
Application Hosting Configuration Guide for Cisco NCS 5500 Series
Routers, Cisco IOS XR Releases
First Published: 2015-12-23

Last Modified: 2024-06-14

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of
the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHERWARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL:
https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a
partnership relationship between Cisco and any other company. (1721R)

© 2016–2024 Cisco Systems, Inc. All rights reserved.

https://www.cisco.com/c/en/us/about/legal/trademarks.html

Changes to This Document

This table lists the technical changes made to this document since it was first released.

Table 1: Changes to This Document

SummaryDate

Republished for Cisco IOS XR Release 24.2.1June 2024

Republished for Cisco IOS XR Release 7.5.2April 2022

Republished for Cisco IOS XR Release 7.4.1July 2021

Republished for Cisco IOS XR Release 7.0.1August 2019

Republished for Cisco IOS XR Releases 6.4.1 and
6.3.2.

March 2018

Republished for Cisco IOS XR Release 6.3.1.September 2017

Republished for Cisco IOS XR Release 6.2.2.July 2017

Republished for Cisco IOS XR Release 6.1.2.November 2016

First release for Cisco IOS XR Release 6.0.0.December 2015

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
iii

• To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.

• To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.

• To submit a service request, visit Cisco Support.

• To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit Cisco Marketplace.

• To obtain general networking, training, and certification titles, visit Cisco Press.

• To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system that maintains a comprehensive list of defects and vulnerabilities in Cisco products
and software. BST provides you with detailed defect information about your products and software.

© 2016–2024 Cisco Systems, Inc. All rights reserved.

https://www.cisco.com/offer/subscribe
https://www.cisco.com/go/services
https://www.cisco.com/c/en/us/support/index.html
https://developer.cisco.com/site/marketplace/
http://www.ciscopress.com
http://www.cisco-warrantyfinder.com
https://www.cisco.com/c/en/us/support/web/tools/bst/bsthelp/index.html

C O N T E N T S

Changes to This Document iii

New and Changed Feature Information 1C H A P T E R 1

New and Changed Application Hosting Features 1

Getting Started with Application Hosting 3C H A P T E R 2

Need for Application Hosting 3

Deep Dive Into Application Hosting 4

Application Hosting on the Cisco IOS XR Linux Shell 5

Accessing the Third-Party Network Namespace on Cisco IOS XR Linux Shell 6

Accessing Global VRF on the Cisco IOS XR Linux Shell 12

Getting Started with Using Vagrant for Application Hosting 15

Accessing Global VRF on the Cisco IOS XR Linux Shell by Using a Vagrant Box 16

Applying Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box 21

Accessing the Networking Stack 27C H A P T E R 3

Packet I/O on IOS XR 27

Exposed IOS-XR Interfaces in Linux 27

Setting up Virtual IP Addresses 31

Third-Party Application Networking in Named VRFs 32

Default Route Source Address 32

East-West Communication 34

Hardware LPTS Support For Traffic Protection 35

Management Route Export 35

Mapping of Deprecated TPA Configuration 37

Software Forwarding 37

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
v

Statistics Synchronization 38

VRF Disable 39

Program Routes in Linux 40

Configure VRFs in Linux 40

Open Linux Sockets 43

Send and Receive Traffic 43

Manage IOS XR Interfaces through Linux 44

Configure an Interface to be Linux-Managed 44

Configure New IP address on the Interface in Linux 46

Configure Custom MTU Setting 46

Configure Traffic Protection for Linux Networking 47

Communication Outside Cisco IOS XR 49

East-West Communication for Third-Party Applications 51

Configuring Multiple VRFs for Application Hosting 53

Hosting Applications on IOS XR 57C H A P T E R 4

Application Hosting in IOS XR Container 57

Container Application Hosting 57

Running iPerf as a Container Application 59

Using Docker for Hosting Applications on Cisco IOS XR 61

Hosting and Seamless Activation of Third Party Applications Using Application Manager 63

Configuring a Docker with Multiple VRFs 65

Customize Docker Run Options Using Application Manager 68

Docker Application Management using IPv6 Address 72

Configure VRF Forwarding 73

Verifying VRF Forwarding for Application Manager 74

Using Vagrant for Hosting Applications 75

Setting up an Application Development Topology By Using Vagrant 75

Deploying an Application Development Topology by Using Vagrant 77

Hosting a Wind River Linux (WRL7) Application Natively By Using Vagrant 81

Hosting an Application within a Linux Container (LXC) by Using Vagrant 87

Installing Docker on Cisco IOS XR By Using Vagrant 101

Secure Onboarding of Signed Third-Party Applications 102

Key Terms 102

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
vi

Contents

How Can I Onboard My Applications Securely? 103

Establish Device Ownership 103

Generate KeyPackage 103

Customer Keys (X509 or GPG) 105

Key Package Configuration File 107

Onboard Key Package on Router 108

Provisioning Key Packages on the Router 108

Generate Signed RPM 110

Onboard Signed RPM Package on Router 112

Build a Golden ISO 112

TPA Life Cycle 116

Appendix 117

Secure ZTP Work Flow 117

Hosting Applications Using Configuration Management Tools 121C H A P T E R 5

Using Chef for Configuring Cisco IOS XR 121

Installing and Configuring the Chef Client 122

Creating a Chef Cookbook with Recipes 124

Using Puppet for Configuring Cisco IOS XR 125

Installing and Configuring the Puppet Agent 126

Creating a Puppet Manifest 128

Using Yang Models with Puppet on IOS XR 129

Using Configuration Management Tools on Vagrant 131

Using Puppet on Vagrant 131

Using Ansible for Hosting Applications 135

Using Ansible On Vagrant 136

Launching a Linux Container (LXC) By Using Ansible on Vagrant 140

Using Netmiko and Napalm on Vagrant 149

Cisco Secure DDoS Edge Protection 157C H A P T E R 6

Guidelines for Installing DDoS Edge Protection 159

Restrictions of DDoS Edge Protection Solution 159

Install and Configure DDoS Edge Protection 159

Verify DDoS Edge Protection Application Configuration 162

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
vii

Contents

Use Cases: Application Hosting 165C H A P T E R 7

Hosting iPerf in Docker Containers to Measure Network Performance using Application Manager 165

Verify Connection between Router A and Router B 166

Install the iPerf Server Application 167

Install the iPerf Client Application 168

Verify Connection between the iPerf Server and iPerf Client Applications 169

Measure Network Performance 170

Stop iPerf Applications 175

Start iPerf Applications 175

Deactivate iPerf Applications 176

Uninstall iPerf Applications 176

CPU-Based Packet Generator 176

Benefits of CPU-Based Packet Generator 177

Restrictions of CPU-Based Packet Generator 177

Topology of CPU-Based Packet Generator 178

Capabilities of CPU-based Packet Generator 178

How to Use CPU-based Packet Generator? 179

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
viii

Contents

C H A P T E R 1
New and Changed Feature Information

This section lists all the new and changed features for the Application Hosting Configuration Guide.

• New and Changed Application Hosting Features, on page 1

New and Changed Application Hosting Features
This section describes the new and changed application hosting features for Cisco IOS XR.

Application Hosting Features Added or Modified

Table 2: New and Changed Features

Where DocumentedIntroduced/Changed in
Release

DescriptionFeature

CPU-Based Packet
Generator

Release 24.2.1This feature was
introduced.

CPU-Based Packet
Generator

Customize Docker Run
Options using Application
Manager

Release 24.1.1This feature was
introduced.

Customize Docker Run
Options usingApplication
Manager

Communication Outside
Cisco IOS XR, on page
49

Release 7.5.2This feature was
introduced.

Virtual IP address in the
Linux networking stack

Hosting and Seamless
Activation of Third Party
Applications Using
Application Manager, on
page 63

Release 7.5.1This feature was
introduced.

On-Demand Docker
Daemon Service for
Hosting Applications

Hosting and Seamless
Activation of Third Party
Applications Using
Application Manager, on
page 63

Release 7.3.2This feature was
introduced.

Hosting and Seamless
Activation of Third Party
Applications Using
Application Manager

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
1

https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/app-hosting/b-application-hosting-configuration-guide-ncs5500/b-application-hosting-configuration-guide-ncs5500_chapter_0101.html#cpu-based-packet-generator
https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/app-hosting/b-application-hosting-configuration-guide-ncs5500/b-application-hosting-configuration-guide-ncs5500_chapter_0101.html#cpu-based-packet-generator
https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/app-hosting/b-application-hosting-configuration-guide-ncs5500/b-application-hosting-configuration-guide-ncs5500_chapter_010.html#Cisco_Concept.dita_e8807290-6933-46ee-a7aa-350cfd08739c
https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/app-hosting/b-application-hosting-configuration-guide-ncs5500/b-application-hosting-configuration-guide-ncs5500_chapter_010.html#Cisco_Concept.dita_e8807290-6933-46ee-a7aa-350cfd08739c
https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/app-hosting/b-application-hosting-configuration-guide-ncs5500/b-application-hosting-configuration-guide-ncs5500_chapter_010.html#Cisco_Concept.dita_e8807290-6933-46ee-a7aa-350cfd08739c

Where DocumentedIntroduced/Changed in
Release

DescriptionFeature

NARelease 7.4.1NoneNo new features were
added.

NARelease 7.1.1NoneNo new features were
added.

NARelease 7.0.1NoneNo new features were
added.

NARelease 6.6.25NoneNo new features were
added.

NARelease 6.5.2NoneNo new features were
added.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
2

New and Changed Feature Information
New and Changed Application Hosting Features

C H A P T E R 2
Getting Started with Application Hosting

This section introduces application hosting and the Linux environment used for hosting applications on the
Cisco IOS XR Operating System.

Cisco NCS 540 routers supports docker-based application hosting only.

• Need for Application Hosting, on page 3
• Deep Dive Into Application Hosting, on page 4
• Application Hosting on the Cisco IOS XR Linux Shell, on page 5
• Getting Started with Using Vagrant for Application Hosting, on page 15

Need for Application Hosting
Over the last decade, there has been a need for a network operating system that supports operational agility
and efficiency through seamless integration with existing tool chains. Service providers have been looking
for shorter product cycles, agile workflows, and modular software delivery; all of these can be automated
efficiently. The 64-bit Cisco IOS XR that replaces the older 32-bit QNX version meets these requirements.
It does that by providing an environment that simplifies the integration of applications, configuration
management tools, and industry-standard zero touch provisioning mechanisms. The 64-bit IOS XR matches
the DevOps style workflows for service providers, and it has an open internal data storage system that can be
used to automate the configuration and operation of the device hosting an application.

While we are rapidly moving to virtual environments, there is an increasing need to build applications that
are reusable, portable, and scalable. Application hosting gives administrators a platform for leveraging their
own tools and utilities. Cisco NCS 540 routers support third-party off-the-shelf applications An application
hosted on a network device can serve a variety of purposes. This ranges from automation, configuration
management monitoring, and integration with existing tool chains.

Before an application can be hosted on a device, the following requirements must be met:

• Suitable build environment to build your application

• A mechanism to interact with the device and the network outside the device

When network devices are managed by configuration management applications, such as Chef and Puppet,
network administrators are freed of the task of focusing only on the CLI. Because of the abstraction provided
by the application, while the application does its job, administrators can now focus on the design, and other
higher level tasks.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
3

Deep Dive Into Application Hosting
This section describes the architecture of the 64-bit IOS XR and the architecture used for application hosting.

64-bit IOS XR Architecture

IOS XR provides Linux containers for application hosting through a hypervisor. Each container provides a
unique functionality. The 64-bit host Linux (hypervisor) works well with embedded systems. The various
containers that are offered on the host Linux, are explained in this section.

The following figure illustrates the 64-bit IOS XR architecture.

Figure 1: 64-bit IOS XR Architecture

• Admin Plane: The admin plane is the first Linux container to be launched on booting IOS XR. The
admin plane is responsible for managing the life cycle of the IOS XR control plane container.

• XR Control Plane: Applications are hosted natively in the 64-bit IOS XR control plane. You can access
the IOS XR Linux bash shell through the control plane.

• Data Plane: The data plane substitutes and provides all the features of a line card in a modular router
chassis.

• Third-Party Container: You can create your own Linux container (LXC) for hosting third-party
applications and use the LC interfaces that are provided.

Apart from the Linux containers, several interfaces are offered on the host Linux.

Application Hosting Architecture

The 64-bit IOS XR introduces the concept of using containers on the 64-bit host Linux (hypervisor) for hosting
applications in the XR control plane LXC (native) and in the third-party LXC. The host Linux is based on the
Windriver Linux 7 distribution.

The application hosting architecture is designed to offer the following containers for both native and third-party
applications:

• XR Control Plane LXC (native applications reside here): The XR control plane LXC contains the
global-vrf network namespace and the XR control plane. The LXC provides the XR Linux shell to
access global-vrf and the XR router console (CLI) to access the XR control plane. The LXC is also
based on the WRL7 distribution. For more information on the XR control plane LXC.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
4

Getting Started with Application Hosting
Deep Dive Into Application Hosting

• Third-Party Container (third-party applications reside here): The 64-bit IOS XR provides you an
option to create and launch your own Linux container, known as the third-party container. You can install
applications within the container that shares the network namespace with XR. You can access the
namespace through the XR Linux shell.

The network namespace on XR is shared across all applications and is known as global-vrf.

The Third-Party Application (TPA) IP is configured so that applications can communicate outside XR through
the fwdintf interface, which is bound to the Loopback0 interface of XR. All applications communicate with
XR through the fwd_ew interface, which is bound to the Loopback1 interface of XR.

Figure 2: Application Hosting Architecture

The fwdintf and fwd_ew interfaces is not support from IOS XR software release 7.9.1.Note

Application Hosting on the Cisco IOS XR Linux Shell
Linux supports an entire ecosystem of applications and tools that have been created, tested, and deployed by
system administrators, developers, and network engineers over the last few decades. Linux is well suited for
hosting servers with or without applications, because of its stability, security, scalability, reduced cost for
licensing, and the flexibility it offers to customize applications for specific infrastructure needs.

With a growing focus on DevOps style workflows that focus on automation and ease of integration, network
devices need to evolve and support standard tools and applications that make the automation process easier.
A standardized and shared tool chain can boost speed, efficiency, and collaboration. IOS XR is developed
from a Yocto-based Wind River Linux 7 distribution. The OS is RPM based and well suited for embedded
systems.

IOS XR enables hosting of 64-bit Linux applications on the box, and has the following advantages:

• Seamless integration with configuration management applications

• Easy access to file systems

• Ease of operation

To host a Linux application on IOS XR, you must be familiar with the Linux shell on XR.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
5

Getting Started with Application Hosting
Application Hosting on the Cisco IOS XR Linux Shell

A typical Linux OS provides a single set of network interfaces and routing table entries that are shared across
the OS.With the introduction of network namespaces, Linux provides multiple instances of network interfaces
and routing tables that operate independently.

Support for network namespaces varies across different distributions of the Linux OS. Ensure that the
distribution you are planning to use for application hosting supports network namespaces.

Note

Network Namespaces on IOS XR

There are two ways of accessing the IOS XR Linux shell, depending on the version of Cisco IOS XR that you
are using in your network.

• If you are using Cisco IOS XR Version 6.0.0, then you must use the procedure in Accessing the
Third-Party Network Namespace on Cisco IOS XR Linux Shell, on page 6. Accessing the XR Linux
shell takes you to the default network namespace, XRNNS. You must navigate from this namespace to
access the third-party network namespace (TPNNS), where all the third-party application interfaces
reside. There is a difference between what you can access and view at the XR router prompt, and what
you can access and view at the XR Linux Shell.

• If you are using Cisco IOS XR Version 6.0.2 and higher, then you must use the procedure in Accessing
Global VRF on the Cisco IOS XR Linux Shell, on page 12. Accessing the XR Linux shell takes you
directly to the third-party network namespace, renamed as global VRF. You can run bash commands at
the XR router prompt itself to view the interfaces and IP addresses stored in global VRF. Navigation is
faster and more intuitive in this version of IOS XR.

Accessing the Third-Party Network Namespace on Cisco IOS XR Linux Shell
The Cisco IOSXRLinux shell provides a Third-Party Network Namespace (TPNNS) that provides the required
isolation between third-party applications and internal XR processes, while providing the necessary access
to XR interfaces for the applications. You can use the steps mentioned in this section to access the IOS XR
Linux shell and navigate through the XRNNS (default XR Network Namespace) and the TPNNS.

This procedure is applicable only on Cisco IOS XR Versions 5.3.2 and 6.0.0. For accessing this namespace
on other versions of Cisco IOS XR, see Accessing Global VRF on the Cisco IOS XR Linux Shell, on page
12.

Note

Use these steps to navigate through the XR Linux shell.

1. From your Linux box, access the IOS XR console through SSH, and log in.
cisco@host:~$ ssh root@192.168.122.188
root@192.168.122.188's password:
RP/0/RP0/CPU0:ios#

You have reached the IOS XR router prompt.

2. View the ethernet interfaces on IOS XR.
RP/0/0/CPU0:ios# show ipv4 interface brief
...

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
6

Getting Started with Application Hosting
Accessing the Third-Party Network Namespace on Cisco IOS XR Linux Shell

Interface IP-Address Status Protocol
Loopback0 1.1.1.1/32 Up Up
GigabitEthernet0/0/0/0 10.1.1.1/24 Up Up
...

RP/0/RP0/CPU0:ios# show interfaces gigabitEthernet 0/0/0/0
...

GigabitEthernet0/0/0/0 is up, line protocol is up
Interface state transitions: 4
Hardware is GigabitEthernet, address is 5246.e8a3.3754 (bia
5246.e8a3.3754)
Internet address is 10.1.1.1/24
MTU 1514 bytes, BW 1000000 Kbit (Max: 1000000 Kbit)
reliability 255/255, txload 0/255, rxload 0/255
Encapsulation ARPA,
Duplex unknown, 1000Mb/s, link type is force-up
output flow control is off, input flow control is off
loopback not set,
Last link flapped 01:03:50
ARP type ARPA, ARP timeout 04:00:00
Last input 00:38:45, output 00:38:45
Last clearing of "show interface" counters never
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
12 packets input, 1260 bytes, 0 total input drops
0 drops for unrecognized upper-level protocol
Received 2 broadcast packets, 0 multicast packets
0 runts, 0 giants, 0 throttles, 0 parity
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
12 packets output, 1224 bytes, 0 total output drops
Output 1 broadcast packets, 0 multicast packets

The output displays the IP and MAC addresses of the GigabitEthernet0/0/0/0 interface.

3. Enter the run command to launch the IOS XR Linux bash shell.

You can also check the version of IOS XR when you are at the bash prompt.
RP/0/RP0/CPU0:ios# run
Wed Oct 28 18:45:56.168 IST

[xr-vm_node0_RP0_CPU0:~]$ uname -a
Linux xr-vm_node0_RP0_CPU0 3.10.19-WR7.0.0.2_standard #1 SMP Mon Jul 6
13:38:23 PDT 2015 x86_64 GNU/Linux
[xr-vm_node0_RP0_CPU0:~]$

To exit the Linux bash shell and launch the IOS XR console, enter the exit command:
[xr-vm_node0_RP0_CPU0:~]$ exit
exit
RP/0/RP0/CPU0:ios#

Note

4. Locate the network interfaces by running the ifconfig command.
[xr-vm_node0_RP0_CPU0:~]$ ifconfig
eth0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41

inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:8996 Metric:1
RX packets:280 errors:0 dropped:0 overruns:0 frame:0
TX packets:160 errors:0 dropped:0 overruns:0 carrier:0

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
7

Getting Started with Application Hosting
Accessing the Third-Party Network Namespace on Cisco IOS XR Linux Shell

collisions:0 txqueuelen:1000
RX bytes:31235 (30.5 KiB) TX bytes:20005 (19.5 KiB)

eth-vf0 Link encap:Ethernet HWaddr 52:54:00:34:29:44
inet addr:10.11.12.14 Bcast:10.11.12.255 Mask:255.255.255.0
inet6 addr: fe80::5054:ff:fe34:2944/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:9000 Metric:1
RX packets:19 errors:0 dropped:0 overruns:0 frame:0
TX packets:13 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:1566 (1.5 KiB) TX bytes:1086 (1.0 KiB)

eth-vf1 Link encap:Ethernet HWaddr 52:54:00:ee:f7:68
inet6 addr: fe80::5054:ff:feee:f768/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:9000 Metric:1
RX packets:326483 errors:0 dropped:3 overruns:0 frame:0
TX packets:290174 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:24155455 (23.0 MiB) TX bytes:215862857 (205.8 MiB)

eth-vf1.1794 Link encap:Ethernet HWaddr 52:54:01:5c:55:8e
inet6 addr: fe80::5054:1ff:fe5c:558e/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:8996 Metric:1
RX packets:10 errors:0 dropped:0 overruns:0 frame:0
TX packets:13 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:728 (728.0 B) TX bytes:1234 (1.2 KiB)

eth-vf1.3073 Link encap:Ethernet HWaddr e2:3a:dd:0a:8c:06
inet addr:192.0.0.4 Bcast:192.255.255.255 Mask:255.0.0.0
inet6 addr: fe80::e03a:ddff:fe0a:8c06/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:8996 Metric:1
RX packets:317735 errors:0 dropped:3560 overruns:0 frame:0
TX packets:257881 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:18856325 (17.9 MiB) TX bytes:204552163 (195.0 MiB)

eth-vf1.3074 Link encap:Ethernet HWaddr 4e:41:50:00:10:01
inet addr:172.0.16.1 Bcast:172.255.255.255 Mask:255.0.0.0
inet6 addr: fe80::4c41:50ff:fe00:1001/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:8996 Metric:1
RX packets:8712 errors:0 dropped:0 overruns:0 frame:0
TX packets:32267 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:723388 (706.4 KiB) TX bytes:11308374 (10.7 MiB)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:1635360 errors:0 dropped:0 overruns:0 frame:0
TX packets:1635360 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:182532711 (174.0 MiB) TX bytes:182532711 (174.0 MiB)

tap123 Link encap:Ethernet HWaddr c6:13:74:4b:dc:e3
inet6 addr: fe80::c413:74ff:fe4b:dce3/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:13 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:998 (998.0 B)

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
8

Getting Started with Application Hosting
Accessing the Third-Party Network Namespace on Cisco IOS XR Linux Shell

The output displays the internal interfaces (eth0 through eth-vf1.3074) used by IOSXR. These interfaces
exist in XRNetwork Namespace (XRNNS) and do not interact with the network outside IOSXR. Interfaces
that interact with the network outside IOSXR are found in the Third Party Network Namespace (TPNNS).

5. Enter the TPNNS on the IOS XR bash shell.
[XR-vm_node0_RP0_CPU0:~]$ ip netns exec tpnns bash

6. View the TPNNS interfaces.
[XR-vm_node0_RP0_CPU0:~]$ ifconfig
Gi0_0_0_0 Link encap:Ethernet HWaddr 52:46:04:87:19:3c

inet addr:192.164.168.10 Mask:255.255.255.0
inet6 addr: fe80::5046:4ff:fe87:193c/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41
inet addr:192.168.122.197 Mask:255.255.255.0
inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1482 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo:0 Link encap:Local Loopback
inet addr:1.1.1.1 Mask:255.255.255.255
UP LOOPBACK RUNNING MTU:1500 Metric:1

The interfaces displayed in the output are replicas of the IOS XR interfaces in the Linux environment.
(They have the same MAC and IP addresses.)

• Gi0_0_0_0 is the IOS XR GigabitEthernet 0/0/0/0 interface.

• Mg0_RP0_CPU0_0 is the IOS XR management interface, used for administrative operations on XR.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
9

Getting Started with Application Hosting
Accessing the Third-Party Network Namespace on Cisco IOS XR Linux Shell

• fwd_ew is the interface used for communication (east to west) between third-party applications and
IOS XR.

• fwdintf is the interface used for communication between third-party applications and the network
outside IOS XR.

• lo:0 is the IOS XR loopback0 interface used for communication between third-party applications
and the outside network through the fwdintf interface. The loopback0 interface must be configured
for applications to communicate outside XR. Alternatively, applications can also configure a GigE
interface for external communication, as explained in the Communication Outside Cisco IOS XR,
on page 49 section.

All interfaces that are enabled (with the no shut command) are added to TPNNS on IOS XR.

7. (Optional) View the IP routes used by the fwd_ew and fwdintf interfaces.
[xr-vm_node0_RP0_CPU0:~]$ ip route
default dev fwdintf scope link src 1.1.1.1
8.8.8.8 dev fwd_ew scope link
192.168.122.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 192.168.122.213

The fwdintf and fwd_ew interfaces is not support from IOS XR software release 7.9.1.Note

Alternative Method of Entering the Third Party Network Namespace on IOS XR

To directly enter the TPNNS on logging to IOS XR, without entering the ip netns exec tpnns bash command,
you can use the sshd_tpnns service, as explained in the steps that follow. The procedure involves the creation
of a non-root user in order to access the service. (Root users cannot access this service.)

On IOS XR, prior to starting a service that binds to an interface, ensure that the interface is configured, up,
and operational.

To ensure that a service starts only after an interface is configured, include the following function in the service
script:
. /etc/init.d/tpnns-functions
tpnns_wait_until_ready

The addition of the tpnns_wait_until_ready function ensures that the service script waits for one or more
interfaces to be configured before starting the service.

Note

1. (Optional) If you want the TPNNS service to start automatically on reload, add the sshd_tpnns service
and verify its presence.
bash-4.3# chkconfig --add sshd_tpnns
bash-4.3# chkconfig --list sshd_tpnns
sshd_tpnns 0:off 1:off 2:off 3:on 4:on 5:on 6:off
bash-4.3#

2. Start the sshd_tpnns service.
bash-4.3# service sshd_tpnns start
Generating SSH1 RSA host key: [OK]
Generating SSH2 RSA host key: [OK]

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
10

Getting Started with Application Hosting
Accessing the Third-Party Network Namespace on Cisco IOS XR Linux Shell

Generating SSH2 DSA host key: [OK]
generating ssh ECDSA key...

Starting sshd: [OK]

bash-4.3# service sshd_tpnns status
sshd (pid 6224) is running...

3. Log into the sshd_tpnns session as the non-root user created in Step 1.
host@fe-ucs36:~$ ssh devops@192.168.122.222 -p 57722
devops@192.168.122.222's password:
Last login: Tue Sep 8 20:14:11 2015 from 192.168.122.1
XR-vm_node0_RP0_CPU0:~$

4. Verify whether you are in TPNNS by viewing the interfaces.
[XR-vm_node0_RP0_CPU0:~]$ ifconfig
Gi0_0_0_0 Link encap:Ethernet HWaddr 52:46:04:87:19:3c

inet addr:192.164.168.10 Mask:255.255.255.0
inet6 addr: fe80::5046:4ff:fe87:193c/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41
inet addr:192.168.122.197 Mask:255.255.255.0
inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1482 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo:0 Link encap:Local Loopback
inet addr:1.1.1.1 Mask:255.255.255.255
UP LOOPBACK RUNNING MTU:1500 Metric:1

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
11

Getting Started with Application Hosting
Accessing the Third-Party Network Namespace on Cisco IOS XR Linux Shell

You are ready to use the IOS XR Linux shell for hosting applications.

Accessing Global VRF on the Cisco IOS XR Linux Shell
The Third-Party Network Namespace (TPNNS) is renamed as Global VRF (global-vrf) in Cisco IOS XR
Version 6.0.2 and higher. When you access the Cisco IOS XR Linux shell, you directly enter global VRF.
This is described in the following procedure.

1. From your Linux box, access the IOS XR console through SSH, and log in.
cisco@host:~$ ssh root@192.168.122.188
root@192.168.122.188's password:
RP/0/RP0/CPU0:ios#

You have reached the IOS XR router prompt.

2. View the ethernet interfaces on IOS XR.
RP/0/0/CPU0:ios# show ipv4 interface brief
...

Interface IP-Address Status Protocol
Loopback0 1.1.1.1/32 Up Up
GigabitEthernet0/0/0/0 10.1.1.1/24 Up Up
...

RP/0/RP0/CPU0:ios# show interfaces gigabitEthernet 0/0/0/0
...

GigabitEthernet0/0/0/0 is up, line protocol is up
Interface state transitions: 4
Hardware is GigabitEthernet, address is 5246.e8a3.3754 (bia
5246.e8a3.3754)
Internet address is 10.1.1.1/24
MTU 1514 bytes, BW 1000000 Kbit (Max: 1000000 Kbit)
reliability 255/255, txload 0/255, rxload 0/255
Encapsulation ARPA,
Duplex unknown, 1000Mb/s, link type is force-up
output flow control is off, input flow control is off
loopback not set,
Last link flapped 01:03:50
ARP type ARPA, ARP timeout 04:00:00
Last input 00:38:45, output 00:38:45
Last clearing of "show interface" counters never
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
12 packets input, 1260 bytes, 0 total input drops
0 drops for unrecognized upper-level protocol
Received 2 broadcast packets, 0 multicast packets
0 runts, 0 giants, 0 throttles, 0 parity
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
12 packets output, 1224 bytes, 0 total output drops
Output 1 broadcast packets, 0 multicast packets

The output displays the IP and MAC addresses of the GigabitEthernet0/0/0/0 interface.

3. Verify whether the bash command runs in global VRF by running the bash -c ifconfig command to view
the network interfaces.
RP/0/RP0/CPU0:ios# bash -c ifconfig
...

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
12

Getting Started with Application Hosting
Accessing Global VRF on the Cisco IOS XR Linux Shell

Gi0_0_0_0 Link encap:Ethernet HWaddr 52:46:04:87:19:3c
inet addr:192.164.168.10 Mask:255.255.255.0
inet6 addr: fe80::5046:4ff:fe87:193c/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41
inet addr:192.168.122.197 Mask:255.255.255.0
inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo:0 Link encap:Local Loopback
inet addr:1.1.1.1 Mask:255.255.255.255
UP LOOPBACK RUNNING MTU:1500 Metric:1

The presence of the following two interfaces confirms that you are in Global VRF:

fwd_ew is the interface used for communication (east to west) between third-party applications and IOS
XR.

fwdintf is the interface used for communication between third-party applications and the network outside
IOS XR.

4. Access the Linux shell by running the bash command.
RP/0/RP0/CPU0:ios# bash
Tue Aug 02 13:44:07.627 UTC
[xr-vm_node0_RP0_CPU0:~]$

5. (Optional) View the IP routes used by the fwd_ew and fwdintf interfaces.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
13

Getting Started with Application Hosting
Accessing Global VRF on the Cisco IOS XR Linux Shell

[xr-vm_node0_RP0_CPU0:~]$ ip route
default dev fwdintf scope link src 1.1.1.1
8.8.8.8 dev fwd_ew scope link
192.168.122.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 192.168.122.213

Alternative Method of Entering Global VRF on IOS XR

To directly enter global VRF on logging to IOS XR, without entering the bash command, you can use the
sshd_operns service, as explained in the steps that follow. The procedure involves the creation of a non-root
user in order to access the service. (Root users cannot access this service.)

On IOS XR, prior to starting a service that binds to an interface, ensure that the interface is configured, up,
and operational.

To ensure that a service starts only after an interface is configured, include the following function in the service
script:
. /etc/init.d/operns-functions
operns_wait_until_ready

The addition of the operns_wait_until_ready function ensures that the service script waits for one or more
interfaces to be configured before starting the service.

Note

1. (Optional) If you want the operns service to start automatically on reload, add the sshd_operns service
and verify its presence.
bash-4.3# chkconfig --add sshd_operns
bash-4.3# chkconfig --list sshd_operns
sshd_operns 0:off 1:off 2:off 3:on 4:on 5:on 6:off
bash-4.3#

2. Start the sshd_operns service.
bash-4.3# service sshd_operns start
Generating SSH1 RSA host key: [OK]
Generating SSH2 RSA host key: [OK]
Generating SSH2 DSA host key: [OK]
generating ssh ECDSA key...

Starting sshd: [OK]

bash-4.3# service sshd_operns status
sshd (pid 6224) is running...

3. Log into the sshd_operns session as the non-root user created in Step 1.
host@fe-ucs36:~$ ssh devops@192.168.122.222 -p 57722
devops@192.168.122.222's password:
Last login: Tue Sep 8 20:14:11 2015 from 192.168.122.1
XR-vm_node0_RP0_CPU0:~$

4. Verify whether you are in global VRF by viewing the network interfaces.
[XR-vm_node0_RP0_CPU0:~]$ ifconfig
Gi0_0_0_0 Link encap:Ethernet HWaddr 52:46:04:87:19:3c

inet addr:192.164.168.10 Mask:255.255.255.0
inet6 addr: fe80::5046:4ff:fe87:193c/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
14

Getting Started with Application Hosting
Accessing Global VRF on the Cisco IOS XR Linux Shell

RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41
inet addr:192.168.122.197 Mask:255.255.255.0
inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1482 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo:0 Link encap:Local Loopback
inet addr:1.1.1.1 Mask:255.255.255.255
UP LOOPBACK RUNNING MTU:1500 Metric:1

You are ready to use the IOS XR Linux shell for hosting applications.

Getting Started with Using Vagrant for Application Hosting
You can use vagrant as a tool for design, development, and testing of applications that can be hosted on Cisco
IOS XR. You can use vagrant on a host device of your choice, for completing the steps described in the
following sections.

Pre-requisites for Using Vagrant

Before you can start using vagrant, ensure that you have fulfilled the following requirements on your host
device.

• Latest version of Vagrant for your operating system. We recommend Version 1.8.6.

• Latest version of a virtual box for your operating system. We recommend Version 5.1+.

• Minimum of 5 GB of RAM with two cores.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
15

Getting Started with Application Hosting
Getting Started with Using Vagrant for Application Hosting

https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads

• (Optional) If you are using the Windows Operating System, we recommend that you download the Git
bash utility for running the commands.

Accessing Global VRF on the Cisco IOS XR Linux Shell by Using a Vagrant Box
The Third-Party Network Namespace (TPNNS) is renamed as Global VRF (global-vrf) in Cisco IOS XR
Version 6.0.2 and higher. From Cisco IOS XR Version 6.1.1 and higher, you can use a Linux-based vagrant
box to directly access the Global VRF on IOS XR, as described in the following procedure.

Procedure

To access Global VRF by using a vagrant box, use the following steps.

1. Generate an API key and a CCO ID by using the steps described in https://xrdocs.github.io/getting-started/
steps-download-iosxr-vagrant.

2. Download the latest stable version of the IOS XR vagrant box.

$ curl <cco-id>:<API-KEY>

$ BOXURL --output ~/iosxrv-fullk9-x64.box

$ vagrant box add --name IOS-XRv ~/iosxrv-fullk9-x64.box

3. Verify if the vagrant box has been successfully installed.

annseque@ANNSEQUE-WS02 MINGW64 ~ vagrant box list
IOS-XRv (virtualbox, 0)

4. Create a working directory.

annseque@ANNSEQUE-WS02 MINGW64 ~ mkdir ~/iosxrv
annseque@ANNSEQUE-WS02 MINGW64 ~ cd ~/iosxrv

5. Initialize the vagrant file with the new vagrant box.
ANNSEQUE-WS02 MINGW64:iosxrv annseque$ vagrant init IOS-XRv
A `Vagrantfile` has been placed in this directory. You are now
ready to `vagrant up` your first virtual environment! Please read
the comments in the Vagrantfile as well as documentation on
`vagrantup.com` for more information on using Vagrant.

6. Launch the vagrant instance on your device.
ANNSEQUE-WS02 MINGW64:iosxrv annseque$
$ vagrant up
Bringing machine 'default' up with 'virtualbox' provider...
==> default: Importing base box 'IOS-XRv'...
==> default: Matching MAC address for NAT networking...
==> default: Setting the name of the VM: annseque_default_1472028191221_94197
==> default: Clearing any previously set network interfaces...
==> default: Preparing network interfaces based on configuration...

default: Adapter 1: nat
==> default: Forwarding ports...

default: 57722 (guest) => 2222 (host) (adapter 1)
default: 22 (guest) => 2223 (host) (adapter 1)

==> default: Running 'pre-boot' VM customizations...
==> default: Booting VM...

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
16

Getting Started with Application Hosting
Accessing Global VRF on the Cisco IOS XR Linux Shell by Using a Vagrant Box

https://git-scm.com/download/win
https://git-scm.com/download/win
https://xrdocs.github.io/getting-started/steps-download-iosxr-vagrant
https://xrdocs.github.io/getting-started/steps-download-iosxr-vagrant

==> default: Waiting for machine to boot. This may take a few minutes...
default: SSH address: 127.0.0.1:2222
default: SSH username: vagrant
default: SSH auth method: private key
default: Warning: Remote connection disconnect. Retrying...
...
default:
default: Vagrant insecure key detected. Vagrant will automatically replace
default: this with a newly generated keypair for better security.
default:
default: Inserting generated public key within guest...
default: Removing insecure key from the guest if it's present...
default: Key inserted! Disconnecting and reconnecting using new SSH key...

==> default: Machine booted and ready!
==> default: Checking for guest additions in VM...

default: No guest additions were detected on the base box for this VM! Guest
default: additions are required for forwarded ports, shared folders, host only
default: networking, and more. If SSH fails on this machine, please install
default: the guest additions and repackage the box to continue.
default:
default: This is not an error message; everything may continue to work properly,
default: in which case you may ignore this message.

==> default: Running provisioner: shell...
default: Running: inline script

==> default: Running provisioner: shell...
default: Running: inline script

==> default: Running provisioner: shell...
default: Running: inline script

==> default: Machine 'default' has a post `vagrant up` message. This is a message
==> default: from the creator of the Vagrantfile, and not from Vagrant itself:
==> default:
==> default:
==> default: Welcome to the IOS XRv (64-bit) Virtualbox.
==> default: To connect to the XR Linux shell, use: 'vagrant ssh'.
==> default: To ssh to the XR Console, use: 'vagrant port' (vagrant version > 1.8)
==> default: to determine the port that maps to guestport 22,
==> default: then: 'ssh vagrant@localhost -p <forwarded port>'
==> default:
==> default: IMPORTANT: READ CAREFULLY
==> default: The Software is subject to and governed by the terms and conditions
==> default: of the End User License Agreement and the Supplemental End User
==> default: License Agreement accompanying the product, made available at the
==> default: time of your order, or posted on the Cisco website at
==> default: www.cisco.com/go/terms (collectively, the 'Agreement').
==> default: As set forth more fully in the Agreement, use of the Software is
==> default: strictly limited to internal use in a non-production environment
==> default: solely for demonstration and evaluation purposes. Downloading,
==> default: installing, or using the Software constitutes acceptance of the
==> default: Agreement, and you are binding yourself and the business entity
==> default: that you represent to the Agreement. If you do not agree to all
==> default: of the terms of the Agreement, then Cisco is unwilling to license
==> default: the Software to you and (a) you may not download, install or use the
==> default: Software, and (b) you may return the Software as more fully set forth
==> default: in the Agreement.

7. Access the XR Linux shell by using SSH on vagrant.
annseque@ANNSEQUE-WS02 MINGW64 ~
$ vagrant ssh
xr-vm_node0_RP0_CPU0:~$

You have successfully accessed the IOS XR Linux shell.

8. (Optional) You can check the version of Linux.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
17

Getting Started with Application Hosting
Accessing Global VRF on the Cisco IOS XR Linux Shell by Using a Vagrant Box

xr-vm_node0_RP0_CPU0:~$ uname -a
Linux xr-vm_node0_RP0_CPU0 3.14.23-WR7.0.0.2_standard
#1 SMP Tue May 24 22:48:36 PDT 2016 x86_64 x86_64 x86_64 GNU/Linux

9. (Optional) You can view the list of available namespaces.
[xr-vm_node0_RP0_CPU0:~]$ ip netns list
tpnns
xrnns
global-vrf

10. View the network interfaces in the global VRF namespace.
[XR-vm_node0_RP0_CPU0:~]$ ifconfig
Gi0_0_0_0 Link encap:Ethernet HWaddr 52:46:04:87:19:3c

inet addr:192.164.168.10 Mask:255.255.255.0
inet6 addr: fe80::5046:4ff:fe87:193c/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41
inet addr:192.168.122.197 Mask:255.255.255.0
inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1482 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo:0 Link encap:Local Loopback
inet addr:1.1.1.1 Mask:255.255.255.255
UP LOOPBACK RUNNING MTU:1500 Metric:1

The interfaces displayed in the output are replicas of the IOS XR interfaces in the Linux environment.
(They have the same MAC and IP addresses.)

• Gi0_0_0_0 is the IOS XR GigabitEthernet 0/0/0/0 interface.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
18

Getting Started with Application Hosting
Accessing Global VRF on the Cisco IOS XR Linux Shell by Using a Vagrant Box

• Mg0_RP0_CPU0_0 is the IOS XR management interface, used for administrative operations on XR.

• fwd_ew is the interface used for communication (east to west) between third-party applications and
IOS XR.

• fwdintf is the interface used for communication between third-party applications and the network
outside IOS XR.

