
Packet I/O Functionality and Hosting
Applications

• Setting up Application Hosting Environment, on page 1
• Hosting an Application in Docker Containers, on page 16
• Boot Devices Using PXE Server Running in a Docker Container, on page 21
• Hosting and Activating the PXE Server Docker on Cisco 8201 Router using Application Manager, on
page 24

• CPU-Based Packet Generator, on page 26

Setting up Application Hosting Environment
This section illustrates how, with the Packet I/O functionality, you can use Linux applications to manage
communication with the IOS XR interfaces. It describes how the OS environment must be set up to establish
packet I/O communication with hosted applications.

Packet I/O Functionality and Hosting Applications
1

Verify Reachability of IOS XR and Packet I/O Infrastructure
DescriptionRelease InformationFeature Name

Virtual IP addresses allow a single
IP address to connect to the current
active RP after an RP switchover
event. In addition, this functionality
enables your network stack to
support virtual IP addresses for
third-party applications and IOS
XR applications that use the Linux
networking stack.

The following commands are
modified:

• ipv4 virtual address

• ipv6 virtual address

• show linux networking
interfaces address-only

Release 7.5.2Virtual IP address in the Linux
networking stack

Now the configured interface
secondary IPv4 addresses on the
Cisco IOS XR software are
automatically synchronized to
Linux operating system.

The third-party applications on
Cisco IOS XR can use the
secondary IPv4 addresses without
any manual intervention.

Earlier, you had to configure the
secondary IPv4 addresses on the
Linux operating system manually.

Release 7.5.3Automatic Synchronization of
Secondary IPv4 addresses fromXR
to Linux OS

Now the configured interface
secondary IPv6 addresses on the
Cisco IOS XR software are
automatically synchronized to
Linux operating system.

The third-party applications on
Cisco IOS XR can use the
secondary IPv6 addresses without
any manual intervention.

Earlier, you had to configure the
secondary IPv6 addresses on the
Linux operating system manually.

Release 7.11.1Automatic Synchronization of
Secondary IPv6 addresses fromXR
to Linux OS

Packet I/O Functionality and Hosting Applications
2

Packet I/O Functionality and Hosting Applications
Verify Reachability of IOS XR and Packet I/O Infrastructure

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp2718532061
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp7955588300
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp7546444200
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp7546444200

Interfaces configured on IOS XR are programmed into the Linux kernel. These interfaces allow Linux
applications to run as if they were running on a regular Linux system. This packet I/O capability ensures that
off-the-shelf Linux applications can be run alongside IOS XR, allowing operators to use their existing tools
and automate deployments with IOS XR.

The IP address on the Linux interfaces, MTU settings, MAC address are inherited from the corresponding
settings of the IOS XR interface. Accessing the global VRF network namespace ensures that when you issue
the bash command, the default or the global VRF in IOS XR is reflected in the kernel. This ensures default
reachability based on the routing capabilities of IOS XR and the packet I/O infrastructure.

Virtual addresses can be configured to access a router from the management network such as gRPC using a
single virtual IP address. On a device with two or more RPs, the virtual address refers to the management
interface that is currently active. This functionality can be used across RP failover without the information of
which RP is currently active. This is applicable to the Linux packet path.

Automatic Synchronization of Secondary IPv4 and IPv6 addresses from XR to Linux OS

The secondary IPv4 and IPv6 addresses that are configured for an XR interface are now synchronized into
the Linux operating system automatically. With this secondary IPv4 and IPv6 address synchronization, the
third party applications that are deployed on Cisco IOS XR can now use the secondary addresses. Prior to
this release, only primary IPv4 and IPv6 addresses were supported and the secondary IPv4 and IPv6 addresses
had to be configured manually in the Linux operating system.

Exposed XR interfaces (EXIs) and address-only interfaces support secondary IPv4 and IPv6 address
synchronization:

• EXIs have secondary IP addresses added to their corresponding Linux interface

• Address-only interfaces have secondary IP addresses added to the Linux loopback device. For additional
information on address-only interfaces, see show linux networking interfaces address-only.

The restrictions of secondary IPv4 addresses synchronization are:

• Secondary IPv4 addresses are not synchronized from Linux to XR for Linux-managed interfaces.

• The ifconfig Linux command only displays the first configured IPv4 address. To view the complete list
of IPv4 addresses, use the ip addr show Linux command.

For additional information on secondary IPv4 addresses, see ipv4 address (network) and ipv6 address.

You can run bash commands at the IOS XR router prompt to view the interfaces and IP addresses stored in
global VRF. When you access the Cisco IOS XR Linux shell, you directly enter the global VRF.

Step 1 From your Linux box, access the IOS XR console through SSH, and log in.

Example:
cisco@host:~$ ssh root@192.168.122.188
root@192.168.122.188's password:
Router#

Step 2 View the ethernet interfaces on IOS XR.

Example:
Router#show ip interface brief
Interface IP-Address Status Protocol Vrf-Name
FourHundredGigE0/0/0/0 unassigned Shutdown Down default
FourHundredGigE0/0/0/1 unassigned Shutdown Down default

Packet I/O Functionality and Hosting Applications
3

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp7546444200
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp1732038984
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp4043708751

FourHundredGigE0/0/0/2 unassigned Shutdown Down default
FourHundredGigE0/0/0/3 unassigned Shutdown Down default
FourHundredGigE0/0/0/4 unassigned Shutdown Down default
FourHundredGigE0/0/0/5 unassigned Shutdown Down default
FourHundredGigE0/0/0/6 unassigned Shutdown Down default
FourHundredGigE0/0/0/7 unassigned Shutdown Down default
FourHundredGigE0/0/0/8 unassigned Shutdown Down default
FourHundredGigE0/0/0/9 unassigned Shutdown Down default
FourHundredGigE0/0/0/10 unassigned Shutdown Down default
FourHundredGigE0/0/0/11 unassigned Shutdown Down default
FourHundredGigE0/0/0/12 unassigned Shutdown Down default
FourHundredGigE0/0/0/13 unassigned Shutdown Down default
FourHundredGigE0/0/0/14 unassigned Shutdown Down default
FourHundredGigE0/0/0/15 unassigned Shutdown Down default
FourHundredGigE0/0/0/16 unassigned Shutdown Down default
FourHundredGigE0/0/0/17 unassigned Shutdown Down default
FourHundredGigE0/0/0/18 unassigned Shutdown Down default
FourHundredGigE0/0/0/19 unassigned Shutdown Down default
FourHundredGigE0/0/0/20 unassigned Shutdown Down default
FourHundredGigE0/0/0/21 unassigned Shutdown Down default
FourHundredGigE0/0/0/22 unassigned Shutdown Down default
FourHundredGigE0/0/0/23 unassigned Shutdown Down default
HundredGigE0/0/0/24 10.1.1.10 Up Up default
HundredGigE0/0/0/25 unassigned Shutdown Down default
HundredGigE0/0/0/26 unassigned Shutdown Down default
HundredGigE0/0/0/27 unassigned Shutdown Down default
HundredGigE0/0/0/28 unassigned Shutdown Down default
HundredGigE0/0/0/29 unassigned Shutdown Down default
HundredGigE0/0/0/30 unassigned Shutdown Down default
HundredGigE0/0/0/31 unassigned Shutdown Down default
HundredGigE0/0/0/32 unassigned Shutdown Down default
HundredGigE0/0/0/33 unassigned Shutdown Down default
HundredGigE0/0/0/34 unassigned Shutdown Down default
HundredGigE0/0/0/35 unassigned Shutdown Down default
MgmtEth0/RP0/CPU0/0 192.168.122.22 Up Up default

Use the ip addr show or ip link show commands to view all corresponding interfaces in Linux. The IOS XR
interfaces that are admin-down state also reflects a Down state in the Linux kernel.

Note

Step 3 Check the IP and MAC addresses of the interface that is in Up state. Here, interfaces HundredGigE0/0/0/24 and
MgmtEth0/RP0/CPU0/0 are in the Up state.

