
Implementing UCMP

The unequal cost multipath (UCMP) load-balancing provides the capability to load balance traffic proportionally
across multiple paths, with different cost. Generally, higher bandwidth paths have lower Interior Gateway
Protocol (IGP) metrics configured, so that they form the shortest IGP paths.

With the UCMP load-balancing enabled, protocols can use even lower bandwidth paths or higher cost paths
for traffic, and can install these paths to the forwarding information base (FIB). These protocols still install
multiple paths to the same destination in FIB, but each path will have a 'load metric/weight' associated with
it. FIB uses this load metric/weight to decide the amount of traffic that needs to be sent on a higher bandwidth
path and the amount of traffic that needs to be sent on a lower bandwidth path.

In the following example, there are 3 paths to get to Network X as follows:

Figure 1: Topology for UCMP

Cost from Router E to Net -XPaths

40E-B-A

50E-C-A

40E-D-A

Implementing UCMP
1



IGP selects the lowest path links, i.e E-B-A and E-D-A. The path E-C-A is not considered for load balancing
because of higher cost. The lowest path link E-D (5) is not a tie breaker, as the end to end cost to the Network
X is considered.

• ECMP vs. UCMP Load Balancing, on page 2
• UCMP Minimum Integer Ratio, on page 2
• Configuring IS-IS With Weight, on page 3
• Configuring IS-IS With Metric, on page 4
• Configuring BGP With Weights, on page 5

ECMP vs. UCMP Load Balancing
Load balancing is a forwarding mechanism that distributes traffic over multiple links based on certain
parameters. Equal Cost Multi Path (ECMP) is a forwarding mechanism for routing packets along multiple
paths of equal cost with the goal to achieve almost equally distributed link load sharing. This significantly
impacts a router's next-hop (path) decision.

In ECMP, it is assumed that all links available are of similar speed which inherently means that the hash
values that are computed are equally shared over the multiple paths available.

For instance, if we have two paths available, the buckets (which in the end identify the links to be chosen)
will be assigned in a 50% / 50% loadsharing. This can be problematic when one path is say a 10G link and
the other link is a 1G link. In this case, you probably want to assign a (near) 90/10 type deviation, but
considering that BGP is not bandwidth aware, the 10G path is still chosen 50% of the time as much as the 1G
link. In this scenario, not all paths are of equal cost path.

What UCMP does in this case is apply a weight to a path which means that we are giving more hash buckets
to one path that has a higher weight. The weight applied is static in the sense that it is derived by the DMZ
bandwidth extended community either assigned to a peer or as configured via the Route Policy Language
(RPL) route manipulation functionality.

In general, a routing protocol decides a best path to a destination based on a metric. This metric is generally
driven by the bandwidth of the circuit. When we have 3 paths available, say 1G/10G/100G, routing protocols
generally discard the 1G/10G paths available. In defined cases, one may want to spread the load over the
circuits based on the load they can carry. In this example, one may want to distribute traffic in a 1%/10%/89%
fashion over the 1G/10G/100G paths available.

UCMP Minimum Integer Ratio
The UCMP Minimum Integer Ratio feature saves hardware resources when programming UCMP, by using
an optimized number of buckets.

To calculate the UCMP minimum integer ratio, find the greatest common divisor (GCD) and divide all the
calculated normalized weights.

In the following Figure, we have three configured weights 40, 50, and 40, with GCD as 10. To calculate the
normalized weight, divide the configured weight by GCD. In this example, we need to divide 40 by 10, 50
by 10, and 40 by 10, which is 4, 5, and 4 respectively. Therefore 4, 5, and 4 are the new normalized weights.

Implementing UCMP
2

Implementing UCMP
ECMP vs. UCMP Load Balancing



New normalized weights are: 40/10 = 4, 50/10 = 5, and 40/10 = 4

If GCD is 1, then Normalized Weight = (Path weight/Total weight) * Maximum bucket size

Configuring IS-IS With Weight
The following example shows the IS-IS weight configuration with IPv4. The same can be done for IPv6, with
or without SR.
CPU0:router(config)# router isis 1
RP/0/RSP0/CPU0:router(config-isis)# interface HundredGigE 0/3/0/8
RP/0/RSP0/CPU0:router(config-isis-if)# address-family ipv4 unicast
RP/0/RSP0/CPU0:router(config-isis-if-af)# weight 200
RP/0/RSP0/CPU0:router(config-isis)# interface HundredGigE 0/3/0/9
RP/0/RSP0/CPU0:router(config-isis-if)# address-family ipv4 unicast
RP/0/RSP0/CPU0:router(config-isis-if-af)# weight 300

Verification

The following example verifies CEF entry. Then, for two paths with weights of 200 and 300 respectively,
and GCD of 100; the expected normalized weights are 2 and 3.
Router# show cef ipv4 97.0.0.0 detail