• lo:0 is the IOS XR loopback0 interface used for communication between third-party applications
and the outside network through the fwdintf interface. The loopback0 interface must be configured
for applications to communicate outside XR. Alternatively, applications can also configure a GigE
interface for external communication, as explained in the Communication Outside Cisco IOS XR,
on page 49 section.

The presence of fwd_ew and fwdintf interfaces confirm that you are in the global VRF namespace.
All interfaces that are enabled (with the no shut command) are added to global-vrf on IOS XR.

11. (Optional) View the IP addresses used by the fwd_ew and fwdintf interfaces.
[xr-vm_node0_RP0_CPU0:~]$ ip route
default dev fwdintf scope link src 1.1.1.1
8.8.8.8 dev fwd_ew scope link
192.168.122.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 192.168.122.213

12. To access the IOS XR router prompt, use the following steps.

a. Log out of the XR Linux shell virtual box.
xr-vm_node0_RP0_CPU0:~$ exit
logout
Connection to 127.0.0.1 closed.

b. Check the port number for accessing XR through SSH.
annseque@ANNSEQUE-WS02 MINGW64 ~
$ vagrant port
The forwarded ports for the machine are listed below. Please note that
these values may differ from values configured in the Vagrantfile if the
provider supports automatic port collision detection and resolution.

22 (guest) => 2223 (host)
57722 (guest) => 2222 (host)

c. Use the port number, 2223, and the password, vagrant, for accessing XR through SSH .
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ ssh -p 2223 vagrant@localhost
vagrant@localhost's password:

RP/0/RP0/CPU0:ios#

You have successfully accessed the XR router prompt.

13. View the network interfaces by using the bash -c ifconfig command at the XR router prompt.
RP/0/RP0/CPU0:ios# bash -c ifconfig
Thu Jul 21 06:03:49.098 UTC

Gi0_0_0_0 Link encap:Ethernet HWaddr 52:46:04:87:19:3c
inet addr:192.164.168.10 Mask:255.255.255.0
inet6 addr: fe80::5046:4ff:fe87:193c/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
19

Getting Started with Application Hosting
Accessing Global VRF on the Cisco IOS XR Linux Shell by Using a Vagrant Box

RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41
inet addr:192.168.122.197 Mask:255.255.255.0
inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1482 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo:0 Link encap:Local Loopback
inet addr:1.1.1.1 Mask:255.255.255.255
UP LOOPBACK RUNNING MTU:1500 Metric:1

You can view all the interfaces available in global VRF namespace through the XR router prompt.

14. (Optional) To navigate to the XR Linux shell, you can use the run command. To navigate back to the
router prompt, you can use the exit command.
RP/0/RP0/CPU0:ios# run
Thu Jul 21 05:57:04.232 UTC

[xr-vm_node0_RP0_CPU0:~]$

[xr-vm_node0_RP0_CPU0:~]$ exit
exit
RP/0/RP0/CPU0:ios#

You are ready to use the IOS XR Linux shell for hosting applications.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
20

Getting Started with Application Hosting
Accessing Global VRF on the Cisco IOS XR Linux Shell by Using a Vagrant Box

Applying Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box
Configuration that is applied to a router or a device during boot-up is known as bootstrap configuration. By
using a vagrant box, you can create a bootstrap configuration and apply it to an instance of the Cisco IOS XR
running on a vagrant box.

Procedure

To bootstrap configuration to an instance of XR running on a vagrant box, use the following steps.

1. Generate an API key and a CCO ID by using the steps described in https://xrdocs.github.io/getting-started/
steps-download-iosxr-vagrant.

2. Download the latest stable version of the IOS XR vagrant box.

$ curl <cco-id>:<API-KEY>

$ BOXURL --output ~/iosxrv-fullk9-x64.box

$ vagrant box add --name IOS-XRv ~/iosxrv-fullk9-x64.box

3. Verify if the vagrant box has been successfully installed.

annseque@ANNSEQUE-WS02 MINGW64 ~ vagrant box list
IOS-XRv (virtualbox, 0)

4. Create a working directory.

annseque@ANNSEQUE-WS02 MINGW64 ~ mkdir ~/iosxrv
annseque@ANNSEQUE-WS02 MINGW64 ~ cd ~/iosxrv

5. Initialize the vagrant file with the new vagrant box.

ANNSEQUE-WS02 MINGW64:iosxrv annseque$ vagrant init IOS-XRv
A `Vagrantfile` has been placed in this directory. You are now
ready to `vagrant up` your first virtual environment! Please read
the comments in the Vagrantfile as well as documentation on
`vagrantup.com` for more information on using Vagrant.

6. Clone the vagrant-xrdocs repository.

annseque@ANNSEQUE-WS02 MINGW64 ~
$ git clone https://github.com/ios-xr/vagrant-xrdocs.git

7. Navigate to the vagrant-xrdocs repository and locate the vagrant file containing the configuration with
which you want to bootstrap the XR.

annseque@ANNSEQUE-WS02 MINGW64 ~
$ cd vagrant-xrdocs/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ ls
ansible-tutorials/ native-app-topo-bootstrap/ simple-mixed-topo/
lxc-app-topo-bootstrap/ README.md single_node_bootstrap/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ ls single_node_bootstrap/

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
21

Getting Started with Application Hosting
Applying Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box

https://xrdocs.github.io/getting-started/steps-download-iosxr-vagrant
https://xrdocs.github.io/getting-started/steps-download-iosxr-vagrant

configs/ scripts/ Vagrantfile

8. Create the bootstrap configuration file which uses a vagrant shell provisioner.

You would need a shell provisioner section for each node in your network. A sample configuration file
is as follows:

#Source a config file and apply it to XR

config.vm.provision "file", source: "configs/rtr_config", destination:
"/home/vagrant/rtr_config"

config.vm.provision "shell" do |s|
s.path = "scripts/apply_config.sh"
s.args = ["/home/vagrant/rtr_config"]

end

In the shown sample file, you are using a vagrant file provisioner (config.vm.provision "file") to
transfer a file from your host machine to the XR Linux shell. The root of the source directory is the
working directory for your vagrant instance. Hence, the rtr_config file is located in the configs
directory.

You are using a shell script (config.vm.provision "shell") to apply the bootstrap configuration to
XR. The shell script eventually runs on the XR Linux shell of the vagrant instance. This script is placed
in the scripts directory and is named as apply_config.sh. The script uses the location of the router
configuration file as the destination parameter in the vagrant file provisioner.

9. Verify the directory structure for the single node bootstrap configuration example used in this section.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ cd single_node_bootstrap/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/single_node_bootstrap (master)
$ tree ./
./
├── Vagrantfile
├── configs
│ └── rtr_config
└── scripts

└── apply_config.sh

2 directories, 3 files

10. Verify the contents of the bootstrap configuration file.

The bootstrap configuration example we are using in this section configures the gRPC server on port
57789.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/single_node_bootstrap (master)
$ cat configs/rtr_config
!! XR configuration
!
grpc
port 57789

!
end

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
22

Getting Started with Application Hosting
Applying Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box

The bootstrap configuration is appended to the existing configuration on the instance of XR.Note

11. Verify the contents of the shell script you are using to apply the configuration to XR.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/single_node_bootstrap (master)
$ cat scripts/apply_config.sh
#!/bin/bash

Source ztp_helper.sh to get the xrapply and xrcmd functions.
source /pkg/bin/ztp_helper.sh

function configure_xr()
{

Apply a blind config
xrapply $1
if [$? -ne 0]; then

echo "xrapply failed to run"
fi
xrcmd "show config failed" > /home/vagrant/config_failed_check

}

The location of the config file is an argument to the script
config_file=$1

Call the configure_xr() function to use xrapply and xrcmd in parallel
configure_xr $config_file

Check if there was an error during config application
grep -q "ERROR" /home/vagrant/config_failed_check

Condition based on the result of grep ($?)
if [$? -ne 0]; then

echo "Configuration was successful!"
echo "Last applied configuration was:"
xrcmd "show configuration commit changes last 1"

else
echo "Configuration Failed. Check /home/vagrant/config_failed on the router for

logs"
xrcmd "show configuration failed" > /home/vagrant/config_failed
exit 1

fi

In this example, the shell script blindly applies the configuration file specified as an argument ($1) and
then checks to see if there was an error while applying the configuration.

The following new commands are introduced in the shell script:

• xrcmd: Allows you to run privileged exec commands at the XR router prompt on the XR Linux
shell.

For example, show run, show version, and so on.

• xrapply: Allows you to apply (append) a configuration file to the existing configuration.

• xrapply_string: Applies a configuration directly using a single inline string.

For example, xrapply_string "interface Gig0/0/0/0\n ip address 1.1.1.2/24 \n no shutdown

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
23

Getting Started with Application Hosting
Applying Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box

To enable the xrapply, xrapply_string, and xrcmd commandssource /pkg/bin/ztp_helper.sh, it is
mandatory to include source /pkg/bin/ztp_helper.sh in the script.

Note

12. Verify if the shell provisioner code has been included in the vagrant file.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/single_node_bootstrap (master)
$ cat Vagrantfile
-*- mode: ruby -*-
vi: set ft=ruby :

All Vagrant configuration is done below. The "2" in Vagrant.configure
configures the configuration version (we support older styles for
backwards compatibility). Please don't change it unless you know what
you're doing.

Vagrant.configure(2) do |config|

config.vm.box = "IOS-XRv"

#Source a config file and apply it to XR

config.vm.provision "file", source: "configs/rtr_config", destination:
"/home/vagrant/rtr_config"

config.vm.provision "shell" do |s|
s.path = "scripts/apply_config.sh"
s.args = ["/home/vagrant/rtr_config"]

end
end

13. Launch the vagrant instance from the current directory.

Launching the vagrant instance should bootstrap the configuration to XR.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/single_node_bootstrap (master)
$ vagrant up
Bringing machine 'default' up with 'virtualbox' provider...
==> default: Importing base box 'IOS-XRv'...
==> default: Matching MAC address for NAT networking...
==> default: Setting the name of the VM:
single_node_bootstrap_default_1472117544017_81536
==> default: Clearing any previously set network interfaces...
==> default: Preparing network interfaces based on configuration...

default: Adapter 1: nat
==> default: Forwarding ports...

default: 57722 (guest) => 2222 (host) (adapter 1)
default: 22 (guest) => 2223 (host) (adapter 1)

==> default: Running 'pre-boot' VM customizations...
==> default: Booting VM...
==> default: Waiting for machine to boot. This may take a few minutes...

default: SSH address: 127.0.0.1:2222
default: SSH username: vagrant
default: SSH auth method: private key
default: Warning: Remote connection disconnect. Retrying...
...
default:
default: Vagrant insecure key detected. Vagrant will automatically replace
default: this with a newly generated keypair for better security.
default:
default: Inserting generated public key within guest...
default: Removing insecure key from the guest if it's present...

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
24

Getting Started with Application Hosting
Applying Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box

default: Key inserted! Disconnecting and reconnecting using new SSH key...
==> default: Machine booted and ready!
==> default: Checking for guest additions in VM...

default: No guest additions were detected on the base box for this VM! Guest
default: additions are required for forwarded ports, shared folders, host only
default: networking, and more. If SSH fails on this machine, please install
default: the guest additions and repackage the box to continue.
default:
default: This is not an error message; everything may continue to work properly,
default: in which case you may ignore this message.

==> default: Running provisioner: shell...
default: Running: inline script

==> default: Running provisioner: shell...
default: Running: inline script

==> default: Running provisioner: shell...
default: Running: inline script

==> default: Running provisioner: file...
==> default: Running provisioner: shell...

default: Running:
C:/Users/annseque/AppData/Local/Temp/vagrant-shell20160825-3292-1wncpa3.sh
==> default: Configuration was successful!
==> default: Last applied configuration was:
==> default: Building configuration...
==> default: !! IOS XR Configuration version = 6.1.1.18I
==> default: grpc
==> default: port 57789
==> default: !
==> default: end

==> default: Machine 'default' has a post `vagrant up` message. This is a message
==> default: from the creator of the Vagrantfile, and not from Vagrant itself:
==> default:
==> default:
==> default: Welcome to the IOS XRv (64-bit) Virtualbox.
==> default: To connect to the XR Linux shell, use: 'vagrant ssh'.
==> default: To ssh to the XR Console, use: 'vagrant port' (vagrant version > 1.8)
==> default: to determine the port that maps to guestport 22,
==> default: then: 'ssh vagrant@localhost -p <forwarded port>'
==> default:
==> default: IMPORTANT: READ CAREFULLY
==> default: The Software is subject to and governed by the terms and conditions
==> default: of the End User License Agreement and the Supplemental End User
==> default: License Agreement accompanying the product, made available at the
==> default: time of your order, or posted on the Cisco website at
==> default: www.cisco.com/go/terms (collectively, the 'Agreement').
==> default: As set forth more fully in the Agreement, use of the Software is
==> default: strictly limited to internal use in a non-production environment
==> default: solely for demonstration and evaluation purposes. Downloading,
==> default: installing, or using the Software constitutes acceptance of the
==> default: Agreement, and you are binding yourself and the business entity
==> default: that you represent to the Agreement. If you do not agree to all
==> default: of the terms of the Agreement, then Cisco is unwilling to license
==> default: the Software to you and (a) you may not download, install or use the
==> default: Software, and (b) you may return the Software as more fully set forth
==> default: in the Agreement.

You can see the vagrant file and shell provisioner applying the gPRC server port configuration to XR.

14. (Optional) You can verify the bootstrap configuration on the XR router console from the XR Linux
shell.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/single_node_bootstrap (master)
$ vagrant port
The forwarded ports for the machine are listed below. Please note that

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
25

Getting Started with Application Hosting
Applying Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box

these values may differ from values configured in the Vagrantfile if the
provider supports automatic port collision detection and resolution.

22 (guest) => 2223 (host)
57722 (guest) => 2222 (host)

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/single_node_bootstrap (master)
$ ssh -p 2223 vagrant@localhost
vagrant@localhost's password:

RP/0/RP0/CPU0:ios# show running-config grpc
Thu Aug 25 09:42:24.010 UTC
grpc
port 57789
!

RP/0/RP0/CPU0:ios# show configuration commit changes last 1
Thu Aug 25 09:42:34.971 UTC
Building configuration...
!! IOS XR Configuration version = 6.1.1.18I
grpc
port 57789
!
end

RP/0/RP0/CPU0:ios#

You have successfully applied a bootstrap configuration to XR.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
26

Getting Started with Application Hosting
Applying Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box

C H A P T E R 3
Accessing the Networking Stack

The Cisco IOS XR Software serves as a networking stack for communication. This section explains how
applications on IOS XR can communicate with internal processes, and with servers or outside devices.

• Packet I/O on IOS XR, on page 27
• Communication Outside Cisco IOS XR, on page 49
• East-West Communication for Third-Party Applications, on page 51
• Configuring Multiple VRFs for Application Hosting, on page 53

Packet I/O on IOS XR
This section illustrates how, with the Packet I/O functionality, you can use Linux applications to manage
communication with the IOS XR interfaces. It describes how the OS environment must be set up to establish
packet I/O communication with hosted applications.

Exposed IOS-XR Interfaces in Linux
DescriptionRelease InformationFeature Name

Now the configured interface
secondary IPv4 addresses on the
Cisco IOS XR software are
automatically synchronized to
Linux operating system.

The third-party applications on
Cisco IOS XR can use the
secondary IPv4 addresses without
any manual intervention.

Earlier, you had to configure the
secondary IPv4 addresses on the
Linux operating system manually.

Release 7.9.1Automatic Synchronization of
Secondary IPv4 addresses fromXR
to Linux OS

The secondary IPv4 addresses that are configured for an XR interface are now synchronized into the Linux
operating system automatically. With this secondary IPv4 address synchronization, the third party applications
that are deployed on Cisco IOS XR can now use the secondary IPv4 addresses. Prior to this release, only

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
27

primary IPv4 addresses were supported and the secondary IPv4 addresses had to be configured manually in
the Linux operating system.

Exposed XR interfaces (EXIs) and address-only interfaces support secondary IPv4 address synchronization:

• EXIs have secondary IP addresses added to their corresponding Linux interface

• Address-only interfaces have secondary IP addresses added to the Linux loopback device. For additional
information on address-only interfaces, see show linux networking interfaces address-only.

The restrictions of secondary IPv4 addresses synchronization are:

• Secondary IPv4 addresses are not synchronized from Linux to XR for Linux-managed interfaces.

• The ifconfig Linux command only displays the first configured IPv4 address. To view the complete list
of IPv4 addresses, use the ip addr show Linux command.

For additional information on secondary IPv4 addresses, see ipv4 address (network).

You can run bash commands at the IOS XR router prompt to view the interfaces and IP addresses stored in
global VRF. When you access the Cisco IOS XR Linux shell, you directly enter the global VRF.

SUMMARY STEPS

1. From your Linux box, access the IOS XR console through SSH, and log in.
2. View the ethernet interfaces on IOS XR.
3. Check the IP andMAC addresses of the interface that is in Up state. Here, interfaces HundredGigE0/0/0/24

and MgmtEth0/RP0/CPU0/0 are in the Up state.
4. Verify that the bash command runs in global VRF to view the network interfaces.
5. Access the Linux shell.
6. (Optional) View the IP routes used by the to_xr interfaces.

DETAILED STEPS

Step 1 From your Linux box, access the IOS XR console through SSH, and log in.

Example:
cisco@host:~$ ssh root@192.168.122.188
root@192.168.122.188's password:
Router#

Step 2 View the ethernet interfaces on IOS XR.

Example:
Router#show ip interface brief
Interface IP-Address Status Protocol Vrf-Name
FourHundredGigE0/0/0/0 unassigned Shutdown Down default
FourHundredGigE0/0/0/1 unassigned Shutdown Down default
FourHundredGigE0/0/0/2 unassigned Shutdown Down default
FourHundredGigE0/0/0/3 unassigned Shutdown Down default
FourHundredGigE0/0/0/4 unassigned Shutdown Down default
FourHundredGigE0/0/0/5 unassigned Shutdown Down default
FourHundredGigE0/0/0/6 unassigned Shutdown Down default
FourHundredGigE0/0/0/7 unassigned Shutdown Down default
FourHundredGigE0/0/0/8 unassigned Shutdown Down default
FourHundredGigE0/0/0/9 unassigned Shutdown Down default

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
28

Accessing the Networking Stack
Exposed IOS-XR Interfaces in Linux

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp7546444200
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp1732038984

FourHundredGigE0/0/0/10 unassigned Shutdown Down default
FourHundredGigE0/0/0/11 unassigned Shutdown Down default
FourHundredGigE0/0/0/12 unassigned Shutdown Down default
FourHundredGigE0/0/0/13 unassigned Shutdown Down default
FourHundredGigE0/0/0/14 unassigned Shutdown Down default
FourHundredGigE0/0/0/15 unassigned Shutdown Down default
FourHundredGigE0/0/0/16 unassigned Shutdown Down default
FourHundredGigE0/0/0/17 unassigned Shutdown Down default
FourHundredGigE0/0/0/18 unassigned Shutdown Down default
FourHundredGigE0/0/0/19 unassigned Shutdown Down default
FourHundredGigE0/0/0/20 unassigned Shutdown Down default
FourHundredGigE0/0/0/21 unassigned Shutdown Down default
FourHundredGigE0/0/0/22 unassigned Shutdown Down default
FourHundredGigE0/0/0/23 unassigned Shutdown Down default
HundredGigE0/0/0/24 10.1.1.10 Up Up default
HundredGigE0/0/0/25 unassigned Shutdown Down default
HundredGigE0/0/0/26 unassigned Shutdown Down default
HundredGigE0/0/0/27 unassigned Shutdown Down default
HundredGigE0/0/0/28 unassigned Shutdown Down default
HundredGigE0/0/0/29 unassigned Shutdown Down default
HundredGigE0/0/0/30 unassigned Shutdown Down default
HundredGigE0/0/0/31 unassigned Shutdown Down default
HundredGigE0/0/0/32 unassigned Shutdown Down default
HundredGigE0/0/0/33 unassigned Shutdown Down default
HundredGigE0/0/0/34 unassigned Shutdown Down default
HundredGigE0/0/0/35 unassigned Shutdown Down default
MgmtEth0/RP0/CPU0/0 192.168.122.22 Up Up default

Use the ip addr show or ip link show commands to view all corresponding interfaces in Linux. The IOS XR
interfaces that are admin-down state also reflects a Down state in the Linux kernel.

Note

Step 3 Check the IP and MAC addresses of the interface that is in Up state. Here, interfaces HundredGigE0/0/0/24 and
MgmtEth0/RP0/CPU0/0 are in the Up state.

Example:
Router#show interfaces HundredGigE0/0/0/24
...
HundredGigE0/0/0/24 is up, line protocol is up
Interface state transitions: 4
Hardware is HundredGigE0/0/0/24, address is 5246.e8a3.3754 (bia
5246.e8a3.3754)
Internet address is 10.1.1.1/24
MTU 1514 bytes, BW 1000000 Kbit (Max: 1000000 Kbit)
reliability 255/255, txload 0/255, rxload 0/255
Encapsulation ARPA,
Duplex unknown, 1000Mb/s, link type is force-up
output flow control is off, input flow control is off
loopback not set,
Last link flapped 01:03:50
ARP type ARPA, ARP timeout 04:00:00
Last input 00:38:45, output 00:38:45
Last clearing of "show interface" counters never
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
12 packets input, 1260 bytes, 0 total input drops
0 drops for unrecognized upper-level protocol
Received 2 broadcast packets, 0 multicast packets
0 runts, 0 giants, 0 throttles, 0 parity
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
12 packets output, 1224 bytes, 0 total output drops
Output 1 broadcast packets, 0 multicast packets

Step 4 Verify that the bash command runs in global VRF to view the network interfaces.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
29

Accessing the Networking Stack
Exposed IOS-XR Interfaces in Linux

Example:
Router#bash -c ifconfig
Hu0_0_0_24 Link encap:Ethernet HWaddr 78:e7:e8:d3:20:c0
inet addr:10.1.1.10 Bcast:0.0.0.0 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:4 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:360 (360.0 B) TX bytes:0 (0.0 B)
Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 54:00:00:00:bd:49
inet addr:192.168.122.22 Bcast:0.0.0.0 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:3859 errors:0 dropped:0 overruns:0 frame:0
TX packets:1973 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:2377782 (2.2 MiB) TX bytes:593602 (579.6 KiB)
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:242 errors:0 dropped:0 overruns:0 frame:0
TX packets:242 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1
RX bytes:12100 (11.8 KiB) TX bytes:12100 (11.8 KiB)
to_xr Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:1 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:60 (60.0 B)

The to_xr interface indicates access to the global VRF.

Step 5 Access the Linux shell.

Example:
Router#bash
[ios:~]$

Step 6 (Optional) View the IP routes used by the to_xr interfaces.

Example:
[ios:~]$ip route
default dev to_xr scope link metric 2048
6.1.0.0/16dev Mg0_RP0_CPU0_0 proto kernel scope link src 6.1.22.41
20.1.0.0/16dev Hu0_0_0_0 proto kernel scope link src 20.1.1.1
20.2.0.0/16dev Hu0_0_0_20 proto kernel scope link src 20.2.1.1
30.1.0.0/24dev BE500 proto kernel scope link src 30.1.0.1
172.17.0.0/16dev docker0 proto kernel scope link src 172.17.0.1linkdown

You can also enter the global VRF directly after logging into IOS XR using the run ip netns exec vrf-default
bash command.

Note

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
30

Accessing the Networking Stack
Exposed IOS-XR Interfaces in Linux

Setting up Virtual IP Addresses
DescriptionRelease InformationFeature Name

Virtual IP addresses allow a single
IP address to connect to the current
active RP after an RP switchover
event. In addition, this functionality
enables your network stack to
support virtual IP addresses for
third-party applications and IOS
XR applications that use the Linux
networking stack.

The following commands are
modified:

• ipv4 virtual address

• ipv6 virtual address

• show linux networking
interfaces address-only

Release 7.5.2Virtual IP address in the Linux
networking stack

Interfaces configured on IOS XR are programmed into the Linux kernel. These interfaces allow Linux
applications to run as if they were running on a regular Linux system. This packet I/O capability ensures that
off-the-shelf Linux applications can be run alongside IOS XR, allowing operators to use their existing tools
and automate deployments with IOS XR.

The IP address on the Linux interfaces, MTU settings, MAC address are inherited from the corresponding
settings of the IOS XR interface. Accessing the global VRF network namespace ensures that when you issue
the bash command, the default or the global VRF in IOS XR is reflected in the kernel. This ensures default
reachability based on the routing capabilities of IOS XR and the packet I/O infrastructure.

Virtual addresses can be configured to access a router from the management network such as gRPC using a
single virtual IP address. On a device with two or more RPs, the virtual address refers to the management
interface that is currently active. This functionality can be used across RP failover without the information of
which RP is currently active. This is applicable to the Linux packet path.

Procedure

PurposeCommand or Action

You can use the following commands to verify the IP
Address in the Linux networking stack:

Step 1 • ipv4 virtual address

• ipv6 virtual address

• show linux networking interfaces address-only

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
31

Accessing the Networking Stack
Setting up Virtual IP Addresses

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp2718532061
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp7955588300
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp7546444200
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp7546444200
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp2718532061
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp7955588300
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp7546444200

Third-Party Application Networking in Named VRFs
DescriptionRelease InformationFeature Name

This feature empowers you to run
your native Linux applications on
Cisco IOS XR as-is, without any
modifications.

You can now configure a host of
utilities that allows for easy
integration of Linux devices and
applications. These utilities allow
applications hosted in containers to
interact with native Cisco IOS XR
applications (hosted in the XR
control plane).

The following commands are
modified:show linux networking
vrfs.

Release 7.9.1Virtual Routing and Forwarding for
Linux Third-Party
Applications using Data Port

Cisco IOS XR now supports the use of standard Linux APIs to send and receive packets, update routes,
interface state, interface IP addresses, and so on.

The supported utilities are:

• Default Route Source Address

• East-West Communication

• Hardware LPTS Support for Traffic Protection

• Management Route Export

• Automatic Mapping of Deprecated TPA Configuration

• Software Forwarding

• Statistics Synchronization

• VRF Disable

Default Route Source Address
The Default Route Source Address utility allows you to specify an interface in which the address should be
used as the source hint on Linux's default route.

This source hint is used for traffic where:

• The application is not bound to a specific address.

• The traffic is destined over a nonconnected route. This is commonly seen as Rx-inject traffic and represents
most of the traffic that is sent by Linux.

Ensure that the interface is synchronized to Linux, to qualify as a valid source hint interface.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
32

Accessing the Networking Stack
Third-Party Application Networking in Named VRFs

• Its VRF must not be disabled.

• On XR platforms, it must not be the East-West interface.

• It is a supported interface type.

• If explicitly configured, it must be in the specified VRF.

The following configuration parameters are used to select the interface to be used:

• If an interface is specified explicitly and valid, it is used.

• If active-management is specified, the lowest-numbered valid management interface on the active RP
is used. The identity of this interface will change after RP switchover.

• If no configuration is specified, the lowest-numbered valid loopback interface in the VRF is used.

The address that is chosen from the selected source hint interface depends on the address family:

• IPv4: The primary address is used, when present. Secondary addresses are not considered.

• IPv6: The IP address that is numerically the lowest is used.

Following is the configuration for setting the default source hint interface address:
vrf blue
!
linux networking
vrf blue
east-west Loopback3
address-family ipv4
source-hint default-route interface Loopback2
!
address-family ipv6
source-hint default-route interface Loopback2
!
!
!
interface Loopback2
vrf blue
ipv4 address 192.0.2.1 255.255.255.255
ipv6 address 2001:db8::1/128
!
interface Loopback3
vrf blue
ipv6 address 2001:db8::ea57/128
!

Use the following show command to verify whether the default source hint interface address is configured:
RP/0/RP0/CPU0:ios#show linux networking vrfs vrf blue
VRF blue (Linux network namespace vrf-blue):
Status: active
IPv4 default route source hint: 192.0.2.1
IPv6 default route source hint: 2001:db8::1
IPv4 XR East-West: none
IPv6 XR East-West: 2001:db8::ea57

The following TPA configuration has been deprecated, from Cisco IOS XR Release 7.9.1:

tpa
vrf < vrf-name >

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
33

Accessing the Networking Stack
Default Route Source Address

address-family { ipv4 | ipv6 }
update-source dataports { < interface > | active-management }

East-West Communication
The East-West Communication utility allows you to specify a Cisco IOS XR interface that should be used for
communication between Linux and Cisco IOS XR applications.

Configuring an interface as East-West for a virtual routing and forwarding (VRF) ensures that all listed
addresses are reserved for East-West communication, with the following behaviour:

• Traffic cannot be routed from Linux to other devices using this IP address.

• Traffic destined to the listed addresses cannot be received by Linux applications.

• The IP addresses will not appear in Linux.

• For Linux applications: Traffic might be sourced from any local IP address present in Linux. Traffic
must be sent to one of the reserved East-West IP addresses.

• For Cisco IOS XR applications: Traffic must be sourced from one of the reserved East-West IP addresses.
Traffic might be sent to any local IP address present in Linux.

Ensure the following, for the interface to be qualified as a valid East-West interface:

• Be in a VRF that is not disabled.

• Have one or more IP addresses.

• The following configuration is used to select the interface to be used:

• If an interface is specified explicitly and valid, it is used.

• If no configuration is specified, Loopback1 is used.

• All IP addresses on the interface are reserved for East-West.

Following is the configuration to define the East-West communication:

vrf blue
!
linux networking
vrf blue
east-west Loopback3
address-family ipv4
source-hint default-route interface Loopback2
!
address-family ipv6
source-hint default-route interface Loopback2
!
!
!
interface Loopback2
vrf blue
ipv4 address 192.0.2.1 255.255.255.255
ipv6 address 2001:db8::1/128
!
interface Loopback3
vrf blue

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
34

Accessing the Networking Stack
East-West Communication

ipv6 address 2001:db8::ea57/128
!

Use the following show command to verify whether the east-west communication is configured:
RP/0/RP0/CPU0:ios#show linux networking vrfs vrf blue
VRF blue (Linux network namespace vrf-blue):
Status: active
IPv4 default route source hint: 192.0.2.1
IPv6 default route source hint: 2001:db8::1
IPv4 XR East-West: none
IPv6 XR East-West: 2001:db8::ea57

The following TPA configuration has been deprecated, from Cisco IOS XR Release 7.9.1:

tpa
vrf < vrf-name >
east-west < interface >

Hardware LPTS Support For Traffic Protection
The Hardware Local Packet Transport Services (LPTS) Support for Traffic Protection utility allows you to
specify traffic protection rules to be factored into as an LPTS programming that is done by the Linux Packet
I/O. This is in addition to the existing method where the rules were implemented using the Linux kernel's
software-based nftables firewall. The nftables firewall is a subsystem of the Linux kernel, and provides filtering
and classification of network packets. The nftables firewall is retained as a fallback, but augmented by higher
performance LPTS rules.

Linux Packet I/O programs the LPTS in response to Linux socket operations, to ensure that Linux clients can
receive traffic from other devices. When traffic protection rules are configured, this feature applies filtering
to the programmed LPTS rules to allow a restricted subset that matches the traffic protection rules.

The following TPA configuration has been deprecated, from Cisco IOS XR Release 7.9.1:

tpa
vrf < vrf-name >
address-family { ipv4 | ipv6 }
protection
allow protocol { tcp | udp } local-port < local-port >

{ remote-address < remote-address >/< prefix-len >
| local-address < local-address >/< prefix-len >
| interface < interface-name > }

Management Route Export
The Management Route Export utility allows for a subset of Cisco IOS XR static routes that resolve over the
active management interfaces to be replicated to Linux. This avoids the need for a line card NPU inject and
FIB lookup for routing Linux traffic matching these management routes.

In order for the routes to be exported from Cisco IOS XR to Linux, you must ensure that the routes:

• Resolve over the management interface.

• Are static.

• Not recursive.

• Not the default XR route.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
35

Accessing the Networking Stack
Hardware LPTS Support For Traffic Protection

A specified source hint interface is qualified only if:

• Its VRF is not disabled.

• The interface is in the same VRF as the management interface.

• On Cisco IOS XR platforms, it is not the East-West interface.

• It is a supported interface type.

If the specified interface is valid, then the address that is chosen from it depends on the address family:

• IPv4: The primary address is used, when present. Secondary addresses are not considered.

• IPv6: The IP address that is numerically the lowest is used.

The following configuration allows for the source hint interface to be specified for the static routes which are
synchronized into Linux.
linux networking
vrf default
address-family ipv4
source-hint management-route interface Loopback2
!
!
!
interface Loopback0
ipv4 address 192.0.2.128 255.255.255.255
!
interface Loopback2
ipv4 address 192.0.2.200 255.255.255.255
!
interface MgmtEth0/RP0/CPU0/0
ipv4 address 192.0.2.1 255.255.255.240
!
router static
address-family ipv4 unicast
192.0.2.16/28 192.0.2.2
192.0.2.32/28 192.0.2.2
!
!

Use the following show command to verify whether the east-west communication is configured:

The management ethernet is directly connected to a device with the unicast route IP address.Note

RP/0/RP0/CPU0:ios#bash vrf default ip route
default dev to_xr scope link src 192.0.2.128 metric 2048 mtu 1500 advmss 1460
192.0.2.1/30 dev Mg0_RP0_CPU0_0 proto static scope link src 192.0.2.200
192.0.16.0/24 via 192.0.2.2 dev Mg0_RP0_CPU0_0 proto static src 192.0.2.200 metric 2048
192.0.17.0/24 via 192.0.2.2 dev Mg0_RP0_CPU0_0 proto static src 192.0.2.200 metric 2048

The verification for source hint config is to check that all Linux routes resolving via the management ethernet
interface are using the source address from the configured device. The verification for management route
export is to check that all static routes resolving via the management ethernet interfaceare exported to Linux.

The following TPA configuration has been deprecated, from Cisco IOS XR Release 7.9.1:

tpa

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
36

Accessing the Networking Stack
Management Route Export

vrf < vrf-name >
address-family { ipv4 | ipv6 }
update-source destination < management-interface > source < interface >

Mapping of Deprecated TPA Configuration
The Automatic Mapping of Deprecated TPA Configuration utility supports seamless migrations from a Cisco
IOS XR environment to Linux, with the Packet I/O functionality. The configuration is translated from the
deprecated TPA configuration (under tpa) to Linux, with the Packet I/O configuration (under linux
networking).

The configuration will be automatically translated to the equivalent Linux Packet I/O configuration, after
installation.

The following scenarios are relevant for this utility:

• Applying deprecated TPA configuration on a Cisco IOS XR device that supports Linux Packet I/O.

• Upgrading a Cisco IOS XR device from a version that does not support Linux Packet I/O, to a version
that supports Linux Packet I/O.

• Downgrading a Cisco IOS XR device from a version that supports Linux Packet I/O, to a version that
does not support Linux Packet I/O.

• The deprecated configuration is available until all Cisco XR platforms are migrated to support Linux
Packet I/O.

Downgrading to an unsupported version of Linux Packet I/O cannot be done automatically. The definitions
required to support Linux Packet I/O configuration does not exist on releases earlier to Cisco IOS XR Release
7.9.1.

Note

Software Forwarding
The Software Forwarding utility allows you to choose software forwarding over hardware forwarding. Software
forwarding is provided primarily for compatibility with Cisco IOS XR networking stack, where hardware
forwarding could not route packets over the management interface.

When software forwarding is configured, the Net I/O will be used for forwarding packets. The packet path
might be slow, although no change to Linux reachability is noticeable. You can use software forwarding to
avoid injecting traffic toward line card NPUs in scenarios where the Linux traffic in a VRF will be sent over
management interfaces.

Following is the configuration for software forwarding:
linux networking
vrf default
address-family ipv6
default-route software-forwarding
!
!
!

The following TPA configuration has been deprecated, from Cisco IOS XR Release 7.9.1:

tpa

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
37

Accessing the Networking Stack
Mapping of Deprecated TPA Configuration

vrf < vrf-name >
address-family { ipv4 | ipv6 }
default-route mgmt

Statistics Synchronization
The Statistics Synchronization utility allows you to specify the intervals when interface statistics for all
interfaces are synchronized to Linux, when using the Linux ethtool interface, to gather interface statistics.

For supported configurations, Cisco IOS XR's statsd infra is polled at specified intervals to retrieve cached
interface statistics for all interfaces that are exposed to Linux, as an exposed Cisco IOS XR interface (those
visible to the Linux ip link command).

However, statistics are not gathered for interfaces in disabled VRFs, or for those interfaces which are not
synchronized to Linux as an exposed interface.

This example shows how the bundle-ether interface packet statistics are synchronized between Cisco IOS XR
and Linux. The packet and byte counters that are maintained by Linux for Cisco IOS XR interfaces display
only the traffic that is sourced in Linux. You can configure to periodically synchronize these counters with
the Cisco IOS XR statistics for the interfaces.

1. Following is the configure for statistics synchronization, including the direction and synchronization
interval.
linux networking
statistics-synchronization from-xr every { 30s | 60s | 2m | 3m | 4m | 5m | 6m | 7m |

8m | 9m | 10m }

The following example shows statistics synchronization in global configuration:
Router(config)#linux networking statistics-synchronization from-xr
every 30s

The following example shows statistics synchronization in exposed-interface configuration:
Router(config)#linux networking exposed-interfaces interface
bundle-ether 1 statistics-synchronization from-xr every 10s

where—

• from-xr: The direction indicating that the interface packet statistics will be pushed from Cisco IOS
XR to the Linux kernel.

• every: Shows the frequency at which to synchronize statistics. The intervals that are supported for
global configuration are 30s and 60s. The intervals that are supported for exposed interfaces are 5s,
10s, 30s, or 60s. The interval s is in seconds.

2. Verify that the statistics synchronization is applied successfully on Cisco IOS XR.
Router#show run linux networking
linux networking
vrf default
address-family ipv4
protection
protocol tcp local-port all default-action deny
permit interface bundle-ether 1
!
!
!
!
exposed-interfaces
interface bundle-ether 1 linux-managed

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
38

Accessing the Networking Stack
Statistics Synchronization

statistics-synchronization from-xr every 10s
!
!
!

You can use the show tech-support linux networking command to display debugging information, with
regard to statistics synchronisation.

The following TPA configuration has been deprecated, from Cisco IOS XR Release 7.9.1:

tpa
statistics update-frequency < 1 - 99999999 >

The integer values here are mapped to the nearest matching value in supported configuration:

• For values not exceeding 600 seconds, it is corrected to the nearest matching interval.

• For values exceeding 600 seconds, it is corrected to 10 minutes.

Note

VRF Disable
The VRF Disable utility enables you to specify the virtual routing and forwarding (VRF) that should not be
synchronized to Linux, and will not be used by applications using the Linux packet path. This configuration
improves performance. Communication using Linux Packet I/O (including East-West communication) will
not be functional in the VRF or network namespace which was disabled.

The usage of the VRF Disable utility depends on whether you are using the Cisco IOS XR default VRF or
the nondefault VRF:

• For the default VRF, no interfaces, routes, or addresses are synchronized to Linux, but a network
namespace called "vrf-default" still exists.

• For nondefault VRFs, the corresponding network namespace is deleted.

You can run the VRF Disable utility by using the following configuration:

vrf green
!
linux networking
vrf green
disable
!
!

Use the following show command to verify whether the VRF is disabled:
RP/0/RP0/CPU0:ios#show linux networking vrfs vrf green
VRF green (Linux network namespace not created):
Status: VRF disabled

The following TPA configuration has been deprecated, from Cisco IOS XR Release 7.9.1:

tpa
vrf < vrf-name >
disable

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
39

Accessing the Networking Stack
VRF Disable

Program Routes in Linux
The basic routes required to allow applications to send or receive traffic can be programmed into the kernel.
The Linux network stack that is part of the kernel is used by normal Linux applications to send/receive packets.
In an IOS XR stack, IOS XR acts as the network stack for the system. Therefore to allow the Linux network
stack to connect into and use the IOS XR network stack, basic routes must be programmed into the Linux
Kernel.

Step 1 View the routes from the bash shell.

Example:
[ios:~]$ip route
default dev to_xr scope link src 10.1.1.10 metric 2048
10.1.1.0/24 dev Hu0_0_0_24 proto kernel scope link src 10.1.1.10
192.168.122.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 192.168.122.22

Step 2 Programme the routes in the kernel.

Two types of routes can be programmed in the kernel:

• Default Route: The default route sends traffic destined to unknown subnets out of the kernel using a special to_xr
interface. This interface sends packets to IOS XR for routing using the routing state in XR Routing Information
Base (RIB) or Forwarding Information Base (FIB). The to_xr interface does not have an associated IP address. In
Linux, most applications expect the outgoing packets to use the IP address of the outgoing interface as the source
IP address.