Example:
Router#show interfaces HundredGigE0/0/0/24
...
HundredGigE0/0/0/24 is up, line protocol is up
Interface state transitions: 4
Hardware is HundredGigE0/0/0/24, address is 5246.e8a3.3754 (bia
5246.e8a3.3754)
Internet address is 10.1.1.1/24
MTU 1514 bytes, BW 1000000 Kbit (Max: 1000000 Kbit)
reliability 255/255, txload 0/255, rxload 0/255
Encapsulation ARPA,
Duplex unknown, 1000Mb/s, link type is force-up
output flow control is off, input flow control is off
loopback not set,
Last link flapped 01:03:50
ARP type ARPA, ARP timeout 04:00:00
Last input 00:38:45, output 00:38:45
Last clearing of "show interface" counters never
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
12 packets input, 1260 bytes, 0 total input drops

Packet I/O Functionality and Hosting Applications
4

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

0 drops for unrecognized upper-level protocol
Received 2 broadcast packets, 0 multicast packets
0 runts, 0 giants, 0 throttles, 0 parity
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
12 packets output, 1224 bytes, 0 total output drops
Output 1 broadcast packets, 0 multicast packets

Step 4 Verify that the bash command runs in global VRF to view the network interfaces.

Example:
Router#bash -c ifconfig
Hu0_0_0_24 Link encap:Ethernet HWaddr 78:e7:e8:d3:20:c0
inet addr:10.1.1.10 Bcast:0.0.0.0 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:4 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:360 (360.0 B) TX bytes:0 (0.0 B)
Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 54:00:00:00:bd:49
inet addr:192.168.122.22 Bcast:0.0.0.0 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:3859 errors:0 dropped:0 overruns:0 frame:0
TX packets:1973 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:2377782 (2.2 MiB) TX bytes:593602 (579.6 KiB)
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:242 errors:0 dropped:0 overruns:0 frame:0
TX packets:242 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1
RX bytes:12100 (11.8 KiB) TX bytes:12100 (11.8 KiB)
to_xr Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:1 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:60 (60.0 B)

The to_xr interface indicates access to the global VRF.

Step 5 Access the Linux shell.

Example:
Router#bash
[ios:~]$

Step 6 (Optional) View the IP routes used by the to_xr interfaces.

Example:
[ios:~]$ip route
default dev to_xr scope link metric 2048
6.1.0.0/16dev Mg0_RP0_CPU0_0 proto kernel scope link src 6.1.22.41
20.1.0.0/16dev Hu0_0_0_0 proto kernel scope link src 20.1.1.1
20.2.0.0/16dev Hu0_0_0_20 proto kernel scope link src 20.2.1.1
30.1.0.0/24dev BE500 proto kernel scope link src 30.1.0.1
172.17.0.0/16dev docker0 proto kernel scope link src 172.17.0.1linkdown

Packet I/O Functionality and Hosting Applications
5

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

You can also enter the global VRF directly after logging into IOS XR using the run ip netns exec vrf-default
bash command.

Note

Programme Routes in the Kernel
The basic routes required to allow applications to send or receive traffic can be programmed into the kernel.
The Linux network stack that is part of the kernel is used by normal Linux applications to send/receive packets.
In an IOS XR stack, IOS XR acts as the network stack for the system. Therefore to allow the Linux network
stack to connect into and use the IOS XR network stack, basic routes must be programmed into the Linux
Kernel.

Step 1 View the routes from the bash shell.

Example:
[ios:~]$ip route
default dev to_xr scope link src 10.1.1.10 metric 2048
10.1.1.0/24 dev Hu0_0_0_24 proto kernel scope link src 10.1.1.10
192.168.122.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 192.168.122.22

Step 2 Programme the routes in the kernel.

Two types of routes can be programmed in the kernel:

• Default Route: The default route sends traffic destined to unknown subnets out of the kernel using a special to_xr
interface. This interface sends packets to IOS XR for routing using the routing state in XR Routing Information
Base (RIB) or Forwarding Information Base (FIB). The to_xr interface does not have an associated IP address. In
Linux, most applications expect the outgoing packets to use the IP address of the outgoing interface as the source
IP address.

With the to_xr interface, because there is no IP address, a source hint is required. The source hint can be changed
to use the IP address another physical interface IP or loopback IP address. In the following example, the source hint
is set to 10.1.1.10, which is the IP address of the Hu0_0_0_24 interface. To use the Management port IP address,
change the source hint:
Router#bash

[ios:~]$ip route replace default dev to_xr scope link src 192.168.122.22 metric 2048

[ios:~]$ip route
default dev to_xr scope link src 192.168.122.22 metric 2048
10.1.1.0/24 dev Hu0_0_0_24 proto kernel scope link src 10.1.1.10
192.168.122.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 192.168.122.22

With this updated source hint, any default traffic exiting the system uses the Management port IP address as the
source IP address.

• Local or Connected Routes: The routes are associated with the subnet configured on interfaces. For example, the
10.1.1.0/24 network is associated with the Hu0_0_0_24 interface, and the 192.168.122.0/24 subnet is associated with
the Mg0_RP0_CPU0 interface .

Packet I/O Functionality and Hosting Applications
6

Packet I/O Functionality and Hosting Applications
Programme Routes in the Kernel

Configure VRFs in the Kernel
VRFs configured in IOS XR are automatically synchronized to the kernel. In the kernel, the VRFs appear as
network namespaces (netns). For every globally-configured VRF, a Linux network namespace is created.
With this capability it is possible to isolate Linux applications or processes into specific VRFs like an
out-of-band management VRF and open-up sockets or send or receive traffic only on interfaces in that VRF.

Every VRF, when synchronized with the Linux kernel, is programmed as a network namespace with the same
name as a VRF but with the string vrf prefixed to it. The default VRF in IOS XR has the name default. This
name gets programmed as vrf-default in the Linux kernel.

The following example shows how to configure a custom VRF blue:

Step 1 Identify the current network namespace or VRF.

Example:
[ios:~]$ip netns identify $$
vrf-default
global-vrf

Step 2 Configure a custom VRF blue.

Example:
Router#conf t

Router(config)#vrf blue
Router(config-vrf)#commit

Step 3 Verify that the VRF blue is configured in IOS XR.

Example:
Router#show run vrf
vrf blue
!

Step 4 Verify that the VRF blue is created in the kernel.

Example:
Router#bash

[ios:~]$ls -l /var/run/netns
total 0
-r--r--r--. 1 root root 0 Jul 30 04:17 default
-r--r--r--. 1 root root 0 Jul 30 04:17 global-vrf
-r--r--r--. 1 root root 0 Jul 30 04:17 tpnns
-r--r--r--. 1 root root 0 Aug 1 17:01 vrf-blue
-r--r--r--. 1 root root 0 Jul 30 04:17 vrf-default
-r--r--r--. 1 root root 0 Jul 30 04:17 xrnns

Step 5 Access VRF blue to launch and execute processes from the new network namespace.

Example:
[ios:~]$ip netns exec vrf-blue bash
[ios:~]$
[ios:~]$ip netns identify $$
vrf-blue
[ios:~]$

Packet I/O Functionality and Hosting Applications
7

Packet I/O Functionality and Hosting Applications
Configure VRFs in the Kernel

Running an ifconfig command shows only the default to-xr interface because there is no IOS XR interface in this VRF.
[ios:~]$ifconfig
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
to_xr Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
[ios:~]$

Step 6 Configure an interface in the VRF blue in IOS XR. This interface will be configured automatically in the network
namespace vrf-blue in the kernel.

Example:

The following example shows how to configure HundredGigE 0/0/0/24 interface in vrf-blue from IOS XR:
Router#conf t
Router(config)#int HundredGigE 0/0/0/24
Router(config-if)#no ipv4 address
Router(config-if)#vrf blue
Router(config-if)#ipv4 address 10.1.1.10/24
Router(config-if)#commit

Step 7 Verify that the HundredGigE 0/0/0/24 interface is configured in the VRF blue in IOS XR.