97.0.0.0/24, version 537, internal 0x1000001 0x0 (ptr 0x71bcaee0) [1], 0x0 (0x71b98870),
0x0 (0x0)
Updated Oct 16 06:34:46.197
remote adjacency to HundredGigE 0/3/0/8
Prefix Len 24, traffic index 0, precedence n/a, priority 2
gateway array (0x71a6de10) reference count 13, flags 0x0, source rib (7), 0 backups

[14 type 3 flags 0x8401 (0x71b02d90) ext 0x0 (0x0)]
LW-LDI[type=3, refc=1, ptr=0x71b98870, sh-ldi=0x71b02d90]
gateway array update type-time 1 Oct 16 06:34:46.196
LDI Update time Oct 16 06:34:46.197

Implementing UCMP
3

Implementing UCMP
Configuring IS-IS With Weight



LW-LDI-TS Oct 16 06:34:46.197
via 1.0.0.2/32, HundredGigE0/3/0/8, 4 dependencies, weight 200, class 0 [flags 0x0]
path-idx 0 NHID 0x0 [0x7244d2a4 0x0]
next hop 1.0.0.2/32
remote adjacency
via 2.0.0.2/32, HundredGigE0/3/0/9, 4 dependencies, weight 300, class 0 [flags 0x0]
path-idx 1 NHID 0x0 [0x7244d2f8 0x0]
next hop 2.0.0.2/32
remote adjacency

Weight distribution:
slot 0, weight 200, normalized_weight 2, class 0
slot 1, weight 300, normalized_weight 3, class 0

Load distribution: 0 1 0 1 1 (refcount 14)

Hash OK Interface Address
0 Y HundredGigE0/3/0/8 remote
1 Y HundredGigE0/3/0/9 remote
2 Y HundredGigE0/3/0/8 remote
3 Y HundredGigE0/3/0/9 remote
4 Y HundredGigE0/3/0/9 remote

Configuring IS-IS With Metric
The following example shows IS-IS metric configuration with IPv4. The same can be done with IPv6.
Router# enable
RP/0/RSP0/CPU0:router(config)# router isis 1
RP/0/RSP0/CPU0:router(config-isis)# interface HundredGigE0/3/0/8
RP/0/RSP0/CPU0:router(config-isis-if)# address-family ipv4 unicast
RP/0/RSP0/CPU0:router(config-isis-if-af)# metric 1
RP/0/RSP0/CPU0:router(config-isis)# interface HundredGigE0/3/0/9
RP/0/RSP0/CPU0:router(config-isis-if)# address-family ipv4 unicast
RP/0/RSP0/CPU0:router(config-isis-if-af)# metric 100

Verification

The following example verifies CEF entry, and checks for the two paths with metric values of 1 and 100,
respectively. In this example, the best path route metric is 21 and the UCMP path route metric is 120. Therefore,
the calculation is as follows:

The best path route metric, 21 = (1 configured + 20 added by IS-IS), weight 0xFFFFFFFF (4294967295)

The UCMP path route metric, 120 = (100 + 20), weight = (21/120) * 4294967295 = 751619276

GCD is one. So Normalized Weight is:

(4294967295 * 64) / (4294967295 + 751619276) = 54

(751619276 * 64) / (4294967295 + 751619276) = 9
Router# show cef ipv4 97.0.0.0 detail

97.0.0.0/24, version 773, internal 0x1000001 0x0 (ptr 0x71bcaee0) [1], 0x0 (0x71b98870),
0x0 (0x0)
Updated Oct 16 06:36:08.632
remote adjacency to HundredGigE0/3/0/8
Prefix Len 24, traffic index 0, precedence n/a, priority 2
gateway array (0x71a6d9d0) reference count 2, flags 0x0, source rib (7), 0 backups

Implementing UCMP
4

Implementing UCMP
Configuring IS-IS With Metric



[3 type 3 flags 0x8401 (0x71b02b90) ext 0x0 (0x0)]
LW-LDI [type=3, refc=1, ptr=0x71b98870, sh-ldi=0x71b02b90]
gateway array update type-time 1 Oct 16 06:36:08.632
LDI Update time Oct 16 06:36:08.632
LW-LDI-TS Oct 16 06:36:08.632
via 1.0.0.2/32, HundredGigE0/3/0/8, 14 dependencies, weight 4294967295, class 0 [flags

0x0]
path-idx 0 NHID 0x0 [0x7244d2a4 0x0]
next hop 1.0.0.2/32
remote adjacency
via 2.0.0.2/32, HundredGigE0/3/0/9, 14 dependencies, weight 751619276, class 0 [flags

0x0]
path-idx 1 NHID 0x0 [0x7244d2f8 0x0]
next hop 2.0.0.2/32
remote adjacency

Weight distribution:
slot 0, weight 4294967295, normalized_weight 54, class 0
slot 1, weight 751619276, normalized_weight 9, class 0