With the to_xr interface, because there is no IP address, a source hint is required. The source hint can be changed
to use the IP address another physical interface IP or loopback IP address. In the following example, the source hint
is set to 10.1.1.10, which is the IP address of the Hu0_0_0_24 interface. To use the Management port IP address,
change the source hint:
Router#bash

[ios:~]$ip route replace default dev to_xr scope link src 192.168.122.22 metric 2048

[ios:~]$ip route
default dev to_xr scope link src 192.168.122.22 metric 2048
10.1.1.0/24 dev Hu0_0_0_24 proto kernel scope link src 10.1.1.10
192.168.122.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 192.168.122.22

With this updated source hint, any default traffic exiting the system uses the Management port IP address as the
source IP address.

• Local or Connected Routes: The routes are associated with the subnet configured on interfaces. For example, the
10.1.1.0/24 network is associated with the Hu0_0_0_24 interface, and the 192.168.122.0/24 subnet is associated with
the Mg0_RP0_CPU0 interface .

Configure VRFs in Linux
VRFs configured in IOS XR are automatically synchronized to the kernel. In the kernel, the VRFs appear as
network namespaces (netns). For every globally-configured VRF, a Linux network namespace is created.
With this capability it is possible to isolate Linux applications or processes into specific VRFs like an
out-of-band management VRF and open-up sockets or send or receive traffic only on interfaces in that VRF.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
40

Accessing the Networking Stack
Program Routes in Linux

Every VRF, when synchronized with the Linux kernel, is programmed as a network namespace with the same
name as a VRF but with the string vrf prefixed to it. The default VRF in IOS XR has the name default. This
name gets programmed as vrf-default in the Linux kernel.

The following example shows how to configure a custom VRF blue:

Step 1 Identify the current network namespace or VRF.

Example:
[ios:~]$ip netns identify $$
vrf-default
global-vrf

Step 2 Configure a custom VRF blue.

Example:
Router#conf t

Router(config)#vrf blue
Router(config-vrf)#commit

Step 3 Verify that the VRF blue is configured in IOS XR.

Example:
Router#show run vrf
vrf blue
!

Step 4 Verify that the VRF blue is created in the kernel.

Example:
Router#bash

[ios:~]$ls -l /var/run/netns
total 0
-r--r--r--. 1 root root 0 Jul 30 04:17 default
-r--r--r--. 1 root root 0 Jul 30 04:17 global-vrf
-r--r--r--. 1 root root 0 Jul 30 04:17 tpnns
-r--r--r--. 1 root root 0 Aug 1 17:01 vrf-blue
-r--r--r--. 1 root root 0 Jul 30 04:17 vrf-default
-r--r--r--. 1 root root 0 Jul 30 04:17 xrnns

Step 5 Access VRF blue to launch and execute processes from the new network namespace.

Example:
[ios:~]$ip netns exec vrf-blue bash
[ios:~]$
[ios:~]$ip netns identify $$
vrf-blue
[ios:~]$

Running an ifconfig command shows only the default to-xr interface because there is no IOS XR interface in this VRF.
[ios:~]$ifconfig
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
41

Accessing the Networking Stack
Configure VRFs in Linux

collisions:0 txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
to_xr Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
[ios:~]$

Step 6 Configure an interface in the VRF blue in IOS XR. This interface will be configured automatically in the network
namespace vrf-blue in the kernel.

Example:

The following example shows how to configure HundredGigE 0/0/0/24 interface in vrf-blue from IOS XR:
Router#conf t
Router(config)#int HundredGigE 0/0/0/24
Router(config-if)#no ipv4 address
Router(config-if)#vrf blue
Router(config-if)#ipv4 address 10.1.1.10/24
Router(config-if)#commit

Step 7 Verify that the HundredGigE 0/0/0/24 interface is configured in the VRF blue in IOS XR.

Example:
Router#show run int HundredGigE 0/0/0/24
interface HundredGigE0/0/0/24
vrf blue
ipv4 address 10.1.1.10 255.255.255.0
!

Step 8 Verify that the interface is configured in the VRF blue in the kernel.

Example:
Router#bash
Thu Aug 1 17:09:39.314 UTC
[ios:~]$
[ios:~]$ip netns exec vrf-blue bash
[ios:~]$
[ios:~]$ifconfig
Hu0_0_0_24 Link encap:Ethernet HWaddr 78:e7:e8:d3:20:c0
inet addr:10.1.1.10 Bcast:0.0.0.0 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
to_xr Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
42

Accessing the Networking Stack
Configure VRFs in Linux

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
[ios:~]$

Open Linux Sockets
The socket entries are programmed into the Local Packet Transport Services (LPTS) infrastructure that
distributes the information through the line cards. Any packet received on a line card interface triggers an
LPTS lookup to send the packet to the application opening the socket. Because the required interfaces and
routes already appear in the kernel, the applications can open the sockets — TCP or UDP.

Step 1 Verify that applications open up sockets.

Example:
Router#bash
[ios:~]$nc -l 0.0.0.0 -p 5000 &
[1] 1160
[ios:~]$
[ios:~]$netstat -nlp
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 0.0.0.0:5000 0.0.0.0:* LISTEN 1160/nc
tcp 0 0 0.0.0.0:57777 0.0.0.0:* LISTEN 14723/emsd
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 8875/ssh_server
tcp6 0 0 :::22 :::* LISTEN 8875/ssh_server
udp 0 0 0.0.0.0:68 0.0.0.0:* 13235/xr_dhcpcd
Active UNIX domain sockets (only servers)
Proto RefCnt Flags Type State I-Node PID/Program name Path
[ios:~]$exit
Logout
Router#
Router#show lpts pifib brief | i 5000
Thu Aug 1 17:16:00.938 UTC
IPv4 default TCP any 0/RP0/CPU0 any,5000 any
Router#

Step 2 Verify that the socket is open.

Example:
Router#show lpts pifib brief | i 5000
IPv4 default TCP any 0/RP0/CPU0 any,5000 any

Netcat starts listening on port 5000, which appears as an IPv4 TCP socket in the netstat output like a typical Linux kernel.
This socket gets programmed to LPTS, creating a corresponding entry in the hardware to the lookup tcp port 5000. The
incoming traffic is redirected to the kernel of the active RP where the netcat runs.

Send and Receive Traffic
Connect to the nc socket from an external server. For example, the nc socket was started in the vrf-default
network namespace. So, connect over an interface that is in the same VRF.
[root@localhost ~]#nc -vz 192.168.122.22 5000
Ncat: Version 7.50 (https://nmap.org/ncat)

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
43

Accessing the Networking Stack
Open Linux Sockets

Ncat: Connected to 192.168.122.22:5000.
Ncat: 0 bytes sent, 0 bytes received in 0.01 seconds.

Manage IOS XR Interfaces through Linux
The Linux system contains a number of individual network namespaces. Each namespace contains a set of
interfaces that map to a single interface in the XR control plane. These interfaces represent the exposed XR
interfaces (eXI). By default, all interfaces in IOS XR are managed through the IOS XR configuration (CLI
or YANG models), and the attributes of the interface (IP address, MTU, and state) are inherited from the
corresponding configuration and the state of the interface in XR.

With the new Packet I/O functionality, it is possible to have an IOS XR interface completely managed by
Linux. This also means that one or more of the interfaces can be configured to be managed by Linux, and
standard automation tools can be used on Linux servers can be used to manage interfaces in IOS XR.

Secondary IPv4 addresses cannot be managed by Linux.Note

Configure an Interface to be Linux-Managed
This section shows how to configure an interface to be Linux-managed.

Step 1 Check the available exposed-interfaces in the system.

Example:
Router(config)#linux networking exposed-interfaces interface ?

Bundle-Ether Aggregated Ethernet interface(s) | short name is BE
FiftyGigE FiftyGigabitEthernet/IEEE 802.3 interface(s) | short name is Fi
FortyGigE FortyGigabitEthernet/IEEE 802.3 interface(s) | short name is Fo
FourHundredGigE FourHundredGigabitEthernet/IEEE 802.3 interface(s) | short name is FH
GigabitEthernet GigabitEthernet/IEEE 802.3 interface(s) | short name is Gi
HundredGigE HundredGigabitEthernet/IEEE 802.3 interface(s) | short name is Hu
Loopback Loopback interface(s) | short name is Lo
MgmtEth Ethernet/IEEE 802.3 interface(s) | short name is Mg
TenGigE TenGigabitEthernet/IEEE 802.3 interface(s) | short name is Te
TwentyFiveGigE TwentyFiveGigabitEthernet/IEEE 802.3 interface(s) | short name is TF
TwoHundredGigE TwoHundredGigabitEthernet/IEEE 802.3 interface(s) | short name is TH

Step 2 Configure the interface to be managed by Linux.

Example:

The following example shows how to configure a HundredGigE interface to be managed by Linux:
Router#configure
Router(config)#linux networking exposed-interfaces interface HundredGigE 0/0/0/24 linux-managed
Router(config-exi-if)#commit

Step 3 View the interface details and the VRF.

Example:

The following example shows the information for HundredGigE interface:
Router#show run interface HundredGigE0/0/0/24
interface HundredGigE0/0/0/24

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
44

Accessing the Networking Stack
Manage IOS XR Interfaces through Linux

mtu 4110
vrf blue
ipv4 mtu 4096
ipv4 address 10.1.1.10 255.255.255.0
ipv6 mtu 4096
ipv6 address fe80::7ae7:e8ff:fed3:20c0 link-local
!

Step 4 Verify the configuration in XR.

Example:

The following example shows the configuration for HundredGigE interface:
Router#show running-config linux networking

linux networking
exposed-interfaces
interface HundredGigE0/0/0/24 linux-managed
!
!
!

Step 5 Verify the configuration from Linux.

Example:

The following example shows the configuration for HundredGigE interface:
Router#bash
Router:Aug 1 17:40:02.873 UTC: bash_cmd[67805]: %INFRA-INFRA_MSG-5-RUN_LOGIN : User vagrant logged
into shell from vty0

[ios:~]$ip netns exec vrf-blue bash

[ios:~]$ifconfig
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
to_xr Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

[ios:~]$ifconfig -a
Hu0_0_0_24 Link encap:Ethernet HWaddr 78:e7:e8:d3:20:c0
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
45

Accessing the Networking Stack
Configure an Interface to be Linux-Managed

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
to_xr Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Configure New IP address on the Interface in Linux
This section shows how to configure a new IP address on the Linux-managed interface.

Step 1 Configure the IP address on the interface.

Example:
[ios:~]$ip addr add 10.1.1.10/24 dev Hu0_0_0_24
[ios:~]$Router:Aug 1 17:41:11.546 UTC: xlncd[253]: %MGBL-CONFIG-6-DB_COMMIT : Configuration
committed by user 'system'. Use 'show configuration commit changes 1000000021' to view the changes.

Step 2 Verify that the new IP address is configured.

Example:
[ios:~]$ifconfig Hu0_0_0_24
Hu0_0_0_24 Link encap:Ethernet HWaddr 78:e7:e8:d3:20:c0
inet addr:10.1.1.10 Bcast:0.0.0.0 Mask:255.255.255.0
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Configure Custom MTU Setting
This section shows how to bring up the interface and configure a customMTU in a Linux-managed interface.

Step 1 Configure the MTU setting.

Example:
[ios:~]$ifconfig Hu0_0_0_24 up

[ios:~]$Router:Aug 1 17:41:54.824 UTC: ifmgr[266]: %PKT_INFRA-LINK-3-UPDOWN : Interface
HundredGigE0/0/0/24, changed state to Down
Router:Aug 1 17:41:54.824 UTC: ifmgr[266]: %PKT_INFRA-LINEPROTO-5-UPDOWN : Line protocol on
Interface HundredGigE0/0/0/24, changed state to Down
Router:Aug 1 17:41:56.448 UTC: xlncd[253]: %MGBL-CONFIG-6-DB_COMMIT : Configuration committed by
user 'system'. Use 'show configuration commit changes 1000000022' to view the changes.
Router:Aug 1 17:41:56.471 UTC: ifmgr[266]: %PKT_INFRA-LINK-3-UPDOWN : Interface
HundredGigE0/0/0/24, changed state to Up
Router:Aug 1 17:41:56.484 UTC: ifmgr[266]: %PKT_INFRA-LINEPROTO-5-UPDOWN : Line protocol on
Interface HundredGigE0/0/0/24, changed state to Up
Router:Aug 1 17:41:58.493 UTC: xlncd[253]: %MGBL-CONFIG-6-DB_COMMIT : Configuration committed by
user 'system'. Use 'show configuration commit changes 1000000023' to view the changes.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
46

Accessing the Networking Stack
Configure New IP address on the Interface in Linux

[ios:~]$
[ios:~]$ ip link set dev Hu0_0_0_24 mtu 4096
[ios:~]$
[ios:~]$Router:Aug 1 17:42:46.830 UTC: xlncd[253]: %MGBL-CONFIG-6-DB_COMMIT : Configuration
committed by user 'system'. Use 'show configuration commit changes 1000000024' to view the changes.

Step 2 Verify that the MTU setting has been updated in Linux.

Example:
[ios:~]$ifconfig
Hu0_0_0_24 Link encap:Ethernet HWaddr 78:e7:e8:d3:20:c0
inet addr:10.1.1.10 Bcast:0.0.0.0 Mask:255.255.255.0
inet6 addr: fe80::7ae7:e8ff:fed3:20c0/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:4096 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:648 (648.0 B)
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
to_xr Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Step 3 Check the effect on the IOS XR configuration with the change in MTU setting on this interface.

Example:
Router#show running-config int HundredGigE0/0/0/24
interface HundredGigE0/0/0/24
mtu 4110
vrf blue
ipv4 mtu 4096
ipv4 address 10.1.1.10 255.255.255.0
ipv6 mtu 4096
ipv6 address fe80::7ae7:e8ff:fed3:20c0 link-local
!
!
!
Router#
Router#show ip int br | i HundredGigE0/0/0/24
HundredGigE0/0/0/24 10.1.1.10 Up Up blue

The output indicates that the interface acts as a regular Linux interface, and IOS XR configuration receives inputs from
Linux.

Configure Traffic Protection for Linux Networking
Traffic protection provides a mechanism to configure Linux firewalls using IOS XR configuration. These
rules can be used to restrict traffic to Linux applications. You can restrict traffic to Linux applications using

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
47

Accessing the Networking Stack
Configure Traffic Protection for Linux Networking

native Linux firewalls or configuring IOS XR Linux traffic protection. It is not recommended to use both
mechanisms at the same time. Any combination of remote address, local address and ingress interface can be
specified as rules to either allow or deny traffic. However, at least one parameter must be specified for the
traffic protection rule to be valid.

If traffic is received on a protocol or port combination that has no traffic protection rules configured, then all
traffic is allowed by default.

Note

This example explains how to configure a traffic protection rule on IOS XR to deny all traffic on port 999
except for traffic arriving on interface HundredGigE0/0/0/25.

Step 1 Configure traffic protection rules.

Example:
Router(config)#linux networking vrf default address-family ipv4 protection protocol
tcp local-port 999 default-action deny permit hundredgigE0/0/0/25
Router(config)#commit

where —

• address-family: Configuration for a particular IPv4 or IPv6 address family.

• protection: Configure traffic protection for Linux networking.

• protocol: Select the supported protocol - TCP or UDP.

• local-port: L4 port number to specify traffic protection rules for Linux networking.

• port number: Port number ranges from 1 to 65535 or all ports.

• default-action: Default action to take for packets matching this traffic protection service.

• deny: Drop packets for this service.

• permit: Permit packets to reach Linux application for this service.

Step 2 Verify that the traffic protection rule is applied successfully.

Example:
Router(config)#show run linux networking
linux networking
vrf default
address-family ipv4
protection
protocol tcp local-port 999 default-action deny
permit interface HundredGigE0/0/0/25
!
!
!

!

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
48

Accessing the Networking Stack
Configure Traffic Protection for Linux Networking

Communication Outside Cisco IOS XR
Table 3: Feature History Table

DescriptionRelease InformationFeature Name

Virtual IP addresses allow a single
IP address to connect to the current
active RP after an RP switchover
event. In addition, this functionality
enables your network stack to
support virtual IP addresses for
third-party applications and IOS
XR applications that use the Linux
networking stack.

The following commands are
modified:

• ipv4 virtual address

• ipv6 virtual address

• show kim status

Release 7.5.2Virtual IP address in the Linux
networking stack

To communicate outside Cisco IOS XR, applications use the fwdintf interface address that maps to the
loopback0 interface or a configured Gigabit Ethernet interface address. For information on the various
interfaces on IOS XR, see Application Hosting on the Cisco IOS XR Linux Shell, on page 5.

To have an iPerf or Chef client on IOS XR communicate with its respective server outside IOS XR, you must
configure an interface address as the source address on XR. The remote servers must configure this route
address to reach the respective clients on IOS XR.

Virtual addresses can be configured to access a router from the management network, using the Linux-based
app gRPC, through a single virtual IP address. On a device with two or more RPs, the virtual address refers
to the management interface that is currently active. This functionality can be used across RP failover without
the information of which RP is currently active. This is applicable to the Linux packet path.

This section provides an example of configuring a Gigabit Ethernet interface address as the source address
for external communication.

Using a Gigabit Ethernet Interface for External Communication

To configure a GigE interface on IOS XR for external communication, use these steps:

1. Configure a GigE interface.
RP/0/RP0/CPU0:ios(config)# interface GigabitEthernet 0/0/0/1
RP/0/RP0/CPU0:ios(config-if)# ipv4 address 192.57.43.10 255.255.255.0
RP/0/RP0/CPU0:ios(config-if)# no shut
RP/0/RP0/CPU0:ios(config-if)# commit
Fri Oct 30 07:51:14.785 UTC
RP/0/RP0/CPU0:ios(config-if)# exit
RP/0/RP0/CPU0:ios(config)# exit

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
49

Accessing the Networking Stack
Communication Outside Cisco IOS XR

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ip-addresses-cr-ncs5500/network-stack-commands.html#reference_BF8ECB2646D847FF829AC80E81C79849
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ip-addresses-cr-ncs5500/network-stack-commands.html#reference_3520D6A1EFBF4A93B4E77600C7C54B03
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ip-addresses-cr-ncs5500/network-stack-commands.html#reference_vy5_1pj_jtb

2. Verify whether the configured interface is up and operational on IOS XR.
RP/0/RP0/CPU0:ios# show ipv4 interface brief
Fri Oct 30 07:51:48.996 UTC

Interface IP-Address Status Protocol
Loopback0 1.1.1.1 Up Up
Loopback1 8.8.8.8 Up Up
GigabitEthernet0/0/0/0 192.164.168.10 Up Up
GigabitEthernet0/0/0/1 192.57.43.10 Up Up
GigabitEthernet0/0/0/2 unassigned Shutdown Down
MgmtEth0/RP0/CPU0/0 192.168.122.197 Up Up
RP/0/RP0/CPU0:ios#

3. Enter the Linux bash shell and verify if the configured interface is up and running.

/* If you are using Cisco IOS XR Version 6.0.0, run the following command */
RP/0/RP0/CPU0:ios# run ip netns exec tpnns bash

/* If you are using Cisco IOS XR Version 6.0.2, run the following command */
RP/0/RP0/CPU0:ios# bash

[xr-vm_node0_RP0_CPU0:~]$ ifconfig
Gi0_0_0_0 Link encap:Ethernet HWaddr 52:46:04:87:19:3c

inet addr:192.164.168.10 Mask:255.255.255.0
inet6 addr: fe80::5046:4ff:fe87:193c/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Gi0_0_0_1 Link encap:Ethernet HWaddr 52:46:2e:49:f6:ff
inet addr:192.57.43.10 Mask:255.255.255.0
inet6 addr: fe80::5046:2eff:fe49:f6ff/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41
inet addr:192.168.122.197 Mask:255.255.255.0
inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:3 errors:0 dropped:0 overruns:0 frame:0
TX packets:6 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:294 (294.0 B) TX bytes:504 (504.0 B)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:4 errors:0 dropped:0 overruns:0 frame:0
TX packets:6 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:392 (392.0 B) TX bytes:532 (532.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1482 Metric:1

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
50

Accessing the Networking Stack
Communication Outside Cisco IOS XR

RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:1500 Metric:1
RX packets:8 errors:0 dropped:0 overruns:0 frame:0
TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:672 (672.0 B) TX bytes:672 (672.0 B)

lo:0 Link encap:Local Loopback
inet addr:1.1.1.1 Mask:255.255.255.255
UP LOOPBACK RUNNING MTU:1500 Metric:1

4. Exit the Linux bash shell and configure the GigE interface as the source address for external communication.

[xr-vm_node0_RP0_CPU0:~]$ exit

RP/0/RP0/CPU0:ios# config
Fri Oct 30 08:55:17.992 UTC
RP/0/RP0/CPU0:ios(config)# tpa address-family ipv4 update-source gigabitEthernet 0/0/0/1
RP/0/RP0/CPU0:ios(config)# commit
Fri Oct 30 08:55:38.795 UTC

By default, the fwdintf interface maps to the loopback0 interface for external communication. This is similar
to binding a routing process or router ID to the loopback0 interface. When you use the tpa address-family

ipv4 update-source command to bind the fwdintf interface to a Gigabit Ethernet interface, network
connectivity can be affected if the interface goes down.

Note

5. Enter the Linux bash shell and verify whether the GigE interface address is used by the fwdintf interface
for external communication.

/* If you are using Cisco IOS XR Version 6.0.0, run the following command */
RP/0/RP0/CPU0:ios# run ip netns exec tpnns bash

/* If you are using Cisco IOS XR Version 6.0.2, run the following command */
RP/0/RP0/CPU0:ios# bash

[xr-vm_node0_RP0_CPU0:~]$ ip route
default dev fwdintf scope link src 192.57.43.10
8.8.8.8 dev fwd_ew scope link
192.168.122.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 192.168.122.197
[xr-vm_node0_RP0_CPU0:~]$

External communication is successfully enabled on IOS XR.

East-West Communication for Third-Party Applications
East-West communication on IOS XR is a mechanism by which applications hosted in containers interact
with native XR applications (hosted in the XR control plane).

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
51

Accessing the Networking Stack
East-West Communication for Third-Party Applications

The following figure illustrates how a third-party application hosted on IOS XR interacts with the XR Control
Plane.

The application sends data to the Forwarding Information Base (FIB) of IOS XR. The application is hosted
in the east portion of IOS XR, while the XR control plane is located in the west region. Therefore, this form
of communication between a third-party application and the XR control plane is termed as East-West (E-W)
communication.

Third-party applications such as Chef Client and Puppet Agent use this mode of communication to configure
and manage containers, packages, and applications on IOS XR. In the future, this support could be extended
to IOS XR, configured and managed by such third-party applications.

East-West communication is not supported on IOS XR from software release 7.9.1.Note

Figure 3: East-West Communication on IOS XR

For a third-party application to communicate with IOS XR, the Loopback1 interface must be configured. This
is explained in the following procedure.

1. Configure the Loopback1 interface on IOS XR.
RP/0/RP0/CPU0:ios(config)# interface Loopback1
RP/0/RP0/CPU0:ios(config-if)# ipv4 address 8.8.8.8/32
RP/0/RP0/CPU0:ios(config-if)# no shut
RP/0/RP0/CPU0:ios(config-if)# commit
RP/0/RP0/CPU0:ios(config-if)# exit
RP/0/RP0/CPU0:ios(config)#

2. Verify the creation of the Loopback1 interface.
RP/0/RP0/CPU0:ios# show ipv4 interface brief
Thu Nov 12 10:01:00.874 UTC

Interface IP-Address Status Protocol
Loopback0 1.1.1.1 Up Up
Loopback1 8.8.8.8 Up Up
GigabitEthernet0/0/0/0 192.164.168.10 Up Up
GigabitEthernet0/0/0/1 192.57.43.10 Up Up
GigabitEthernet0/0/0/2 unassigned Shutdown Down
MgmtEth0/RP0/CPU0/0 192.168.122.197 Up Up
RP/0/RP0/CPU0:ios#

3. Enter the third-party network namespace or global VRF depending on the version of IOS XR version you
are using for your network.
/* If you are using Cisco IOS XR Version 6.0.0, run the following command */
RP/0/RP0/CPU0:ios# run ip netns exec tpnns bash

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
52

Accessing the Networking Stack
East-West Communication for Third-Party Applications

/* If you are using Cisco IOS XR Version 6.0.2, run the following command */
RP/0/RP0/CPU0:ios# bash

4. Verify whether the Loopback1 interface address has been mapped to the E-W interface.
[xr-vm_node0_RP0_CPU0:~]$ ip route
default dev fwdintf scope link src 192.57.43.10
8.8.8.8 dev fwd_ew scope link
192.168.122.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 192.168.122.197
[xr-vm_node0_RP0_CPU0:~]$

Configuring Multiple VRFs for Application Hosting
Cisco NCS 540 routers support the configuration of multiple VRFs. The applications hosted in third-party
containers can communicate with VRFs configured on XR, after east-west communication has been enabled
on the VRFs.

This section describes the configuration for creating mulitple VRFs, and enabling east-west communication
between the applications and the VRFs.

Configuration Procedure

Use the following steps to configure multiple VRFs for use on Cisco IOS XR.

1. Configure VRFs on XR.

RP/0/RP0/CPU0:ios(config)# vrf purple
RP/0/RP0/CPU0:ios(config-vrf)# address-family ipv4
RP/0/RP0/CPU0:ios(config-vrf)# address-family ipv6
RP/0/RP0/CPU0:ios(config-vrf)# exit

RP/0/RP0/CPU0:ios(config)# vrf green
RP/0/RP0/CPU0:ios(config-vrf)# address-family ipv4
RP/0/RP0/CPU0:ios(config-vrf)# address-family ipv6
RP/0/RP0/CPU0:ios(config-vrf)# exit

RP/0/RP0/CPU0:ios(config)# telnet vrf purple ipv4 server max-servers 2
RP/0/RP0/CPU0:ios(config)# telnet vrf purple ipv6 server max-servers 2
RP/0/RP0/CPU0:ios(config)# telnet vrf green ipv4 server max-servers 2
RP/0/RP0/CPU0:ios(config)# telnet vrf green ipv6 server max-servers 2
RP/0/RP0/CPU0:ios(config)# telnet ipv4 server max-servers 2
RP/0/RP0/CPU0:ios(config)# telnet ipv6 server max-servers 2

2. Configure the interfaces to be used with the VRFs.
RP/0/RP0/CPU0:ios(config)# interface loopback1
RP/0/RP0/CPU0:ios(config-if)# vrf purple
RP/0/RP0/CPU0:ios(config-if)# ipv4 address 1.1.1.1 255.255.255.0
RP/0/RP0/CPU0:ios(config-if)# ipv6 address 10::1/64
RP/0/RP0/CPU0:ios(config-if)# exit

RP/0/RP0/CPU0:ios(config)# interface loopback2
RP/0/RP0/CPU0:ios(config-if)# vrf purple
RP/0/RP0/CPU0:ios(config-if)# ipv4 address 2.2.2.2 255.255.255.0
RP/0/RP0/CPU0:ios(config-if)# ipv6 address 20::1/64
RP/0/RP0/CPU0:ios(config-if)# exit

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
53

Accessing the Networking Stack
Configuring Multiple VRFs for Application Hosting

RP/0/RP0/CPU0:ios(config)# interface loopback3
RP/0/RP0/CPU0:ios(config-if)#vrf green
RP/0/RP0/CPU0:ios(config-if)# ipv4 address 3.3.3.3 255.255.255.0
RP/0/RP0/CPU0:ios(config-if)# ipv6 address 30::1/64
RP/0/RP0/CPU0:ios(config-if)# exit

RP/0/RP0/CPU0:ios(config)# interface loopback4
RP/0/RP0/CPU0:ios(config-if)# vrf green
RP/0/RP0/CPU0:ios(config-if)# ipv4 address 4.4.4.4 255.255.255.0
RP/0/RP0/CPU0:ios(config-if)# ipv6 address 40::1/64
RP/0/RP0/CPU0:ios(config-if)# exit

RP/0/RP0/CPU0:ios(config)# interface mgmtEth 0/RP0/CPU0/0
RP/0/RP0/CPU0:ios(config-if)# vrf purple
RP/0/RP0/CPU0:ios(config-if)# ipv4 address dhcp
RP/0/RP0/CPU0:ios(config-if)# exit

RP/0/RP0/CPU0:ios(config)# interface GigabitEthernet 0/0/0/0
RP/0/RP0/CPU0:ios(config-if)# vrf purple
RP/0/RP0/CPU0:ios(config-if)# ipv4 address 10.20.30.40 255.255.255.0
RP/0/RP0/CPU0:ios(config-if)# ipv6 address 24::1/64
RP/0/RP0/CPU0:ios(config-if)# exit

RP/0/RP0/CPU0:ios(config)# interface gigabitEthernet 0/0/0/1
RP/0/RP0/CPU0:ios(config-if)# vrf green
RP/0/RP0/CPU0:ios(config-if)# ipv4 address 40.30.20.10 255.255.255.0
RP/0/RP0/CPU0:ios(config-if)# ipv6 address 22::1/64
RP/0/RP0/CPU0:ios(config-if)# exit
RP/0/RP0/CPU0:ios(config)# commit
Fri Sep 1 12:04:37.796 UTC

3. Configure TPA VRFs.
RP/0/RP0/CPU0:ios(config)# tpa
RP/0/RP0/CPU0:ios(config-tpa)# vrf purple
RP/0/RP0/CPU0:ios(config-tpa-vrf)# east-west loopback1
RP/0/RP0/CPU0:ios(config-tpa-vrf)# east-west loopback2
RP/0/RP0/CPU0:ios(config-tpa-vrf)# address-family ipv4
RP/0/RP0/CPU0:ios(config-tpa-vrf-afi)# update-source GigabitEthernet 0/0/0/0
RP/0/RP0/CPU0:ios(config-tpa-vrf-afi)# exit
RP/0/RP0/CPU0:ios(config-tpa-vrf)# address-family ipv6
RP/0/RP0/CPU0:ios(config-tpa-vrf-afi)# update-source Gigabitethernet 0/0/0/0
RP/0/RP0/CPU0:ios(config-tpa-vrf-afi)# exit
RP/0/RP0/CPU0:ios(config-tpa-vrf)# exit

RP/0/RP0/CPU0:ios(config-tpa)# vrf green
RP/0/RP0/CPU0:ios(config-tpa-vrf)# east-west loopback3
RP/0/RP0/CPU0:ios(config-tpa-vrf)# east-west loopback4
RP/0/RP0/CPU0:ios(config-tpa-vrf)# address-family ipv4
RP/0/RP0/CPU0:ios(config-tpa-vrf-afi)# update-source GigabitEthernet 0/0/0/1
RP/0/RP0/CPU0:ios(config-tpa-vrf-afi)# exit
RP/0/RP0/CPU0:ios(config-tpa-vrf)# address-family ipv6
RP/0/RP0/CPU0:ios(config-tpa-vrf-afi)# update-source Gigabitethernet 0/0/0/1
RP/0/RP0/CPU0:ios(config-tpa-vrf-afi)# exit
RP/0/RP0/CPU0:ios(config-tpa-vrf)# exit
RP/0/RP0/CPU0:ios(config-tpa)# exit

4. Validate the configuration.
RP/0/RP0/CPU0:ios(config)# show run
Fri Sep 1 12:06:35.596 UTC
...

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
54

Accessing the Networking Stack
Configuring Multiple VRFs for Application Hosting

vrf purple
address-family ipv4
address-family ipv6
vrf green
address-family ipv4
address-family ipv6

telnet vrf green ipv4 server max-servers 2
telnet vrf green ipv6 server max-servers 2
telnet vrf purple ipv4 server max-servers 2
telnet vrf purple ipv6 server max-servers 2
telnet vrf default ipv4 server max-servers 2
telnet vrf default ipv6 server max-servers 2
...
!
tpa
vrf purple
east-west loopback1
east-west loopback2
address-family ipv4
update-source GigabitEthernet0/0/0/0

!
address-family ipv6
update-source GigabitEthernet0/0/0/0

!

vrf green
east-west loopback3
east-west loopback4
address-family ipv4
update-source GigabitEthernet0/0/0/1

!
address-family ipv6
update-source GigabitEthernet0/0/0/1

!
!
interface loopback1
vrf purple
ipv4 address 1.1.1.1 255.255.255.0
ipv6 address 10::1/64
!
interface loopback2
vrf purple
ipv4 address 2.2.2.2 255.255.255.0
ipv6 address 20::1/64
!
interface loopback3
vrf green
ipv4 address 3.3.3.3 255.255.255.0
ipv6 address 30::1/64
!
interface loopback4
vrf green
ipv4 address 4.4.4.4 255.255.255.0
ipv6 address 40::1/64
!
interface MgmtEth0/RP0/CPU0/0
vrf purple
ipv4 address dhcp
!
router static
address-family ipv4 unicast
0.0.0.0/0 MgmtEth0/RP0/CPU0/0 10.0.2.2

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
55

Accessing the Networking Stack
Configuring Multiple VRFs for Application Hosting

!
!

You have successfully configured multiple VRFs for use on Cisco IOS XR.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
56

Accessing the Networking Stack
Configuring Multiple VRFs for Application Hosting

C H A P T E R 4
Hosting Applications on IOS XR

This section explains the different kinds of application hosting, and demonstrates how a simple application
can be hosted natively or in a third-party container on IOS XR.

• Application Hosting in IOS XR Container, on page 57
• Container Application Hosting, on page 57
• Customize Docker Run Options Using Application Manager, on page 68
• Docker Application Management using IPv6 Address, on page 72
• Using Vagrant for Hosting Applications, on page 75
• Secure Onboarding of Signed Third-Party Applications, on page 102
• Key Terms, on page 102
• How Can I Onboard My Applications Securely?, on page 103

Application Hosting in IOS XR Container
You can create your own container on IOS XR, and host applications within the container. The applications
can be developed using any Linux distribution. This is well suited for applications that use system libraries
that are different from that provided by the IOS XR root file system.

Selecting the Type of Application Hosting

You can select an application hosting type, depending on your requirement and the following criteria.

• Resources: If you need to manage the amount of resources consumed by the hosted applications, you
must choose the container model, where constraints can be configured. In a native model, you can only
deploy applications that use allotted resources, which are shared with internal IOS XR processes.

• Choice of Environment: Applications to be hosted natively must be built with the Wind River Linux 7
distribution that is offered by IOS XR. If you decide to choose the Linux distribution that is to be used
for building your applications, then you must choose the container model. When you host an application
using the container model, you can pre-package it prior to deployment.

Container Application Hosting
This section introduces the concept of container application hosting and describes its workflow.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
57

Container application hosting makes it possible for applications to be hosted in their own environment and
process space (namespace) within a Linux container on Cisco IOSXR. The application developer has complete
control over the application development environment, and can use a Linux distribution of choice. The
applications are isolated from the IOS XR control plane processes; yet, they can connect to networks outside
XR through the XR GigE interfaces. The applications can also easily access local file systems on IOS XR.

This figure illustrates the workflow for creating a Linux container for application hosting. For the complete
configuration procedure, see Running iPerf as a Container Application, on page 59.

Figure 4: Container Application Hosting Workflow

There are two components in container application hosting:

• Linux server: This is the server you use to develop your application, to bring up the Linux Container
(LXC), and to prepare the container environment.

• Router: This is the router running the 64-bit IOSXR that is used to host your container with the application
you want to run.

1. On the Linux server, bring up the LXC, and do the following:

a. Prepare the container environment and the required libraries.

b. Shut down the LXC.

2. Connect to the router running IOS XR, and copy the root file system.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
58

Hosting Applications on IOS XR
Container Application Hosting

3. Create the configuration file for the container in .xml format. This file specifies the attributes for the
container, such as name of the container, default namespace, and so on.

If you specify a network namespace (third-party), then by default, the LXC is launched in that namespace.Note

4. Launch the LXC on the router.

5. Log into the LXC on the router through IOS XR console access.

6. Manually start the application, or configure the application to start automatically when the LXC is launched.

You can use a container, like a Linux box, to install and host applications for users.

Running iPerf as a Container Application
As an example of container application hosting, you can install an iPerf client within a LXC on IOS XR, and
check its connectivity with an iPerf server installed within an LXC on another router, as described in this
section.

Topology

The following illustration describes the topology used in this example.

Figure 5: iPerf as a Container Application

iPerf server is installed on Router A, and iPerf client is installed on Router B. Both installations are done
within containers on the 64-bit IOS XR. The iPerf client communicates with the iPerf server through the
interfaces offered by IOS XR.

Prerequisites

Ensure that you have configured the two routers as shown in the topology.

Configuration Procedure

To run iPerf as a container application, follow these steps:

1. Log into Router A, and enter the XRNNS.
RP/0/RP0/CPU0:ios# run
[xr-vm_node0_RP0_CPU0:~]$

2. Launch the LXC.
[xr-vm_node0_RP0_CPU0:~]$virsh -c lxc+tcp://10.11.12.15:16509/ -e ^Q console demo1

3. Log into the LXC when prompted.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
59

Hosting Applications on IOS XR
Running iPerf as a Container Application

Connected to domain demo
Escape character is ^Q
Kernel 3.14.23-WR7.0.0.2_standard on an x86_64

host login: Password:

4. Install the iPerf server within the LXC on Router A.
[root@host ~]#apt-get install iperf

5. Perform Steps 1 to 4 to install the iPerf client on Router B.

6. Verify the iPerf server installation on Router A.
[root@host ~]#iperf -v

iperf version 2.0.5 (08 Jul 2010) pthreads

Similarly, verify the iPerf client installation on Router B.

7. Bind the Loopback0 interface on Router A to the iPerf server, and launch the iPerf server instance.

In this example, 1.1.1.1 is the assigned Loopback0 interface address of Router A, and 57730 is the port
number used for communication.
[root@host ~]#iperf -s -B 1.1.1.1 -p 57730
Server listening on TCP port 57730
Binding to local address 1.1.1.1
TCP window size: 85.3 KByte (default)

8. Launch the iPerf client instance on Router B, by specifying the same port number used for the iPerf server,
and the management IP address of Router A.

In this example, 192.168.122.213 is the management IP address of Router A, and 57730 is the port number
used to access the iPerf server.
[root@host ~]#iperf -c 192.168.122.213 -p 57730
--
Client connecting to 192.168.122.213, TCP port 57730
TCP window size: 85.0 KByte (default)
--
[3] local 192.168.122.1 port 46974 connected with 192.168.122.213 port 57730
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 146 MBytes 122 Mbits/sec

To use UDP, instead of TCP, to communicate with the iPerf server, use the following command.
[root@host ~]#iperf -c 192.168.122.213 -p 57730 -u
--
Client connecting to 192.168.122.213, UDP port 57730
Sending 1470 byte datagrams
UDP buffer size: 208 KByte (default)
--
[3] local 192.168.122.1 port 41466 connected with 192.168.122.213 port 57730
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec
[3] Sent 893 datagrams
[3] Server Report:
[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec 0.233 ms 0/ 893 (0%)
[root@hostB ~]#

9. Ping the iPerf server from the iPerf client on Router B.
[root@host ~]#/bin/ping 192.164.168.10
PING 192.164.168.10 (192.164.168.10) 56(84) bytes of data.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
60

Hosting Applications on IOS XR
Running iPerf as a Container Application

64 bytes from 192.164.168.10: icmp_seq=1 ttl=255 time=13.0 ms
64 bytes from 192.164.168.10: icmp_seq=2 ttl=255 time=2.14 ms
64 bytes from 192.164.168.10: icmp_seq=3 ttl=255 time=2.21 ms

The iPerf client hosted on Router B can access the iPerf server hosted on Router A.

Using Docker for Hosting Applications on Cisco IOS XR
Like an LXC, docker is a container used for hosting applications on Cisco IOS XR. Docker provides isolation
for application processes from the underlying host processes on XR by using Linux network namespaces.

Need for Docker on Cisco IOS XR

Docker is becoming the industry-preferred packagingmodel for applications in the virtualization space. Docker
provides the foundation for automating application life cycle management.

Docker follows a layered approach that consists of a base image at the bottom that supports layers of applications
on top. The base images are available publicly in a repository, depending on the type of application you want
to install on top. You can manipulate docker images by using the docker index and registry.

Docker provides a git-like workflow for developing container applications and supports the "thin update"
mechanism, where only the difference in source code is updated, leading to faster upgrades. Docker also
provides the "thin download" mechanism, where newer applications are downloaded faster because of the
sharing of common base docker layers between multiple docker containers. The sharing of docker layers
between multiple docker containers leads to lower footprint for docker containers on XR.

Docker Architecture on Cisco IOS XR

The following figure illustrates the docker architecture on IOS XR.

Figure 6: Docker Workflow for Updating Applications

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
61

Hosting Applications on IOS XR
Using Docker for Hosting Applications on Cisco IOS XR

The application binaries for the applications to be hosted are installed inside the docker container.

Hosting Applications in Docker Containers

The following figure illustrates the workflow for hosting applications in Docker containers on IOS XR.

Figure 7: Docker Workflow for Application Hosting

1. The docker file in the source repository is used to build the application binary file on your (docker engine
build) host machine.