Example:
Router#show run int HundredGigE 0/0/0/24
interface HundredGigE0/0/0/24
vrf blue
ipv4 address 10.1.1.10 255.255.255.0
!

Step 8 Verify that the interface is configured in the VRF blue in the kernel.

Example:
Router#bash
Thu Aug 1 17:09:39.314 UTC
[ios:~]$
[ios:~]$ip netns exec vrf-blue bash
[ios:~]$
[ios:~]$ifconfig
Hu0_0_0_24 Link encap:Ethernet HWaddr 78:e7:e8:d3:20:c0
inet addr:10.1.1.10 Bcast:0.0.0.0 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0

Packet I/O Functionality and Hosting Applications
8

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
to_xr Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
[ios:~]$

Open Linux Sockets
The socket entries are programmed into the Local Packet Transport Services (LPTS) infrastructure that
distributes the information through the line cards. Any packet received on a line card interface triggers an
LPTS lookup to send the packet to the application opening the socket. Because the required interfaces and
routes already appear in the kernel, the applications can open the sockets — TCP or UDP.

Step 1 Verify that applications open up sockets.

Example:
Router#bash
[ios:~]$nc -l 0.0.0.0 -p 5000 &
[1] 1160
[ios:~]$
[ios:~]$netstat -nlp
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 0.0.0.0:5000 0.0.0.0:* LISTEN 1160/nc
tcp 0 0 0.0.0.0:57777 0.0.0.0:* LISTEN 14723/emsd
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 8875/ssh_server
tcp6 0 0 :::22 :::* LISTEN 8875/ssh_server
udp 0 0 0.0.0.0:68 0.0.0.0:* 13235/xr_dhcpcd
Active UNIX domain sockets (only servers)
Proto RefCnt Flags Type State I-Node PID/Program name Path
[ios:~]$exit
Logout
Router#
Router#show lpts pifib brief | i 5000
Thu Aug 1 17:16:00.938 UTC
IPv4 default TCP any 0/RP0/CPU0 any,5000 any
Router#

Step 2 Verify that the socket is open.

Example:
Router#show lpts pifib brief | i 5000
IPv4 default TCP any 0/RP0/CPU0 any,5000 any

Netcat starts listening on port 5000, which appears as an IPv4 TCP socket in the netstat output like a typical Linux kernel.
This socket gets programmed to LPTS, creating a corresponding entry in the hardware to the lookup tcp port 5000. The
incoming traffic is redirected to the kernel of the active RP where the netcat runs.

Packet I/O Functionality and Hosting Applications
9

Packet I/O Functionality and Hosting Applications
Open Linux Sockets

Send and Receive Traffic
Connect to the nc socket from an external server. For example, the nc socket was started in the vrf-default
network namespace. So, connect over an interface that is in the same VRF.
[root@localhost ~]#nc -vz 192.168.122.22 5000
Ncat: Version 7.50 (https://nmap.org/ncat)
Ncat: Connected to 192.168.122.22:5000.
Ncat: 0 bytes sent, 0 bytes received in 0.01 seconds.

Manage IOS XR Interfaces through Linux
The Linux system contains a number of individual network namespaces. Each namespace contains a set of
interfaces that map to a single interface in the XR control plane. These interfaces represent the exposed XR
interfaces (eXI). By default, all interfaces in IOS XR are managed through the IOS XR configuration (CLI
or YANG models), and the attributes of the interface (IP address, MTU, and state) are inherited from the
corresponding configuration and the state of the interface in XR.

With the new Packet I/O functionality, it is possible to have an IOS XR interface completely managed by
Linux. This also means that one or more of the interfaces can be configured to be managed by Linux, and
standard automation tools can be used on Linux servers can be used to manage interfaces in IOS XR.

Secondary IPv4 addresses cannot be managed by Linux.Note

Configure an Interface to be Linux-Managed
This section shows how to configure an interface to be Linux-managed.

Step 1 Check the available exposed-interfaces in the system.

Example:
Router(config)#linux networking exposed-interfaces interface ?
BVI Bridge-Group Virtual Interface
Bundle-Ether Aggregated Ethernet interface(s) | short name is BE
FiftyGigE FiftyGigabitEthernet/IEEE 802.3 interface(s) | short name is Fi
FortyGigE FortyGigabitEthernet/IEEE 802.3 interface(s) | short name is Fo
FourHundredGigE FourHundredGigabitEthernet/IEEE 802.3 interface(s) | short name is FH
GigabitEthernet GigabitEthernet/IEEE 802.3 interface(s) | short name is Gi
HundredGigE HundredGigabitEthernet/IEEE 802.3 interface(s) | short name is Hu
Loopback Loopback interface(s) | short name is Lo
MgmtEth Ethernet/IEEE 802.3 interface(s) | short name is Mg
TenGigE TenGigabitEthernet/IEEE 802.3 interface(s) | short name is Te
TwentyFiveGigE TwentyFiveGigabitEthernet/IEEE 802.3 interface(s) | short name is TF
TwoHundredGigE TwoHundredGigabitEthernet/IEEE 802.3 interface(s) | short name is TH

Step 2 Configure the interface to be managed by Linux.

Example:

The following example shows how to configure a HundredGigE interface to be managed by Linux:

Packet I/O Functionality and Hosting Applications
10

Packet I/O Functionality and Hosting Applications
Send and Receive Traffic

Router#configure
Router(config)#linux networking exposed-interfaces interface HundredGigE 0/0/0/24 linux-managed
Router(config-exi-if)#commit

Example:

The following example shows how to configure a BVI5 interface to be managed by Linux:
Router#configure
Router(config)#linux networking exposed-interfaces interface BVI5 linux-managed
Router(config-exi-if)#commit

Step 3 View the interface details and the VRF.

Example:

The following example shows the information for HundredGigE interface:
Router#show run interface HundredGigE0/0/0/24
interface HundredGigE0/0/0/24
mtu 4110
vrf blue
ipv4 mtu 4096
ipv4 address 10.1.1.10 255.255.255.0
ipv6 mtu 4096
ipv6 address fe80::7ae7:e8ff:fed3:20c0 link-local
!

Example:

The following example shows the information for BVI5 interface:
Router#show run interface bvi5
interface bvi5
mtu 1514
ipv4 mtu 1500
ipv4 address 90.9.9.9 255.255.255.0
ipv6 mtu 1500
ipv6 address fe80::4ee1:75ff:fe74:a80c link-local
!

Step 4 Verify the configuration in XR.

Example:

The following example shows the configuration for HundredGigE interface:
Router#show running-config linux networking

linux networking
exposed-interfaces
interface HundredGigE0/0/0/24 linux-managed
!
!
!

Example:

The following example shows the configuration for BVI5 interface:
Router#show running-config linux networking

linux networking
exposed-interfaces
interface BVI5 linux-managed
!

Packet I/O Functionality and Hosting Applications
11

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

!
!

Step 5 Verify the configuration from Linux.

Example:

The following example shows the configuration for HundredGigE interface:
Router#bash
Router:Aug 1 17:40:02.873 UTC: bash_cmd[67805]: %INFRA-INFRA_MSG-5-RUN_LOGIN : User vagrant logged
into shell from vty0

[ios:~]$ip netns exec vrf-blue bash

[ios:~]$ifconfig
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
to_xr Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

[ios:~]$ifconfig -a
Hu0_0_0_24 Link encap:Ethernet HWaddr 78:e7:e8:d3:20:c0
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
to_xr Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Example:

The following example shows the configuration for BVI5 interface:
Router#bash
Router:Aug 1 17:40:02.873 UTC: bash_cmd[67805]: %INFRA-INFRA_MSG-5-RUN_LOGIN : User vagrant logged
into shell from vty0

[ios:~]$ifconfig BVI5
lo Link encap:Local LoopbackBVI5 Link encap:Ethernet HWaddr 4c:e1:75:74:a8:0c
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0

Packet I/O Functionality and Hosting Applications
12

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Configure New IP address on the Interface in Linux
This section shows how to configure a new IP address on the Linux-managed interface.

