrip
3    bgp 30
```

The following is sample output from the **show ipv6 protocols** command and displays EIGRP information including the vector metric:

Router# show ipv6 protocols summary

```
IPv6 Routing Protocol is "ND"
IPv6 Routing Protocol is "connected"
IPv6 Routing Protocol is "eigrp 1"
 EIGRP metric weight K1=1, K2=0, K3=1, K4=0, K5=0
 EIGRP maximum hopcount 100
 EIGRP maximum metric variance 1
 Interfaces:
  Redistribution:
   Redistributing protocol eigrp 2 with metric 1 2 3 4 5 \,
 Maximum path: 16
  Distance: internal 90 external 170
IPv6 Routing Protocol is "eigrp 2"
  EIGRP metric weight K1=1, K2=0, K3=1, K4=0, K5=0
  EIGRP maximum hopcount 100
  EIGRP maximum metric variance 1
 Interfaces:
 Redistribution:
   None
  Maximum path: 16
  Distance: internal 90 external 170
```