2. The application binary file is pushed into the docker image registry.

3. The application binary file is pulled from the docker image registry and copied to the docker container
on XR (docker engine target host).

4. The application is built and hosted in the docker container on XR.

Updating Applications in Docker Containers

The following figure illustrates the workflow for updating applications hosted in docker containers.

Figure 8: Docker Workflow for Updating Applications

1. The application update is generated as a base libs update file (delta update file) and pushed to the docker
image registry.

2. The delta update file (containing only the difference in application code) is pulled from the docker image
registry and copied to the docker containers on XR (docker engine target host).

3. The docker containers are restarted with the delta update file.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
62

Hosting Applications on IOS XR
Using Docker for Hosting Applications on Cisco IOS XR

HostingandSeamlessActivationofThirdPartyApplicationsUsingApplication
Manager

Table 4: Feature History Table

Feature DescriptionRelease InformationFeature Name

Application Manager manages
third-party application hosting and
their functioning throughCisco IOS
XR CLIs. With this feature, all the
activated third party applications
are automatically restarted after a
router reload or an RP switchover.
This process ensures seamless
functioning of the hosted
applications.

Prior to this release, the hosted
applications were controlled by the
Docker commands executed in the
bash shell of the Kernel that hosts
the Cisco IOS XR software.

Release 7.3.2Hosting and Seamless Activation
of Third Party Applications Using
Application Manager

From this release onwards, the
Docker daemon service starts on a
router only if you configure a
third-party hosting application
using the appmgr command. Such
an on-demand service optimizes
operating system resources such as
CPU, memory, and power.

In earlier releases, the Docker
daemon service automatically
started during the router boot up.

Release 7.5.1On-Demand Docker Daemon
Service for Hosting Applications

In previous releases, the applications were hosted and controlled by the Docker commands. These Docker
commands were executed in the bash shell of the Kernel that also hosted the Cisco IOS XR software. With
the introduction of Application Manager, it is now possible to manage third-party application hosting and
their functioning through Cisco IOS XR CLIs. With this feature, all the activated third party applications can
restart automatically after a router reload or an RP switchover. This automatic restart of the applications ensure
seamless functioning of the hosted applications.

Supported Commands on Application Manager

For every application manager command or configuration executed, the Application Manager performs the
requested action by interfacing with the Docker daemon through the Docker socket.

The following table lists the Docker container functionalities, the generic Docker commands that were used
in the previous releases, and its equivalent application manager commands that can now be used:

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
63

Hosting Applications on IOS XR
Hosting and Seamless Activation of Third Party Applications Using Application Manager

Application Manager CommandsGeneric Docker CommandsFunctionality

Router#appmgr package install
rpm
image_name-0.1.0-XR_7.3.1.x86_64.rpm

NAInstall the
application
RPM

Router#config

Router(config)#appmgr

Router(config-appmgr)#application
app_name

Router(config-application)#activate
type docker source image_name
docker-run-opts "--net=host"
docker-run-cmd "iperf3 -s -d"

Router(config-application)#commit

• Load image -
[xr-vm_node0_RP0_CPU0:~]$docker
load -i /tmp/image_name.tar

• Verify the image on the router -
xr-vm_node0_RP0_CPU0:~]$docker
images ls

• Create container over the image -
[xr-vm_node0_RP0_CPU0:~]$docker
create image_name

• Start container -
[xr-vm_node0_RP0_CPU0:~]$docker
start my_container_id

Configure
and activate
the
application

Router#show appmgr
source-table

Router#show appmgr application
name app_name info summary

Router#show appmgr application
name app_name info detail

Router#show appmgr application
name app_name stats

Router#show appmgr
application-table

Router#show appmgr application
name app_name logs

• List images
-[xr-vm_node0_RP0_CPU0:~]$docker
images ls

• List containers -
[xr-vm_node0_RP0_CPU0:~]$docker
ps

• Statistics
-[xr-vm_node0_RP0_CPU0:~]$docker
stats

• Logs
-[xr-vm_node0_RP0_CPU0:~]$docker
logs

View the list,
statistics,
logs, and
details of the
application
container

Router#appmgr application exec
name app_name docker-exec-cmd

• Execute -
[xr-vm_node0_RP0_CPU0:~]$docker
exec -it my_container_id

Run a new
command
inside a
running
container

Router#appmgr application stop
name app_name

• Stop container -
[xr-vm_node0_RP0_CPU0:~]$docker
stop my_container_id

Stop the
application
container

Router#appmgr application kill
name app_name

• Kill container -
[xr-vm_node0_RP0_CPU0:~]$docker
kill my_container_id

Kill the
application
container

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
64

Hosting Applications on IOS XR
Hosting and Seamless Activation of Third Party Applications Using Application Manager

https://docs.docker.com/engine/reference/commandline/docker/

Application Manager CommandsGeneric Docker CommandsFunctionality

Router#appmgr application
start name app_name

• Start container -
[xr-vm_node0_RP0_CPU0:~]$docker
start my_container_id

Start the
application
container

Router#configure

Router(config)#no appmgr
application app_name

Router(config)#commit

• Stop container -
[xr-vm_node0_RP0_CPU0:~]$docker
stop my_container_id

• Remove container -
[xr-vm_node0_RP0_CPU0:~]$docker
rm my_container_id

• Remove image -
[xr-vm_node0_RP0_CPU0:~]$docker
rmi image_name

Deactivate
the
application

Router#appmgr package
uninstall package
image_name-0.1.0-XR_7.3.1.x86_64

• Uninstall image -
[xr-vm_node0_RP0_CPU0:~]$docker
app uninstall image_name

Uninstall the
application
image/RPM

The usage of the application manager commands are explained in the "Hosting iPerf in Docker Containers to
Monitor Network Performance using Application Manager" section.

Note

Configuring a Docker with Multiple VRFs
This section describes how you can configure a Docker with multiple VRFs on Cisco IOSXR. For information
on configuring multiple VRFs, see Configuring Multiple VRFs for Application Hosting, on page 53.

Configuration

Use the following steps to create and deploy a multi-VRF Docker on XR.

1. Create a multi-VRF Docker with NET_ADMIN and SYS_ADMIN privileges.

The priviliges are required for Docker to switch namespaces and provide the Docker with all required
capabilities. In the following example a Docker containing three VRFs: yellow, blue, and green is loaded
on XR.
[XR-vm_node0_RP0_CPU0:~]$ docker run -td --net=host --name multivrfcontainer1
-v /var/run/netns/yellow:/var/run/netns/yellow
-v /var/run/netns/blue:/var/run/netns/blue
-v /var/run/netns/green:/var/run/netns/green
--cap-add NET_ADMIN --cap-add SYS_ADMIN ubuntu /bin/bash

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
65

Hosting Applications on IOS XR
Configuring a Docker with Multiple VRFs

https://docs.docker.com/engine/reference/commandline/docker/
https://www-author3.cisco.com/c/en/us/td/docs/iosxr/ncs5500/app-hosting/b-application-hosting-configuration-guide-ncs5500/b-application-hosting-configuration-guide-ncs5500_chapter_0101.html#Cisco_Concept.dita_b8c7e6ae-7c4b-440e-a111-e6eec54f2ffa
https://www-author3.cisco.com/c/en/us/td/docs/iosxr/ncs5500/app-hosting/b-application-hosting-configuration-guide-ncs5500/b-application-hosting-configuration-guide-ncs5500_chapter_0101.html#Cisco_Concept.dita_b8c7e6ae-7c4b-440e-a111-e6eec54f2ffa

• Mounting the entire content of /var/run/netns from host to Docker is not recommended, because it
mounts the content of netns corresponding to XR, the system admin plane, and a third-party Linux
container(LXC) into the Docker.

• You should not delete a VRF from Cisco IOS XR when it is used in a Docker. If one or more VRFs are
deleted from XR, the multi-VRF Docker cannot be launched.

Note

2. Verify if the multi-VRF Docker has been successfully loaded.
[XR-vm_node0_RP0_CPU0:~]$ Docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
29c64bf812f9 ubuntu "/bin/bash" 6 seconds ago Up 4 seconds
multivrfcontainer1

3. Run the multi-VRF Docker.
[XR-vm_node0_RP0_CPU0:~]$ Docker exec -it multivrfcontainer1 /bin/bash

By default, the Docker is loaded in global-vrf namespace on Cisco IOS XR.

4. Verify if the multiple VRFs are accessible from the Docker.
root@host:/# ifconfig
fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b

inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

root@host:/# ip netns list
yellow
green
blue

root@host:/# /sbin/ip netns exec green bash
root@host:/# ifconfig -a
lo Link encap:Local Loopback

LOOPBACK MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
66

Hosting Applications on IOS XR
Configuring a Docker with Multiple VRFs

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

root@host:/# ifconfig lo up
root@host:/# ifconfig lo 127.0.0.2/32
root@host:/# ifconfig
lo Link encap:Local Loopback

inet addr:127.0.0.2 Mask:0.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

[host:/misc/app_host]$ ip netns exec green bash
[host:/misc/app_host]$ ifconfig
lo Link encap:Local Loopback

inet addr:127.0.0.2 Mask:0.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

You have successfully launched a multi-VRF Docker on Cisco IOS XR.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
67

Hosting Applications on IOS XR
Configuring a Docker with Multiple VRFs

Customize Docker Run Options Using Application Manager
Table 5: Feature History Table

DescriptionRelease InformationFeature Name

Introduced in this release on: NCS
5500 fixed port routers; NCS 5700
fixed port routers; NCS 5500
modular routers (NCS 5500 line
cards; NCS 5700 line cards [Mode:
Compatibility; Native])

You can now leverage Application
Manager to efficiently overwrite
default docker runtime
configurations, tailoring them to
specific parameters like CPU usage,
security settings, and health checks.
You can thus optimize application
performance, maintain fair resource
allocation amongmultiple dockers,
and establish non-default network
security settings to meet specific
security requirements. Additionally,
you can accurately monitor and
reflect the health of individual
applications.

This feature modifies the
docker-run-opts option command.

Release 24.1.1Customize Docker Run Options
Using Application Manager

With this feature, runtime options for docker containerized applications on IOS-XR can be configured during
launch using the appmgr activate" command. AppMgr, which oversees docker containerized applications,
ensures that these runtime options can effectively override default configurations, covering aspects like CPU,
security, and health checks during the container launch.

This feature introduces multiple runtime options that allow users to customize different parameters of docker
containers. The configuration of these runtime options is flexible, as users can use either command or Netconf
for the configuration process. Regardless of the chosen method, runtime options must be added to
docker-run-opts as needed.

The following are the docker run option commands introduced in IOS-XR software release 24.1.1.

Table 6: Docker Run Options

DescriptionDocker Run Option

Number of CPUs--cpus

CPUs in which to allow execution (0-3, 0,1)--cpuset-cpus

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
68

Hosting Applications on IOS XR
Customize Docker Run Options Using Application Manager

DescriptionDocker Run Option

Drop Linux capabilities--cap-drop

Sets the username or UID--user, -u

Add additional groups to run--group-add

Run to check health--health-cmd

Time between running the check--health-interval

Consecutive failures needed to report unhealthy--health-retries

Start period for the container to initialize before
starting health-retries countdown

--health-start-period

Maximum time to allow one check to run--health-timeout

Disable any container-specified HEALTHCHECK--no-healthcheck

Add a custom host-to-IP mapping (host:ip)--add-host

Set custom DNS servers--dns

Set DNS options--dns-opt

Set custom DNS search domains--dns-search

Container NIS domain name--domainname

Tune host's OOM preferences (-1000 to 1000)--oom-score-adj

Option to set the size of /dev/shm--shm-size

Run an init inside the container that forwards signals
and reaps processes

--init

Set meta data on a container--label, -l

Read in a line delimited file of labels--label-file

Tune container pids limit (set -1 for unlimited)--pids-limit

Working directory inside the container--work-dir

Ulimit options--ulimit

Mount the container's root filesystem as read only--read-only

Mount volumes from the specified container(s)--volumes-from

Signal to stop the container--stop-signal

Timeout (in seconds) to stop a container--stop-timeout

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
69

Hosting Applications on IOS XR
Customize Docker Run Options Using Application Manager

Prior to IOS-XR software release 24.1.1, only the below mentioned docker run option commands were
supported.

Table 7: Docker Run Options

DescriptionDocker Run Option

Publish a container's port(s) to the host--publish

Overwrite the default ENTRYPOINT of the image--entrypoint

Expose a port or a range of ports--expose

Add link to another container--link

Set environment variables--env

Read in a file of environment variables--env-file

Connect a container to a network--network

Container host name--hostname

Keep STDIN open even if not attached--interactive

Allocate a pseudo-TTY--tty

Publish all exposed ports to random ports--publish-all

Bind mount a volume--volume

Attach a filesystem mount to the container--mount

Restart policy to apply when a container exits--restart

Add Linux capabilities--cap-add

Logging driver for the container--log-driver

Log driver options--log-opt

Run container in background and print container ID--detach

Memory limit--memory

Memory soft limit--memory-reservation

CPU shares (relative weight)--cpu-shares

Sysctl options--sysctl

Restrictions and Limitations

• For the options --mount and --volume, only the following values can be configured:

• "/var/run/netns"

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
70

Hosting Applications on IOS XR
Customize Docker Run Options Using Application Manager

• "/var/lib/docker"

• "/misc/disk1"

• "/disk0"

For eXR platforms:

• "/var/run/netns"

• "/misc/app_host"

• "/misc/disk1"

• "/disk0"

• The maximum allowed size for shm-size option is 64 Mb.

Configuration

This section provides the information on how to configure the docker run time options.

In this example we configure the docker run time option --pids-limit to limit the number of process IDs using
appmgr.
Router#appmgr application alpine_app activate type docker source alpine docker-run-opts
"-it –pids-limit 90" docker-run-cmd "sh"
Router#

In this example we configure the docker run time option --pids-limit to limit the number of process IDs using
Netconf.
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>
<target>
<candidate/>

</target>
<config>
<appmgr xmlns=http://cisco.com/ns/yang/Cisco-IOS-XR-um-appmgr-cfg>

<applications>
<application>
<application-name>alpine_app</application-name>
<activate>
<type>docker</type>

<source-name>alpine</source-name>
<docker-run-cmd>/bin/sh</docker-run-cmd>
<docker-run-opts>-it

--pids-limit=90</docker-run-opts>
</activate>

</application>
</applications>

</appmgr>
</config>

</edit-config>

Verification

This example shows how to verify the docker run time option configuration.
Router# show running-config appmgr
Thu Mar 23 08:22:47.014 UTC

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
71

Hosting Applications on IOS XR
Customize Docker Run Options Using Application Manager

appmgr
application alpine_app
activate type docker source alpine docker-run-opts "-it –pids-limit 90" docker-run-cmd

"sh"
!
!

You can also use docker inspect container id to verify the docker run time option configuration.
Router# docker inspect 25f3c30eb424
[

{
"PidsLimit": 90,

}
]

Docker Application Management using IPv6 Address
Table 8: Feature History Table

DescriptionRelease InformationFeature Name

Introduced in this release on: NCS
5500 fixed port routers; NCS 5700
fixed port routers; NCS 5500
modular routers (NCS 5500 line
cards; NCS 5700 line cards [Mode:
Compatibility; Native])

In this release, you gain the ability
to manage Docker applications
within containers using IPv6
addresses via the router's
management interface. Leveraging
IPv6 addresses provides expanded
addressing options, enhances
network scalability, and enables
better segmentation and isolation
of applications within the network.

Prior to this update, only IPv4
addresses could be used to manage
docker applications.

Release 7.11.1Docker Application Management
using IPv6 Address

The ApplicationManager in IOS-XR software release 7.3.15 introduces support for an application networking
feature that facilitates traffic forwarding across Virtual Routing and Forwarding (VRF) instances. This feature
is implemented through the deployment of a relay agent contained within an independent docker container.

The relay agent acts as a bridge, connecting two network namespaces within the host system and actively
transferring traffic between them. Configurations can be made to establish forwarding between either a single
pair of ports or multiple pairs, based on your network requirements.

One of the main uses of this feature is to allow the management of Linux-based Docker applications that are
running in the default VRF through a management interface. This management interface can be located in a

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
72

Hosting Applications on IOS XR
Docker Application Management using IPv6 Address

separate VRF. This feature ensures that Docker applications can be managed seamlessly across different
VRFs.

In the IOS-XR software release 7.11.1, enhancedmanagement capabilities are offered for docker applications.
Now, you can leverage IPv6 addresses to manage applications within docker containers via the management
interface of the Cisco 8000 router. This update provides improved accessibility and control over your Docker
applications using IPv6 addressing. Prior to the IOS-XR software release 7.11.1, application management for
docker containers could only be conducted using IPv4 addresses.

Restrictions and Limitations

In configuring your setup, please consider the following restrictions and limitations:

• VRF Forwarding Limitation: The Virtual Routing and Forwarding (VRF) is only supported for Docker
apps with host networking.

• Relay Agent Availability and Management: The relay agent container is designed to be highly available.
It will be managed by the Application Manager (App Mgr).

• Relay Agent Creation: For each pair of forwarded ports, one relay agent container will be created.

• Port Limitation per Application: The total effective number of ports for each application is limited to
a maximum of 10.

Configure VRF Forwarding
To manage a Docker application using the Application Manager through the Management Interface, follow
these steps:

Step 1 Configure the app manager: The application manager is configured to access the docker application. Use the appmgr
applicationapplication-name keyword to enable and specify configuration parameters for the VRF forwarding. A typical
example would look like this:

Example:
Router#appmgr
Router#application Testapp

The VRF forwarding related run options like --vrf-forward and --vrf-forward-ip-range will not be passed to
the Docker engine when the app container is run.

Note

Step 2 Enable Basic Forwarding Between Two Ports: To enable traffic forwarding between two ports in different VRFs, use
the following configuration:

Example:

Router#activate type docker source swanagent docker-run-opts "--vrf-forward vrf-mgmt:5001
vrf-default:8001 --net=host -it"

This command enables traffic on port 5000 at all addresses in vrf-mgmt to be forwarded to the destination veth device
in vrf-default on port 8000.

To enable VRF forwarding between multiple ports, follow the steps below:

• Enable Forwarding Between a Range of Ports: To enable traffic forwarding between port ranges in different
VRFs, use the following configuration:

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
73

Hosting Applications on IOS XR
Configure VRF Forwarding

Router#--vrf-forward vrf-mgmt:5000-5002 vrf-default:8000-8002

This command enables traffic on ports 5000, 5001, and 5002 at all addresses in vrf-mgmt to be forwarded to the
destination veth device in vrf-default on ports 8000, 8001, and 8002 respectively.

• Enable Forwarding Between Multiple VRF Pairs or Port Ranges: To enable traffic forwarding between multiple
VRF pairs, use multiple --vrf-forward command.
Router#--vrf-forward vrf-mgmt:5000 vrf-default:8000 --vrf-forward vrf-mgmt:5003-5004
vrf-default:8003-8004
Router#--vrf-forward vrf-mgmt1:5000 vrf-default:8000 --vrf-forward vrf-mgmt2:5000 vrf-default:8001

You can provide any number of --vrf-forward options, but the total number of port pairs involved should not exceed
10.

Verifying VRF Forwarding for Application Manager
To verify the VRF forwarding, follow these steps:

SUMMARY STEPS

1. Check the running configuration of the app manager: Use the show running-config appmgr keyword
to verify the VRF forwarding. A typical example would look like this:

DETAILED STEPS

PurposeCommand or Action

Router#show running-config appmgr
Thu Oct 26 12:04:06.063 UTC

Check the running configuration of the app manager:
Use the show running-config appmgr keyword to verify

Step 1

appmgrthe VRF forwarding. A typical example would look like
this:

application swan
activate type docker source swanagent

docker-run-opts "--vrf-forward vrf-management:11111
vrf-default:10000 -it --restart always
--cap-add=SYS_ADMIN --net=host --log-opt
max-size=20m --log-opt max-file=3 -e
HOSTNAME=$HOSTNAME -v /var/run/netns:/var/run/netns
-v
{app_install_root}/config/swanagent:/root/config
-v
{app_install_root}/config/swanagent/hostname:/etc/hostname
-v /var/lib/docker/ems/grpc.sock:/root/grpc.sock"

!
!

In this example, port 11111 is assigned as the management
port and port 10000 is the VRF port in the container.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
74

Hosting Applications on IOS XR
Verifying VRF Forwarding for Application Manager

Using Vagrant for Hosting Applications
You can use vagrant on a host device of your choice, for hosting applications as described in the following
sections.

IOS-XR software version 6.x.x and above is not supported on Vagrant.Note

Pre-requisites for Using Vagrant

Before you can start using vagrant, ensure that you have fulfilled the following requirements on your host
device.

• Latest version of Vagrant for your operating system. We recommend Version 1.8.6.

• Latest version of a virtual box for your operating system. We recommend Version 5.1+.

• Minimum of 5 GB of RAM with two cores.

• (Optional) If you are using the Windows Operating System, we recommend that you download the Git
bash utility for running the commands.

Setting up an Application Development Topology By Using Vagrant
For the sake of illustration, we will use a simple two-node topology, where an instance of Cisco IOS XR
behaves as one node (rtr), and an instance of Ubuntu (hypervisor) behaves as the other (devbox). We will
use the devbox to develop the app topology and deploy it on the rtr.

Figure 9: Application Development Topology

Procedure

To create an application development topology on vagrant, follow these steps.

1. Generate an API key and a CCO ID by using the steps described on Github.

2. Download the latest stable version of the IOS-XRv vagrant box.

$ curl <cco-id>:<API-KEY>

$ BOXURL --output ~/iosxrv-fullk9-x64.box

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
75

Hosting Applications on IOS XR
Using Vagrant for Hosting Applications

https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
https://git-scm.com/download/win
https://git-scm.com/download/win
https://xrdocs.github.io/getting-started/steps-download-iosxr-vagrant

$ vagrant box add --name IOS-XRv ~/iosxrv-fullk9-x64.box

3. Verify if the vagrant box has been successfully installed.

annseque@ANNSEQUE-WS02 MINGW64 ~ vagrant box list
IOS-XRv (virtualbox, 0)

4. Create a working directory.

annseque@ANNSEQUE-WS02 MINGW64 ~ mkdir ~/iosxrv
annseque@ANNSEQUE-WS02 MINGW64 ~ cd ~/iosxrv

5. Initialize the vagrant file with the new vagrant box.
ANNSEQUE-WS02 MINGW64:iosxrv annseque$ vagrant init IOS-XRv
A `Vagrantfile` has been placed in this directory. You are now
ready to `vagrant up` your first virtual environment! Please read
the comments in the Vagrantfile as well as documentation on
`vagrantup.com` for more information on using Vagrant.

6. Clone the vagrant-xrdocs repository.

annseque@ANNSEQUE-WS02 MINGW64 ~
$ git clone https://github.com/ios-xr/vagrant-xrdocs.git

7. Navigate to the vagrant-xrdocs repository and locate the lxc-app-topo-bootstrap directory.

annseque@ANNSEQUE-WS02 MINGW64 ~
$ cd vagrant-xrdocs/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ ls
ansible-tutorials/ native-app-topo-bootstrap/ simple-mixed-topo/
lxc-app-topo-bootstrap/ README.md single_node_bootstrap/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ ls lxc-app-topo-bootstrap/
configs/ scripts/ Vagrantfile

8. (Optional) View the contents of the vagrant file in the lxc-app-topo-bootstrap directory.

The vagrant file (Vagrantfile) contains the two node topology for application development. You can
modify this by using a vi editor, if required.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ cd lxc-app-topo-bootstrap/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ cat Vagrantfile
-*- mode: ruby -*-
vi: set ft=ruby :

All Vagrant configuration is done below. The "2" in Vagrant.configure
configures the configuration version (we support older styles for
backwards compatibility). Please don't change it unless you know what
you're doing.

Vagrant.configure(2) do |config|

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
76

Hosting Applications on IOS XR
Setting up an Application Development Topology By Using Vagrant

config.vm.define "rtr" do |node|
node.vm.box = "IOS-XRv"

gig0/0/0 connected to "link1"
auto_config is not supported for XR, set to false

node.vm.network :private_network, virtualbox__intnet: "link1", auto_config
:

false

#Source a config file and apply it to XR

node.vm.provision "file", source: "configs/rtr_config", destination: "/hom

e/vagrant/rtr_config"

node.vm.provision "shell" do |s|
s.path = "scripts/apply_config.sh"
s.args = ["/home/vagrant/rtr_config"]

end

end

config.vm.define "devbox" do |node|
node.vm.box = "ubuntu/trusty64"

eth1 connected to link1
auto_config is supported for an ubuntu instance

node.vm.network :private_network, virtualbox__intnet: "link1", ip: "11.1.1

.20"

end

end

You have successfully created an application development topology on vagrant. See Deploying an Application
Development Topology by Using Vagrant, on page 77 for information on deploying the topology on vagrant.

Deploying an Application Development Topology by Using Vagrant
This section describes how you can deploy an application development topology on vagrant for creating and
hosting your applications.

Procedure

To deploy an application development topology on vagrant, follow these steps.

Ensure you have created an application development topology as described in Setting up an Application
Development Topology By Using Vagrant, on page 75, before proceeding with the following steps.

Note

1. Ensure you are in the lxc-app-topo-bootstrap directory, and launch the vagrant instance.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
77

Hosting Applications on IOS XR
Deploying an Application Development Topology by Using Vagrant

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant up

Bringing machine 'rtr' up with 'virtualbox' provider...
Bringing machine 'devbox' up with 'virtualbox' provider...
==> rtr: Clearing any previously set forwarded ports...
==> rtr: Clearing any previously set network interfaces...
==> rtr: Preparing network interfaces based on configuration...

rtr: Adapter 1: nat
rtr: Adapter 2: intnet

==> rtr: Forwarding ports...
rtr: 57722 (guest) => 2222 (host) (adapter 1)
rtr: 22 (guest) => 2223 (host) (adapter 1)

==> rtr: Running 'pre-boot' VM customizations...
==> rtr: Booting VM...
==> rtr: Waiting for machine to boot. This may take a few minutes...

rtr: SSH address: 127.0.0.1:2222
rtr: SSH username: vagrant
rtr: SSH auth method: private key
rtr: Warning: Remote connection disconnect. Retrying...
...

==> rtr: Machine booted and ready!
==> rtr: Checking for guest additions in VM...

rtr: No guest additions were detected on the base box for this VM! Guest
rtr: additions are required for forwarded ports, shared folders, host only
rtr: networking, and more. If SSH fails on this machine, please install
rtr: the guest additions and repackage the box to continue.
rtr:
rtr: This is not an error message; everything may continue to work properly,
rtr: in which case you may ignore this message.

==> rtr: Machine already provisioned. Run `vagrant provision` or use the `--provision`
==> rtr: flag to force provisioning. Provisioners marked to run always will still run.
==> devbox: Checking if box 'ubuntu/trusty64' is up to date...
==> devbox: A newer version of the box 'ubuntu/trusty64' is available! You currently
==> devbox: have version '20160801.0.0'. The latest is version '20160826.0.1'. Run
==> devbox: `vagrant box update` to update.
==> devbox: Clearing any previously set forwarded ports...
==> devbox: Fixed port collision for 22 => 2222. Now on port 2200.
==> devbox: Clearing any previously set network interfaces...
==> devbox: Preparing network interfaces based on configuration...

devbox: Adapter 1: nat
devbox: Adapter 2: intnet

==> devbox: Forwarding ports...
devbox: 22 (guest) => 2200 (host) (adapter 1)

==> devbox: Booting VM...
==> devbox: Waiting for machine to boot. This may take a few minutes...

devbox: SSH address: 127.0.0.1:2200
devbox: SSH username: vagrant
devbox: SSH auth method: private key
devbox: Warning: Remote connection disconnect. Retrying...
devbox: Warning: Remote connection disconnect. Retrying...

==> devbox: Machine booted and ready!
==> devbox: Checking for guest additions in VM...

devbox: The guest additions on this VM do not match the installed version of
devbox: VirtualBox! In most cases this is fine, but in rare cases it can
devbox: prevent things such as shared folders from working properly. If you see
devbox: shared folder errors, please make sure the guest additions within the
devbox: virtual machine match the version of VirtualBox you have installed on
devbox: your host and reload your VM.
devbox:
devbox: Guest Additions Version: 4.3.36
devbox: VirtualBox Version: 5.0

==> devbox: Configuring and enabling network interfaces...

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
78

Hosting Applications on IOS XR
Deploying an Application Development Topology by Using Vagrant

==> devbox: Mounting shared folders...
devbox: /vagrant => C:/Users/annseque/vagrant-xrdocs/lxc-app-topo-bootstrap

==> devbox: Machine already provisioned. Run `vagrant provision` or use the `--provision`
==> devbox: flag to force provisioning. Provisioners marked to run always will still
run.

==> rtr: Machine 'rtr' has a post `vagrant up` message. This is a message
==> rtr: from the creator of the Vagrantfile, and not from Vagrant itself:
==> rtr:
==> rtr:
==> rtr: Welcome to the IOS XRv (64-bit) Virtualbox.
==> rtr: To connect to the XR Linux shell, use: 'vagrant ssh'.
==> rtr: To ssh to the XR Console, use: 'vagrant port' (vagrant version > 1.8)
==> rtr: to determine the port that maps to guestport 22,
==> rtr: then: 'ssh vagrant@localhost -p <forwarded port>'
==> rtr:
==> rtr: IMPORTANT: READ CAREFULLY
==> rtr: The Software is subject to and governed by the terms and conditions
==> rtr: of the End User License Agreement and the Supplemental End User
==> rtr: License Agreement accompanying the product, made available at the
==> rtr: time of your order, or posted on the Cisco website at
==> rtr: www.cisco.com/go/terms (collectively, the 'Agreement').
==> rtr: As set forth more fully in the Agreement, use of the Software is
==> rtr: strictly limited to internal use in a non-production environment
==> rtr: solely for demonstration and evaluation purposes. Downloading,
==> rtr: installing, or using the Software constitutes acceptance of the
==> rtr: Agreement, and you are binding yourself and the business entity
==> rtr: that you represent to the Agreement. If you do not agree to all
==> rtr: of the terms of the Agreement, then Cisco is unwilling to license
==> rtr: the Software to you and (a) you may not download, install or use the
==> rtr: Software, and (b) you may return the Software as more fully set forth
==> rtr: in the Agreement.

You have successfully deployed the two nodes, rtr and devbox on your host machine.

2. To access the XR router console, check the port number that maps to the guest port number 22.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant port rtr
The forwarded ports for the machine are listed below. Please note that
these values may differ from values configured in the Vagrantfile if the
provider supports automatic port collision detection and resolution.

22 (guest) => 2223 (host)
57722 (guest) => 2222 (host)

You need to use port number 2223 to SSH to the rtr node (XR).
3. Access the XR router console (rtr console) through SSH.

The password for vagrant@localhost is vagrant.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ ssh -p 2223 vagrant@localhost
vagrant@localhost's password:

RP/0/RP0/CPU0:ios#

You are at the XR router console, or the console of the rtr node in this example.
4. Check the GigE interface IP address of the rtr.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
79

Hosting Applications on IOS XR
Deploying an Application Development Topology by Using Vagrant

You will need the GigE interface IP address to access the rtr console from the devbox console at a later
stage.

RP/0/RP0/CPU0:ios# show ipv4 interface gigabitEthernet 0/0/0/0 brief
Wed Aug 31 04:00:48.006 UTC

Interface IP-Address Status Protocol
GigabitEthernet0/0/0/0 11.1.1.10 Up Up

To access the XR Linux shell from the rtr console, use the run command.

RP/0/RP0/CPU0:ios# run
Wed Aug 31 04:01:45.119 UTC

[xr-vm_node0_RP0_CPU0:~]$

Note

5. Exit the rtr console, and access the devbox console through SSH.

RP/0/RP0/CPU0:ios# exit
Connection to localhost closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant ssh devbox

Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 3.13.0-87-generic x86_64)

* Documentation: https://help.ubuntu.com/

System information disabled due to load higher than 1.0

Get cloud support with Ubuntu Advantage Cloud Guest:
http://www.ubuntu.com/business/services/cloud

25 packages can be updated.
12 updates are security updates.

vagrant@vagrant-ubuntu-trusty-64:~$

6. Verify if you can access the rtr console from the devbox console, by pinging the GigE interface of the
rtr.

Use the GigE interface IP address you retrieved in Step 12.

vagrant@vagrant-ubuntu-trusty-64:~$ ping 11.1.1.10 -c 2
PING 11.1.1.10 (11.1.1.10) 56(84) bytes of data.
64 bytes from 11.1.1.10: icmp_seq=1 ttl=255 time=40.2 ms
64 bytes from 11.1.1.10: icmp_seq=2 ttl=255 time=6.67 ms

--- 11.1.1.10 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1002ms
rtt min/avg/max/mdev = 6.670/23.457/40.245/16.788 ms
vagrant@vagrant-ubuntu-trusty-64:~$

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
80

Hosting Applications on IOS XR
Deploying an Application Development Topology by Using Vagrant

To access the XR Linux console, exit the devbox console and run the vagrant ssh rtr command from the
lxc-app-topo-bootstrap directory.

vagrant@vagrant-ubuntu-trusty-64:~$ exit
logout
Connection to 127.0.0.1 closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant ssh rtr
Last login: Thu Jul 21 05:51:28 2016 from 10.0.2.2
xr-vm_node0_RP0_CPU0:~$

Note

You have successfully deployed an application development topology on your host device.

Hosting a Wind River Linux (WRL7) Application Natively By Using Vagrant
This section describes how you can host a Wind river Linux (WRL7) application natively by using vagrant.

Native Application Hosting Topology

For the sake of illustration, we will use the three vagrant instance topology as shown in the following figure.

Figure 10: Native Application Hosting Topology on a Vagrant Box

Procedure

Use the following steps to host an application natively on IOS XR.

Ensure you have created an application development topology as described in Setting up an Application
Development Topology By Using Vagrant, on page 75, before proceeding with the following steps.

Note

1. Verify if you have the IOS-XRv and the ciscoxr/appdev-xr6.1.1 vagrant boxes installed on your
machine.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
81

Hosting Applications on IOS XR
Hosting a Wind River Linux (WRL7) Application Natively By Using Vagrant

annseque@ANNSEQUE-WS02 MINGW64 ~
$ vagrant box list
IOS-XRv (virtualbox, 0)
ciscoxr/appdev-xr6.1.1 (virtualbox, 1.0)
ubuntu/trusty64 (virtualbox, 20160602.0.0)

2. Clone the vagrant-xrdocs repository.
annseque@ANNSEQUE-WS02 MINGW64 ~
$ git clone https://github.com/ios-xr/vagrant-xrdocs.git

3. Navigate to the vagrant-xrdocs/native-app-topo-bootstrap directory and launch the vagrant instance.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ cd native-app-topo-bootstrap/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ vagrant up

Bringing machine 'rtr' up with 'virtualbox' provider...
Bringing machine 'devbox' up with 'virtualbox' provider...
Bringing machine 'wrl7_build' up with 'virtualbox' provider...
==> rtr: Clearing any previously set forwarded ports...
==> rtr: Clearing any previously set network interfaces...
==> rtr: Preparing network interfaces based on configuration...

rtr: Adapter 1: nat
rtr: Adapter 2: intnet

==> rtr: Forwarding ports...
rtr: 57722 (guest) => 2222 (host) (adapter 1)
rtr: 22 (guest) => 2223 (host) (adapter 1)

==> rtr: Running 'pre-boot' VM customizations...
==> rtr: Booting VM...
==> rtr: Waiting for machine to boot. This may take a few minutes...

rtr: SSH address: 127.0.0.1:2222
rtr: SSH username: vagrant
rtr: SSH auth method: private key
rtr: Warning: Remote connection disconnect. Retrying...

...
==> rtr: Machine booted and ready!
==> rtr: Checking for guest additions in VM...

rtr: No guest additions were detected on the base box for this VM! Guest
rtr: additions are required for forwarded ports, shared folders, host only
rtr: networking, and more. If SSH fails on this machine, please install
rtr: the guest additions and repackage the box to continue.
rtr:
rtr: This is not an error message; everything may continue to work properly,
rtr: in which case you may ignore this message.

==> rtr: Machine already provisioned. Run `vagrant provision` or use the `--provision`
==> rtr: flag to force provisioning. Provisioners marked to run always will still run.
==> devbox: Checking if box 'ubuntu/trusty64' is up to date...
==> devbox: A newer version of the box 'ubuntu/trusty64' is available! You currently
==> devbox: have version '20160801.0.0'. The latest is version '20160907.0.0'. Run
==> devbox: `vagrant box update` to update.
==> devbox: Clearing any previously set forwarded ports...
==> devbox: Fixed port collision for 22 => 2222. Now on port 2200.
==> devbox: Clearing any previously set network interfaces...
==> devbox: Preparing network interfaces based on configuration...

devbox: Adapter 1: nat
devbox: Adapter 2: intnet

==> devbox: Forwarding ports...
devbox: 22 (guest) => 2200 (host) (adapter 1)

==> devbox: Booting VM...
==> devbox: Waiting for machine to boot. This may take a few minutes...

devbox: SSH address: 127.0.0.1:2200

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
82

Hosting Applications on IOS XR
Hosting a Wind River Linux (WRL7) Application Natively By Using Vagrant

devbox: SSH username: vagrant
devbox: SSH auth method: private key
devbox: Warning: Remote connection disconnect. Retrying...
devbox: Warning: Remote connection disconnect. Retrying...

==> devbox: Machine booted and ready!
...
==> wrl7_build: Checking if box 'ciscoxr/appdev-xr6.1.1' is up to date...
==> wrl7_build: Clearing any previously set forwarded ports...
==> wrl7_build: Fixed port collision for 22 => 2222. Now on port 2201.
==> wrl7_build: Clearing any previously set network interfaces...
==> wrl7_build: Preparing network interfaces based on configuration...

wrl7_build: Adapter 1: nat
==> wrl7_build: Forwarding ports...

wrl7_build: 22 (guest) => 2201 (host) (adapter 1)
==> wrl7_build: Booting VM...
==> wrl7_build: Waiting for machine to boot. This may take a few minutes...

wrl7_build: SSH address: 127.0.0.1:2201
wrl7_build: SSH username: vagrant
wrl7_build: SSH auth method: private key
wrl7_build: Warning: Remote connection disconnect. Retrying...

...
==> wrl7_build: Welcome to the IOS XR Application Development (AppDev) VM that provides
a WRL7 based native environment to build appli

cations for IOS XR (Release
6.1.1) platforms.

4. Verify if the WRL7 build instance has launched.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ vagrant status
Current machine states:

rtr running (virtualbox)
devbox running (virtualbox)
wrl7_build running (virtualbox)
...

5. Access the WRL7 build instance through SSH, and retrieve the source code of the application you want
to host natively.

In this example, we fetch the source code for the iPerf application.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ vagrant ssh wrl7_build

localhost:~$ wget https://iperf.fr/download/source/iperf-2.0.9-source.tar.gz
--2016-09-13 01:54:58-- https://iperf.fr/download/source/iperf-2.0.9-source.tar.gz
Resolving iperf.fr... 194.158.119.186, 2001:860:f70a::2
Connecting to iperf.fr|194.158.119.186|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 277702 (271K) [application/x-gzip]
Saving to: 'iperf-2.0.9-source.tar.gz'

100%[===>] 277,702
153KB/s in 1.8s

2016-09-13 01:55:01 (153 KB/s) - 'iperf-2.0.9-source.tar.gz' saved [277702/277702]

localhost:~$ ls
iperf-2.0.9-source.tar.gz

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
83

Hosting Applications on IOS XR
Hosting a Wind River Linux (WRL7) Application Natively By Using Vagrant

localhost:~$

6. Copy the source code tar ball to the /usr/src/rpm/SOURCES/ build location.
localhost:~$ sudo cp /home/vagrant/iperf-2.0.9-source.tar.gz /usr/src/rpm/SOURCES/

7. Retrieve the XML spec file (iperf.spec) for building the RPM.
localhost:~$ wget http://10.30.110.214/iperf.spec
--2016-09-13 01:58:44-- http://10.30.110.214/iperf.spec
Connecting to 10.30.110.214:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 609
Saving to: 'iperf.spec'

100%[===>] 609 --.-K/s
in 0s

2016-09-13 01:58:45 (38.2 MB/s) - 'iperf.spec' saved [609/609]

--
localhost:~$ ls
iperf-2.0.9-source.tar.gz iperf.spec

8. Build the RPM by using the retrieved spec file.
localhost:~$ sudo rpmbuild -ba iperf.spec
Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.59743
+ umask 022
+ cd /usr/lib64/rpm/../../src/rpm/BUILD
+ cd /usr/src/rpm/BUILD
+ rm -rf iperf-2.0.9
+ /bin/tar -xf -
...
Requires: libc.so.6()(64bit) libc.so.6(GLIBC_2.14)(64bit) libc.so.6(GLIBC_2.2.5)(64bit)

libc.so.6(GLIBC_2.3)(64bit) libc.so.6(GLIBC_2.7)(64bit)
libgcc_s.so.1()(64bit) libgcc_s.so.1(GCC_3.0)(64bit) libm.so.6()
(64bit) libm.so.6(GLIBC_2.2.5)(64bit) libpthread.so.0()(64bit)
libpthread.so.0(GLIBC_2.2.5)(64bit) libpthread.so.0(GLIBC_2.3.2)(64bit)
librt.so.1()(64bit) librt.so.1(GLIBC_2.2.5)(64bit) libstdc++.so.6()(64bit)
libstdc++.so.6(CXXABI_1.3)(64bit) libstdc++.so.6(GLIBCXX_3.4)(64bit) rtld(GNU_HASH)
Checking for unpackaged file(s): /usr/lib64/rpm/check-files
/usr/lib64/rpm/../../../var/tmp/iperf-root
Wrote: /usr/src/rpm/SRPMS/iperf-2.0.9-XR_6.1.1.src.rpm
Wrote: /usr/src/rpm/RPMS/x86_64/iperf-2.0.9-XR_6.1.1.x86_64.rpm
...

localhost:~$ ls -l /usr/src/rpm/RPMS/x86_64/
total 48
-rw-r--r-- 1 root root 48118 Sep 13 02:03 iperf-2.0.9-XR_6.1.1.x86_64.rpm

9. Transfer the RPM file to XR.

a. Note down the port number on XR for transferring the RPM file.
localhost:~$ exit
logout
Connection to 127.0.0.1 closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ vagrant port rtr
The forwarded ports for the machine are listed below. Please note that
these values may differ from values configured in the Vagrantfile if the

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
84

Hosting Applications on IOS XR
Hosting a Wind River Linux (WRL7) Application Natively By Using Vagrant

provider supports automatic port collision detection and resolution.