Step 1 Configure the IP address on the interface.

Example:
[ios:~]$ip addr add 10.1.1.10/24 dev Hu0_0_0_24
[ios:~]$Router:Aug 1 17:41:11.546 UTC: xlncd[253]: %MGBL-CONFIG-6-DB_COMMIT : Configuration
committed by user 'system'. Use 'show configuration commit changes 1000000021' to view the changes.

Step 2 Verify that the new IP address is configured.

Example:
[ios:~]$ifconfig Hu0_0_0_24
Hu0_0_0_24 Link encap:Ethernet HWaddr 78:e7:e8:d3:20:c0
inet addr:10.1.1.10 Bcast:0.0.0.0 Mask:255.255.255.0
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Configure Custom MTU Setting
This section shows how to bring up the interface and configure a customMTU in a Linux-managed interface.

Step 1 Configure the MTU setting.

Example:
[ios:~]$ifconfig Hu0_0_0_24 up

[ios:~]$Router:Aug 1 17:41:54.824 UTC: ifmgr[266]: %PKT_INFRA-LINK-3-UPDOWN : Interface
HundredGigE0/0/0/24, changed state to Down
Router:Aug 1 17:41:54.824 UTC: ifmgr[266]: %PKT_INFRA-LINEPROTO-5-UPDOWN : Line protocol on
Interface HundredGigE0/0/0/24, changed state to Down
Router:Aug 1 17:41:56.448 UTC: xlncd[253]: %MGBL-CONFIG-6-DB_COMMIT : Configuration committed by
user 'system'. Use 'show configuration commit changes 1000000022' to view the changes.
Router:Aug 1 17:41:56.471 UTC: ifmgr[266]: %PKT_INFRA-LINK-3-UPDOWN : Interface
HundredGigE0/0/0/24, changed state to Up
Router:Aug 1 17:41:56.484 UTC: ifmgr[266]: %PKT_INFRA-LINEPROTO-5-UPDOWN : Line protocol on
Interface HundredGigE0/0/0/24, changed state to Up
Router:Aug 1 17:41:58.493 UTC: xlncd[253]: %MGBL-CONFIG-6-DB_COMMIT : Configuration committed by
user 'system'. Use 'show configuration commit changes 1000000023' to view the changes.

[ios:~]$
[ios:~]$ ip link set dev Hu0_0_0_24 mtu 4096
[ios:~]$

Packet I/O Functionality and Hosting Applications
13

Packet I/O Functionality and Hosting Applications
Configure New IP address on the Interface in Linux

[ios:~]$Router:Aug 1 17:42:46.830 UTC: xlncd[253]: %MGBL-CONFIG-6-DB_COMMIT : Configuration
committed by user 'system'. Use 'show configuration commit changes 1000000024' to view the changes.

Step 2 Verify that the MTU setting has been updated in Linux.

Example:
[ios:~]$ifconfig
Hu0_0_0_24 Link encap:Ethernet HWaddr 78:e7:e8:d3:20:c0
inet addr:10.1.1.10 Bcast:0.0.0.0 Mask:255.255.255.0
inet6 addr: fe80::7ae7:e8ff:fed3:20c0/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:4096 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:648 (648.0 B)
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
to_xr Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Step 3 Check the effect on the IOS XR configuration with the change in MTU setting on this interface.

Example:
Router#show running-config int HundredGigE0/0/0/24
interface HundredGigE0/0/0/24
mtu 4110
vrf blue
ipv4 mtu 4096
ipv4 address 10.1.1.10 255.255.255.0
ipv6 mtu 4096
ipv6 address fe80::7ae7:e8ff:fed3:20c0 link-local
!
!
!
Router#
Router#show ip int br | i HundredGigE0/0/0/24
HundredGigE0/0/0/24 10.1.1.10 Up Up blue

The output indicates that the interface acts as a regular Linux interface, and IOS XR configuration receives inputs from
Linux.

Configure Traffic Protection for Linux Networking
Traffic protection provides a mechanism to configure Linux firewalls using IOS XR configuration. These
rules can be used to restrict traffic to Linux applications. You can restrict traffic to Linux applications using
native Linux firewalls or configuring IOS XR Linux traffic protection. It is not recommended to use both
mechanisms at the same time. Any combination of remote address, local address and ingress interface can be

Packet I/O Functionality and Hosting Applications
14

Packet I/O Functionality and Hosting Applications
Configure Traffic Protection for Linux Networking

specified as rules to either allow or deny traffic. However, at least one parameter must be specified for the
traffic protection rule to be valid.

If traffic is received on a protocol or port combination that has no traffic protection rules configured, then all
traffic is allowed by default.

Note

This example explains how to configure a traffic protection rule on IOS XR to deny all traffic on port 999
except for traffic arriving on interface HundredGigE0/0/0/25.

Step 1 Configure traffic protection rules.

Example:
Router(config)#linux networking vrf default address-family ipv4 protection protocol
tcp local-port 999 default-action deny permit hundredgigE0/0/0/25
Router(config)#commit

where —

• address-family: Configuration for a particular IPv4 or IPv6 address family.

• protection: Configure traffic protection for Linux networking.

• protocol: Select the supported protocol - TCP or UDP.

• local-port: L4 port number to specify traffic protection rules for Linux networking.

• port number: Port number ranges from 1 to 65535 or all ports.

• default-action: Default action to take for packets matching this traffic protection service.

• deny: Drop packets for this service.

• permit: Permit packets to reach Linux application for this service.

Step 2 Verify that the traffic protection rule is applied successfully.

Example:
Router(config)#show run linux networking
linux networking
vrf default
address-family ipv4
protection
protocol tcp local-port 999 default-action deny
permit interface HundredGigE0/0/0/25
!
!
!

!

Packet I/O Functionality and Hosting Applications
15

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

Synchronize Statistics Between IOS XR and Linux
This example shows how the bundle-ether interface packet statistics are synchronized between IOS XR and
Linux. The packet and byte counters maintained by Linux for IOS XR interfaces display only the traffic
sourced in Linux. You can configure to periodically synchronize these counters with the IOS XR statistics
for the interfaces.

Step 1 Configure the statistics synchronization including the direction and synchronization interval.

Example:

The following example shows statistics synchronization in global configuration:
Router(config)#linux networking statistics-synchronization from-xr
every 30s

Example:

The following example shows statistics synchronization in exposed-interface configuration:
Router(config)#linux networking exposed-interfaces interface
bundle-ether 1 statistics-synchronization from-xr every 10s

where —

• from-xr: The direction indicating that the interface packet statistics will be pushed from IOS XR to the Linux kernel.

• every: Shows the frequency at which to synchronize statistics. The intervals supported for global configuration are
30s and 60s. The intervals supported for exposed interfaces are 5s, 10s, 30s or 60s. The interval s is in seconds.

Step 2 Verify that the statistics synchronization is applied successfully on IOS XR.

Example:
Router#show run linux networking
linux networking
vrf default
address-family ipv4
protection
protocol tcp local-port all default-action deny
permit interface bundle-ether 1
!
!
!
!
exposed-interfaces
interface bundle-ether 1 linux-managed
statistics-synchronization from-xr every 10s
!
!
!

For troubleshooting purposes, use the show tech-support linux networking command to display debugging information.

Hosting an Application in Docker Containers
This section provides the procedure for hosting an application in docker containers.

Packet I/O Functionality and Hosting Applications
16

Packet I/O Functionality and Hosting Applications
Synchronize Statistics Between IOS XR and Linux

The iPerf application is used as an example to demonstrate the hosting at a server and a client router.