Configuring BGP With Weights
The following example shows BGP configuration with weights.
RP/0/RSP0/CPU0:router(config)# route-policy BW1
RP/0/RSP0/CPU0:router(config-rpl)# set extcommunity bandwidth (2906:45750000)
RP/0/RSP0/CPU0:router(config-rpl)# end-policy
RP/0/RSP0/CPU0:router(config)# !
RP/0/RSP0/CPU0:router(config)# route-policy BW2
RP/0/RSP0/CPU0:router(config-rpl)# set extcommunity bandwidth (2906:47250000)
RP/0/RSP0/CPU0:router(config-rpl)# end-policy
RP/0/RSP0/CPU0:router(config)# !
RP/0/RSP0/CPU0:router(config)# route-policy pass-all
RP/0/RSP0/CPU0:router(config-rpl)# pass
RP/0/RSP0/CPU0:router(config-rpl)# end-policy
RP/0/RSP0/CPU0:router(config)# !
RP/0/RSP0/CPU0:router(config)# router bgp 1
RP/0/RSP0/CPU0:router(config-bgp)# bgp bestpath as-path multipath-relax
RP/0/RSP0/CPU0:router(config-bgp)# address-family ipv4 unicast
RP/0/RSP0/CPU0:router(config-bgp-af)# maximum-paths eibgp 64
RP/0/RSP0/CPU0:router(config-bgp-af)# !
RP/0/RSP0/CPU0:router(config-bgp-af)# neighbor 1.0.0.2
RP/0/RSP0/CPU0:router(config-bgp-nbr)# remote-as 2
RP/0/RSP0/CPU0:router(config-bgp-nbr)# ebgp-multihop 255
RP/0/RSP0/CPU0:router(config-bgp-nbr)# dmz-link-bandwidth
RP/0/RSP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast
RP/0/RSP0/CPU0:router(config-bgp-nbr-af)# multipath
RP/0/RSP0/CPU0:router(config-bgp-nbr-af)# route-policy BW1 in
RP/0/RSP0/CPU0:router(config-bgp-nbr-af)# route-policy pass-all out
RP/0/RSP0/CPU0:router(config-bgp-nbr-af)# !
RP/0/RSP0/CPU0:router(config-bgp-nbr-af)# neighbor 2.0.0.2
RP/0/RSP0/CPU0:router(config-bgp-nbr)# remote-as 2
RP/0/RSP0/CPU0:router(config-bgp-nbr)# ebgp-multihop 255
RP/0/RSP0/CPU0:router(config-bgp-nbr)# dmz-link-bandwidth
RP/0/RSP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast
RP/0/RSP0/CPU0:router(config-bgp-nbr-af)# multipath
RP/0/RSP0/CPU0:router(config-bgp-nbr-af)# route-policy BW2 in
RP/0/RSP0/CPU0:router(config-bgp-nbr-af)# route-policy pass-all out

Implementing UCMP
5

Implementing UCMP
Configuring BGP With Weights



Verification

Step 1: Verify CEF entry:

Via 1.0.0.2: set extcommunity bandwidth (2906:45750000) – Weight = 45750000/125=366000 (125 ratio
because baud)

Via 2.0.0.2: set extcommunity bandwidth (2906:47250000) – Weight = 47250000/125=378000

GCD is 6, so norm_weight = 61 and 63. Though 61 + 63 > 64.

Step 2: GCD of weights 61 and 63 is 1. Therefore, Normalised Weight = (Path weight/Total weight) *
Maximum bucket size. The maximum bucket size value is 64. Total weight = 61+63 = 124.

norm_weight1 = (61/124) * 64 = 31, norm_weight2 = (63/124) * 64 = 32

You can verify the weight distribution in BGP, using the following command:
Router # show cef vrf default ipv4 97.0.0.0 detail

97.0.0.0/24, version 1965, internal 0x5000001 0x0 (ptr 0x71bcb620) [1], 0x0 (0x0), 0x0 (0x0)
Updated Oct 16 08:15:02.958
Prefix Len 24, traffic index 0, precedence n/a, priority 4
gateway array (0x72a5e2f8) reference count 10, flags 0x2010, source rib (7), 0 backups

[1 type 3 flags 0x48441 (0x71b02cd0) ext 0x0 (0x0)]
LW-LDI[type=0, refc=0, ptr=0x0, sh-ldi=0x0]
gateway array update type-time 1 Oct 16 08:15:02.958
LDI Update time Oct 16 08:15:02.959

Weight distribution:
slot 0, weight 366000, normalized_weight 31
slot 1, weight 378000, normalized_weight 32

Level 1 - Load distribution: 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 1
[0] via 1.0.0.2/32, recursive
[1] via 2.0.0.2/32, recursive

Implementing UCMP
6

Implementing UCMP
Configuring BGP With Weights


	Implementing UCMP
	ECMP vs. UCMP Load Balancing
	UCMP Minimum Integer Ratio
	Configuring IS-IS With Weight
	Configuring IS-IS With Metric
	Configuring BGP With Weights