22 (guest) => 2223 (host)
57722 (guest) => 2222 (host)

b. Access the WRL7 build instance, and copy the RPM file by using the SCP command with the port
number of XR.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ vagrant ssh wrl7_build
Last login: Tue Sep 13 01:49:37 2016 from 10.0.2.2

localhost:~$ scp -P 2222 /usr/src/rpm/RPMS/x86_64/iperf-2.0.9-XR_6.1.1.x86_64.rpm
vagrant@10.0.2.2:/home/vagrant/
vagrant@10.0.2.2's password:
iperf-2.0.9-XR_6.1.1.x86_64.rpm

10. Install the application (iPerf) on XR.

a. Access XR through SSH.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ vagrant ssh rtr
Last login: Fri Sep 9 19:20:56 2016 from 10.0.2.2
xr-vm_node0_RP0_CPU0:~$

b. Verify the presence of the RPM file on XR.
xr-vm_node0_RP0_CPU0:~$ ls -l iperf-2.0.9-XR_6.1.1.x86_64.rpm
-rw-r--r-- 1 vagrant vagrant 48118 Sep 13 06:33 iperf-2.0.9-XR_6.1.1.x86_64.rpm

c. Install iPerf by using yum.
xr-vm_node0_RP0_CPU0:~$ sudo yum install -y iperf-2.0.9-XR_6.1.1.x86_64.rpm
Loaded plugins: downloadonly, protect-packages, rpm-persistence
Setting up Install Process
Examining iperf-2.0.9-XR_6.1.1.x86_64.rpm: iperf-2.0.9-XR_6.1.1.x86_64
Marking iperf-2.0.9-XR_6.1.1.x86_64.rpm to be installed
Resolving Dependencies
--> Running transaction check
---> Package iperf.x86_64 0:2.0.9-XR_6.1.1 will be installed
--> Finished Dependency Resolution

...

Total size: 103 k
Installed size: 103 k
Downloading Packages:
Running Transaction Check
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : iperf-2.0.9-XR_6.1.1.x86_64

Installed:
iperf.x86_64 0:2.0.9-XR_6.1.1

Complete!
xr-vm_node0_RP0_CPU0:~$

d. Verify iPerf installation.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
85

Hosting Applications on IOS XR
Hosting a Wind River Linux (WRL7) Application Natively By Using Vagrant

xr-vm_node0_RP0_CPU0:~$ iperf -v
iperf version 2.0.9 (1 June 2016) pthreads

11. Test the natively installed application (iPerf) on XR.

a. Access the XR router console and configure the Third-party Application (TPA) access for outside
networks.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ ssh -p 2223 vagrant@localhost
vagrant@localhost's password:

RP/0/RP0/CPU0:ios# config
Tue Sep 13 06:46:56.368 UTC
RP/0/RP0/CPU0:ios(config)# tpa address-family ipv4 update-source loopback 0
RP/0/RP0/CPU0:ios(config)# commit
Tue Sep 13 06:47:04.642 UTC
RP/0/RP0/CPU0:ios(config)# end
RP/0/RP0/CPU0:ios# bash -c ip route
Tue Sep 13 06:47:43.792 UTC
default dev fwdintf scope link src 1.1.1.1
10.0.2.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 10.0.2.15

b. Exit the XR router console, and launch the iPerf server on XR.
RP/0/RP0/CPU0:ios# exit
Connection to localhost closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ vagrant ssh rtr
Last login: Tue Sep 13 06:44:53 2016 from 10.0.2.2

xr-vm_node0_RP0_CPU0:~$ iperf -s -u
--
Server listening on UDP port 5001
Receiving 1470 byte datagrams
UDP buffer size: 64.0 MByte (default)
--

12. Install the iPerf (client) on devbox.

a. Access devbox through SSH.

xr-vm_node0_RP0_CPU0:~$ exit
logout
Connection to 127.0.0.1 closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ vagrant ssh devbox
Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.13.0-92-generic x86_64)
...

13. Install iPerf application.
vagrant@vagrant-ubuntu-trusty-64:~$ sudo apt-get -y install iperf
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
86

Hosting Applications on IOS XR
Hosting a Wind River Linux (WRL7) Application Natively By Using Vagrant

iperf
...

14. Test the iPerf application on devbox.

a. Configure TPA route to XR from devbox.
vagrant@vagrant-ubuntu-trusty-64:~$ sudo ip route add 1.1.1.1/32 via 11.1.1.10
vagrant@vagrant-ubuntu-trusty-64:~$ ping 1.1.1.1
PING 1.1.1.1 (1.1.1.1) 56(84) bytes of data.
64 bytes from 1.1.1.1: icmp_seq=1 ttl=255 time=15.1 ms
64 bytes from 1.1.1.1: icmp_seq=2 ttl=255 time=3.81 ms
^C
--- 1.1.1.1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1002ms
rtt min/avg/max/mdev = 3.817/9.480/15.143/5.663 ms

b. Test if the iPerf client on devbox can communicate with the iPerf server on XR.
vagrant@vagrant-ubuntu-trusty-64:~$ iperf -c 1.1.1.1 -u
--
Client connecting to 1.1.1.1, UDP port 5001
Sending 1470 byte datagrams
UDP buffer size: 208 KByte (default)
--
[3] local 11.1.1.20 port 34348 connected with 1.1.1.1 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec
[3] Sent 893 datagrams
[3] Server Report:
[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec 0.256 ms 0/ 893 (0%)

You have successfully built an application RPM and hosted it natively by using vagrant.

Hosting an Application within a Linux Container (LXC) by Using Vagrant
This section describes how you can host an application within your own Linux container (LXC) by using
vagrant.

Workflow for Deploying Your LXC Container

The workflow for launching your container on IOS XR is described in this section and illustrated in the
following topology.

Figure 11: LXC Container Deployment Workflow

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
87

Hosting Applications on IOS XR
Hosting an Application within a Linux Container (LXC) by Using Vagrant

1. Build the container rootfs tar ball on devbox.

2. Transfer the rootfs tar ball to IOS XR (rtr).

3. Launch the rootfs by running the virsh command.

Procedure

To host your application within your own container, use the following steps.

Ensure you have created an application development topology as described in Setting up an Application
Development Topology By Using Vagrant, on page 75, before proceeding with the following steps.

Note

1. Navigate to the lxc-app-topo-bootstrap directory and ensure the vagrant instance is running. If not,
launch the vagrant instance.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant status
Current machine states:

rtr aborted (virtualbox)
devbox aborted (virtualbox)

This environment represents multiple VMs. The VMs are all listed
above with their current state. For more information about a specific
VM, run `vagrant status NAME`.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant up
Bringing machine 'rtr' up with 'virtualbox' provider...
Bringing machine 'devbox' up with 'virtualbox' provider...
==> rtr: Clearing any previously set forwarded ports...
==> rtr: Clearing any previously set network interfaces...
==> rtr: Preparing network interfaces based on configuration...

rtr: Adapter 1: nat
rtr: Adapter 2: intnet

==> rtr: Forwarding ports...
rtr: 57722 (guest) => 2222 (host) (adapter 1)
rtr: 22 (guest) => 2223 (host) (adapter 1)

==> rtr: Running 'pre-boot' VM customizations...
==> rtr: Booting VM...
==> rtr: Waiting for machine to boot. This may take a few minutes...

rtr: SSH address: 127.0.0.1:2222
rtr: SSH username: vagrant
rtr: SSH auth method: private key
rtr: Warning: Remote connection disconnect. Retrying...
...

==> rtr: Machine booted and ready!
...
==> rtr: Machine already provisioned. Run `vagrant provision` or use the `--provision`
==> rtr: flag to force provisioning. Provisioners marked to run always will still run.
==> devbox: Checking if box 'ubuntu/trusty64' is up to date...
==> devbox: A newer version of the box 'ubuntu/trusty64' is available! You currently
==> devbox: have version '20160801.0.0'. The latest is version '20160826.0.1'. Run
==> devbox: `vagrant box update` to update.
==> devbox: Clearing any previously set forwarded ports...
==> devbox: Fixed port collision for 22 => 2222. Now on port 2200.
==> devbox: Clearing any previously set network interfaces...
==> devbox: Preparing network interfaces based on configuration...

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
88

Hosting Applications on IOS XR
Hosting an Application within a Linux Container (LXC) by Using Vagrant

devbox: Adapter 1: nat
devbox: Adapter 2: intnet

==> devbox: Forwarding ports...
devbox: 22 (guest) => 2200 (host) (adapter 1)

==> devbox: Booting VM...
==> devbox: Waiting for machine to boot. This may take a few minutes...

devbox: SSH address: 127.0.0.1:2200
devbox: SSH username: vagrant
devbox: SSH auth method: private key
devbox: Warning: Remote connection disconnect. Retrying...
devbox: Warning: Remote connection disconnect. Retrying...

==> devbox: Machine booted and ready!
...

devbox: Guest Additions Version: 4.3.36
devbox: VirtualBox Version: 5.0

==> devbox: Configuring and enabling network interfaces...
==> devbox: Mounting shared folders...

devbox: /vagrant => C:/Users/annseque/vagrant-xrdocs/lxc-app-topo-bootstrap
==> devbox: Machine already provisioned. Run `vagrant provision` or use the `--provision`
==> devbox: flag to force provisioning. Provisioners marked to run always will still
run.

==> rtr: Machine 'rtr' has a post `vagrant up` message. This is a message
==> rtr: from the creator of the Vagrantfile, and not from Vagrant itself:
==> rtr:
==> rtr:
==> rtr: Welcome to the IOS XRv (64-bit) Virtualbox.
==> rtr: To connect to the XR Linux shell, use: 'vagrant ssh'.
==> rtr: To ssh to the XR Console, use: 'vagrant port' (vagrant version > 1.8)
==> rtr: to determine the port that maps to guestport 22,
==> rtr: then: 'ssh vagrant@localhost -p <forwarded port>'
...
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant status
Current machine states:

rtr running (virtualbox)
devbox running (virtualbox)

This environment represents multiple VMs. The VMs are all listed
above with their current state. For more information about a specific
VM, run `vagrant status NAME`.

2. Access the devbox through SSH and install LXC tools.

To launch an LXC container, you need the following, which can be obtained by installing LXC tools:

• A container rootfs tar ball

• An XML file to launch the container using virsh/libvirt

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant ssh devbox
Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 3.13.0-87-generic x86_64)

* Documentation: https://help.ubuntu.com/

System information as of Thu Sep 1 03:55:29 UTC 2016

System load: 0.99 Processes: 94
Usage of /: 3.9% of 39.34GB Users logged in: 0
Memory usage: 14% IP address for eth0: 10.0.2.15
Swap usage: 0% IP address for eth1: 11.1.1.20

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
89

Hosting Applications on IOS XR
Hosting an Application within a Linux Container (LXC) by Using Vagrant

Graph this data and manage this system at:
https://landscape.canonical.com/

Get cloud support with Ubuntu Advantage Cloud Guest:
http://www.ubuntu.com/business/services/cloud

25 packages can be updated.
12 updates are security updates.

New release '16.04.1 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

--
Last login: Wed Aug 31 04:02:20 2016 from 10.0.2.2
vagrant@vagrant-ubuntu-trusty-64:~$ sudo apt-get update
Ign http://archive.ubuntu.com trusty InRelease
Get:1 http://security.ubuntu.com trusty-security InRelease [65.9 kB]
...
Get:33 http://archive.ubuntu.com trusty-backports/universe Translation-en [36.8 kB]
Hit http://archive.ubuntu.com trusty Release
...
Hit http://archive.ubuntu.com trusty/universe Translation-en
Ign http://archive.ubuntu.com trusty/main Translation-en_US
Ign http://archive.ubuntu.com trusty/multiverse Translation-en_US
Ign http://archive.ubuntu.com trusty/restricted Translation-en_US
Ign http://archive.ubuntu.com trusty/universe Translation-en_US
Fetched 4,022 kB in 16s (246 kB/s)
Reading package lists... Done

--
vagrant@vagrant-ubuntu-trusty-64:~$ sudo apt-get -y install lxc
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
bridge-utils cgmanager cloud-image-utils debootstrap dnsmasq-base euca2ools
genisoimage libaio1 libboost-system1.54.0 libboost-thread1.54.0 liblxc1
libmnl0 libnetfilter-conntrack3 libnspr4 libnss3 libnss3-nssdb librados2
librbd1 libseccomp2 libxslt1.1 lxc-templates python-distro-info python-lxml
python-requestbuilder python-setuptools python3-lxc qemu-utils sharutils
uidmap

Suggested packages:
cgmanager-utils wodim cdrkit-doc btrfs-tools lvm2 lxctl qemu-user-static
python-lxml-dbg bsd-mailx mailx

The following NEW packages will be installed:
bridge-utils cgmanager cloud-image-utils debootstrap dnsmasq-base euca2ools
genisoimage libaio1 libboost-system1.54.0 libboost-thread1.54.0 liblxc1
libmnl0 libnetfilter-conntrack3 libnspr4 libnss3 libnss3-nssdb librados2
librbd1 libseccomp2 libxslt1.1 lxc lxc-templates python-distro-info
python-lxml python-requestbuilder python-setuptools python3-lxc qemu-utils
sharutils uidmap

0 upgraded, 30 newly installed, 0 to remove and 52 not upgraded.
Need to get 6,469 kB of archives.
After this operation, 25.5 MB of additional disk space will be used.
Get:1 http://archive.ubuntu.com/ubuntu/ trusty/main libaio1 amd64 0.3.109-4 [6,364 B]
...
Get:30 http://archive.ubuntu.com/ubuntu/ trusty-updates/main debootstrap all
1.0.59ubuntu0.5 [29.6 kB]
Fetched 6,469 kB in 22s (289 kB/s)
Selecting previously unselected package libaio1:amd64.
(Reading database ... 62989 files and directories currently installed.)
Preparing to unpack .../libaio1_0.3.109-4_amd64.deb ...
...

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
90

Hosting Applications on IOS XR
Hosting an Application within a Linux Container (LXC) by Using Vagrant

Setting up lxc (1.0.8-0ubuntu0.3) ...
lxc start/running
Setting up lxc dnsmasq configuration.
Processing triggers for ureadahead (0.100.0-16) ...
Setting up lxc-templates (1.0.8-0ubuntu0.3) ...
Setting up libnss3-nssdb (2:3.23-0ubuntu0.14.04.1) ...
Setting up libnss3:amd64 (2:3.23-0ubuntu0.14.04.1) ...
Setting up librados2 (0.80.11-0ubuntu1.14.04.1) ...
Setting up librbd1 (0.80.11-0ubuntu1.14.04.1) ...
Setting up qemu-utils (2.0.0+dfsg-2ubuntu1.27) ...
Setting up cloud-image-utils (0.27-0ubuntu9.2) ...
Processing triggers for libc-bin (2.19-0ubuntu6.9) ...

3. Verify that the LXC was properly installed.
vagrant@vagrant-ubuntu-trusty-64:~$ sudo lxc-start --version
1.0.8

4. Create the LXC container with a standard Ubuntu base template and launch it in devbox.
vagrant@vagrant-ubuntu-trusty-64:~$ sudo lxc-create -t ubuntu --name xr-lxc-app
Checking cache download in /var/cache/lxc/trusty/rootfs-amd64 ...
Installing packages in template: ssh,vim,language-pack-en
Downloading ubuntu trusty minimal ...
I: Retrieving Release
I: Retrieving Release.gpg
...
Generation complete.
Setting up perl-modules (5.18.2-2ubuntu1.1) ...
Setting up perl (5.18.2-2ubuntu1.1) ...
Processing triggers for libc-bin (2.19-0ubuntu6.9) ...
Processing triggers for initramfs-tools (0.103ubuntu4.4) ...
Download complete
Copy /var/cache/lxc/trusty/rootfs-amd64 to /var/lib/lxc/xr-lxc-app/rootfs ...
Copying rootfs to /var/lib/lxc/xr-lxc-app/rootfs ...
Generating locales...
en_US.UTF-8... up-to-date

Generation complete.
Creating SSH2 RSA key; this may take some time ...
Creating SSH2 DSA key; this may take some time ...
Creating SSH2 ECDSA key; this may take some time ...
Creating SSH2 ED25519 key; this may take some time ...
update-rc.d: warning: default stop runlevel arguments (0 1 6) do not match ssh
Default-Stop values (none)
invoke-rc.d: policy-rc.d denied execution of start.

Current default time zone: 'Etc/UTC'
Local time is now: Thu Sep 1 04:46:22 UTC 2016.
Universal Time is now: Thu Sep 1 04:46:22 UTC 2016.

##
The default user is 'ubuntu' with password 'ubuntu'!
Use the 'sudo' command to run tasks as root in the container.
##

5. Verify if the LXC container has been successfully created.

vagrant@vagrant-ubuntu-trusty-64:~$ sudo lxc-ls --fancy
NAME STATE IPV4 IPV6 AUTOSTART

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
91

Hosting Applications on IOS XR
Hosting an Application within a Linux Container (LXC) by Using Vagrant

--
xr-lxc-app STOPPED - - NO

6. Start the LXC container.

You will be prompted to log into the LXC container. The login credentials are ubuntu/ubuntu.
vagrant@vagrant-ubuntu-trusty-64:~$ sudo lxc-start --name xr-lxc-app
<4>init: plymouth-upstart-bridge main process (5) terminated with status 1
...

xr-lxc-app login: ubuntu
Password:
Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.13.0-87-generic x86_64)

* Documentation: https://help.ubuntu.com/

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

ubuntu@xr-lxc-app:~$

7. Install your application within the LXC container.

For the sake of illustration, in this example we will install the iPerf application.

ubuntu@xr-lxc-app:~$ sudo apt-get -y install iperf
[sudo] password for ubuntu:
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
iperf

0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded.
Need to get 56.3 kB of archives.
After this operation, 174 kB of additional disk space will be used.
Get:1 http://archive.ubuntu.com/ubuntu/ trusty/universe iperf amd64 2.0.5-3 [56.3 kB]
Fetched 56.3 kB in 16s (3,460 B/s)
Selecting previously unselected package iperf.
(Reading database ... 14648 files and directories currently installed.)
Preparing to unpack .../iperf_2.0.5-3_amd64.deb ...
Unpacking iperf (2.0.5-3) ...
Setting up iperf (2.0.5-3) ...
ubuntu@xr-lxc-app:~$

8. Change the SSH port inside the container and verify that it has been correctly assigned.

When you deploy your container to IOS XR, it shares the network namespace with XR. Since IOS XR
already uses Ports 22 and 57722 for other purposes, you must pick some other port number for your
container.

ubuntu@xr-lxc-app:~$ sudo sed -i s/Port\ 22/Port\ 58822/ /etc/ssh/sshd_config
[sudo] password for ubuntu:

ubuntu@xr-lxc-app:~$ cat /etc/ssh/sshd_config | grep Port
Port 58822
ubuntu@xr-lxc-app:~$

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
92

Hosting Applications on IOS XR
Hosting an Application within a Linux Container (LXC) by Using Vagrant

9. Shut the container down.
ubuntu@xr-lxc-app:~$ sudo shutdown -h now
ubuntu@xr-lxc-app:~$
Broadcast message from ubuntu@xr-lxc-app

(/dev/lxc/console) at 5:17 ...

The system is going down for halt NOW!
<4>init: tty4 main process (369) killed by TERM signal
...
wait-for-state stop/waiting
* Asking all remaining processes to terminate...
...done.

* All processes ended within 1 seconds...
...done.

* Deactivating swap...
...done.

mount: cannot mount block device /dev/sda1 read-only
* Will now halt

10. Assume the root user role.

vagrant@vagrant-ubuntu-trusty-64:~$ sudo -s
root@vagrant-ubuntu-trusty-64:~# whoami
root

11. Navigate to the /var/lib/lxc/xr-lxc-app/ directory and package the rootfs into a tar ball.

root@vagrant-ubuntu-trusty-64:~# cd /var/lib/lxc/xr-lxc-app/
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app# ls
config fstab rootfs
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app# cd rootfs
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app/rootfs# tar -czvf
xr-lxc-app-rootfs.tar.gz *
tar: dev/log: socket ignored
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app/rootfs#

12. Transfer the rootfs tar ball to the home directory (~/ or /home/vagrant) and verify if the transfer is
successful.

root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app/rootfs# mv *.tar.gz /home/vagrant
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app/rootfs# ls -l /home/vagrant
total 120516
-rw-r--r-- 1 root root 123404860 Sep 1 05:22 xr-lxc-app-rootfs.tar.gz
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app/rootfs#

13. Create an LXC spec XML file for specifying attributes required to launch the LXC container with the
application.

You must navigate to the /home/vagrant directory on devbox and use a vi editor to create the XML
file. Save the file as xr-lxc-app.xml.

A sample LXC spec file to launch the application within the container is as shown.

root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app/rootfs# exit
exit
vagrant@vagrant-ubuntu-trusty-64:~$ pwd
/home/vagrant
vagrant@vagrant-ubuntu-trusty-64:~$ vi xr-lxc-app.xml

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
93

Hosting Applications on IOS XR
Hosting an Application within a Linux Container (LXC) by Using Vagrant

<domain type='lxc' xmlns:lxc='http://libvirt.org/schemas/domain/lxc/1.0' >
<name>xr-lxc-app</name>
<memory>327680</memory>
<os>
<type>exe</type>
<init>/sbin/init</init>
</os>
<lxc:namespace>
<sharenet type='netns' value='global-vrf'/>
</lxc:namespace>
<vcpu>1</vcpu>
<clock offset='utc'/>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>destroy</on_crash>
<devices>
<emulator>/usr/lib64/libvirt/libvirt_lxc</emulator>
<filesystem type='mount'>
<source dir='/misc/app_host/xr-lxc-app/'/>
<target dir='/'/>
</filesystem>
<console type='pty'/>
</devices>
</domain>

In IOS-XR the global-vrf network namespace contains all the XR GigE or management interfaces.
The sharenet configuration in the XML file ensures that the container on being launched has native
access to all XR interfaces.

/misc/app_host/ on IOS XR is a special mount volume that is designed to provide nearly 3.9GB of
disk space. This mount volume can be used to host custom container rootfs and other large files without
occupying disk space on XR. In this example, we expect to untar the rootfs to the
/misc/app_host/xr-lxc-app/ directory.

14. Verify if the rootfs tar ball and the LXC XML spec file are present in the home directory.

root@vagrant-ubuntu-trusty-64:~# pwd
/home/vagrant
root@vagrant-ubuntu-trusty-64:~# ls -l
total 119988
-rw-r--r-- 1 root root 122863332 Jun 16 19:41 xr-lxc-app-rootfs.tar.gz
-rw-r--r-- 1 root root 590 Jun 16 23:29 xr-lxc-app.xml
root@vagrant-ubuntu-trusty-64:~#

15. Transfer the rootfs tar ball and XML spec file to XR.

There are two ways of transferring the files: Through the GigE interface (a little slower) or the
management interface. You can use the method that works best for you.

• Transfer Through the Management Interface of XR:

a. Check the port number that maps to the management port on XR.

Vagrant forwards the port number 57722 to a host port for XR over the management port. In
a virtual box, the IP address of the host (your laptop) is always 10.0.2.2 for the port that was
translated (NAT).
vagrant@vagrant-ubuntu-trusty-64:~$ exit
logout
Connection to 127.0.0.1 closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
94

Hosting Applications on IOS XR
Hosting an Application within a Linux Container (LXC) by Using Vagrant

$ vagrant port rtr
The forwarded ports for the machine are listed below. Please note that
these values may differ from values configured in the Vagrantfile if the
provider supports automatic port collision detection and resolution.

22 (guest) => 2223 (host)
57722 (guest) => 2222 (host)

The output shows that port number 2222 maps to port number 57722.

b. Access devbox and use the port number 2222 to transfer the rootfs tar ball and XML spec file
to XR.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant ssh devbox
Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 3.13.0-87-generic x86_64)

* Documentation: https://help.ubuntu.com/

System information as of Fri Sep 2 05:38:20 UTC 2016

System load: 0.49 Users logged in: 0
Usage of /: 6.4% of 39.34GB IP address for eth0: 10.0.2.15
Memory usage: 25% IP address for eth1: 11.1.1.20
Swap usage: 0% IP address for lxcbr0: 10.0.3.1
Processes: 80

Graph this data and manage this system at:
https://landscape.canonical.com/

Get cloud support with Ubuntu Advantage Cloud Guest:
http://www.ubuntu.com/business/services/cloud

New release '16.04.1 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

Last login: Fri Sep 2 05:38:20 2016 from 10.0.2.2
vagrant@vagrant-ubuntu-trusty-64:~$ scp -P 2222 /home/vagrant/*.*
vagrant@10.0.2.2:/misc/app_host/scratch
The authenticity of host '[10.0.2.2]:2222 ([10.0.2.2]:2222)' can't be
established.
ECDSA key fingerprint is db:25:e2:27:49:2a:7b:27:e1:76:a6:7a:e4:70:f5:f7.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '[10.0.2.2]:2222' (ECDSA) to the list of known hosts.
vagrant@10.0.2.2's password:
xr-lxc-app-rootfs.tar.gz

100% 234MB 18.0MB/s 00:13
xr-lxc-app.xml

100% 591 0.6KB/s 00:00
vagrant@vagrant-ubuntu-trusty-64:~$

• Transfer Through the GigE Interface of XR:

a. Determine the GigE interface IP address on XR.
vagrant@vagrant-ubuntu-trusty-64:~$ exit
logout
Connection to 127.0.0.1 closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant ssh rtr

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
95

Hosting Applications on IOS XR
Hosting an Application within a Linux Container (LXC) by Using Vagrant

Last login: Wed Aug 31 07:09:51 2016 from 10.0.2.2
xr-vm_node0_RP0_CPU0:~$ ifconfig
Gi0_0_0_0 Link encap:Ethernet HWaddr 08:00:27:5a:29:77

inet addr:11.1.1.10 Mask:255.255.255.0
inet6 addr: fe80::a00:27ff:fe5a:2977/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:1 errors:0 dropped:3 overruns:0 carrier:1
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:42 (42.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 08:00:27:13:ad:eb
inet addr:10.0.2.15 Mask:255.255.255.0
inet6 addr: fe80::a00:27ff:fe13:adeb/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:94 errors:0 dropped:0 overruns:0 frame:0
TX packets:66 errors:0 dropped:0 overruns:0 carrier:1
collisions:0 txqueuelen:1000
RX bytes:13325 (13.0 KiB) TX bytes:11041 (10.7 KiB)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1496 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:4 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:302 (302.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

In this example, the IP address of the GigE interface is 11.1.1.10.

b. Copy the rootfs tar ball to XR by using the GigE interface address.
vagrant@vagrant-ubuntu-trusty-64:~$ scp -P 57722
/home/vagrant/xr-lxc-app-rootfs.tar.gz
vagrant@11.1.1.10:/misc/app_host/scratch/
The authenticity of host '[11.1.1.10]:57722 ([11.1.1.10]:57722)' can't be
established.
ECDSA key fingerprint is db:25:e2:27:49:2a:7b:27:e1:76:a6:7a:e4:70:f5:f7.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '[11.1.1.10]:57722' (ECDSA) to the list of known
hosts.
vagrant@11.1.1.10's password:
xr-lxc-app-rootfs.tar.gz

c. Copy the XML spec file to XR by using the GigE interface address.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
96

Hosting Applications on IOS XR
Hosting an Application within a Linux Container (LXC) by Using Vagrant

vagrant@vagrant-ubuntu-trusty-64:~$ scp -P 57722 /home/vagrant/xr-lxc-app.xml
vagrant@11.1.1.10:/misc/app_host/scratch/
vagrant@11.1.1.10's password:
xr-lxc-app.xml

16. Create a directory (/misc/app_host/xr-lxc-app/)on XR (rtr) to untar the rootfs tar ball.
vagrant@vagrant-ubuntu-trusty-64:~$ exit
logout
Connection to 127.0.0.1 closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant ssh rtr
Last login: Fri Sep 2 05:49:01 2016 from 10.0.2.2

xr-vm_node0_RP0_CPU0:~$ sudo mkdir /misc/app_host/xr-lxc-app/

17. Navigate to the /misc/app_host/xr-lxc-app/ directory and untar the tar ball.
xr-vm_node0_RP0_CPU0:~$ cd /misc/app_host/xr-lxc-app/
xr-vm_node0_RP0_CPU0:/misc/app_host/xr-lxc-app$ sudo tar -zxf
../scratch/xr-lxc-app-rootfs.tar.gz
tar: dev/audio3: Cannot mknod: Operation not permitted
...

18. Use the XML spec file to launch the container and verify its existence on XR.
xr-vm_node0_RP0_CPU0:/misc/app_host/xr-lxc-app$ virsh create
/misc/app_host/scratch/xr-lxc-app.xml
Domain xr-lxc-app created from /misc/app_host/scratch/xr-lxc-app.xml

xr-vm_node0_RP0_CPU0:/misc/app_host/xr-lxc-app$ virsh list
Id Name State
--
2095 xr-lxc-app running
4932 sysadmin running
12086 default-sdr--1 running

19. Log into the container. The default login credentials are ubuntu/ubuntu.

There are two ways of logging into the container. You can use the method that works best for you:

• Logging into the container by using virsh command:

xr-vm_node0_RP0_CPU0:/misc/app_host/xr-lxc-app$ virsh console xr-lxc-app
Connected to domain xr-lxc-app
Escape character is ^]
init: Unable to create device: /dev/kmsg
* Stopping Send an event to indicate plymouth is up [OK]
* Starting Mount filesystems on boot [OK]
* Starting Signal sysvinit that the rootfs is mounted [OK]
* Starting Fix-up sensitive /proc filesystem entries [OK]

xr-lxc-app login: * Starting OpenSSH server [OK]

Ubuntu 14.04.5 LTS xr-lxc-app tty1
xr-lxc-app login: ubuntu
Password:
Last login: Fri Sep 2 05:40:11 UTC 2016 on lxc/console
Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.14.23-WR7.0.0.2_standard x86_64)

* Documentation: https://help.ubuntu.com/

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
97

Hosting Applications on IOS XR
Hosting an Application within a Linux Container (LXC) by Using Vagrant

ubuntu@xr-lxc-app:~$

• Logging into the container by using SSH:

Use the SSH port number you configured, 58822, and any of XR interface IP addresses to log in.
xr-vm_node0_RP0_CPU0:/misc/app_host/xr-lxc-app$ ssh -p 58822 ubuntu@11.1.1.10
Warning: Permanently added '[11.1.1.10]:58822' (ECDSA) to the list of known hosts.
ubuntu@11.1.1.10's password:
Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.14.23-WR7.0.0.2_standard x86_64)

* Documentation: https://help.ubuntu.com/
Last login: Fri Sep 2 07:42:37 2016
ubuntu@xr-lxc-app:~$

• To exit the container, use the press CTRL and] keys simultaneously.

• To access the container directly from your host machine, ensure you forward the intended port (in this
example, 58822) to your laptop (any port of your choice), in the Vagrant file:
node.vm.network "forwarded_port", guest: 58822, host: 58822

You can then SSH to the LXC container by using the following command:
ssh -p 58822 vagrant@localhost

Note

20. Verify if the interfaces on XR are available inside the LXC container.

The LXC container operates as your own Linux server on XR. Because the network namespace is shared
between the LXC and XR, all of XR interfaces (GigE, management, and so on) are available to bind to
and run your applications.
ubuntu@xr-lxc-app:~$ ifconfig
Gi0_0_0_0 Link encap:Ethernet HWaddr 08:00:27:5a:29:77

inet addr:11.1.1.10 Mask:255.255.255.0
inet6 addr: fe80::a00:27ff:fe5a:2977/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:186070 errors:0 dropped:0 overruns:0 frame:0
TX packets:155519 errors:0 dropped:3 overruns:0 carrier:1
collisions:0 txqueuelen:1000
RX bytes:301968784 (301.9 MB) TX bytes:10762900 (10.7 MB)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 08:00:27:13:ad:eb
inet addr:10.0.2.15 Mask:255.255.255.0
inet6 addr: fe80::a00:27ff:fe13:adeb/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:170562 errors:0 dropped:0 overruns:0 frame:0
TX packets:70309 errors:0 dropped:0 overruns:0 carrier:1
collisions:0 txqueuelen:1000
RX bytes:254586763 (254.5 MB) TX bytes:3886846 (3.8 MB)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
98

Hosting Applications on IOS XR
Hosting an Application within a Linux Container (LXC) by Using Vagrant

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1496 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:155549 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:10765764 (10.7 MB)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:64 errors:0 dropped:0 overruns:0 frame:0
TX packets:64 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:9400 (9.4 KB) TX bytes:9400 (9.4 KB)

21. Configure the container to communicate outside XR with other nodes in the network.

By default, the IOS-XRv vagrant box is set up to talk to the internet using a default route through your
management port. If you want the router to use the routing table to talk to other nodes in the network,
then you must configure tpa-address. This becomes the src-hint for all Linux application traffic.

In this example, we use Loopback 0 for tpa-address to ensure that the IP address for any originating
traffic for applications on the XR is a reachable IP address across your topology.
ubuntu@xr-lxc-app:~$ exit
logout
Connection to 11.1.1.10 closed.
xr-vm_node0_RP0_CPU0:/misc/app_host/xr-lxc-app$ exit
logout
Connection to 127.0.0.1 closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant port rtr | grep 22

22 (guest) => 2223 (host)
57722 (guest) => 2222 (host)

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ ssh -p 2223 vagrant@localhost
vagrant@localhost's password:

RP/0/RP0/CPU0:ios# configure
Fri Sep 2 08:03:05.094 UTC
RP/0/RP0/CPU0:ios(config)# interface loopback 0
RP/0/RP0/CPU0:ios(config-if)# ip address 1.1.1.1/32
RP/0/RP0/CPU0:ios(config-if)# exit
RP/0/RP0/CPU0:ios(config)# tpa address-family ipv4 update-source loopback 0
RP/0/RP0/CPU0:ios(config)# commit
Fri Sep 2 08:03:39.602 UTC
RP/0/RP0/CPU0:ios(config)# exit
RP/0/RP0/CPU0:ios# bash
Fri Sep 2 08:03:58.232 UTC

[xr-vm_node0_RP0_CPU0:~]$ ip route
default dev fwdintf scope link src 1.1.1.1
10.0.2.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 10.0.2.15

You can see the configured Loopback 0 IP address (1.1.1.1).

22. Test your application within the launched container.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
99

Hosting Applications on IOS XR
Hosting an Application within a Linux Container (LXC) by Using Vagrant

We installed iPerf in our container. We will run the iPerf server within the container, and the iPerf client
on the devbox and see if they can communicate. Basically, the hosted application within a container on
rtr should be able to talk to a client application on devbox.

a. Check if the iPerf server is running within the LXC container on XR.
[xr-vm_node0_RP0_CPU0:~]$ssh -p 58822 ubuntu@11.1.1.10
Warning: Permanently added '[11.1.1.10]:58822' (ECDSA) to the list of known hosts.
ubuntu@11.1.1.10's password:
Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.14.23-WR7.0.0.2_standard x86_64)

* Documentation: https://help.ubuntu.com/
Last login: Fri Sep 2 07:47:28 2016 from 11.1.1.10

ubuntu@xr-lxc-app:~$ iperf -s -u
--
Server listening on UDP port 5001
Receiving 1470 byte datagrams
UDP buffer size: 64.0 MByte (default)
--

b. Check if XR Loopback interface is accessible on devbox. (Open a new Git bash window for this
step.)
annseque@ANNSEQUE-WS02 MINGW64 ~
$ cd vagrant-xrdocs

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ cd lxc-app-topo-bootstrap/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant ssh devbox
Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 3.13.0-87-generic x86_64)

* Documentation: https://help.ubuntu.com/

System information as of Fri Sep 2 05:51:19 UTC 2016

System load: 0.08 Users logged in: 0
Usage of /: 6.4% of 39.34GB IP address for eth0: 10.0.2.15
Memory usage: 28% IP address for eth1: 11.1.1.20
Swap usage: 0% IP address for lxcbr0: 10.0.3.1
Processes: 77

Graph this data and manage this system at:
https://landscape.canonical.com/

Get cloud support with Ubuntu Advantage Cloud Guest:
http://www.ubuntu.com/business/services/cloud

53 packages can be updated.
26 updates are security updates.

New release '16.04.1 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

Last login: Fri Sep 2 05:51:21 2016 from 10.0.2.2
vagrant@vagrant-ubuntu-trusty-64:~$ sudo ip route add 1.1.1.1/32 via 11.1.1.10
vagrant@vagrant-ubuntu-trusty-64:~$ ping 1.1.1.1
PING 1.1.1.1 (1.1.1.1) 56(84) bytes of data.
64 bytes from 1.1.1.1: icmp_seq=1 ttl=255 time=1.87 ms
64 bytes from 1.1.1.1: icmp_seq=2 ttl=255 time=10.5 ms

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
100

Hosting Applications on IOS XR
Hosting an Application within a Linux Container (LXC) by Using Vagrant

64 bytes from 1.1.1.1: icmp_seq=3 ttl=255 time=4.13 ms
^C
--- 1.1.1.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2007ms
rtt min/avg/max/mdev = 1.876/5.510/10.520/3.661 ms

c. Install the iPerf client on devbox.
vagrant@vagrant-ubuntu-trusty-64:~$ sudo apt-get install iperf
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
iperf

0 upgraded, 1 newly installed, 0 to remove and 52 not upgraded.
Need to get 56.3 kB of archives.
After this operation, 174 kB of additional disk space will be used.
Get:1 http://archive.ubuntu.com/ubuntu/ trusty/universe iperf amd64 2.0.5-3 [56.3
kB]
Fetched 56.3 kB in 10s (5,520 B/s)
Selecting previously unselected package iperf.
(Reading database ... 64313 files and directories currently installed.)
Preparing to unpack .../iperf_2.0.5-3_amd64.deb ...
Unpacking iperf (2.0.5-3) ...
Processing triggers for man-db (2.6.7.1-1ubuntu1) ...
Setting up iperf (2.0.5-3) ...

d. Launch the iPerf client on devbox and verify if it is communicating with the iPerf server within the
LXC on XR.
vagrant@vagrant-ubuntu-trusty-64:~$ iperf -u -c 1.1.1.1
--
Client connecting to 1.1.1.1, UDP port 5001
Sending 1470 byte datagrams
UDP buffer size: 208 KByte (default)
--
[3] local 11.1.1.20 port 37800 connected with 1.1.1.1 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec
[3] Sent 893 datagrams
[3] Server Report:
[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec 1.791 ms 0/ 893 (0%)

You have successfully hosted an application within a Linux container by using vagrant.

Installing Docker on Cisco IOS XR By Using Vagrant
This section describes how you can install a Docker container on Cisco IOS XR by using Vagrant.

Setup Options for Dockers on XR

You can choose any of the following setups for using Dockers on XR.

• Public Docker-Hub registry: You can configure a public Docker-Hub with the correct DNS resolution
so that it is accessible to all users. This is the simplest form of Docker setup.