Verify Reachability of IOS XR and Packet I/O Infrastructure, on page 2 on the router that hosts the iPerf
application. You can enable the following Packet I/O functionalities on the server and client routers prior to
hosting the iPerf application in docker containers, for additional features on the routers:

• Program Routes in the Kernel—to send or receive traffic to a remote network using a specific interface.

• Configure VRFs in the Kernel—to run the iperf application in a non-default VRF.

• Configure Traffic Protection for Linux Networking—to secure the router by restricting access to the
router on which the iperf application is hosted.

You build the docker image of the application following the standard docker build procedures. The docker
image of any application (for example, iPerf) is built only once, after which, that docker image can be copied
to other devices where the application can be hosted in docker containers.

Docker Operations
This section describes basic docker operations and the commands required for hosting and maintaining the
applications:

Commands for Hosting Applications

• Pull or Load the image: This function copies a docker image to a device.

• Pull—

The following command pulls the Docker image from a local docker registry. Ensure that the registry
is accessible from the router.
[ios:~]$docker pull ufi-lnx:5001/alpine
! Here ufi-lnx is the docker registry reachable through 10.105.39.169!-->
Using default tag: latest
latest: Pulling from library/alpine
c9b1b535fdd9: Pull complete
Digest: sha256:ab00606a42621fb68f2ed6ad3c88be54397f981a7b70a79db3d1172b11c4367d
Status: Downloaded newer image for alpine:latest
[ios:~]$

Instead of being pulled from the registry, docker images can be loaded from images saved as tar
files.

• Load—

You save the docker image as a tar file on the build host using the docker save -o <path for generated
tar file> <image name> command. You copy the tar file into the target router, using the following
command:

You copy the tar file into the target router, using the following command:
Router#scp root@10.105.227.122:/var/www/html/alpine.tar
Tue Mar 10 02:42:38.598 UTC
Connecting to 10.105.227.122...
Password:
Transferred 639972864 Bytes
639972864 bytes copied in 55 sec (11606958)bytes/sec

Router#bash
Tue Mar 10 02:45:25.330 UTC
[ios:~]$docker load -i /tmp/alpine.tar

Packet I/O Functionality and Hosting Applications
17

Packet I/O Functionality and Hosting Applications
Docker Operations

https://docs.docker.com/engine/reference/commandline/build/

Loaded image: alpine:latest
ios:~]$docker images
REPOSITORY TAG IMAGE ID CREATED
SIZE
alpine latest dc721c65d296 11 days ago
622MB
[ios:~]$

• View or List Docker Images

[ios:~]$docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
alpine latest dc721c65d296 11 days ago 622MB
enipla latest fd31184c8c1b 6 weeks ago 581MB
[ios:~]$

• Run Container

[ios:~]$docker run -it alpine bash
root@a1b719df1091:/#
root@a1b719df1091:/#
root@a1b719df1091:/#uname -a
Linux a1b719df1091 4.8.28-WR9.0.0.20_cgl#1 SMP Wed Jan 8 11:16:16 UTC 2020 x86_64 x86_64
x86_64 GNU/Linux
root@a1b719df1091:/#hostname
a1b719df1091
root@a1b719df1091:/#
[ios:~]$docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES
a1b719df1091 alpine "bash" About a minute ago Up
About a minute nifty_leavitt
[ios:~]$

• Attach to a Running Container

The docker attach command attaches the terminal to the running container and the docker exec command
runs commands inside a working container.
[ios:~]$docker attach docker1
#bash
root@e1e1924956df:/#

The docker exec -it my_container_id sh command executes a shell inside the container:
f3b-r1-pod9:/var/lib/docker/volumes]$docker exec -it 57029028609a sh
#

• Stop Containers

Identify the container using the docker ps command and then stop the container using the docker stop
command.
[ios:~]$docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES
8782d4902312 alpine "bash" 7 minutes ago Up 6
minutes hungry_keller
9bd23408d640 alpine "bash" 17 minutes ago Up 17
minutes youthful_franklin
[ios:~]$ docker stop 8782d4902312

• Stopping All Containers

[ios:~]$docker stop $(docker ps -a -q)

Packet I/O Functionality and Hosting Applications
18

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

Commands for Maintaining Containers

• Restart Policies

Docker restart policies start the containers automatically after the router reboots.

[ios:~]$docker run -d --restart

• Clean up Containers and Images

You can clean images, containers, volumes, and networks that are dangling (and not associated with a
container) by using the docker system prune command.
[ios:~]$docker container prune

and
[ios:~]$docker image prune

• Monitor Docker (View Docker Statistics)

You can view performance metrics, such as utilization of memory and CPU, and container-specific
metrics, such as CPU limit and memory limit.
[ios:~]$docker stats --no-stream
CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM
% NET I/O BLOCK I/O PIDS
a1b719df1091 nifty_leavitt 0.00% 2.035MiB / 30.78GiB 0.01%

648B / 0B 0B / 0B 2

For generic docker commands, see the Docker Release 18.05 documentation. (https://docs.docker.com)Note

Procedure for Hosting Applications in Docker Containers
1. Build the docker image following the standard docker build procedures. See here.

The docker image is transferred to the IOS XR router (target router) using one of the following ways:

• The docker image is pulled from the docker image registry into the target router (or)

• The docker image is saved as the tar file in the build host and then the tar file is copied into the target
router from the build host.

2. Start the docker container and run the application on the router.

3. Verify the hosted application in the docker container.

Run iPerf in Docker Container
As an example of application hosting in docker container, you can install iPerf client on Router A and check
its connectivity with an iPerf server installed on Router B.

This figure illustrates the topology used in this example.

Packet I/O Functionality and Hosting Applications
19

Packet I/O Functionality and Hosting Applications
Procedure for Hosting Applications in Docker Containers

https://docs.docker.com
https://docs.docker.com/engine/reference/commandline/build/

Figure 1: iPerf Hosted in a Docker Container

The following steps describe how to run the iPerf server and iPerf client applications on Router A and Router
B.

Before you begin

Ensure that you have configured the two routers as shown in the figure-iPerf application hosted in a Docker
Container.

Step 1 Copy the iPerf application tar file (for example, ubuntu-agnel-image.tar) on Router A.

Example:
Router#scp root@10.105.227.122:/var/www/html/ubuntu-agnel-27feb.tar $
Connecting to 10.105.227.122...
Password:
Transferred 639972864 Bytes
639972864 bytes copied in 55 sec (11606958)bytes/sec

Step 2 Load the docker instance on Router A by using the following command:

Example:
Router#bash
[ios:~]$docker load -i /tmp/ubuntu-agnel-27feb.tar

Step 3 View all docker images by using the following command:

Example:
[ios:~]$docker images ls
REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu-agnel-27feb latest dc721c65d296 11 days ago 622MB
ubuntu-agnel-slapi latest fd31184c8c1b 6 weeks ago 581MB

Step 4 Repeat Steps 1 through 3 on Router B.
Step 5 Configure the application to run as iPerf server on Router A.

Example:
[ios:~]$docker run -d -it -p 601:601 ubuntu-agnel-27feb sh
[ios:~]$iperf3 -s -B 172.17.0.2

“-p 601:601 ubuntu-agnel-27feb sh” part of the command maps the Linux port with the docker instance port.
601 on the left hand side is the Docker instance mapping port and 601 on the right hand side is the Linux kernel
port.

172.17.0.2 is the IP address of the server.

Note

Step 6 Configure the application to run as iPerf client on Router B and establish connection to iPerf server on Router A.

Example:

Packet I/O Functionality and Hosting Applications
20

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

[ios:~]$docker run -d -it -p 601:601 ubuntu-agnel-27feb sh
[ios:~]$iperf3 -c 172.17.0.2

“-p 601:601 ubuntu-agnel-27feb sh” part of the command maps the Linux port with the docker instance port.
601 on the left hand side is the docker instance mapping port and 601 on the right hand side is the Linux kernel
port.

172.17.0.2 is the IP address of the server.

Note

Verify the Application Hosted in the Docker Container
To verify the applications hosted in the docker containers between Router A and Router B, use the ping
command to check if the connection has been established between iPerf server and iPerf client.

From the iPerf client on Router B, ping the iPerf server on Router A by providing the physical interface IP address to
verify the connection between the iPerf server and client applications.

Example:
[ios:~]$ping 172.17.0.2
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.17.0.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 13/21/40 ms

172.17.0.2 is the IP address of the client.

Boot Devices Using PXE Server Running in a Docker Container
DescriptionRelease InformationFeature Name

Starting from Cisco IOS XR
Release 24.2.1, the PXE server
feature is deprecated and will not
be supported in future releases. We
recommend not to use this feature
starting from Cisco IOS XR
Release 24.2.1.

Release 24.2.1Boot Devices Using PXE Server
Running in a Docker Container

Packet I/O Functionality and Hosting Applications
21

Packet I/O Functionality and Hosting Applications
Verify the Application Hosted in the Docker Container

DescriptionRelease InformationFeature Name

You can now boot your network
devices with a PXE pre-boot
execution environment (PXE or
iPXE) server running in a Docker
container. You use the application
manager (appmgr) to manage PXE
server docker hosting and
functioning through Cisco IOS XR
CLIs.

This functionality lets you 'freeze'
your booting environment in a
Docker container instead of having
to reinstall the environment for
every new machine you want to
boot, saving you the trouble of
remembering the exact commands
and sequences for a PXE boot.

Release 7.3.4Boot Devices Using PXE Server
Running in a Docker Container

Preboot Execution Environment (PXE) is a client-server interface that enables devices in a network to download
the files (like boot image, configurations and so on) from PXE server.

The Client uses DHCP protocol to receive the PXE server details and uses TFTP or HTTP protocol to download
the file.

Figure 2: Client-Server Connection

The PXE server docker feature enables the support of PXE/iPXE server functionality on the routers that run
Cisco IOS-XR software.

This feature helps compute clusters (clients) to be upgraded from the Cisco 8201 top-of-rack router (server)
that hosts the new image for software upgrade, thereby optimizing the operations and management bandwidth.
PXE server docker feature is supported on both IPv4 and IPv6 addresses.

In this feature, the PXE server is installed on the Cisco 8201 router (server) in the form of a docker container
that is managed by Cisco IOS-XR Application Manager (appmgr). The clients (routers or end-hosts such as
Linux devices, VMs and so on) that are connected to this server can request and download the boot image.

The following services are packaged in a single PXE server docker container:

Packet I/O Functionality and Hosting Applications
22

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

• DHCP

• HTTP (iPXE)

• TFTP (PXE)

These services are used for initial exchange of information and transferring the image between the client and
the server.

The PXE server docker feature is available as part of the optional RPM—xr-pxeserver. This optional RPM
contains:

• Executables for pxe_svr_mgr Cisco IOS-XR process.

• PXE server docker image —pxe-server-docker.rpm.

When the optional xr-pxeserver RPM is installed, the unsigned docker image (pxe-server-docker.rpm)
is placed in the appmgr images directory /pkg/opt/cisco/XR/appmgr/images/pxe-server-docker.rpm,
by the system.

• Helper scripts — install_pxeserver.py and uninstall_pxeserver.py placed under “/pkg/bin/” is used
for installing and uninstalling pxe-server-docker.rpm from the application manager.

The helper scripts are used to manually install or uninstall pxe-server-docker.rpm
and perform the installation or cleanup instead of using the application manager
commands.

Note

Behavioral Specifications

• The Cisco IOS XR DHCP proxy, server, and relay features for both IPv4 and IPv6 are not supported
when the PXE server docker container is installed and running on the router.

• PXE server docker is supported only for BVI interfaces on its secondary IPv4 address. The PXE server
docker is not supported on the primary IPv4 address of a BVI interface.

• Only one instance of PXE server docker container is supported to run on the router at a given time.
Running multiple instances of PXE server docker container on multiple BVI interfaces in parallel is not
supported and results in undefined behavior.

• Third-party application RPMs with the application name as “pxe-server” must not be installed along
with this feature.

• Synchronizing between RPs for large files (iso images) take significant time (approximately 10 mins).
If the system performs RPFO immediately after copying a large file to the application folder
(/harddisk:/mirror/server/images), then these files should be copied again to the current active RP
manually.

• The application state is not maintained after an upgrade. If the application is moved to STOP state and
then updated using new version of Cisco IOS-XR RPM, then the new version of the application starts
again automatically.

• Uninstalling the optional RPM (xr-pxeserver) does not stop or remove the PXE server docker container.
User has to manually stop the PXE server docker container and uninstall the pxe-server-docker.rpm
using the application manager commands.

Packet I/O Functionality and Hosting Applications
23

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

Hosting and Activating the PXE Server Docker on Cisco 8201
Router using Application Manager

To host and activate the PXE server docker container application on Cisco 8201 router using application
manager, follow these steps:

Step 1 Install the optional RPM xr-pxeserver on the router:
Router#install package add xr-pxeserver
Router#install apply restart
Router#install commit

When the optional RPM- xr-pxeserver is installed and activated, the pxe_svr_mgr process is instantiated. The
pxe_svr_mgr process handles installation and updating the PXE server docker RPM (pxe-server-docker.rpm) with
application manager. Also, when the optional RPM xr-pxeserver is upgraded, the pxe_svr_mgr process checks for the
new version of the pxe-server-docker.rpm. If there is a change in the version number, then it updates the existing version
on the router to the new docker RPM version and re-launches the PXE server docker container for the changes to reflect.

After activating the xr-pxeserver RPM package, the pxe_svr_mgr process installs the pxe-server-docker.rpm
with application manager only when the ongoing install operation is committed and no more install operations
are pending.

Note

Step 2 Verify the PXE server docker container application package installed—Use the following command to verify the package
installed:
Router#show appmgr packages installed
Package
--
pxe-server-2.1.0-ThinXR.x86_64

Step 3 Create the following folder structure in the /misc/disk1/ path and copy the dhcp.conf and image.iso files to their respective
folders, as shown below:
/server
|---- config
| |---- dhcpd.conf
| |---- dhcpd6.conf
|---- images
| |---- Image-boot.iso
----logs

The PXE server docker container uses the “/server/” folder for its operations. This path is mounted to PXE server
docker using the application manager configuration.

In case of a dual RP system, it is recommended to create this directory structure under “/misc/disk1/mirror/”.
This automatically syncs the PXE server related files to the standby RP node. Therefore, all these files will be
available on the new active RP node after RPFO. Otherwise, the user must create the directory structure again
and copy all the necessary files for the PXE server docker container.

Note

Step 4 Configure and activate the PXE server docker container application— Use the following set of commands to configure
and activate the PXE server docker container application on the interface BVI301:
Router#config
Router(config)#appmgr

Packet I/O Functionality and Hosting Applications
24

Packet I/O Functionality and Hosting Applications
Hosting and Activating the PXE Server Docker on Cisco 8201 Router using Application Manager

Router(config-appmgr)#application pxeserver
Router(config-application)# activate type docker source pxe-server docker-run-opts "-it --restart
always --cap-add=NET_ADMIN --net=host --log-opt max-size=20m --log-opt max-file=3 -v
/misc/disk1/mirror/server:/server " docker-run-cmd "-i BV301 -4 172.16.0.0/12 -6 2001:DB8::/48 -l
/server/images -t”
Router(config-application)#commit
!