• Private Docker-Hub unsecured registry: You can configure a private Docker-Hub registry without
security, if you are planning to run the registry inside a secured part of your network.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
101

Hosting Applications on IOS XR
Installing Docker on Cisco IOS XR By Using Vagrant

• Private Docker-Hub self-signed registry: You can configure a private Docker-Hub registry enabled
with TLS. This is more secure than using a local unsecured registry.

• Private Docker-Hub secured registry: You can configure a private Docker-Hub secured registry,
created using a certificate obtained from a Certificate Authority (CA) server. The steps used to set this
up are identical to a private Docker-Hub self-signed registry except for the creation of the certificate.

• Tarball image/container: You can create and configure a Docker container on your laptop and package
it as an image or a container tar ball. You can then transfer the tar ball to XR, and extract the Docker
container for use.

For information on implementing these setup options, see the XR toolbox, Part 6: Running Docker Containers
on IOS-XR (6.1.2+) section on Github.

Secure Onboarding of Signed Third-Party Applications
Table 9: Feature History Table

Feature DescriptionRelease InformationFeature Name

Introduced in this release on: NCS 5500 fixed port
routers

Cisco IOS XR now supports onboarding signed
(authenticated) third-party (non-native Cisco IOS
XR) applications onto the XR routers securely as
per Cisco policies and standards.

Earlier you could onboard only signed Cisco IOS
XR native images and RPMs onto the router.

Release 7.10.1Secure Onboarding of Signed
Third-Party Applications

Cisco IOS XR now supports onboarding signed third-party (non-native IOS XR) applications onto the XR
routers. The signed third-party applications (TPA) must be in the form of a docker image in Release 7.10.1,
and these applications are onboarded through RPMs.

RPM database consists of GNU Privacy Guard (GPG) keys. The GPG keys are used to validate the signatures
of the signed TPA. All TPA RPMs must be signed, and, for security reasons, their signatures are verified
before they are installed on the XR system.

Prerequisites

Ensure that your router supports the Secure Zero Touch Provisioning (SZTP), which is based on RFC 8572.

Key Terms
Owner Certificate: The owner certificate (OC) is an X.509 certificate [RFC8572] that is used to identify an
owner, for example, an organization. The OC can be signed by any certificate authority (CA). The public key
in OC is used to verify CA signature of the device, Signed Conveyed Information (CI or CIA), and to verify
signed JSON config files and signed Key Packages. The OC structure must contain the owner certificate itself,
as well as all intermediate certificates leading to the pinned-domain-cert (PDC) certificate specified in the
ownership voucher.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
102

Hosting Applications on IOS XR
Secure Onboarding of Signed Third-Party Applications

https://xrdocs.github.io/application-hosting/tutorials/2017-02-26-running-docker-containers-on-ios-xr-6-1-2/
https://xrdocs.github.io/application-hosting/tutorials/2017-02-26-running-docker-containers-on-ios-xr-6-1-2/

Ownership Voucher: The ownership voucher (OV) [RFC8366] is used to securely identify the device's
owner, as known to the manufacturer. OV is signed by customer provided key certification and once it is
authenticated, the PDC node is extracted to verify OC. The OV is used to verify that the owner certificate has
a chain of trust leading to the trusted Pinned Domain Cert certificate (PDC), which is a pinned X.509 cert
from the CA, included in the ownership voucher. OVs are issued by Cisco's Manufacturer Authorized Signing
Authority (MASA) service. For information on MASA, see the Manufacturer Authorized Signing Authority
(MASA) chapter from System Security Configuration Guide for Cisco 8000 Series Routers. OV has PID/Serial
number (SN) and has expiry date or nonce.

Secure Unique Device Identifier (SUDI): It is a unique ID per-device certificate (based on IEEE 802.1AR)
programmed into the TAm chip during the device manufacturing. It is unique per card (one per RP, LC, and
so on). It includes Product Identification (PID) and Serial number (SN) of device. It is signed by Cisco for
proof of authenticity

• Product Identification: Each router is given a distinct product identification (PID) number, which is
the equivalent to a stock-keeping unit (SKU) number.

• Serial Number: The serial number (SN) of the router is typically in the format of LLLYYWWSSSS.
LLL represents the location of manufacturing.YYand WW represent the year and week of manufacture
respectively. SSSS is the unique code of your router. You can find the serial number at the bottom of the
router or by running the show version command.

How Can I Onboard My Applications Securely?
To securely onboard your application, you must:

• Establish Device Ownership, on page 103

• Generate KeyPackage, on page 103

• Onboard Key Package on Router, on page 108

• Generate Signed RPM, on page 110

• Onboard Signed RPM Package on Router, on page 112

Establish Device Ownership
For the details of device ownership establishment, see Establish Device Ownership section from the System
Security Configuration Guide for Cisco NCS 540 Series Routers Guide.

Once the ownership is established, it is stored in Trusted Anchor mode (TAm) of the router. The ownership
information is persistent between device boot ups and factory reset.

SUDI-based authentication and validation of the device is also possible. For more details, contact Cisco
Technical Assistance.

Generate KeyPackage
Key package is a Cryptographic Message Syntax (CMS [RFC5652]) file that has a payload and must be
digitally signed with private keys of the customer's Ownership Certificate (OC).

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
103

Hosting Applications on IOS XR
How Can I Onboard My Applications Securely?

The payload of the tar file contains:

• Customer Keys (X509 or GPG), on page 105

• Key Package Configuration File, on page 107

This tar file is embedded in the CMS envelope and digitally signedwith private keys of the Customer Ownership
Certificate.

You can pack several key packages along with a configuration file, into a single bundle and install the bundle
at once, by creating a key package bundle. This bundle must be signed by the device OC, else installation of
the bundle or individual key packages fails at the verification.

The key package is used to onboard public keys only. Private keys should NOT be onboarded through the
key package.

Note

The following restrictions apply to key package infrastructure:

• Supports only a single key in a single key package.

• The accepted time stamp range is years 2000—2100.

Create the Keys

The Github repository provides commands to perform key request of different types such as ADD, DELETE.

Once a key package is onboarded into a router, we cannot roll back or undo the operation. If a key is
added/deleted/revoked through a key package, the operation cannot be undone or rolled back. If you want to
go back to the previous state of keys, you must create a new key package.

Note

For more details on creating the GPG keys, see Customer Keys (X509 or GPG), on page 105.

Update the Keys

A new router image has new ISO and a new key package. The old key package is replaced with the new
package.

If the key to be revoked is present in the ALLOWED_LIST, you must:

1. Uninstall (automated or manual) the older RPMs that were signed with the revoked key.

2. Add the key to REVOKED_LIST through another key package.

If the key to be revoked does not exist in ALLOWED_LIST, you must:

• Generate a key package to add the key to REVOKED_LIST.

To delete a key, you must create a key package with the delete option, and must package it as a GISO.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
104

Hosting Applications on IOS XR
Generate KeyPackage

https://github.com/ios-xr/key-package-scripts/tree/master/key-pkg-ver-2

To prevent reuse of key package on the same system, a TIMESTAMP field is present in the config.txt file of
the key package. When a key package is generated, the config.txt file should contain TIMESTAMP=<time
at which the key package is generated>. This time mst be in RFC 2822 format.

Note

Error messages

Based on the key package error type, the following syslog or error messages are invoked:

Table 10: Key Package Error Messages

DescriptionMessage

Failed to initialize key package.KPKG_INIT_FAIL

Key package signature validation failed. Check the keys used
for signing the key package or the tampering of the file.

KPKG_VALIDATION_FAIL

Errors or inconsistencies in the configuration file of the key
package.

Check for the validity of the key package configuration file.

KPKG_CONFIG_INVALID

Installed Key is more than maximum limit. Default maximum
key size is 3 KB.

KPKG_KEYSIZE_ERR

An attempt to install a revoked key which is not allowed.KPKG_REVOKED_INSTALL_ERR

Key is not found in the key package.KPKG_KEY_MISSING_ERR

Ensure the length of USAGE is within the limit of six characters.KPKG_USAGE_LEN_EXCEEDED

Length of the optional string exceeded the limit.KPKG_OPTNAL_LEN_ERR

Length of the timestamp string exceeded the limit.KPKG_TIMESTAMP_LEN_ERR

The Provided time stamp is invalid. Time stamp must be in
RFC 2822 format with year ranging 2000—2100.

KPKG_INVALID_TIMESTAMP

Version number is invalid.KPKG_INVALID_VERSION

Customer Keys (X509 or GPG)

GPG Key Generation

As part of securely onboarding TPA, you must generate GPG key. Use gpg --gen-key command to create
GPG.
Router# gpg --gen-key
gpg (GnuPG) 2.0.22; Copyright (C) 2013 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Please select what kind of key you want:
(1) RSA and RSA (default)

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
105

Hosting Applications on IOS XR
Customer Keys (X509 or GPG)

https://www.rfc-editor.org/rfc/rfc2822

(2) DSA and Elgamal
(3) DSA (sign only)
(4) RSA (sign only)
Your selection? 1
RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048)
Requested keysize is 2048 bits
Please specify how long the key should be valid.
0 = key does not expire
<n> = key expires in n days
<n>w = key expires in n weeks
<n>m = key expires in n months
<n>y = key expires in n years
Key is valid for? (0) 1y
Key expires at Thu 21 Dec 2023 11:57:52 PM IST
Is this correct? (y/N) y
GnuPG needs to construct a user ID to identify your key.
Real name: abc
Email address: abc@cisco.com
Comment: Test GPG key for abc
You selected this USER-ID:
"abc (Test GPG key for abc) <abc@cisco.com>"
Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O
You need a Passphrase to protect your secret key.
We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
gpg: key 09E9526F marked as ultimately trusted
public and secret key created and signed.
gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 3 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 3u
gpg: next trustdb check due at 2023-03-21
pub 2048R/09E9526F 2022-12-21 [expires: 2023-12-21]
Key fingerprint = DA29 846E 4B16 E0B7 7226 E57B 706C 49AE 09E9 526F
uid abc (Test GPG key for abc) <abc@cisco.com>
sub 2048R/18B50392 2022-12-21 [expires: 2023-12-21]
Router#

Verify the GPG Key

Router# gpg --list-secret-keys --keyid-format LONG
/root/.gnupg/secring.gpg

sec 2048R/F255F66A8515763D 2022-12-16 [expires: 2023-12-16]
uid Chandan (Test GPG key) <cmohapat@cisco.com>
ssb 2048R/A181220B2E2D3898 2022-12-16
sec 2048R/B093C8FC89A0AB15 2022-12-21 [expires: 2023-03-21]
uid cmohapat (gpg key for testing purpose) <cmohapat@cisco.com>
ssb 2048R/BA8DDCD73D0958A4 2022-12-21
sec 2048R/706C49AE09E9526F 2022-12-21 [expires: 2023-12-21]
uid abc (Test GPG key for abc) <abc@cisco.com>
ssb 2048R/481345F518B50392 2022-12-21
Router#

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
106

Hosting Applications on IOS XR
Customer Keys (X509 or GPG)

Key Package Configuration File

KeyPackage Configuration File

The key package configuration file defines what operation should be done with the keys present in the key
package.

The rules mentioned in the configuration file apply to all keys present in the key package. If you need a
combination of keys, such as few keys to be added and other keys to be removed, then you must create multiple
key packages—one key package to add keys, another key-package to remove keys and so on. You can then
bundle these key packages into a super key package.

Note

The key configuration file is generated when you run the Key package script on Github. The configuration
file has the following fields:

Table 11: Fields in the Key Package Configuration Files

PurposeMandatory FieldPossible ValuesFlag

Currently supported version.NO1VERSION

Creates the keys.YESADDOPERATION

Deletes the existing keys.DELETE

Adds the keys to ALLOWED_ LIST or
REVOKED_L IST.

YESALLOWED_
LIST

TARGET

Deletes keys from allowed-list or revoked list.REVOKED_L
IST

Application specific usage flags.

The maximum length is six characters.

YESCUS-CTUSAGE

Provides additional information related to the key
such as product name, key name, and so on.

The key and value should be separated by a colon
“:” and should be delimited by comma “,”.

Example

USAGE_ADDITIONAL_DATA=PNM:MY_TEST_PRO
DUCT_NAME
Tha maximum length of this parameter is
128 characters.

NO<key>:<valu e>,USAGE_ADDITIONAL_
DATA

To prevent replay attacks, a key package is
one-time use only, which is as per the timestamp
available in the key package.

RFC2822 format timestamp can be generated by
the command date -R on Linux devices.

YESTimestamp in
RFC2822
format

format

TIMESTAMP

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
107

Hosting Applications on IOS XR
Key Package Configuration File

https://github.com/ios-xr/key-package-scripts

PurposeMandatory FieldPossible ValuesFlag

Defines the type of key being carried in the key
package, either X509 or GPG key.

NOX509KEY

GPGKEY

KEYTYPE

This flag indicates if the given key package is a
bundle or not. A bundle can contain one or more
key packages.

If a BUNDLE flag is set, bundle-specific
configuration flags are added.

Note

NO1

0

MULTIPLE_KEYPACKA
GE

A list of key package names of ALLOWED_
LISTand REVOKED_LIST keys sorted based on
the timestamps with which those individual key
packages are generated.

YES when
MULTIPLE_KEYPAC
KAGE is set.

ARRAY/ LISTPACKAGE_LIST

If any of the mandatory fields is missing, installation of a key package shows an error with appropriate error
messages.

Onboard Key Package on Router
Figure 12: Workflow for Installing Key Package on Router

To onboard a third-party key package:

1. Generate an GPG key-pair that is used to sign the third-party key package.

See step 1 of Provisioning Key Packages on the Router, on page 108.

Generate your own public-private key-pair (typically this key pair is a GPG key, but it could also be an X509
certificate). This key pair is used to subsequently sign all customer software, such as RPMs.

Note

2. Install or onboard the key pair on the Cisco IOS XR router.

See step 2 of Provisioning Key Packages on the Router, on page 108.

Provisioning Key Packages on the Router

Before you begin

Ensure that your device ownership is established.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
108

Hosting Applications on IOS XR
Onboard Key Package on Router

Step 1 On a Linux machine, use the standard openssl commands to generate the RSA key pair.
Step 2 Generate the key package by using the script at Key Package.

Create a key package using the create_kpkg.py tool on Key Package.
create_kpkg.py -p ./oc-single.pem -r ./oc-single-priv.key -o ADD -t ALLOWED_LIST -u KEY_ADD -i
./key_add.crt -f ./key_add.kpkg
Key package generated at: ./key_add.kpkg

In the following example, a key package key_add.kpkg is created:
bash-4.2$ python3 create_kpkg.py -o ADD -t ALLOWED_LIST -u "CUSTOMER-CONSENT-TOKEN" -a
"PNM:APNAM,KNM:AKNAM," -k X509KEY -i cust-ct.der -p oc-single.pem -r oc-single-priv.key -f
./key_add.kpkg
Key package generated at: ./key_add.kpkg

The key package is located at same directory from where you executed the above command.

Verify the generated key package by running the verify_kpkg.py command.
bash-4.2$ python3 verify_kpkg.py -p oc-single.pem -f key_add.kpkg

Key package is valid

Createa key package using the bundle_kpkgtool
bundle_kpkg.py [-h] [-n] [-v] [-x TEMPDIR] -l LIST [LIST ...] -p PUBKEY -r PRIVKEY -f KEYPACKAGE

While creating the key package bundle, the input list of all individual key packages are sorted basedon the timestamps
at which they had been created. Sorting is done off-box to reduce on- box processing. Once sorting is done, the
key/file-name is arranged in sorted order in two lists which is ALLOWED_LIST and REVOKED_LIST.

On the router when a bundle is installed, first, its revoked list keys are installed in the order they are generated followed
by all ALLOWED_LIST keys.
bundle_kpkg.py -p ./oc-single.pem -r ./oc-single-priv.key -f ./out_bundle.kpkg -l key1.kpkg key2.kpkg
key3.kpkg key4.kpkg

Step 3 On the Cisco router, install the key package:

Copy the key package to the router and use the platform security key-package customer [keypackage-bundle]
key-package-file location command to install the key package.
Router# platform security key-package customer disk0:/testing2/key-pkg/key_add.kpkg
Mon Jun 14 16:09:28.238 UTC

Key package successfully validated
Config file successfully parsed.
Successfully added key cust-ct.der to TPM
Successfully processed all keys.
Router#

Step 4 Verify that the key package is installed.

Router# show platform security key-package customer allowed-list location 0/RP0/CPU0

Mon Jun 14 16:10:01.440 UTC

Node - node0_RP0_CPU0

Key Name: D3CUS-CT1
Key:

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
109

Hosting Applications on IOS XR
Provisioning Key Packages on the Router

https://www.openssl.org/docs/man3.0/man1/
https://github.com/ios-xr/key-package-scripts/tree/master/key-pkg-ver-2
https://github.com/ios-xr/key-package-scripts/tree/master/key-pkg-ver-2

MIIC7TCCAdUCAQIwDQYJKoZIhvcNAQELBQAwOzELMAkGA1UEBhMCVVMxDDAKBgNV
BAoMA3h6eTEMMAoGA1UECwwDYWJjMRAwDgYDVQQDDAdST09ULUNOMB4XDTIxMDYx
NDE1MjkwOVoXDTI0MDMxMDE1MjkwOVowPjELMAkGA1UEBhMCVVMxDDAKBgNVBAoM
A3h5ejEMMAoGA1UECwwDYWJjMRMwEQYDVQQDDApDVVNULUNULUNOMIIBIjANBgkq
hkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAyOT2SGTuJcQlAHCsQn4gcoZGK+po1A6g
LPV5AzOBcY0pfXV5eXoxf6S8qbmQP4l4v5MjsHzFTOuouMmijpGYFJv7TORwJ2Xw
weJ5aKbqsYTQlSQSUZ1XxG7AOdHMshVRzy7vIA7LLQJnD0j1F1U2FoRi5NhhY12L
wmYA4aPj1o+LoubAfjF1BVl3vE8rfI0mzsXODJIks+oeJbsq4HmyMbOAzLVdeucp
7bu3S8kDlc1ph4zqm81BkDZgV1++2CoCBWROt9dRZrp+ENw1GEHcXgS659iZpUmj
juG1n0W3Y6br8SE+EqqhMqkAfSbO8vaG02qYtTUNJ5gkMcTljCfDAQIDAQABMA0G
CSqGSIb3DQEBCwUAA4IBAQCDeJ5ov2gG3rj5ttpfibxiakpzl706W9crjIePJka6
CWS7Y3nxt02+PGsBByEcBPV7aU8oH2GfKN4jNZHDChfzGN7rtfRE2CG+ttvTxJLC
Ba+LjzKFSveKgPRG/gAAkZY0hRmTe7FkgmKB4UCi+u0XP3U5VlT5XRP3LGVoX0fC
rY4/GBKkG5eOF+VGD4iyPfOHjrwduO/K2DqDXyUfa1PXZDzatpnin07ShkCJQoT+
u6C1SotJ8mtrFJpePDUsa5W3O2oPROFHd4sGCivt40AbpaWECK+KLpKC+DoqN+46
tMV79rpQ0mtXo/XfY4UGir4weH9g/e2fct4g+Y2E/BD+

Key Name: D3CUS-CTX
Key:
PNM:APNAM,KNM:AKNAM,
RP/0/RP0/CPU0:router#

Router# show platform security key-package all location 0/RP0/CPU0

Mon Jun 14 16:10:01.440 UTC

Node - node0_RP0_CPU0

Key Name: D3CUS-CT1
Key:
MIIC7TCCAdUCAQIwDQYJKoZIhvcNAQELBQAwOzELMAkGA1UEBhMCVVMxDDAKBgNV
BAoMA3h6eTEMMAoGA1UECwwDYWJjMRAwDgYDVQQDDAdST09ULUNOMB4XDTIxMDYx
NDE1MjkwOVoXDTI0MDMxMDE1MjkwOVowPjELMAkGA1UEBhMCVVMxDDAKBgNVBAoM
A3h5ejEMMAoGA1UECwwDYWJjMRMwEQYDVQQDDApDVVNULUNULUNOMIIBIjANBgkq
hkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAyOT2SGTuJcQlAHCsQn4gcoZGK+po1A6g
LPV5AzOBcY0pfXV5eXoxf6S8qbmQP4l4v5MjsHzFTOuouMmijpGYFJv7TORwJ2Xw
weJ5aKbqsYTQlSQSUZ1XxG7AOdHMshVRzy7vIA7LLQJnD0j1F1U2FoRi5NhhY12L
wmYA4aPj1o+LoubAfjF1BVl3vE8rfI0mzsXODJIks+oeJbsq4HmyMbOAzLVdeucp
7bu3S8kDlc1ph4zqm81BkDZgV1++2CoCBWROt9dRZrp+ENw1GEHcXgS659iZpUmj
juG1n0W3Y6br8SE+EqqhMqkAfSbO8vaG02qYtTUNJ5gkMcTljCfDAQIDAQABMA0G
CSqGSIb3DQEBCwUAA4IBAQCDeJ5ov2gG3rj5ttpfibxiakpzl706W9crjIePJka6
CWS7Y3nxt02+PGsBByEcBPV7aU8oH2GfKN4jNZHDChfzGN7rtfRE2CG+ttvTxJLC
Ba+LjzKFSveKgPRG/gAAkZY0hRmTe7FkgmKB4UCi+u0XP3U5VlT5XRP3LGVoX0fC
rY4/GBKkG5eOF+VGD4iyPfOHjrwduO/K2DqDXyUfa1PXZDzatpnin07ShkCJQoT+
u6C1SotJ8mtrFJpePDUsa5W3O2oPROFHd4sGCivt40AbpaWECK+KLpKC+DoqN+46
tMV79rpQ0mtXo/XfY4UGir4weH9g/e2fct4g+Y2E/BD+

Key Name: D3CUS-CTX
Key:
PNM:APNAM,KNM:AKNAM,
RP/0/RP0/CPU0:router#

Generate Signed RPM
Cisco IOS XR supports RPM signing and signature verification for Cisco IOS XR RPM packages. All RPM
packages in the Cisco IOS XR GISO and upgrade images are signed to ensure cryptographic integrity and

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
110

Hosting Applications on IOS XR
Generate Signed RPM

authenticity. This guarantees that the RPM packages have not been tampered and the RPM packages are from
Cisco IOS XR. Cisco creates and securely maintains the private key, which is used for signing the RPM
packages.

Your applications must be available as docker images.

Packaging TPA RPMs in GISO increases GISO size. Ensure that the built GISO meets platform ISO boot
size for iPXE.

Starting fromRelease 7.10.1, Cisco IOSXR supports signature verification of third-party signed RPMpackages
as well. For more information on Cisco RPMs, see Manage Automatic Dependency chapter.

RPM build tool for TPA is available at RPM Build Tool

GISO build tool for Signed TPA RPMs is available at: GISO Build Tool

Guidelines

• TPA RPMs must not have:

• Scripts

• Duplicate files

• Dependency on Cisco packages

• RPM marked as TPA, must be installed in the same RPM directory..

Unsigned RPM

Use ls -lrt unsigned-rpm command to check the unsigned RPMs.
Router# ls -lRt unsigned-rpm/

unsigned-rpm/:

total 0

drwxr-xr-x 2 root root 92 Dec 21 20:22 v2

drwxr-xr-x 2 root root 92 Dec 21 20:22 v1
unsigned-rpm/v2:

total 187600

-rw-r--r-- 1 root root 96048752 Dec 21 20:23 owner-xyz-0.1.9-7.10.1.x86_64.rpm

-rw-r--r-- 1 root root 96048381 Dec 21 20:22 owner-abc-0.1.6-7.10.1.x86_64.rpm
unsigned-rpm/v1:

total 187600

-rw-r--r-- 1 root root 96048774 Dec 21 20:22 owner-xyz-0.1.3-7.10.1.x86_64.rpm

-rw-r--r-- 1 root root 96048375 Dec 21 20:22 owner-abc-0.1.2-7.10.1.x86_64.rpm

[root@xit-pxe-01 gpg]#

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
111

Hosting Applications on IOS XR
Generate Signed RPM

https://github.com/ios-xr/xr-appmgr-build
https://github.com/ios-xr/gisobuild

Signing of Unsigned RPM

Use rpm --addsign signed-rpm/v1/owner-xyz-0.1.3-7.10.1.x86_64.rpm --macros=macros command to
sign the unsigned RPM.
Router# rpm --addsign signed-rpm/v1/owner-xyz-0.1.3-7.10.1.x86_64.rpm --macros=macros

Enter pass phrase:

Pass phrase is good.

signed-rpm/v1/owner-xyz-0.1.3-7.10.1.x86_64.rpm:

gpg: writing to `/var/tmp/rpm-tmp.OzeSvy.sig'

gpg: RSA/SHA256 signature from: "09E9526F abc (Test GPG key for abc) <abc@xyz.com>"

gpg: writing to `/var/tmp/rpm-tmp.HeEoUS.sig'

gpg: RSA/SHA256 signature from: "09E9526F abc (Test GPG key for abc) <abc@xyz.com>"

Router#

Verification of Signed RPM

Router# rpm -Kv signed-rpm/v1/owner-xyz-0.1.3-7.10.1.x86_64.rpm

signed-rpm/v1/owner-xyz-0.1.3-7.10.1.x86_64.rpm:

Header V3 RSA/SHA256 Signature, key ID 09e9526f: OK

Header SHA1 digest: OK (35964a3275ed2d66a6533c5cd20b6054b2547221)

V3 RSA/SHA256 Signature, key ID 09e9526f: OK

MD5 digest: OK (09eed042fbb536f5e579ae88aec95332)

Router#

Onboard Signed RPM Package on Router
The TPA signed RPMs are part of GISO which is onboarded on the router. For more details on building GISO
with signed RPMs, see Build a Golden ISO, on page 112.

OV/OC packaging in GISO is not supported.Note

Build a Golden ISO
Golden ISO (GISO) upgrades the router to a version that has a predefined set of RPMs with a single operation.
For example, you can create a customized ISO with the base OS package and specific optional RPMs based
on your network requirements.

GISO supports automatic dependency management, and provides these functionalities:

• Builds RPM database of all the packages present in package repository.

• Skips and removes Cisco RPMs that do not match the base ISO version.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
112

Hosting Applications on IOS XR
Onboard Signed RPM Package on Router

• Skips and removes third-party RPMs that are not part of already existing third-party base package in the
base ISO.

For more information on building a golden ISO, see Customize Installation using Golden ISO chapter from
System Setup and Software Installation Guide for Cisco NCS 5500 Series Routers guide.

Install operation over IPv6 is not supported.Note

Step 1 Contact Cisco Support to build the GISO image with the set of packages based on your requirement.
Step 2 Build GISO image using gisobuild.py tool.

To build GISO, provide the following input parameters to the script:

• Base mini-x.iso (mandatory)

• Set of packages to install (Cisco signed packages)

• XR configuration file (optional)

• Label for golden ISO (optional)

GISO build tool verifies the RPM dependecnies and RPM signatures. GISO build fails if the RPM is unsigned or
incorrectly signed.

Note

GISO build has the following executable requirements:

• python3 >= 3.6

• rpm >= 4.14

• cpio >= 2.10

• gzip >= 1.9

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
113

Hosting Applications on IOS XR
Build a Golden ISO

• createrepo_c

• file

• isoinfo

• mkisofs

• mksquashfs

• openssl

• unsquashfs

• 7z (Optional - but functionality may be reduced without it)

GISO build tool requires the following Python (>= 3.6) modules:

• dataclasses

• defusedxml

• distutils

• packaging

• rpm

• yaml

On a native Linux machine, th etool dependancies can be installed on supported distributions (Alma Linux 8, Fedora 34,
Debian 11.2)) using ./setup/prep_dependency.sh command.

a) Copy the repository from the Github location to an offline system or external server where the GISO will be built.
b) Run the script gisobuild.py and provide parameters to build the GISO image. Ensure that all RPMs and SMUs are

present in the same directory or on a repository.

Example:
$./giso/src/gisobuild.py --iso <input iso> --repo <rpm repo1 rpm_repo2> \

--pkglist <pkg1 pkg2 pkg3> --bridging-fixes <smu1 smu2 smu3> \
--xrconfig <config.cfg> --ztp-ini <ztp.ini> --script <user_script.sh> \
--label <label> --out-directory <out_directory> --clean./src/gisobuild.py --iso <input iso>

--repo <rpm repo1 rpm_repo2> \
--pkglist <pkg1 pkg2 pkg3> --bridging-fixes <smu1 smu2 smu3> \
--xrconfig <config.cfg> --ztp-ini <ztp.ini> --script <user_script.sh> \
--label <label> --out-directory <out_directory> --clean

The following parameters can be provided as input to the GISO build tool:

• --iso: ISO path to mini.iso or full.iso file

• --xrconfig: XR configuration file

• --label: GISO label

• --repo: Path to repositories containing RPMs and tarballs

• --pkglist: Optional RPMs or SMUs to package

• --ztp-ini: Path to the ZTP initialization file

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
114

Hosting Applications on IOS XR
Build a Golden ISO

https://github.com/ios-xr/gisobuild

• --remove-packages: Remove RPMs from the GISO. To remove multiple RPMs, separate the RPM names using
comma. For example, --remove-packages xr-bgp,xr-mcast command removes the xr-bgp and xr-mast packages
from GISO

• --out-directory: Output directory to store output of the operations performed on the file

• --clean: Delete contents of the output directory

• --skip-dep-check: Skip dependency checking between files

• --version: Print version of the tool

• --pkglist: Optional RPM or SMU to package

• --yamlfile: Provide CLI arguments via YAML markup file

• --docker: Load and run pre-built docker image

The tool uses the input parameters to build the GISO image.

Use ./src/gisobuild.py --yamlfile <input_yaml_cfg> to provide the parameters in a yaml file. To replace
YAML file information, use ./src/gisobuild.py --yamlfile <input_yaml_cfg> --label <new_label>

Step 3 Copy the GISO image to the /harddisk: location on the router.
Step 4 Upgrade the system to replace the current software with the .iso image, and install the RPMs.

Example:
Router# install replace <source location> <giso name.iso>

If you are using a configuration file in GISO, use the following command to extract and replace the configuration.
Router# install replace <source location> <GISO-with-cfg>-<platform>.iso

The default option is to replace the existing configuration. The install operation applies the configuration from a
GISO, the router reboots to activate the configuration.

Note

Step 5 View the version information for the GISO image. You can include a label to indicate the runing software version on the
router. For example, create a label v1 for the current GISO version. When you rebuild GISO with additional RPMs, you
can create a label v2 to distinguish the builds.

Example:
Router#show version
Cisco IOS XR Software, Version LNT
Copyright (c) 2013-2019 by Cisco Systems, Inc.

Build Information:
Built By : xyz
Built On : Sat Jun 29 22:45:27 2019
Build Host : iox-lnx-064
Workspace : ../

//ws/
Version :
Label : -CUSTOMER_LABEL

cisco
System uptime is 41 minutes

Router#show version
Cisco IOS XR Software, Version 7.10.1 LNT
Copyright (c) 2013-2022 by Cisco Systems, Inc.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
115

Hosting Applications on IOS XR
Build a Golden ISO

Build Information:
Built By : xyz
Built On : Tue June 07 19:43:44 UTC 2021
Build Host : iox-lnx-064
Workspace : ../ncs5500/ws
Version : 7.10.1
Label : 7.1.10-Customer_Label

cisco NCS5500L (D-1563N @ 2.00GHz)
cisco NCS-55A1-36H-S (D-1563N @ 2.00GHz) processor with 32GB of memory
ios uptime is 3 weeks, 1 day, 10 hours, 11 minutes
NCS-55A1-36H-S
NCS55B1 Fixed Scale HW Flexible Consumption Need Smart Lic

TPA Life Cycle
Applicationmanagermanages the life cycle of TPA. Following table shows the Applicationmanager commands
and their usage.

Table 12: TPA Life-Cycle Commands

DescriptionCommand

Starts an application. The application must be
activated before it is started. Starting an already
running application does not fail.

Example

appmgr application start name app1

appmgr application start name <name>

Stops or kills an application. The application must be
activated before it can be stopped. Stopping an already
stopped application does not fail.

Example

appmgr application kill name app1

appmgr application stop name <name>

appmgr application kill name <name>

Perform a docker exec inside a given application
(Docker only).

Example

appmgr application exec name app1
docker-exec-cmd ls

appmgr application exec <name>
docker-exec-cmd <cmd>

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
116

Hosting Applications on IOS XR
TPA Life Cycle

DescriptionCommand

Shows the basic information of an activated
application in tabular format.

Example

Name Type Config State Status
---- ---- ------- ----- ----------
app1 Docker Activated Up About an
hour
app2 Docker Activated Exited (0) About an
hour
app3 Docker Activated Exited (0) About an
hour
app4 Docker Activated Exited (0) About an
hour
app5 Docker Error N/A

show appmgr application name <name> info
[summary|detail]

show appmgr application-table

Shows application statistics.show appmgr application name <name> stats

Shows application logs.show appmgr application name <name> logs

Appendix

Secure ZTP Work Flow
sZTP is a technique to securely provision a networking device. Once provisioned, the device should be able
to securely connect to the Network Management Systems (NMS). For more details on secure ZTP on USB,
see Secure ZTP with Removable Storage Device section of System Setup and software Installation Guide.

• Ensure no swapping of USB with another bootable USB during this reboot.

• Reimage and USB workflow does not work together.

Note

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
117

Hosting Applications on IOS XR
Appendix

Figure 13: Secure ZTP (USB) Work Flow

How do I build USB bootable zip file using GISO image with signed TPA RPMs?

Before you begin

• OV must be created.

• OC public key and private keys must be available.

Step 1 Run the USB script usb.py and provide parameters.

Example:
$./usb.py [-h] [-prc PRECONFIG] [-c CONFIG] [-psc POSTCONFIG]

[-ch {merge,replace}] [-iu IMAGEURL] [-ia HASHALG] [-cp] [-b -bf BOOTABLEFILE] [-ip
IMAGEDESTPATH] [-ga]

-oc OC -ov OV -o OUTDIR -ver OSVERSION -name OSNAME -sn SERIALNUM

python3 usb.py \
-prc scripts/pre_config_script.sh \
-c cfg/default.cfg \
-psc scripts/post_config_script.py \
-ch merge \
-iu images/NCS5500/image.iso -ia sha-256 \
-ver 7.6.1.15I -name "Cisco IOS XR Software" \
-oc /auto/tftp-xrbng/akuriako/ZTP/certificates/ownercerts/pdc.cert \
-ocpk /auto/tftp-xrbng/akuriako/ZTP/certificates/ownercerts/pdc.key \
-ov /auto/tftp-xrbng/akuriako/ZTP/certificates/vouchers/FOC2502R1DJ/FOC2502R1DJ.vcj \
-sn FOC250269XE \
-o usbdrive

• Ensure there is no /for the image path after -iu.

• OV is created from the serial number present in the SUDI certificate.

Note

The following parameters can be provided as input to the USB build tool:

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
118

Hosting Applications on IOS XR
Secure ZTP Work Flow

• --prc: Pre configuration file path.

• --c: Configuration file.

• --psc: Post configuration fiel path.

• --ch: {merge,replace}: Configuration handling such as merge or replace.

• --iu: Image URL.

• --ver: Version of OS.

• --oc: Path to owner certificate.

• --ocpk: PDC key from owner certificate.

• --ov: Path to owner-ship voucher.

• --sn: RP serial number.

• --o: Output directory.

Once the OV is received, stage the USB for onboarding into device.

Step 2 Zip the file and copy to the router.

Example:
router# tar -zcvf usbdrive.tgz usbdrive

Step 3 Copy the zip file to the router.

Example:
Router# tar -zxvf usbdrive.tgz

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
119

Hosting Applications on IOS XR
Secure ZTP Work Flow

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
120

Hosting Applications on IOS XR
Secure ZTP Work Flow

C H A P T E R 5
Hosting Applications Using Configuration
Management Tools

Configuration management tools are used to automate manual tasks, such as setting up servers and network
devices. As application delivery requirements keep changing, reconfiguring network equipment becomes a
challenge. The manual reconfiguration process is prone to errors, which in turn can cause network outages.
Configuration management tools help when configurations need to be updated constantly, and on multiple
network devices.

The Cisco IOS XR Software works well with the following configuration management tools:

• Chef

• Puppet

This section explains how you can install, configure, and use the configuration management tools, Chef and
Puppet for application hosting on IOS XR.

• Using Chef for Configuring Cisco IOS XR, on page 121
• Using Puppet for Configuring Cisco IOS XR, on page 125
• Using Configuration Management Tools on Vagrant, on page 131

Using Chef for Configuring Cisco IOS XR
Chef is an open-source IT automation tool that you can use to install, configure, and deploy various applications
natively on Cisco IOS XR.

To use Chef, you need the following components:

• Chef Client RPM Version 12.5, or later for Cisco IOS XR 6.0

• Chef Server Version 12.4, or higher

• Applications that are compatible with the Wind River Linux 7 environment of IOS XR

You also need three Chef built-in resources to deploy your application natively on IOS XR. The three built-in
Chef Resources are:

• Package Resource

• File Resource

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
121

• Service Resource

Access the links provided in the following table for additional details on Chef and Chef resources:

Table 13: Chef Resources

LinkTopic

https://www.chef.io/Chef Software, Inc.

https://docs.chef.io/chef_overview.htmlChef Overview

https://docs.chef.io/resource_package.htmlPackage Resource Reference

https://docs.chef.io/resource_file.htmlFile Resource Reference

https://docs.chef.io/resource_service.htmlService Resource Reference

https://docs.chef.io/install_server.htmlChef Server Reference

Chef ClientChef Client for Native XR Environment

Installing and Configuring the Chef Client
This section describes the procedure for installing the Chef Client on IOS XR.

Prerequisites

Ensure that the following requirements are met before you proceed with installation:

• Your workstation is set up with the Chef repository and the Chef Development Kit.

• Chef Server Version 12.4, or higher is installed and accessible from your Linux box.

• The Chef Server identification files are available.

• You have the right name server and domain name entries configured in the Linux environment
(/etc/resolv.conf).

• The router is using a valid NTP server.

Configuration Procedure

To install and configure the Chef Client on IOS XR, follow these steps:

1. From your Linux box, access the IOS XR console through SSH, and log in.
cisco@host:~$ ssh root@192.168.122.188
root@192.168.122.188's password:
RP/0/RP0/CPU0:ios#

You have entered the IOS XR prompt.

2. Enter the third-party network namespace or global VRF, depending on the version of Cisco IOS XR you
are using in your network.

You can verify whether you are in the namespace by viewing the interfaces, as shown here:

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
122

Hosting Applications Using Configuration Management Tools
Installing and Configuring the Chef Client

https://www.chef.io/
https://docs.chef.io/chef_overview.html
https://docs.chef.io/resource_package.html
https://docs.chef.io/resource_file.html
https://docs.chef.io/resource_service.html
https://docs.chef.io/install_server.html
https://packages.chef.io/files/stable/chef/12.5.1/ios_xr/6/chef-12.5.1-1.ios_xr6.x86_64.rpm
https://docs.chef.io/install_dk.html

/* If you are using Cisco IOS XR Version 6.0.0, run the following command */
RP/0/RP0/CPU0:ios# run ip netns exec tpnns bash

/* If you are using Cisco IOS XR Version 6.0.2 or higher, run the following command */
RP/0/RP0/CPU0:ios# bash

[xr-vm_node0_RP0_CPU0:~]$ ifconfig
Gi0_0_0_0 Link encap:Ethernet HWaddr 52:46:04:87:19:3c

inet addr:192.164.168.10 Mask:255.255.255.0
inet6 addr: fe80::5046:4ff:fe87:193c/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41
inet addr:192.168.122.197 Mask:255.255.255.0
inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1482 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo:0 Link encap:Local Loopback
inet addr:1.1.1.1 Mask:255.255.255.255
UP LOOPBACK RUNNING MTU:1500 Metric:1

3. (Optional) Configure a proxy server (http_proxy, https_proxy) as needed.
http_proxy=http://proxy.youtube.com:8080
https_proxy=https://proxy.youtube.com:8080

4. Install the Chef Client.
[xr-vm_node0_RP0_CPU0:~]$ yum install https://chef.io/chef/install.sh

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
123

Hosting Applications Using Configuration Management Tools
Installing and Configuring the Chef Client

The Chef install.sh script automatically determines the latest version of the Chef Client RPM for
installation.

5. Copy the validation.pem file from the Chef server to /etc/chef/validation.pem

6. Edit the Chef Client configuration file at /etc/chef/client.rbwith Chef Server identification and Client
settings.
validation_client_name 'chef-validator'
chef_server_url 'https://my_chef_server.youtube.com/organizations/chef'
node_name 'n3k.youtube.com' # "This" client device.
cookbook_sync_threads 5 # necessary for small memory switches (4G or less)
interval 30 # client-run interval; remove for "never"

7. Run the Chef Client.
[xr-vm_node0_RP0_CPU0:~]$ chef-client

To run the Client once, use the chef-client --once command. For more information, see the Chef documentation
at https://docs.chef.io/chef_client.html

Note

The Chef Client is successfully installed on IOS XR.