!
where,
--cap-add=NET_ADMIN --net=host (mandatory)
-i <interface> (mandatory)
-4 <secondary ipv4 address of BVI>
-6 <ipv6 address of BVI>
-l <location of image stored> (default /server/images)
-t <1 - tftp enabled, 0 - tftp disabled>

Step 5 Verify the PXE server docker container status—Use the following command to verify the PXE server docker container
status:
Router(config)#appmgr application exec name pxeserver docker-exec-cmd status C
dhcpd RUNNING pid 94, uptime 0:00:05
dhcpd6 RUNNING pid 95, uptime 0:00:05
monitor RUNNING pid 96, uptime 0:00:05
nginx RUNNING pid 97, uptime 0:00:05
syslogd RUNNING pid 98, uptime 0:00:05
tftp-hpa4 RUNNING pid 101, uptime 0:00:05
tftp-hpa6 RUNNING pid 104, uptime 0:00:05

What to do next

The PXE server docker container is active and now the clients can download the boot image and the
configuration file from the PXE server (Cisco 8201 router).

Packet I/O Functionality and Hosting Applications
25

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

CPU-Based Packet Generator
Table 1: Feature History Table

Feature DescriptionRelease InformationFeature Name

You can now use a CPU-based
packet generator for IOS-XR
routers to simplify the diagnostic
process for routers experiencing
problems. This tool allows you to
generate a wide range of traffic
streams directly within the
production environment without
physically isolating the routers and
moving them to a lab setup. This
tool is beneficial in environments
that use routers from different
vendors or different models from
the same vendor.

The feature introduces the CLI
Options command with different
options to generate different types
of packets.

Release 24.2.1CPU-Based Packet Generator

Need for CPU-Based Packet Generator

Diagnosing network problems in production environments, such as traffic drops and mis-forwarding issues,
is crucial for network management. Traditionally, routers are physically isolated for debugging, requiring
moving equipment into lab environments with traffic generators.The CPU-Based Packet Generator can be
used in the production environment, eliminating the need to isolate the routers to a lab environment for
troubleshooting purposes.

Benefits of CPU-Based Packet Generator
• Versatile Traffic Crafting: Create complex nested packets, such as IPinIPinIPinIP, to test and diagnose
a variety of scenarios.

• In-Production Diagnosis: Directly diagnose routers in a problem state without disrupting the network
setup.

Restrictions of CPU-Based Packet Generator
• CPU-based packet generators are not optimized for high-speed packet processing; therefore, they may
not match the performance of NPU-based packet generators.

• CPU-based packet generators can potentially introduce higher CPU loads during operation, which may
affect the router performance.

Packet I/O Functionality and Hosting Applications
26

Packet I/O Functionality and Hosting Applications
CPU-Based Packet Generator

• The probe packet rate is 40 kpps for Cisco 8000 Series Routers.

Topology of CPU-Based Packet Generator
The following diagram depicts the software architecture of CPU-based packet generator.

Figure 3: Architecture of CPU-Based Packet Generator

The Cisco IOS-XR PacketIO serves as a host for third-party applications on the XR platform, with PacketIO
infrastructure facilitating packet transport and interactions between Linux and XR environments. Leveraging
this existing infrastructure, the CPU-based packet generator is implemented as a Linux application and packaged
within the supported XR platform base image, ensuring seamless distribution.

The Linux infrastructure maintains a database of all XR interfaces including bundles. The CPU-based packet
generator is used to send a specific packet type over a chosen interface.

Capabilities of CPU-based Packet Generator
• Support different packet types: The CPU-based packet generator supports various packet types,
including:

• ARP

Packet I/O Functionality and Hosting Applications
27

Packet I/O Functionality and Hosting Applications
Topology of CPU-Based Packet Generator

• TCP

• UDP

• GRE

• MPLS

• IPinIP

• ICMPv4

• ICMPv6

• Corrupt or error packet generation: There are times when routers receive packets that are either
corrupted or contain errors for various reasons. To identify and troubleshoot these issues, it becomes
necessary to generate similar packets that can be used for debugging purposes. The CPU-based packet
generator can create these packets and aid debugging.

Examples include:

• IPv4 packet with TTL 0

• IPv4 packet with wrong checksum

• IPv4 packet with mismatch between IP option length field and the IP header

How to Use CPU-based Packet Generator?
You can use CPU-based packet generator using:

• CLI: Use the packetgen command with different options to run the tool from XR bash environment.
As the XR interfaces show up as Linux interfaces in bash environment, you can directly use the XR
interface names.

• pcap file: Use an already captured pcap file in production routers and replay it.

packetgen -i interface_name -pcap pcap_file

CLI Options

The following table outlines the different options available for the packetgen command.

Table 2: Packetgen CLI Options

DescriptionOption

Turn on accounting for packets. Only works if packets come back to the packet
generator.

-accounting

ARP target hardware address (default: uses interface MAC address)-arp-destination-hw-address
string

ARP target IP address (default: 127.0.0.1 or ::1)-arp-destination-ip-address
string

Packet I/O Functionality and Hosting Applications
28

Packet I/O Functionality and Hosting Applications
How to Use CPU-based Packet Generator?

DescriptionOption

ARP operation (1: request, 2: reply , 3: rarp)-arp-operation uint

ARP sender hardware address (default : uses interface MAC)-arp-source-hw-address
string

ARP sender IP address (default: uses interface IP)-arp-source-ip-address
string

Number of packets to be injected at a time. To be used in conjunction with -sleep.-burst int

Number of packets to be generated.-count int

constant, incrementing, random (default: no payload)-data-type string

Destination MAC address (default: ff:ff:ff:ff:ff:ff)-ethernet-dmac string

Source MAC address (default: use interface MAC address)-ethernet-smac string

Write packets to file-file string

Enable GRE-gre

Enable GRE checksum present bit-gre-checksum-present

Enable GRE key present bit-gre-key-present

Enable GRE over MPLS-gre-over-mpls

Set the protocol type of the GRE payload (default: 0x0800 (IP)-gre-protocol uint

Enable GRE sequence number present bit-gre-seq-present

Set the GRE version number (default 0)-gre-version uint

Custom header for all packets-header string

Print hex dump of packets-hex

Interface name for packet injection-i string

ICMP code (default: 0)-icmp-code uint

ICMP type (default: 0)-icmp-type uint

Increment destination MAC-inc-dmac

Increment source mac-inc-smac

Inner Ethernet destination MAC address (default: ff:ff:ff:ff:ff:ff)-inner-ethernet-dmac
string

Inner Ethernet source MAC address (default: ff:ff:ff:ff:ff:ff)-inner-ethernet-smac
string

Packet I/O Functionality and Hosting Applications
29

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

DescriptionOption

Inner IP checksum (default: compute checksum automatically)-inner-ip-checksum uint

Set inner IP Don't Fragment flag as 1-inner-ip-dont-fragment
uint

Inner destination IP address (default: 127.0.0.1 or ::1)-inner-ip-dst string

Inner IPv6 Flow Label value (default: 0)-inner-ip-flow-label uint

Inner IP fragment offset in units of 64-bits (e.g. 1 = 64 bits)-inner-ip-frag-offset uint

Inner IP protocol . Supports protocol text (TCP, UDP) and code (63 for TCP)
(default: TCP)

-inner-ip-protocol string

Inner source IP address (default: 127.0.0.1 or ::1)-inner-ip-src string

Inner IP Type Of Service (TOS) value (default: 0)-inner-ip-tos uint

ip-traffic-class (traffic-class) value (default: 0)-inner-ip-traffic-class
uint

Inner IP time to live (ttl). (Default ttl = 64-inner-ip-ttl uint

Inner IP version (default: 4)-inner-ip-version int

Inner VLAN id (default: 0)-inner-vlan-id uint

Inner VLAN ethernet type (default: 33024 :Dot1Q)-inner-vlan-tpid uint

Inner VLANpriority (default: 0-inner-vlan-vpri uint

IP checksum (default: compute checksum automatically)-ip-checksum string

Set IP flag -ip-dont-fragment 0 -> 000

Nothing set -ip-dont-fragment 1 -> 001

More Fragments -ip-dont-fragment 2 -> 010

Dont Fragment -ip-dont-fragment 4 -> 100 set reserved bit

-ip-dont-fragment string

Destination IP address (default: 127.0.0.1 or ::1)-ip-dst string

IPv6 Flow Label value (default: 0)-ip-flow-label string

Fragment offset in units of 64-bits (1 = 64 bits)-ip-frag-offset string

IP protocol. Supports protocol text (TCP, UDP, GRE, VXLAN, ICMP, NDP) and
code (63 for TCP) (default: TCP)

-ip-protocol string

Source IP address (default: use interface ip)-ip-src string

IP Type Of Service value (default: 0)-ip-tos string

IP traffic class (traffic-class) value (default: 0)-ip-traffic-class string

Packet I/O Functionality and Hosting Applications
30

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

DescriptionOption

IP time to live (ttl). (Default ttl = 64-ip-ttl string

IP version should always be set for accurate IP packet creation, ip version (default:
4).