Creating a Chef Cookbook with Recipes
A Chef cookbook, loaded with Chef recipes, can be created on your Linux workstation, and copied to the
Chef server. After you install the Chef client on IOS XR, the cookbook with recipes can be downloaded from
the Chef server, and used while running the client.

Prerequisites

Ensure the following requirements are met before you proceed:

• You have access to the application package compatible with the native IOS XR environment.

• Target application package is hosted on an accessible repository or downloaded to a boot flash.

Configuration Procedure

Use the following procedure to create a Chef recipe that starts the bootlogd service, and installs iPerf on IOS
XR:

1. Create a cookbook on your Linux workstation by using the corresponding knife command.
knife cookbook create cisco-network-chef-cookbook

2. Create the Chef recipe file to install iPerf, and add it to the cookbook.

The Chef recipe must be created in the cisco-network-chef-cookbook/recipes/ directory. For it to be
loaded automatically by the Chef Client, the Chef recipe must be named as default.rb.

#
Recipe:: demo_default_providers
#
Copyright (c) 2015 The Authors, All Rights Reserved.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
124

Hosting Applications Using Configuration Management Tools
Creating a Chef Cookbook with Recipes

https://docs.chef.io/chef_client.html

package = 'iperf-2.0.5-r0.0.core2_64.rpm'
service = 'bootlogd'

remote_file "/#{package}" do
source "http://10.105.247.73/wrl7_yum_repo/#{package}"
action :create

end

yum_package "#{package}" do
source "/#{package}"
action :install

end

service "#{service}" do
action :start

end

3. Access the Chef Server from your Linux workstation and upload the cookbook to the server.

4. Log into the IOS XR shell, and run the Chef Client to load and execute the cookbook.
[xr-vm_node0_RP0_CPU0:~]$chef-client

The iperf RPM is installed on IOS XR.

For additional details on the Chef Client, refer to https://docs.chef.io/chef_client.html

Using Puppet for Configuring Cisco IOS XR
Puppet is an open-source configuration management and automation tool that you can use to install and
configure various applications on IOS XR. Puppet is provided by Puppet Labs, and runs well on Windows,
Unix, and Linux systems. Puppet uses its own declarative langauage to describe system configuration.

Puppet follows a client-server model. The Puppet client is known as the Puppet Agent, and is installed on
XR. The configuration file, called the Puppet manifest, is stored on the Puppet Server and contains configuration
for multiple nodes. On receiving the information about XR from the Puppet Agent, the Puppet Server compiles
the manifest into a catalog that can be used to configure the node that sent the information. This workflow is
described in the following illustration.

Figure 14: Basic Puppet Workflow

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
125

Hosting Applications Using Configuration Management Tools
Using Puppet for Configuring Cisco IOS XR

https://docs.chef.io/chef_client.html

1. The Puppet Agent sends information about IOS XR to the Puppet Server.

2. The Puppet Server compiles the information into a Catalog, and sends to the Puppet Agent.

3. The Puppet Agent applies the catalog to XR.

4. The Puppet Agent sends a configuration complete report to the Puppet Server.

To use Puppet, you need the following components:

• Puppet RPM built for IOS XR.

• Puppet Server Version 4.0, or higher.

Table 14: Puppet Resources

LinkTopic

https://github.com/cisco/cisco-yang-puppet-moduleCisco Github Puppet Yang Module

https://puppetlabs.com/Puppet Labs

https://docs.puppetlabs.com/references/latest/type.html#packagePackage Type Reference

https://docs.puppetlabs.com/references/latest/type.html#fileFile Type Reference

https://docs.puppetlabs.com/references/latest/type.html#serviceService Type Reference

Puppet ServerPuppet Server Reference

Puppet AgentPuppet Agent for IOS XR Environment

Installing and Configuring the Puppet Agent
This section describes how you can install and configure the Puppet Agent on IOS XR.

Prerequisites

Ensure that the following requirements are met before you proceed with installation.

• Puppet Server Version 4.0, or higher is installed and accessible from your workstation.

• You have the right name server and domain name entries configured in the Linux environment
(/etc/resolv.conf).

• The router is using a valid NTP server.

Configuration Procedure

To install and configure the Puppet Agent on IOS XR, follow these steps:

1. From your Linux box, access the IOS XR console through SSH, and log in.
cisco@host:~$ ssh root@192.168.122.188
root@192.168.122.188's password:
RP/0/RP0/CPU0:ios#

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
126

Hosting Applications Using Configuration Management Tools
Installing and Configuring the Puppet Agent

https://github.com/cisco/cisco-yang-puppet-module
https://puppetlabs.com/
https://docs.puppetlabs.com/references/latest/type.html#package
https://docs.puppetlabs.com/references/latest/type.html#file
https://docs.puppetlabs.com/references/latest/type.html#service
https://docs.puppetlabs.com/puppetserver/latest/services_master_puppetserver.html
http://yum.puppetlabs.com

You have entered the IOS XR prompt.

2. Enter the third-party network namespace or global VRF, depending on the version of Cisco IOS XR you
are using in your network.

You can verify whether you are in the namespace by viewing the interfaces, as shown:

/* If you are using Cisco IOS XR Version 6.0.0, run the following command */
RP/0/RP0/CPU0:ios# run ip netns exec tpnns bash

/* If you are using Cisco IOS XR Version 6.0.2 or higher, run the following command */
RP/0/RP0/CPU0:ios# bash

[xr-vm_node0_RP0_CPU0:~]$ ifconfig
Gi0_0_0_0 Link encap:Ethernet HWaddr 52:46:04:87:19:3c

inet addr:192.164.168.10 Mask:255.255.255.0
inet6 addr: fe80::5046:4ff:fe87:193c/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41
inet addr:192.168.122.197 Mask:255.255.255.0
inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1482 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo:0 Link encap:Local Loopback
inet addr:1.1.1.1 Mask:255.255.255.255
UP LOOPBACK RUNNING MTU:1500 Metric:1

3. (Optional) Configure a proxy server (http_proxy, https_proxy), as needed.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
127

Hosting Applications Using Configuration Management Tools
Installing and Configuring the Puppet Agent

http_proxy=http://proxy.youtube.com:8080
https_proxy=https://proxy.youtube.com:8080

4. Install the Puppet Agent.
[xr-vm_node0_RP0_CPU0:~]$ wget http://yum.puppetlabs.com/RPM-GPG-KEY-puppetlabs
[xr-vm_node0_RP0_CPU0:~]$ wget http://yum.puppetlabs.com/RPM-GPG-KEY-reductive
[xr-vm_node0_RP0_CPU0:~]$ rpm --import RPM-GPG-KEY-puppetlabs RPM-GPG-KEY-reductive
[xr-vm_node0_RP0_CPU0:~]$ yum install
http://yum.puppetlabs.com/puppetlabs-release-pc1-cisco-wrlinux-7.noarch.rpm

5. Edit the Puppet Agent configuration file at /etc/puppetlabs/puppet/puppet.confwith Puppet Server
identification and Agent settings.

The Puppet Agent is successfully installed on IOS XR.

Creating a Puppet Manifest
This section explains how you can create a Puppet manifest on the Puppet Server for installing an application,
such as iPerf (RPM file).

Prerequisites

Ensure the following requirements are met before you proceed:

• You have access to the application package compatible with the native IOS XR environment.

• Target application package is hosted on an accessible repository, or downloaded to a boot flash.

Configuration Procedure

To create a sample Puppet manifest to start the bootlogd service, and install iPerf on IOS XR, follow these
steps:

1. Create a Puppet manifest on Puppet Server to install your application.

The manifest must be created in the /etc/puppetlabs/code/environments/production/manifests/
directory. For it to be launched automatically by Puppet Server, the manifest file must be named, site.pp.
Manifest to demo builtin providers
#

class ciscopuppet::demo_builtin_providers {

$package = 'iperf'
$service = 'bootlogd'

yumrepo { 'wrl7-repo':
ensure => present,
name => 'wrl7-repo',
baseurl => 'http://10.105.247.73/wrl7_yum_repo/',
gpgcheck => 0,
enabled => 1,
proxy => '_none_',

}

package { $package:
ensure => present,
require => Yumrepo['wrl7-repo'],

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
128

Hosting Applications Using Configuration Management Tools
Creating a Puppet Manifest

}

service { $service:
ensure => running,

}

}

node 'default' {
include ciscopuppet::demo_builtin_providers

}

2. Access and trigger the Puppet Agent to converge the system based on the manifest defined on the Puppet
Server.

The iPerf RPM is installed on IOS XR by the Puppet Agent.

Using Yang Models with Puppet on IOS XR
You can install the Puppet Agent within a third-party LXC on IOS XR and enable it to interact with the gRPC
and Netconf servers installed natively within the XR LXC. The Puppet Agent uses gRPC Ruby libraries to
send and receive Yang data in JSON format. The Puppet Agent interacts with the Netconf server to send and
receive Yang data in XML format. The workflow is described in the following illustration.

Figure 15: Yang with Puppet Workflow

Installing the Cisco Yang Puppet Module on Puppet Server

Before you can create a sample Puppet Manifest with Yang on the Puppet Server you must install the Cisco
Yang Puppet module by executing the following command on the Puppet Server:

puppet module install ciscoeng-ciscoyang

Alternately, you can manually install the Cisco Yang Puppet module from the github source by using the
following commands:

git clone https://github.com/cisco/cisco-yang-puppet-module.git
cd cisco-yang-puppet-module
puppet module build
sudo puppet module install pkg/ciscoeng-ciscoyang-1.0.3.tar.gz

Sample Puppet Manifest By Using the cisco_yang Type

The following example is a sample manifest that uses the cisco_yang type to configure two VRF instances
on IOS XR.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
129

Hosting Applications Using Configuration Management Tools
Using Yang Models with Puppet on IOS XR

node 'default' {
cisco_yang { 'my-config':
ensure => present,
target => '{"Cisco-IOS-XR-infra-rsi-cfg:vrfs": [null]}',
source => '{"Cisco-IOS-XR-infra-rsi-cfg:vrfs": {

"vrf":[
{

"vrf-name":"VOIP",
"description":"Voice over IP",
"vpn-id":{
"vpn-oui":875,
"vpn-index":3

},
"create":[
null

]
},
{

"vrf-name":"INTERNET",
"description":"Generic external traffic",
"vpn-id":{
"vpn-oui":875,
"vpn-index":22

},
"create":[
null

]
}

]
}

}',
}

}

Sample Puppet Manifest By Using the cisco_yang_netconf Type

The following example is a sample manifest that uses the cisco_yang_netconf type to configure two VRF
instances on IOS XR.
node 'default' {
cisco_yang_netconf { 'my-config':
target => '<vrfs xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-rsi-cfg"/>',
source => '<vrfs xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-rsi-cfg">

<vrf>
<vrf-name>VOIP</vrf-name>
<create/>
<description>Voice over IP</description>
<vpn-id>
<vpn-oui>875</vpn-oui>
<vpn-index>3</vpn-index>

</vpn-id>
</vrf>
<vrf>
<vrf-name>INTERNET</vrf-name>
<create/>
<description>Generic external traffic</description>
<vpn-id>
<vpn-oui>875</vpn-oui>
<vpn-index>22</vpn-index>

</vpn-id>
</vrf>

</vrfs>',
mode => replace,

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
130

Hosting Applications Using Configuration Management Tools
Using Yang Models with Puppet on IOS XR

force => false,
}

}

For more information on using Yang with Puppet, see https://github.com/cisco/cisco-yang-puppet-module.

Using Configuration Management Tools on Vagrant
You can use vagrant with configuration management tools to automate and execute certain tasks for Cisco
IOS XR.

Pre-requisites for Using Vagrant

Before you can start using vagrant, ensure that you have fulfilled the following requirements on your host
device.

• Latest version of Vagrant for your operating system. We recommend Version 1.8.6.

• Latest version of a virtual box for your operating system. We recommend Version 5.1+.

• Minimum of 5 GB of RAM with two cores.

• (Optional) If you are using the Windows Operating System, we recommend that you download the Git
bash utility for running the commands.

Using Puppet on Vagrant
This section demonstrates how you can use Puppet to configure Cisco IOS XR, by running vagrant on your
host device.

Procedure

To start using Puppet on vagrant, use the following steps.

1. Generate an API key and a CCO ID by using the steps described on Github.

2. Download the latest stable version of the IOS-XRv vagrant box.
$ curl <cco-id>:<API-KEY>

$ BOXURL --output ~/iosxrv-fullk9-x64.box

$ vagrant box add --name IOS-XRv ~/iosxrv-fullk9-x64.box

3. Verify if the vagrant box has been successfully installed.
annseque@ANNSEQUE-WS02 MINGW64 ~ vagrant box list
IOS-XRv (virtualbox, 0)

4. Create a working directory.
annseque@ANNSEQUE-WS02 MINGW64 ~ mkdir ~/iosxrv
annseque@ANNSEQUE-WS02 MINGW64 ~ cd ~/iosxrv

5. Initialize the vagrant file with the new vagrant box.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
131

Hosting Applications Using Configuration Management Tools
Using Configuration Management Tools on Vagrant

https://github.com/cisco/cisco-yang-puppet-module
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
https://git-scm.com/download/win
https://git-scm.com/download/win
https://xrdocs.github.io/getting-started/steps-download-iosxr-vagrant

ANNSEQUE-WS02 MINGW64:iosxrv annseque$ vagrant init IOS-XRv
A `Vagrantfile` has been placed in this directory. You are now
ready to `vagrant up` your first virtual environment! Please read
the comments in the Vagrantfile as well as documentation on
`vagrantup.com` for more information on using Vagrant.

6. Clone the vagrant-xrdocs repository.
annseque@ANNSEQUE-WS02 MINGW64 ~
$ git clone https://github.com/ios-xr/vagrant-xrdocs.git

7. Navigate to the vagrant-xrdocs repository and locate the puppet-tutorials/app_hosting/centos-pm
directory for launching the Puppet server.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ ls
ansible-tutorials/ native-app-topo-bootstrap/ README.md
single_node_bootstrap/
lxc-app-topo-bootstrap/ puppet-tutorials/ simple-mixed-topo/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ cd puppet-tutorials/app_hosting/centos-pm/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/puppet-tutorials/app_hosting/centos-pm
(master)
$ ls
configs/ iosxrv.sh* puppetmaster.sh* scripts/
ubuntu-xenial-16.04-cloudimg-console.log Vagrantfile xr_config

8. Launch the vagrant instance for Puppet server.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/puppet-tutorials/app_hosting/centos-pm
(master)
$ vagrant up

Bringing machine 'puppetmaster' up with 'virtualbox' provider...
Bringing machine 'iosxrv' up with 'virtualbox' provider...
==> puppetmaster: Box 'bento/centos-7.1' could not be found. Attempting to find and
install...

puppetmaster: Box Provider: virtualbox
puppetmaster: Box Version: >= 0

==> puppetmaster: Loading metadata for box 'bento/centos-7.1'
puppetmaster: URL: https://atlas.hashicorp.com/bento/centos-7.1

==> puppetmaster: Adding box 'bento/centos-7.1' (v2.2.2) for provider: virtualbox
puppetmaster: Downloading:

https://atlas.hashicorp.com/bento/boxes/centos-7.1/versions/2.2.2/providers/virtualbox.box

puppetmaster:
==> puppetmaster: Successfully added box 'bento/centos-7.1' (v2.2.2) for 'virtualbox'!
==> puppetmaster: Importing base box 'bento/centos-7.1'...
==> puppetmaster: Matching MAC address for NAT networking...
==> puppetmaster: Checking if box 'bento/centos-7.1' is up to date...
==> puppetmaster: Setting the name of the VM: centos-pm_puppetmaster_1474264139902_14958
==> puppetmaster: Clearing any previously set network interfaces...
==> puppetmaster: Preparing network interfaces based on configuration...

puppetmaster: Adapter 1: nat
puppetmaster: Adapter 2: intnet

==> puppetmaster: Forwarding ports...
puppetmaster: 22 (guest) => 2222 (host) (adapter 1)

==> puppetmaster: Running 'pre-boot' VM customizations...
==> puppetmaster: Booting VM...
==> puppetmaster: Waiting for machine to boot. This may take a few minutes...

puppetmaster: SSH address: 127.0.0.1:2222
puppetmaster: SSH username: vagrant
puppetmaster: SSH auth method: private key

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
132

Hosting Applications Using Configuration Management Tools
Using Puppet on Vagrant

puppetmaster: Warning: Remote connection disconnect. Retrying...
...
==> puppetmaster: 127.0.0.1 centos-puppetmaster centos-puppetmaster.cisco.com
==> puppetmaster: 127.0.0.1 localhost localhost.localdomain localhost4
localhost4.localdomain4
==> puppetmaster: ::1 localhost localhost.localdomain localhost6
localhost6.localdomain6
==> puppetmaster: 10.1.1.20 xr-vm_node0_RP0_CPU0.cisco.com
==> puppetmaster: centos-puppetmaster
==> puppetmaster: Retrieving
https://yum.puppetlabs.com/puppetlabs-release-pc1-el-7.noarch.rpm
==> puppetmaster: Preparing...
==> puppetmaster: ##
==> puppetmaster: Updating / installing...
==> puppetmaster: puppetlabs-release-pc1-1.1.0-2.el7
...

==> iosxrv: Last applied configuration was:
==> iosxrv: Building configuration...
==> iosxrv: !! IOS XR Configuration version = 6.1.1.18I
==> iosxrv: hostname xrv9k
==> iosxrv: domain name cisco.com
==> iosxrv: tpa
==> iosxrv: address-family ipv4
==> iosxrv: update-source GigabitEthernet0/0/0/0
==> iosxrv: !
==> iosxrv: !
==> iosxrv: interface Loopback0
==> iosxrv: ipv4 address 1.1.1.1 255.255.255.255
==> iosxrv: !
==> iosxrv: interface Loopback1
==> iosxrv: ipv4 address 10.10.10.10 255.255.255.255
==> iosxrv: !
==> iosxrv: interface GigabitEthernet0/0/0/0
==> iosxrv: ipv4 address 10.1.1.20 255.255.255.0
==> iosxrv: no shutdown
==> iosxrv: !
==> iosxrv: router static
==> iosxrv: address-family ipv4 unicast
==> iosxrv: 0.0.0.0/0 GigabitEthernet0/0/0/0 10.0.0.1
==> iosxrv: !
==> iosxrv: !
==> iosxrv: ssh server v2
==> iosxrv: ssh server netconf vrf default
==> iosxrv: grpc
==> iosxrv: port 57777
==> iosxrv: !
==> iosxrv: netconf-yang agent
==> iosxrv: ssh
==> iosxrv: !
==> iosxrv: end
...

9. Create and apply a sample Puppet manifest file.

a. Create and copy sample Puppet manifest file to Puppet Server.

In this example, we use a sample Puppet manifest file to configure two VRF instances on IOS XR
by using the Yang Netconf type. . The sample file has already been created and placed in the
Puppet-Yang git repository. The file contents are as follows.
node 'default' {
file { "/root/temp/vrfs.json":
source => "puppet:///modules/ciscoyang/models/defaults/vrfs.json"}

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
133

Hosting Applications Using Configuration Management Tools
Using Puppet on Vagrant

Configure two vrfs (VOIP & INTERNET)
cisco_yang { '{"Cisco-IOS-XR-infra-rsi-cfg:vrfs": [null]}':
ensure => present,
source => '/root/temp/vrfs.json',

}
}

Locate and copy the manifest file.
annseque@ANNSEQUE-WS02 MINGW64
~/vagrant-xrdocs/puppet-tutorials/app_hosting/centos-pm (master)
$ vagrant ssh puppetmaster
[vagrant@centos-puppetmaster ~]$ find . -name site.pp
./cisco-yang-puppet-module/examples/site.pp

[vagrant@centos-puppetmaster ~]$ sudo cp ./cisco-yang-puppet-module/examples/site.pp

/etc/puppetlabs/code/environments/production/manifests/
[vagrant@centos-puppetmaster ~]$exit

10. Create a /root/temp directory on XR (IOS-XRv), which will be used by the Puppet Agent for locating
the configuration file.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/puppet-tutorials/app_hosting/centos-pm
(master)
$ vagrant ssh iosxrv
Last login: Tue Sep 20 03:49:04 2016 from 10.0.2.2
xr-vm_node0_RP0_CPU0:~$ sudo mkdir /root/temp/

The contents of the configuration file (vrfs.json) for creating two VRF instances is as shown.
{

"Cisco-IOS-XR-infra-rsi-cfg:vrfs":{
"vrf":[{

"vrf-name":"VOIP",
"description":"Voice over IP",
"vpn-id":{"vpn-oui":87, "vpn-index":3},
"create":[null]

},
{

"vrf-name":"INTERNET",
"description":"Generic external traffic",
"vpn-id":{"vpn-oui":85, "vpn-index":22},
"create":[null]

}]
}

}

11. Run the Puppet agent to apply the configuration on XR.
xr-vm_node0_RP0_CPU0:~$ sudo puppet agent -t
xr-vm_node0_RP0_CPU0:~$ exit

12. Verify if the VRF configuration is successful on XR.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/puppet-tutorials/app_hosting/centos-pm
(master)
$ ssh -p 2223 vagrant@localhost
vagrant@localhost's password:

RP/0/RP0/CPU0:xrv9k# show running-configuration vrf

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
134

Hosting Applications Using Configuration Management Tools
Using Puppet on Vagrant

vrf VOIP
description Voice over IP
vpn id 57:3
!
vrf INTERNET
description Generic external traffic
vpn id 55:16
!
$ exit

You have successfully used Puppet on vagrant to configure Cisco IOS XR.

Using Ansible for Hosting Applications
Ansible is an automation tool used to configure a device, deploy applications, and manage services. It differs
from Chef and Puppet in that it does not need an agent or a client to interact with the Ansible program running
on a server.

You can use Ansible to automate tasks on Cisco IOS XR that are time consuming and cumbersome to execute.
For instance, you can create an Ansible playbook in YAML with a set of show commands that you need to
run at regular intervals. Every time you need to run the set of commands, you can run the playbook with a
single command and achieve all the results at once. Alternately, you can create an Ansible module to do a
more complex task and invoke it with a playbook.

Ansible Modes of Operation

Ansible module can run on a Linux server or on a router running Cisco IOS XR. When an Ansible module
runs on a Linux server, it is considered to be operating in the local mode. When an Ansible module runs on
a router, it is considered to be operating in the remote mode.

The two modes operate differently from each other.

To use Ansible in the local or remote mode, use the respective steps described as follows:

• Ansible in Local Mode:

1. Run Ansible program on a Linux server with your Ansible playbook configured to use local mode.

2. The Ansible playbook invokes the Ansible module to run on the Linux server.

3. The Ansible module establishes an SSH connection through Port 22 to the router running IOS XR,
and executes the specified XR commands.

4. The command outputs are displayed on the Linux server.

• Ansible in Remote Mode:

1. Configure a router running IOS XR to allow Third Party Network Namespace (TPNNS) shell on
Port No. 57722.

For information on accessing TPNNS, see Accessing the Third-Party Network Namespace on Cisco
IOS XR Linux Shell, on page 6.

2. Configure Ansible to use the SSH Port No. 57722, instead of the default Port No. 22.

3. Run the Ansible program on a Linux server with your Ansible playbook configured to use remote
mode.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
135

Hosting Applications Using Configuration Management Tools
Using Ansible for Hosting Applications

4. The Ansible program establishes an SSH connection through Port No. 57722 to TPNNS shell on the
router.

5. The Ansible module as defined in the Ansible playbook and other related Ansible system modules
are automatically downloaded to the router by the Ansible program.

6. The Ansible module is invoked to run in the TPNNS shell.

A helper program, such as /pkg/bin/xr_cli or /pkg/sbin/config, is used by the Ansible module to
execute XR commands in the TPNNS shell.

7. The command outputs are sent to the Linux server in JSON format so that it can be displayed on the
Linux server.

For information on accessing XR for using Ansible, see the following table.

Table 15: Accessing IOS XR Through Ansible

Helper ProgramsSSH Port NumberMethod of AccessMode of Access

IOS XR CLI Shell22Console CLILocal

• /pkg/bin/xr_cli

• /pkg/sbin/config

57722TPNNS CLILocal

IOS XR XML Agent22Cisco XMLLocal

IOS XR Netconf Agent22Netconf 1.0Local

IOS XR Netconf-yang
Agent

830Netconf 1.1Local

IOS XR Netconf-yang
Agent

830YDK NetconfLocal

• /pkg/bin/xr_cli

• /pkg/sbin/config

57722TPNNS CLIRemote

For more information, see https://github.com/ios-xr/iosxr-ansible.

Using Ansible On Vagrant
This section describes how you can generate a sample Ansible playbook on vagrant.

Sample Ansible Operation on XR

To start using Ansible on XR, use the following steps:

Ensure you have created an application development topology as described in Setting up an Application
Development Topology By Using Vagrant, on page 75, before proceeding with the following steps.

Note

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
136

Hosting Applications Using Configuration Management Tools
Using Ansible On Vagrant

https://github.com/ios-xr/iosxr-ansible

1. Navigate to the vagrant-xrdocs/ansible-tutorials/app_hosting/ directory and launch the vagrant
instance.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/ansible-tutorials/app_hosting (master)
$ vagrant up
Bringing machine 'devbox' up with 'virtualbox' provider...
Bringing machine 'rtr' up with 'virtualbox' provider...
==> devbox: Checking if box 'ubuntu/trusty64' is up to date...
==> devbox: A newer version of the box 'ubuntu/trusty64' is available! You currently
==> devbox: have version '20160801.0.0'. The latest is version '20160826.0.1'. Run
==> devbox: `vagrant box update` to update.
==> devbox: Clearing any previously set forwarded ports...
==> devbox: Clearing any previously set network interfaces...
==> devbox: Preparing network interfaces based on configuration...

devbox: Adapter 1: nat
devbox: Adapter 2: intnet

==> devbox: Forwarding ports...
devbox: 22 (guest) => 2222 (host) (adapter 1)

==> devbox: Running 'pre-boot' VM customizations...
==> devbox: Booting VM...
==> devbox: Waiting for machine to boot. This may take a few minutes...

devbox: SSH address: 127.0.0.1:2222
devbox: SSH username: vagrant
devbox: SSH auth method: private key
devbox: Warning: Remote connection disconnect. Retrying...
...

==> devbox: Machine booted and ready!
...

devbox: Guest Additions Version: 4.3.36
devbox: VirtualBox Version: 5.0

==> devbox: Configuring and enabling network interfaces...
==> devbox: Mounting shared folders...

devbox: /vagrant => C:/Users/annseque/vagrant-xrdocs/ansible-tutorials/app_hosting
==> devbox: Machine already provisioned. Run `vagrant provision` or use the `--provision`
==> devbox: flag to force provisioning. Provisioners marked to run always will still
run.
==> rtr: Clearing any previously set forwarded ports...
==> rtr: Fixed port collision for 57722 => 2222. Now on port 2200.
==> rtr: Clearing any previously set network interfaces...
==> rtr: Preparing network interfaces based on configuration...

rtr: Adapter 1: nat
rtr: Adapter 2: intnet

==> rtr: Forwarding ports...
rtr: 57722 (guest) => 2200 (host) (adapter 1)
rtr: 22 (guest) => 2223 (host) (adapter 1)
rtr: 58822 (guest) => 58822 (host) (adapter 1)

==> rtr: Running 'pre-boot' VM customizations...
==> rtr: Booting VM...
==> rtr: Waiting for machine to boot. This may take a few minutes...

rtr: SSH address: 127.0.0.1:2200
rtr: SSH username: vagrant
rtr: SSH auth method: private key
rtr: Warning: Remote connection disconnect. Retrying...
...

==> rtr: Machine booted and ready!
...
==> rtr: Machine already provisioned. Run `vagrant provision` or use the `--provision`
==> rtr: flag to force provisioning. Provisioners marked to run always will still run.

==> rtr: Machine 'rtr' has a post `vagrant up` message. This is a message
==> rtr: from the creator of the Vagrantfile, and not from Vagrant itself:
==> rtr:
==> rtr:
==> rtr: Welcome to the IOS XRv (64-bit) Virtualbox.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
137

Hosting Applications Using Configuration Management Tools
Using Ansible On Vagrant

==> rtr: To connect to the XR Linux shell, use: 'vagrant ssh'.
==> rtr: To ssh to the XR Console, use: 'vagrant port' (vagrant version > 1.8)
==> rtr: to determine the port that maps to guestport 22,
==> rtr: then: 'ssh vagrant@localhost -p <forwarded port>'
...

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/ansible-tutorials/app_hosting (master)
$ vagrant status
Current machine states:

devbox running (virtualbox)
rtr running (virtualbox)

This environment represents multiple VMs. The VMs are all listed
above with their current state. For more information about a specific
VM, run `vagrant status NAME`.

2. Configure access to XR (rtr).

a. Access the devbox through SSH and copy its public key by using SCP.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/ansible-tutorials/app_hosting (master)
$ vagrant ssh devbox
Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.13.0-92-generic x86_64)

...

7 packages can be updated.
0 updates are security updates.

New release '16.04.1 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

Last login: Mon Aug 8 15:16:37 2016 from 10.0.2.2
vagrant@vagrant-ubuntu-trusty-64:~$ scp -P 57722 /home/vagrant/.ssh/id_rsa.pub
vagrant@10.1.1.20:/home/vagrant/id_rsa_ubuntu.pub
id_rsa.pub

100% 414 0.4KB/s 00:00

b. Append the copied keys to authorized_keys on XR.
vagrant@vagrant-ubuntu-trusty-64:~$ exit
logout
Connection to 127.0.0.1 closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/ansible-tutorials/app_hosting (master)
$ vagrant ssh rtr
Last login: Mon Aug 8 15:14:31 2016 from 10.1.1.10
xr-vm_node0_RP0_CPU0:~$ cat /home/vagrant/id_rsa_ubuntu.pub
>> /home/vagrant/.ssh/authorized_keys

By configuring access to XR, Ansible is ready to run without a password.

3. Navigate to iosxr-ansible/remote/samples directory to see sample Ansible playbooks that you can run
on devbox.
xr-vm_node0_RP0_CPU0:~$ exit
logout
Connection to 127.0.0.1 closed.

--

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
138

Hosting Applications Using Configuration Management Tools
Using Ansible On Vagrant

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/ansible-tutorials/app_hosting (master)
$ vagrant ssh devbox
Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.13.0-92-generic x86_64)

...
35 packages can be updated.
24 updates are security updates.

New release '16.04.1 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

Last login: Tue Sep 6 09:54:13 2016 from 10.0.2.2

vagrant@vagrant-ubuntu-trusty-64:~$ pwd
/home/vagrant

vagrant@vagrant-ubuntu-trusty-64:~$ cd iosxr-ansible/remote/samples
vagrant@vagrant-ubuntu-trusty-64:~/iosxr-ansible/remote/samples$ ls
ifconfig.yml iosxr_cli.yml iosxr_install_package.yml iosxr_rollback.yml

iosxr_user_remove.yml show_config_commit show_users
install iosxr_get_config.yml iosxr_reload.yml
iosxr_update_package.yml iosxr_user_replace.yml show_install_active
iosxr_clear_log.yml iosxr_get_facts.yml iosxr_remove_package.yml iosxr_user_add.yml

README.md show_int_brief

4. Run a sample Ansible playbook to view the required information about XR (rtr).

vagrant@vagrant-ubuntu-trusty-64:~/iosxr-ansible/remote$
ansible-playbook samples/iosxr_cli.yml -e 'cmd="show interface brief"' --become

PLAY [ss-xr] ***

TASK [iosxr_cli] ***
ok: [10.1.1.20]

TASK [debug] ***
ok: [10.1.1.20] => {

"output.stdout_lines": [
"",

"---------------------------- show interface brief -----------------------------",

"",
" Intf Intf LineP Encap MTU BW",

" Name State State Type (byte) (Kbps)",

"--",
" Nu0 up up Null 1500

0",
" Gi0/0/0/0 up up ARPA 1514 1000000",

" Mg0/RP0/CPU0/0 up up ARPA 1514 1000000",

""
]

}

PLAY RECAP ***

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
139

Hosting Applications Using Configuration Management Tools
Using Ansible On Vagrant

10.1.1.20 : ok=2 changed=0 unreachable=0 failed=0

You have successfully used Ansible on vagrant.

Launching a Linux Container (LXC) By Using Ansible on Vagrant
This section describes how you can launch your own container (LXC) by using Ansible on vagrant.

Workflow for Deploying Your LXC Container

The workflow for launching your container on IOS XR is described in this section and illustrated in the
following topology.

Figure 16: LXC Container Deployment Workflow

1. Build the container rootfs tar ball on devbox.

2. Transfer the rootfs tar ball to IOS XR (rtr).

3. Launch the rootfs by running the virsh command.

Procedure

To launch your LXC container by using Ansible on a vagrant box, use the following steps.

Ensure you have created an application development topology as described in Setting up an Application
Development Topology By Using Vagrant, on page 75, before proceeding with the following steps.

Note

1. Navigate to the vagrant-xrdocs/ansible-tutorials/app_hosting/ directory and launch the vagrant
instance.
annseque@ANNSEQUE-WS02 MINGW64 ~
$ cd vagrant-xrdocs/ansible-tutorials/app_hosting/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/ansible-tutorials/app_hosting (master)
$ vagrant up
Bringing machine 'devbox' up with 'virtualbox' provider...
Bringing machine 'rtr' up with 'virtualbox' provider...
==> devbox: Checking if box 'ubuntu/trusty64' is up to date...
==> devbox: A newer version of the box 'ubuntu/trusty64' is available! You currently
==> devbox: have version '20160801.0.0'. The latest is version '20160826.0.1'. Run

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
140

Hosting Applications Using Configuration Management Tools
Launching a Linux Container (LXC) By Using Ansible on Vagrant

==> devbox: `vagrant box update` to update.
==> devbox: Clearing any previously set forwarded ports...
==> devbox: Clearing any previously set network interfaces...
==> devbox: Preparing network interfaces based on configuration...

devbox: Adapter 1: nat
devbox: Adapter 2: intnet

==> devbox: Forwarding ports...
devbox: 22 (guest) => 2222 (host) (adapter 1)

==> devbox: Running 'pre-boot' VM customizations...
==> devbox: Booting VM...
==> devbox: Waiting for machine to boot. This may take a few minutes...

devbox: SSH address: 127.0.0.1:2222
devbox: SSH username: vagrant
devbox: SSH auth method: private key
devbox: Warning: Remote connection disconnect. Retrying...
...

==> devbox: Machine booted and ready!
...

devbox: Guest Additions Version: 4.3.36
devbox: VirtualBox Version: 5.0

==> devbox: Configuring and enabling network interfaces...
==> devbox: Mounting shared folders...

devbox: /vagrant => C:/Users/annseque/vagrant-xrdocs/ansible-tutorials/app_hosting
==> devbox: Machine already provisioned. Run `vagrant provision` or use the `--provision`
==> devbox: flag to force provisioning. Provisioners marked to run always will still
run.
==> rtr: Clearing any previously set forwarded ports...
==> rtr: Fixed port collision for 57722 => 2222. Now on port 2200.
==> rtr: Clearing any previously set network interfaces...
==> rtr: Preparing network interfaces based on configuration...

rtr: Adapter 1: nat
rtr: Adapter 2: intnet

==> rtr: Forwarding ports...
rtr: 57722 (guest) => 2200 (host) (adapter 1)
rtr: 22 (guest) => 2223 (host) (adapter 1)
rtr: 58822 (guest) => 58822 (host) (adapter 1)

==> rtr: Running 'pre-boot' VM customizations...
==> rtr: Booting VM...
==> rtr: Waiting for machine to boot. This may take a few minutes...

rtr: SSH address: 127.0.0.1:2200
rtr: SSH username: vagrant
rtr: SSH auth method: private key
rtr: Warning: Remote connection disconnect. Retrying...
...

==> rtr: Machine booted and ready!
...
==> rtr: Machine already provisioned. Run `vagrant provision` or use the `--provision`
==> rtr: flag to force provisioning. Provisioners marked to run always will still run.

==> rtr: Machine 'rtr' has a post `vagrant up` message. This is a message
==> rtr: from the creator of the Vagrantfile, and not from Vagrant itself:
==> rtr:
==> rtr:
==> rtr: Welcome to the IOS XRv (64-bit) Virtualbox.
==> rtr: To connect to the XR Linux shell, use: 'vagrant ssh'.
==> rtr: To ssh to the XR Console, use: 'vagrant port' (vagrant version > 1.8)
==> rtr: to determine the port that maps to guestport 22,
==> rtr: then: 'ssh vagrant@localhost -p <forwarded port>'
...

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/ansible-tutorials/app_hosting (master)
$ vagrant status
Current machine states:

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
141

Hosting Applications Using Configuration Management Tools
Launching a Linux Container (LXC) By Using Ansible on Vagrant

devbox running (virtualbox)
rtr running (virtualbox)

This environment represents multiple VMs. The VMs are all listed
above with their current state. For more information about a specific
VM, run `vagrant status NAME`.

2. Configure access to XR (rtr), if not done already.

a. Access the devbox through SSH and copy its public key by using SCP.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/ansible-tutorials/app_hosting
(master)
$ vagrant ssh devbox
Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.13.0-92-generic x86_64)

...

7 packages can be updated.
0 updates are security updates.

New release '16.04.1 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

Last login: Mon Aug 8 15:16:37 2016 from 10.0.2.2
vagrant@vagrant-ubuntu-trusty-64:~$ scp -P 57722 /home/vagrant/.ssh/id_rsa.pub
vagrant@10.1.1.20:/home/vagrant/id_rsa_ubuntu.pub
id_rsa.pub

100% 414 0.4KB/s 00:00

b. Append the copied keys to authorized_keys on XR.
vagrant@vagrant-ubuntu-trusty-64:~$ exit
logout
Connection to 127.0.0.1 closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/ansible-tutorials/app_hosting
(master)
$ vagrant ssh rtr
Last login: Mon Aug 8 15:14:31 2016 from 10.1.1.10
xr-vm_node0_RP0_CPU0:~$ cat /home/vagrant/id_rsa_ubuntu.pub
>> /home/vagrant/.ssh/authorized_keys

By configuring access to XR, Ansible is ready to run without a password.

3. Access the devbox through SSH, and install LXC tools.

To launch an LXC container, you need the following, which can be obtained by installing LXC tools:

• A container rootfs tar ball

• An XML file to launch the container using virsh/libvirt

xr-vm_node0_RP0_CPU0:~$ exit
logout
Connection to 127.0.0.1 closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant ssh devbox

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
142

Hosting Applications Using Configuration Management Tools
Launching a Linux Container (LXC) By Using Ansible on Vagrant

Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 3.13.0-87-generic x86_64)

...

25 packages can be updated.
12 updates are security updates.

New release '16.04.1 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

Last login: Wed Aug 31 04:02:20 2016 from 10.0.2.2
vagrant@vagrant-ubuntu-trusty-64:~$ sudo apt-get update
Ign http://archive.ubuntu.com trusty InRelease
Get:1 http://security.ubuntu.com trusty-security InRelease [65.9 kB]
...
Get:33 http://archive.ubuntu.com trusty-backports/universe Translation-en [36.8 kB]
Hit http://archive.ubuntu.com trusty Release
...
Hit http://archive.ubuntu.com trusty/universe Translation-en
Ign http://archive.ubuntu.com trusty/main Translation-en_US
Ign http://archive.ubuntu.com trusty/multiverse Translation-en_US
Ign http://archive.ubuntu.com trusty/restricted Translation-en_US
Ign http://archive.ubuntu.com trusty/universe Translation-en_US
Fetched 4,022 kB in 16s (246 kB/s)
Reading package lists... Done

vagrant@vagrant-ubuntu-trusty-64:~$ sudo apt-get -y install lxc
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
bridge-utils cgmanager cloud-image-utils debootstrap dnsmasq-base euca2ools
genisoimage libaio1 libboost-system1.54.0 libboost-thread1.54.0 liblxc1
libmnl0 libnetfilter-conntrack3 libnspr4 libnss3 libnss3-nssdb librados2
librbd1 libseccomp2 libxslt1.1 lxc-templates python-distro-info python-lxml
python-requestbuilder python-setuptools python3-lxc qemu-utils sharutils
uidmap

Suggested packages:
cgmanager-utils wodim cdrkit-doc btrfs-tools lvm2 lxctl qemu-user-static
python-lxml-dbg bsd-mailx mailx

The following NEW packages will be installed:
bridge-utils cgmanager cloud-image-utils debootstrap dnsmasq-base euca2ools
genisoimage libaio1 libboost-system1.54.0 libboost-thread1.54.0 liblxc1
libmnl0 libnetfilter-conntrack3 libnspr4 libnss3 libnss3-nssdb librados2
librbd1 libseccomp2 libxslt1.1 lxc lxc-templates python-distro-info
python-lxml python-requestbuilder python-setuptools python3-lxc qemu-utils
sharutils uidmap

0 upgraded, 30 newly installed, 0 to remove and 52 not upgraded.
Need to get 6,469 kB of archives.
After this operation, 25.5 MB of additional disk space will be used.
Get:1 http://archive.ubuntu.com/ubuntu/ trusty/main libaio1 amd64 0.3.109-4 [6,364 B]
...
Get:30 http://archive.ubuntu.com/ubuntu/ trusty-updates/main debootstrap all
1.0.59ubuntu0.5 [29.6 kB]
Fetched 6,469 kB in 22s (289 kB/s)
Selecting previously unselected package libaio1:amd64.
(Reading database ... 62989 files and directories currently installed.)
Preparing to unpack .../libaio1_0.3.109-4_amd64.deb ...
...
Setting up lxc (1.0.8-0ubuntu0.3) ...
lxc start/running
Setting up lxc dnsmasq configuration.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
143

Hosting Applications Using Configuration Management Tools
Launching a Linux Container (LXC) By Using Ansible on Vagrant

Processing triggers for ureadahead (0.100.0-16) ...
Setting up lxc-templates (1.0.8-0ubuntu0.3) ...
Setting up libnss3-nssdb (2:3.23-0ubuntu0.14.04.1) ...
Setting up libnss3:amd64 (2:3.23-0ubuntu0.14.04.1) ...
Setting up librados2 (0.80.11-0ubuntu1.14.04.1) ...
Setting up librbd1 (0.80.11-0ubuntu1.14.04.1) ...
Setting up qemu-utils (2.0.0+dfsg-2ubuntu1.27) ...
Setting up cloud-image-utils (0.27-0ubuntu9.2) ...
Processing triggers for libc-bin (2.19-0ubuntu6.9) ...