-ip-version string

Comma separated MPLS EXP (Experimental) value (default: 0)-mpls-exp string

Comma separated list ofMultiprotocol Label Switching (MPLS) labels to be added
to the packet. Specified from top to bottom

-mpls-label string

Comma separated MPLS TTL (Time To Live) value (default: 64)-mpls-ttl string

Specify the neighbor discovery protocol: nbr-solicit, nbr-advt-ndp string

NDP target address (default: for advertisement source IP, for solicitation destination
IP

-ndp-target-address
string

File to replay pcap-pcap string

Display a progress bar-progress

Seed for pseudo random payload generator-seed int

Size of payload-size int

Time duration to sleep during each burst. To be used together with -burst.-sleep string

Print packets to stdout-stdout

TCP destination port (default: 40000)-tcp-dport int

Set TCP control flags:

• U (Urgent): Indicates that the data should be processed urgently.

• A (Acknowledgement): Acknowledges the receipt of data.

• P (Push): Instructs the sender to push the data to the receiving application
immediately.

• R (Reset): Resets the connection.

• S (Synchronize): Synchronizes sequence numbers to initiate a connection.

• F (Finish): Indicates the sender has finished sending data and wants to
terminate the connection.

-tcp-flags string

TCP source port (default: 40000)-tcp-sport int

UDP destination port (default: 40000)-udp-dport int

UDP source port (default: 40000)-udp-sport int

VLAN id (default: 0)-vlan-id uint

Packet I/O Functionality and Hosting Applications
31

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

DescriptionOption

VLAN ethernet type (default: 33024 :Dot1Q)-vlan-tpid uint

VLAN priority (default: 0-vlan-vpri uint

UDP destination port for VXLAN (default: 4789)-vxlan-udp-dport int

UDP source port for VXLAN (default: 0)-vxlan-udp-sport int

VXLAN VNI (default: 0)-vxlan-vni uint

Sample Commands

This section lists sample commands for some common packet types.

Table 3: Sample Packetgen Commands

Sample CommandPacket Type

packetgen -i enp0s8 -ip-ttl 32 -arp-operation 1 -progress -count 10000 -inc-smac
-arp-destination-ip-address 192.168.56.1

ARP

packetgen -i enp0s8 -ip-ttl 32 -tcp-sport 40000 -progress -count 10000 -inc-smacTCP

packetgen -i enp0s8 -ip-ttl 32 -udp-sport 40000 -progress -count 10000 -inc-smacUDP

packetgen -i enp0s8 -ip-ttl 32 -icmp-type 8 -progress -count 10000 -ip-dst 192.168.56.1ICMP - PING

packetgen -i enp0s8 -ip-ttl 32 -gre -count 100 -inner-ip-ttl 32 -tcp-sport 3222 -progressGRE

packetgen -i enp0s8 -count 100 -tcp-sport 3222 -progress -ip-src="1.1.1.1,2.2.2.2"IP in IP

packetgen -i enp0s8 -ip-ttl 32 -count 100 -inner-ip-version 6 -tcp-sport 3222 -progress
-inner-ethernet-smac ff:ff:ff:ff:ff:ff

ETHER-IP

packetgen -i enp0s8 -ip-ttl 32 -tcp-sport 40000 -progress -count 10000 -inc-smac -vlan-id
2

VLAN

packetgen -i enp0s8 -ip-ttl 32 -tcp-sport 40000 -progress -count 10000 -inc-smac -vlan-id
2 -inner-vlan-id 2

QinQ

packetgen -i enp0s8 -ip-ttl 32 -tcp-sport 40000 -progress -count 10000 -inc-smac -vxlan-vni
3 -vxlan-udp-sport 4444 -inner-ip-version 4 -inner-ethernet-smac ff:ff:ff:ff:ff:ff -data-type
constant

VXLAN

packetgen -i enp0s8 -ip-version 6 -ndp nbr-advt -count 100 -ip-checksum 1 -progressNDP

packetgen -i enp0s8 -ip-version 4 -mpls-label 1,2,3,4,5 -tcp-sport 4556 -count 1000
-progress

MPLS

Packet I/O Functionality and Hosting Applications
32

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

Command Example

This section shows an example command to send an ICMP ping request from source address 10.0.0.1 to
destination address 10.0.0.2 via interface Hu0_0_0_25.
Router# bash
[ios:~]$ packetgen -i Hu0_0_0_25 -ip-ttl 32 -progress -count 50 -icmp-type 8 -ip-dst 10.0.0.2
-ip-src 10.0.0.1 --ethernet-smac 78:c5:51:84:48:c4 --ethernet-dmac 00:00:00:1e:ca:fc
INFO[0000] [ETH IP ICMP]
INFO[0000] Setting SRC IP to 10.0.0.1
INFO[0000] Setting DST IP to 10.0.0.2
INFO[0000] Opening Handle Hu0_0_0_25
INFO[0000] Opened Handle Hu0_0_0_25
INFO[0000] Starting Packet Injection
Sending Packets... 2% | | (1/50, 254 packet/s) [0s:0s] /* Truncated output. */

Address Age Hardware Addr State Type Interface
10.0.0.1 - 78c5.5184.48c4
Interface ARPA HundredGigE0/0/0/25
10.0.0.2 00:50:23 0000.001e.cafc Dynamic ARPA HundredGigE0/0/0/25

Source stats:
Stat Name Port Name Control Packet Tx. Control Packet Rx. Ping Reply Tx.
20.0.0.2/
Card01/Port01 Ethernet - VM - 001 51 51 50

Interface stats:
Input Punt XIPC InputQ XIPC PuntQ
ClientID Drop/Total Drop/Total Cur/High/Max Cur/High/Max
--
ipv6_icmp 0/0 0/0 0/0/1000 0/0/1000
icmp 0/50 0/0 0/15/1000 0/0/1000

Packet I/O Functionality and Hosting Applications
33

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

Packet I/O Functionality and Hosting Applications
34

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

	Packet I/O Functionality and Hosting Applications
	Setting up Application Hosting Environment
	Verify Reachability of IOS XR and Packet I/O Infrastructure
	Programme Routes in the Kernel
	Configure VRFs in the Kernel
	Open Linux Sockets
	Send and Receive Traffic
	Manage IOS XR Interfaces through Linux
	Configure an Interface to be Linux-Managed
	Configure New IP address on the Interface in Linux
	Configure Custom MTU Setting

	Configure Traffic Protection for Linux Networking
	Synchronize Statistics Between IOS XR and Linux

	Hosting an Application in Docker Containers
	Docker Operations
	Procedure for Hosting Applications in Docker Containers
	Run iPerf in Docker Container
	Verify the Application Hosted in the Docker Container

	Boot Devices Using PXE Server Running in a Docker Container
	Hosting and Activating the PXE Server Docker on Cisco 8201 Router using Application Manager
	CPU-Based Packet Generator
	Benefits of CPU-Based Packet Generator
	Restrictions of CPU-Based Packet Generator
	Topology of CPU-Based Packet Generator
	Capabilities of CPU-based Packet Generator
	How to Use CPU-based Packet Generator?