--

vagrant@vagrant-ubuntu-trusty-64:~$ sudo lxc-start --version
1.0.8

4. Create the LXC container with a standard Ubuntu base template and launch it in devbox.
vagrant@vagrant-ubuntu-trusty-64:~$ sudo lxc-create -t ubuntu --name xr-lxc-app
Checking cache download in /var/cache/lxc/trusty/rootfs-amd64 ...
Installing packages in template: ssh,vim,language-pack-en
Downloading ubuntu trusty minimal ...
I: Retrieving Release
I: Retrieving Release.gpg
...
Generation complete.
Setting up perl-modules (5.18.2-2ubuntu1.1) ...
Setting up perl (5.18.2-2ubuntu1.1) ...
Processing triggers for libc-bin (2.19-0ubuntu6.9) ...
Processing triggers for initramfs-tools (0.103ubuntu4.4) ...
Download complete
Copy /var/cache/lxc/trusty/rootfs-amd64 to /var/lib/lxc/xr-lxc-app/rootfs ...
Copying rootfs to /var/lib/lxc/xr-lxc-app/rootfs ...
Generating locales...
en_US.UTF-8... up-to-date

Generation complete.
Creating SSH2 RSA key; this may take some time ...
Creating SSH2 DSA key; this may take some time ...
Creating SSH2 ECDSA key; this may take some time ...
Creating SSH2 ED25519 key; this may take some time ...
update-rc.d: warning: default stop runlevel
arguments (0 1 6) do not match ssh Default-Stop values (none)
invoke-rc.d: policy-rc.d denied execution of start.

Current default time zone: 'Etc/UTC'
Local time is now: Thu Sep 1 04:46:22 UTC 2016.
Universal Time is now: Thu Sep 1 04:46:22 UTC 2016.

##
The default user is 'ubuntu' with password 'ubuntu'!
Use the 'sudo' command to run tasks as root in the container.
##

5. Verify if the LXC container has been successfully created.

vagrant@vagrant-ubuntu-trusty-64:~$ sudo lxc-ls --fancy
NAME STATE IPV4 IPV6 AUTOSTART
--
xr-lxc-app STOPPED - - NO

6. Start the LXC container.

You will be prompted to log into the LXC container. The login credentials are ubuntu/ubuntu.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
144

Hosting Applications Using Configuration Management Tools
Launching a Linux Container (LXC) By Using Ansible on Vagrant

vagrant@vagrant-ubuntu-trusty-64:~$ sudo lxc-start --name xr-lxc-app
<4>init: plymouth-upstart-bridge main process (5) terminated with status 1
...

xr-lxc-app login: ubuntu
Password:
Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.13.0-87-generic x86_64)

* Documentation: https://help.ubuntu.com/

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

ubuntu@xr-lxc-app:~$

7. Change the SSH port inside the container and verify that it has been correctly assigned.

When you deploy your container to IOS XR, it shares the network namespace with XR. Since IOS XR
already uses Ports 22 and 57722 for other purposes, you must pick some other port number for your
container.
ubuntu@xr-lxc-app:~$ sudo sed -i s/Port\ 22/Port\ 58822/ /etc/ssh/sshd_config
[sudo] password for ubuntu:

ubuntu@xr-lxc-app:~$ cat /etc/ssh/sshd_config | grep Port
Port 58822

8. Shut the container down.
ubuntu@xr-lxc-app:~$ sudo shutdown -h now
ubuntu@xr-lxc-app:~$
Broadcast message from ubuntu@xr-lxc-app

(/dev/lxc/console) at 5:17 ...

The system is going down for halt NOW!
<4>init: tty4 main process (369) killed by TERM signal
...
wait-for-state stop/waiting
* Asking all remaining processes to terminate...
...done.

* All processes ended within 1 seconds...
...done.

* Deactivating swap...
...done.

mount: cannot mount block device /dev/sda1 read-only
* Will now halt

9. Assume the root user role.
vagrant@vagrant-ubuntu-trusty-64:~$ sudo -s
root@vagrant-ubuntu-trusty-64:~# whoami
root

10. Navigate to the /var/lib/lxc/xr-lxc-app/ directory and package the rootfs into a tar ball.
root@vagrant-ubuntu-trusty-64:~# cd /var/lib/lxc/xr-lxc-app/
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app# ls
config fstab rootfs
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app# cd rootfs
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app/rootfs# tar -czf
xr-lxc-app-rootfs.tar.gz *

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
145

Hosting Applications Using Configuration Management Tools
Launching a Linux Container (LXC) By Using Ansible on Vagrant

tar: dev/log: socket ignored
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app/rootfs#

11. Transfer the rootfs tar ball to the home directory (~/ or /home/vagrant) and verify if the transfer is
successful.
root@vagrant-ubuntu-trusty-64:/var/lib/lxc
/xr-lxc-app/rootfs# mv *.tar.gz /home/vagrant
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app/rootfs# ls -l /home/vagrant
total 120516
-rw-r--r-- 1 root root 123404860 Sep 1 05:22 xr-lxc-app-rootfs.tar.gz
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app/rootfs#

12. Create an LXC spec XML file for specifying attributes required to launch the LXC container with the
application.

You must navigate to the /home/vagrant directory on devbox and use a vi editor to create the XML
file. Save the file as xr-lxc-app.xml.

A sample LXC spec file to launch the application within the container is as shown.

root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app/rootfs# exit
exit
vagrant@vagrant-ubuntu-trusty-64:~$ pwd
/home/vagrant
vagrant@vagrant-ubuntu-trusty-64:~$ vi xr-lxc-app.xml

--
<domain type='lxc' xmlns:lxc='http://libvirt.org/schemas/domain/lxc/1.0' >
<name>xr-lxc-app</name>
<memory>327680</memory>
<os>
<type>exe</type>
<init>/sbin/init</init>
</os>
<lxc:namespace>
<sharenet type='netns' value='global-vrf'/>
</lxc:namespace>
<vcpu>1</vcpu>
<clock offset='utc'/>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>destroy</on_crash>
<devices>
<emulator>/usr/lib64/libvirt/libvirt_lxc</emulator>
<filesystem type='mount'>
<source dir='/misc/app_host/xr-lxc-app/'/>
<target dir='/'/>
</filesystem>
<console type='pty'/>
</devices>
</domain>

In IOS-XR the global-vrf network namespace contains all the XR GigE or management interfaces.
The sharenet configuration in the XML file ensures that the container on being launched has native
access to all XR interfaces.

/misc/app_host/ on IOS XR is a special mount volume that is designed to provide nearly 3.9GB of
disk space. This mount volume can be used to host custom container rootfs and other large files without
occupying disk space on XR. In this example, we expect to untar the rootfs to the
/misc/app_host/xr-lxc-app/ directory.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
146

Hosting Applications Using Configuration Management Tools
Launching a Linux Container (LXC) By Using Ansible on Vagrant

13. Verify if the rootfs tar ball and the LXC XML spec file are present in the home directory.
root@vagrant-ubuntu-trusty-64:~# pwd
/home/vagrant
root@vagrant-ubuntu-trusty-64:~# ls -l
total 119988
-rw-r--r-- 1 root root 122863332 Jun 16 19:41 xr-lxc-app-rootfs.tar.gz
-rw-r--r-- 1 root root 590 Jun 16 23:29 xr-lxc-app.xml
root@vagrant-ubuntu-trusty-64:~#

14. Run the Ansible playbook that automatically runs the following steps in deploying an LXC container
on XR (rtr).

a. Copies the xr-lxc-app-xml file to XR.

b. Copies the xr-lxc-app-rootfs.tar.gz tar ball to XR.

c. Creates the xr-lxc-app/rootfs directory on XR.

d. Untars the rootfs tar ball in the xr-lxc-app/rootfs directory.

e. Verifies if your LXC container is installed on XR. (If not, creates the container by using the virsh
command.)

f. Uses the virsh command to verify that your LXC container is up and running.

root@vagrant-ubuntu-trusty-64:~# exit
exit

vagrant@vagrant-ubuntu-trusty-64:~$ ansible-playbook deploy_container.yml

PLAY [ss-xr] ***

TASK [setup] ***
ok: [10.1.1.20]

TASK [Copy XML file] ***
ok: [10.1.1.20]

TASK [Copy rootfs tar ball] **
ok: [10.1.1.20]

TASK [Create rootfs directory] ***
ok: [10.1.1.20]

TASK [debug] ***
ok: [10.1.1.20] => {

"output.stdout_lines": []
}

TASK [grep] **
fatal: [10.1.1.20]: FAILED! => {"changed": true, "cmd": "sudo -i virsh list | grep
xr-lxc-app", "delta": "0:00:01.497387", "end": "2016-09-06 05:49:46.886749", "failed":
true, "rc": 1, "start": "2016-09-06 05:49:45.389362", "stderr": "", "stdout": "",
"stdout_lines": [], "warnings": []}
...ignoring

TASK [debug] ***
ok: [10.1.1.20] => {

"output.stdout_lines": []
}

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
147

Hosting Applications Using Configuration Management Tools
Launching a Linux Container (LXC) By Using Ansible on Vagrant

TASK [virsh create] **
changed: [10.1.1.20]

TASK [debug] ***
ok: [10.1.1.20] => {

"output.stdout_lines": [
"Domain xr-lxc-app created from /home/vagrant/xr-lxc-app.xml"

]
}

TASK [command] ***
changed: [10.1.1.20]

TASK [debug] ***
ok: [10.1.1.20] => {

"output.stdout_lines": [
" Id Name State",
"--",
" 4903 sysadmin running",
" 12021 default-sdr--1 running",
" 18703 xr-lxc-app running"

]
}

PLAY RECAP ***
10.1.1.20 : ok=12 changed=2 unreachable=0 failed=0

If for some reason, Ansible playbook does not run, then reapply the environment variables listed in the
ansible_env file, as shown, and try again.
vagrant@vagrant-ubuntu-trusty-64:~$ cat iosxr-ansible/remote/ansible_env
export BASEDIR=/home/vagrant
export IOSXRDIR=$BASEDIR/iosxr-ansible
export ANSIBLE_HOME=$BASEDIR/ansible
export ANSIBLE_INVENTORY=$IOSXRDIR/remote/ansible_hosts
export ANSIBLE_LIBRARY=$IOSXRDIR/remote/library
export ANSIBLE_CONFIG=$IOSXRDIR/remote/ansible_cfg
export YDK_DIR=$BASEDIR/ydk/ydk-py
export PYTHONPATH=$YDK_DIR

vagrant@vagrant-ubuntu-trusty-64:~$ export BASEDIR=/home/vagrant
vagrant@vagrant-ubuntu-trusty-64:~$ export IOSXRDIR=$BASEDIR/iosxr-ansible
vagrant@vagrant-ubuntu-trusty-64:~$ export ANSIBLE_HOME=$BASEDIR/ansible
vagrant@vagrant-ubuntu-trusty-64:~$ export
ANSIBLE_INVENTORY=$IOSXRDIR/remote/ansible_hosts
vagrant@vagrant-ubuntu-trusty-64:~$ export ANSIBLE_LIBRARY=$IOSXRDIR/remote/library
vagrant@vagrant-ubuntu-trusty-64:~$ export ANSIBLE_CONFIG=$IOSXRDIR/remote/ansible_cfg
vagrant@vagrant-ubuntu-trusty-64:~$ export YDK_DIR=$BASEDIR/ydk/ydk-py
vagrant@vagrant-ubuntu-trusty-64:~$ export PYTHONPATH=$YDK_DIR

--
vagrant@vagrant-ubuntu-trusty-64:~$ ansible-playbook deploy_container.yml

PLAY [ss-xr] ***

TASK [setup] ***
ok: [10.1.1.20]
...

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
148

Hosting Applications Using Configuration Management Tools
Launching a Linux Container (LXC) By Using Ansible on Vagrant

You have successfully launched your LXC by using Ansible on vagrant.

Using Netmiko and Napalm on Vagrant
You can use configuration management tools such as Netmiko and Napalm to manage and monitor a router
running Cisco IOS XR. This section describes how you can get started with using Netmiko and Napalm on
vagrant.

Topology

The topology used in this example is illustrated in the following figure.

Figure 17: Topology for Netpalm and Netmiko

Procedure for Using Netmiko

To start using Netmiko for managing XR, use the following steps.

1. Generate an API key and a CCO ID by using the steps described on Github.

2. Download the latest stable version of the IOS-XRv vagrant box.

$ curl <cco-id>:<API-KEY>

$ BOXURL --output ~/iosxrv-fullk9-x64.box

$ vagrant box add --name IOS-XRv ~/iosxrv-fullk9-x64.box

3. Verify if the vagrant box has been successfully installed.

annseque@ANNSEQUE-WS02 MINGW64 ~ vagrant box list
IOS-XRv (virtualbox, 0)

4. Create a working directory.

annseque@ANNSEQUE-WS02 MINGW64 ~ mkdir ~/iosxrv
annseque@ANNSEQUE-WS02 MINGW64 ~ cd ~/iosxrv

5. Initialize the vagrant file with the new vagrant box.

ANNSEQUE-WS02 MINGW64:iosxrv annseque$ vagrant init IOS-XRv
A `Vagrantfile` has been placed in this directory. You are now
ready to `vagrant up` your first virtual environment! Please read
the comments in the Vagrantfile as well as documentation on
`vagrantup.com` for more information on using Vagrant.

6. Clone the vagrant-xrdocs repository.

annseque@ANNSEQUE-WS02 MINGW64 ~
$ git clone https://github.com/ios-xr/vagrant-xrdocs.git

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
149

Hosting Applications Using Configuration Management Tools
Using Netmiko and Napalm on Vagrant

https://xrdocs.github.io/getting-started/steps-download-iosxr-vagrant

7. Navigate to the vagrant-xrdocs/ansible-tutorials directory and launch the vagrant instance.

annseque@ANNSEQUE-WS02 MINGW64 ~
$ cd vagrant-xrdocs

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ cd ansible-tutorials/app_hosting/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/ansible-tutorials (master)
$ vagrant up
...
==> rtr: Machine already provisioned. Run `vagrant provision` or use the `--provision`
==> rtr: flag to force provisioning. Provisioners marked to run always will still run.

==> rtr: Machine 'rtr' has a post `vagrant up` message. This is a message
==> rtr: from the creator of the Vagrantfile, and not from Vagrant itself:
==> rtr:
==> rtr:
==> rtr: Welcome to the IOS XRv (64-bit) Virtualbox.
==> rtr: To connect to the XR Linux shell, use: 'vagrant ssh'.
==> rtr: To ssh to the XR Console, use: 'vagrant port' (vagrant version > 1.8)
==> rtr: to determine the port that maps to guestport 22,
==> rtr: then: 'ssh vagrant@localhost -p <forwarded port>'
...

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/ansible-tutorials (master)
$ vagrant status
Current machine states:

devbox running (virtualbox)
rtr running (virtualbox)

This environment represents multiple VMs. The VMs are all listed
above with their current state. For more information about a specific
VM, run `vagrant status NAME`.

8. Access devbox using SSH, and install the netmiko module as root (sudo) user.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/ansible-tutorials (master)
$ vagrant ssh devbox
Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.13.0-92-generic x86_64)

* Documentation: https://help.ubuntu.com/

System information as of Mon Sep 26 05:59:20 UTC 2016

...
vagrant@vagrant-ubuntu-trusty-64:~$ sudo pip install netmiko
...
Requirement already satisfied (use --upgrade to upgrade): netmiko in
/usr/local/lib/python2.7/dist-packages
Requirement already satisfied (use --upgrade to upgrade):
paramiko>=1.13.0 in /usr/local/lib/python2.7/dist-packages/paramiko-2.0.2-py2.7.egg
(from netmiko)
Requirement already satisfied (use --upgrade to upgrade):
scp>=0.10.0 in /usr/local/lib/python2.7/dist-packages (from netmiko)
...

9. Run python interpreter to verify successful installation of the netmiko module.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
150

Hosting Applications Using Configuration Management Tools
Using Netmiko and Napalm on Vagrant

Press CTRL+Z to exit the interpreter.

vagrant@vagrant-ubuntu-trusty-64:~$ python
Python 2.7.6 (default, Jun 22 2015, 17:58:13)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import netmiko

10. Create your netmiko configuration file by using vi editor.

A sample netmiko configuration file is as shown.

The sample netmiko configuration file displays the interfaces on XR, changes the hostname to
'my_sweet_rtr', commits the host name and displays the host name.
vagrant@vagrant-ubuntu-trusty-64:~$ vi netmiko_tut.py
from netmiko import ConnectHandler

cisco_ios_xrv = {
'device_type': 'cisco_xr',
'ip': '10.1.1.20',
'username': 'vagrant',
'password': 'vagrant',
'port' : 22, # optional, defaults to 22
'secret': 'secret', # optional, defaults to ''
'verbose': False, # optional, defaults to False

}

net_connect = ConnectHandler(**cisco_ios_xrv)

output = net_connect.send_command('show ip int brief')
print(output)

output = net_connect.send_config_set(['hostname my_sweet_rtr', 'commit'])
print(output)

output = net_connect.send_config_set(['show run | b hostname'])
print(output)

Enter :wq to save the file and exit the vi editor

11. Use python to execute the netmiko configuration file on XR.
vagrant@vagrant-ubuntu-trusty-64:~$ python netmiko_tut.py

Fri Jul 15 12:29:07.691 UTC

Interface IP-Address Status Protocol Vrf-Name
GigabitEthernet0/0/0/0 10.1.1.20 Up Up default
MgmtEth0/RP0/CPU0/0 10.0.2.15 Up Up default

config term
Fri Jul 15 12:29:09.739 UTC
RP/0/RP0/CPU0:my_sweetest_rtr(config)#hostname my_sweetest_rtr
RP/0/RP0/CPU0:my_sweetest_rtr(config)#commit
Fri Jul 15 12:29:10.332 UTC
end
config term
Fri Jul 15 12:29:12.475 UTC
RP/0/RP0/CPU0:my_sweetest_rtr(config)#show run | include hostname
Fri Jul 15 12:29:13.052 UTC
Building configuration...

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
151

Hosting Applications Using Configuration Management Tools
Using Netmiko and Napalm on Vagrant

hostname my_sweetest_rtr
RP/0/RP0/CPU0:my_sweetest_rtr(config)#

12. (Optional) To use a more serious application of netmiko, you can use the following steps.

a. Create a telemetry configuration file by using the vi editor.
vagrant@vagrant-ubuntu-trusty-64:~$ vi tel_conf

telemetry
encoder json
policy group FirstGroup
policy test
transport tcp
!
destination ipv4 10.1.1.10 port 2103

commit

Enter :wq to save the file and exit the vi editor.

b. Update the netmiko configuration file to display the contents of the telemetry configuration file.
vagrant@vagrant-ubuntu-trusty-64:~$ vi netmiko_tut.py
from netmiko import ConnectHandler

cisco_ios_xrv = {
'device_type': 'cisco_xr',
'ip': '10.1.1.20',
'username': 'vagrant',
'password': 'vagrant',
'port' : 22, # optional, defaults to 22
'secret': 'secret', # optional, defaults to ''
'verbose': False, # optional, defaults to False

}

net_connect = ConnectHandler(**cisco_ios_xrv)

output = net_connect.send_command('show ip int brief')
print(output)

output = net_connect.send_config_set(['hostname my_sweet_rtr', 'commit'])
print(output)

output = net_connect.send_config_set(['show run | b hostname'])
print(output)

with open('tel_conf') as f:
lines = f.read().splitlines()

print lines

tel_out = net_connect.send_config_set(lines)
print tel_out

c. Use python to execute the updated netmiko configuration file.
vagrant@vagrant-ubuntu-trusty-64:~$ python netmiko_tut.py
config term
Thu Jul 14 23:49:25.447 UTC
RP/0/RP0/CPU0:xr(config)#telemetry
RP/0/RP0/CPU0:xr(config-telemetry)# encoder json
RP/0/RP0/CPU0:xr(config-telemetry-json)# policy group FirstGroup
RP/0/RP0/CPU0:xr(config-policy-group)# policy test
RP/0/RP0/CPU0:xr(config-policy-group)# transport tcp
RP/0/RP0/CPU0:xr(config-telemetry-json)# !

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
152

Hosting Applications Using Configuration Management Tools
Using Netmiko and Napalm on Vagrant

RP/0/RP0/CPU0:xr(config-telemetry-json)# destination ipv4 10.1.1.10 port 2103
RP/0/RP0/CPU0:xr(config-policy-group)# commit
...

Exit and navigate to the /vagrant-xrdocs/ansible-tutorials directory.

d. Access rtr through SSH and verify if the telemetry configuration is present.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/ansible-tutorials (master)
$ ssh -p 2223 vagrant@localhost
vagrant@localhost's password:

RP/0/RP0/CPU0:my_sweet_rtr# show run | begin telemetry
Thu Jul 14 20:58:19.116 UTC
Building configuration...
xml agent ssl
!
xml agent tty
!
telemetry
encoder json
policy group FirstGroup
policy test
transport tcp
!
destination ipv4 10.1.1.10 port 2103
!
!
!
end

You have successfully used netmiko on vagrant for managing Cisco IOS XR.

Procedure for Napalm

To start using napalm for monitoring XR, use the following steps.

1. Follow Steps 1-7 described in the Procedure for Netmiko section.

2. Access devbox using SSH, and install the napalm module as root (sudo) user.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/ansible-tutorials (master)
$ vagrant ssh devbox
Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.13.0-92-generic x86_64)

* Documentation: https://help.ubuntu.com/

System information as of Mon Sep 26 05:59:20 UTC 2016

...

vagrant@vagrant-ubuntu-trusty-64:~$ sudo pip install napalm
...
Requirement already satisfied (use --upgrade to upgrade): napalm in
/usr/local/lib/python2.7/dist-packages
Requirement already satisfied (use --upgrade to upgrade):
napalm-base in /usr/local/lib/python2.7/dist-packages (from napalm)
Requirement already satisfied (use --upgrade to upgrade):
napalm-eos in /usr/local/lib/python2.7/dist-packages (from napalm)
...

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
153

Hosting Applications Using Configuration Management Tools
Using Netmiko and Napalm on Vagrant

3. Run python interpreter to verify successful installation of the napalm module.

Press CTRL+Z to exit the interpreter.
vagrant@vagrant-ubuntu-trusty-64:~$ python
Python 2.7.6 (default, Jun 22 2015, 17:58:13)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import napalm

4. Create your napalm configuration file by using vi editor.

A sample napalm configuration file is as shown.

The sample napalm configuration file displays the GigE interfaces on XR with the counters and user
information.
vagrant@vagrant-ubuntu-trusty-64:~$ vi napalus.py

from napalm import get_network_driver

driver = get_network_driver('iosxr')

device = driver('10.1.1.20', 'vagrant', 'vagrant')

device.open()
print device.get_facts() ## doesn't work

print device.get_interfaces()
print ''
print device.get_interfaces_counters()
print ''
print device.get_users()

device.close()

Enter :wq to save the file and exit the vi editor

5. Use python to execute the updated napalm configuration file.
vagrant@vagrant-ubuntu-trusty-64:~$ python napalus.py

{
'GigabitEthernet0/0/0/0': {

'is_enabled': True,
'description': u '',
'last_flapped': -1.0,
'is_up': True,
'mac_address': u '0800.27b2.5406',
'speed': 1000

}
}

{
'GigabitEthernet0/0/0/0': {

'tx_multicast_packets': 0,
'tx_discards': 0,
'tx_octets': 6929839,
'tx_errors': 0,
'rx_octets': 586788,
'tx_unicast_packets': 10799,
'rx_errors': 0,
'tx_broadcast_packets': 0,
'rx_multicast_packets': 0,
'rx_broadcast_packets': 3,

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
154

Hosting Applications Using Configuration Management Tools
Using Netmiko and Napalm on Vagrant

'rx_discards': 0,
'rx_unicast_packets': 9421

}
}

{
u 'vagrant': {

'password': '',
'sshkeys': [],
'level': 15

}
}

You have successfully used napalm on vagrant for monitoring Cisco IOS XR.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
155

Hosting Applications Using Configuration Management Tools
Using Netmiko and Napalm on Vagrant

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
156

Hosting Applications Using Configuration Management Tools
Using Netmiko and Napalm on Vagrant

C H A P T E R 6
Cisco Secure DDoS Edge Protection

Table 16: Feature History Table

DescriptionRelease InformationFeature Name

Introduced in this release on: NCS 5500
fixed port routers; NCS 5700 fixed port
routers; NCS 5500modular routers (NCS
5500 line cards; NCS 5700 line cards
[Mode: Compatibility; Native])

We have now moved DDoS protection
to the network edge, ensuring you can
mitigate any DDoS attacks at the ingress
points and minimize the impact of such
attacks on your network and applications
running on it. This solution deploys a
centralized controller application that
manages a distributed network of edge
detectors that analyze andmitigate threats
across networks.

Release 7.11.1Cisco Secure DDoS Edge
Protection

The Cisco Secure DDoS Edge Protection software solution stops DDoS attacks at the ingress side of the
network.

The DDoS Edge Protection solution helps you detect DDoS attacks and take mitigation actions on the router.
To enable detection services at the core network, you need to configure the following entities:

• DDoS Edge Protection Controller: This entity manages and monitors the Detector docker application,
mitigates attacks, and oversees a distributed network of edge detectors. It analyzes detection trends across
the network, orchestrates cross-network visibility and mitigation, and provides complete system
management for the entire service.

• DDoS Edge Protection Detector: This entity is a real-time DDoS detection microservice container
application that runs as a docker-application on a router with the DDoS controller. The DDOS controller
can run on a cloud, server, or customer premises and is connected to this application.

The DDoS Edge Protection supports DDoS detection of both IPv4 and IPv6 traffic. You can choose the
interface on which the traffic should be monitored. When the protection software solution is implemented, it
filters the IPv4/IPv6 traffic flow and detects DDoS attacks.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
157

Once a DDoS attack is detected, the DDoS Edge Protection Controller initiates a mitigation action, specifying
the necessary steps to counteract the attack. This includes enabling traffic classification (TC) as part of the
mitigation measures, implementation of rate limiting and so on.

Supported Routers

Cisco Secure DDoS Edge Protection is supported on the following hardware:

• NCS-55A1-48Q6H

• NCS-55A1-48Q6H-SE

• NCS-55A1-48Q-DTC

• NCS-57D2-18DD-S

• NCS-57C3-MOD-S

• NCS-57C3-MOD-SE-S

• NCS-55A1-36H-SE-S

• NCS-55A1-36H-DTC

• NCS-55A1-36H-GLE

• NCS-55A1-36H-S

• NCS-55A2-MOD-SE-S

• NCS-55A2-MOD-HD-S

• NCS-55A2-MOD-SYS

• NCS-55A2-MOD-HX-S

• NCS-55A2-MOD-SE-H-S

• NCS-55A1-24H

• NCS-57B1-6D24H-S

• NCS-57B1-5D24H-SE

• NCS-5501

• NCS-5501-SE

• NCS-55A1-24Q6H-S

• NCS-55A1-24Q-DTCR

• NCS-55A1-24Q-RPHY

• NCS-55A1-24Q6H-SS

• NCS-57C1-48Q6D-S

• NCS-5502-SE

• NCS-5502-U100

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
158

Cisco Secure DDoS Edge Protection

• Guidelines for Installing DDoS Edge Protection, on page 159
• Restrictions of DDoS Edge Protection Solution, on page 159
• Install and Configure DDoS Edge Protection, on page 159
• Verify DDoS Edge Protection Application Configuration, on page 162

Guidelines for Installing DDoS Edge Protection
• Configure the management interface to reach the DDoS controller IP address.

• Manually configure the base ACL, UDF, NetFlow, and SSH configurations.

For more information, see .

• Reload the router as a hw-module profile configuration is being performed.

Restrictions of DDoS Edge Protection Solution
• Only IPv4 and IPv6 traffic is supported.

• Only default VRF configuration is supported and is limited to the management port. To ensure smooth
communication between the Docker and the controller, make sure to set up the management port
exclusively in the default VRF.

Install and Configure DDoS Edge Protection
You can install the DDoS Edge Protection application through the DDoS edge protection controller. Perform
the following:

1. Install and download the DDoS Edge Protection Controller Software package from the Software Download
page. You can access the user interface, when the controller installation is complete.

Log in to the controller services instance to monitor, manage, and control the device.

2. Perform the following base configurations such as ACL, UDF, hw-module, NetFlow configuration, and
SSH manually on the router:

Configure UDF

RP/0/RP0/CPU0:ios(config)#udf udf-ident header outer l3 offset 4 length 2
RP/0/RP0/CPU0:ios(config)#udf udf-chksum header outer l4 offset 16 length 2
RP/0/RP0/CPU0:ios(config)#udf udf-seqnum header outer l4 offset 4 length 4

The user-defined field, allows you to define a custom key by specifying the location and size of the field
to match.

Configure the hardware module or TCAM

RP/0/RP0/CPU0:ios(config)#hw-module profile tcam format access-list ipv4 src-addr dst-addr
src-port dst-port proto tcp-flags packet-length frag-bit precedence enable-capture
ttl-match udf1 udf-chksum udf2 udf-seqnum udf3 udf-ident

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
159

Cisco Secure DDoS Edge Protection
Guidelines for Installing DDoS Edge Protection

https://software.cisco.com/download/home/286324719/type/286332050/release/EP%20Controller%201.0.0

RP/0/RP0/CPU0:ios(config)#hw-module profile tcam format access-list ipv6 src-port dst-addr
dst-port next-hdr tcp-flags payload-length ttl-match

Reload the router (as hw-module profile and UDF configuration is performed).

Configure Loopback
RP/0/RP0/CPU0:ios(config)#interface Loopback100
RP/0/RP0/CPU0:ios(config-if)# ipv4 address 15.1.1.2 255.255.255.255
RP/0/RP0/CPU0:ios(config)#interface Loopback101
RP/0/RP0/CPU0:ios(config-if)# ipv4 address 17.1.1.2 255.255.255.255
RP/0/RP0/CPU0:ios(config-if)#

Configure Netflow
//Configuring Monitor Map
RP/0/RP0/CPU0:ios(config)#flow monitor-map DetectPro_Monitor_IPV6
RP/0/RP0/CPU0:ios(config)# record ipv6 extended
RP/0/RP0/CPU0:ios(config)#exporter DetectPro_GPB
RP/0/RP0/CPU0:ios(config)# cache entries 1000000
RP/0/RP0/CPU0:ios(config)#cache entries active 1
RP/0/RP0/CPU0:ios(config)#cache entries inactive 1
RP/0/RP0/CPU0:ios(config)#cache timeout inactive 1
RP/0/RP0/CPU0:ios(config)#cache timeout rate-limit 1000000
!
RP/0/RP0/CPU0:ios(config)#flow monitor-map DetectPro_Monitor_IPV4
RP/0/RP0/CPU0:ios(config)# record ipv4 extended
RP/0/RP0/CPU0:ios(config)#exporter DetectPro_GPB
RP/0/RP0/CPU0:ios(config)# cache entries 1000000
RP/0/RP0/CPU0:ios(config)#cache entries active 1
RP/0/RP0/CPU0:ios(config)#cache entries inactive 1
RP/0/RP0/CPU0:ios(config)#cache timeout inactive 1
RP/0/RP0/CPU0:ios(config)#cache timeout rate-limit 1000000
!
//Configuring Exporter Map
RP/0/RP0/CPU0:ios(config)#flow exporter-map DetectPro_GPB
RP/0/RP0/CPU0:ios(config)#version protobuf
RP/0/RP0/CPU0:ios(config)#transport udp 5005
RP/0/RP0/CPU0:ios(config)#source TenGigE0/0/0/16
RP/0/RP0/CPU0:ios(config)#destination 15.1.1.2
!
//Configuring Sampler Map
RP/0/RP0/CPU0:ios(config)#sampler-map DetectPro_NFv9
RP/0/RP0/CPU0:ios(config)#random 1 out-of 100
!

Configure ACL
RP/0/RP0/CPU0:ios(config)#ipv4 access-list myACL
RP/0/RP0/CPU0:ios(config-ipv4-acl)# 1301 permit ipv4 any any
!
RP/0/RP0/CPU0:ios(config)#ipv4 access-list myACL
RP/0/RP0/CPU0:ios(config-ipv6-acl)# 1301 permit ipv6 any any
!

For more information on implementing access lists and prefix lists, see Understanding Access-List.

If there is any DDoS attack, the controller performs the mitigation action using the ACL rule automatically.

The following is a sample configuration to deny DDoS attacker traffic using user defined ACE rule:
1 deny udp any eq 19 host 45.0.0.1 eq 0 packet-length eq 128 ttl eq 64
2 deny tcp any host 45.0.0.1 eq www match-all -established -fin -psh +syn -urg
packet-length eq 60 ttl eq 64
1301 permit ipv4 any any

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
160

Cisco Secure DDoS Edge Protection
Install and Configure DDoS Edge Protection

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/710x/b-ip-addresses-cg-ncs5500-710x/implementing-access-lists-and-prefix-lists.html#concept_C5524CAD61DF450C84695FE50ACBC45F

Configuration updates are sent by the controller to the router.

Configure SSH
RP/0/RP0/CPU0:ios(config)#ssh server v2
RP/0/RP0/CPU0:ios(config)#ssh server netconf
RP/0/RP0/CPU0:ios(config)#netconf agent tty
RP/0/RP0/CPU0:ios(config)#netconf-yang agent ssh
!
RP/0/RP0/CPU0:ios(config)#ssh timeout 120
RP/0/RP0/CPU0:ios(config)#ssh server rate-limit 600
RP/0/RP0/CPU0:ios(config)#ssh server session-limit 110
RP/0/RP0/CPU0:ios(config)#ssh server v2
RP/0/RP0/CPU0:ios(config)#ssh server vrf default
RP/0/RP0/CPU0:ios(config)#ssh server netconf vrf default

To configure TPA, perform the following steps:
RP/0/RP0/CPU0:ios(config)#tpa
RP/0/RP0/CPU0:ios(config-tpa)#linux networking
RP/0/RP0/CPU0:ios(config-tpa-vrf)#vrf default
RP/0/RP0/CPU0:ios(config-tpa-vrf)#east-west Loopback101
RP/0/RP0/CPU0:ios(config-tpa-vrf)#address-family ipv4
RP/0/RP0/CPU0:ios(config-tpa-vrf-afi)#default-route software-forwarding
RP/0/RP0/CPU0:ios(config-tpa-vrf-afi)#source-hint default-route interface Loopback100
RP/0/RP0/CPU0:ios(config-tpa-vrf-afi)#

TPA configuration is not required for NCS 5700 routers.Note

3. Reload the router (as the hw-module profile configuration is performed).

4. Check the device connection to the DDoS controller using the ping command.

RP/0/RP0/CPU0:ios#ping 10.105.237.54
Thu Jun 1 07:16:43.654 UTC
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.105.237.54 timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 2/2/4 ms
RP/0/RP0/CPU0:Router#bash
Thu Jun 1 07:16:53.024 UTC
[Router:~]$ping 10.105.237.54
PING 10.105.237.54 (10.105.237.54) 56(84) bytes of data.
64 bytes from 10.105.237.54: icmp_seq=1 ttl=63 time=1.73 ms
64 bytes from 10.105.237.54: icmp_seq=2 ttl=63 time=1.29 ms
64 bytes from 10.105.237.54: icmp_seq=3 ttl=63 time=1.27 ms
64 bytes from 10.105.237.54: icmp_seq=4 ttl=63 time=1.75 ms
^C
--- 10.105.237.54 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 1.270/1.510/1.751/0.230 ms
[Router:~]$

5. Add device details on the controller panel and ensure that all the three indicators (Deployment, Container,
and Configuration) are green.

For more information on installing the DDoS controller, see the DDoS Edge Protection Installation guide.

For more information on the DDoS Edge Protection, see Cisco Secure DDoS Edge Protection Data Sheet.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
161

Cisco Secure DDoS Edge Protection
Install and Configure DDoS Edge Protection

Verify DDoS Edge Protection Application Configuration
You can also verify if the DDoS controller pushes the CLI to the device using the following show
running-config commands on the device:

RP/0/RP0/CPU0:Router#show running-config appmgr
Thu Jun 1 07:33:36.741 UTC
appmgr
application esentryd
activate type docker source esentryd-cisco-20230431633 docker-run-opts "-p 10000:10000/tcp
-p 5005:5005/udp --env-file /harddisk:/ENV_6478443711ac6830700d1aeb --net=host"
!
!

RP/0/RP0/CPU0:Router#show flow monitor DetectPro_Monitor_IPV4 cache location 0/0/CPU0
Thu Nov 16 06:13:38.066 UTC
Cache summary for Flow Monitor DetectPro_Monitor_IPV4:
Cache size: 1000000
Current entries: 0
Flows added: 2243884200
Flows not added: 0
Ager Polls: 2243884200
- Active timeout 0
- Inactive timeout 0
- Immediate 0
- TCP FIN flag 0
- Emergency aged 0
- Counter wrap aged 0
- Total 2243884200

Periodic export:
- Counter wrap 0
- TCP FIN flag 0

Flows exported 2243884200

Matching entries: 0
!

RP/0/RP0/CPU0:Router#show flow monitor DetectPro_Monitor_IPV6 cache location 0/0/CPU0
Thu Nov 16 06:13:43.734 UTC
Cache summary for Flow Monitor DetectPro_Monitor_IPV6:
Cache size: 1000000
Current entries: 0
Flows added: 59971
Flows not added: 0
Ager Polls: 94437
- Active timeout 59971
- Inactive timeout 0
- Immediate 0
- TCP FIN flag 0
- Emergency aged 0
- Counter wrap aged 0
- Total 59971

Periodic export:
- Counter wrap 0
- TCP FIN flag 0

Flows exported 59971

Matching entries: 0

RP/0/RP0/CPU0:Router#show flow exporter
exporter exporter-map

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
162

Cisco Secure DDoS Edge Protection
Verify DDoS Edge Protection Application Configuration

RP/0/RP0/CPU0:tortin#show flow exporter DetectPro_GPB location 0/0/CPU0
Thu Nov 16 06:13:58.059 UTC
Flow Exporter: DetectPro_GPB
Export Protocol: protobuf
Flow Exporter memory usage: 5265344
Used by flow monitors: DetectPro_Monitor_IPV4

DetectPro_Monitor_IPV6

Status: Disabled
Transport: UDP
Destination: 15.1.1.2 (5005) VRF default
Source: 0.0.0.0 (54482)
Flows exported: 0 (0 bytes)
Flows dropped: 0 (0 bytes)

Templates exported: 0 (0 bytes)
Templates dropped: 0 (0 bytes)

Option data exported: 0 (0 bytes)
Option data dropped: 0 (0 bytes)

Option templates exported: 0 (0 bytes)
Option templates dropped: 0 (0 bytes)

Packets exported: 20355756 (27716506821 bytes)
Packets dropped: 0 (0 bytes)

Total export over last interval of:
1 hour: 12 pkts

1879 bytes
12 flows

1 minute: 0 pkts
0 bytes
0 flows

1 second: 0 pkts
0 bytes
0 flows

RP/0/RP0/CPU0:Router#show appmgr application-table
Thu Nov 16 06:13:58.059 UTC
Name Type Config State Status
-------- ------ ------------ --
esentryd Docker Activated Up 8 minutes
RP/0/RP0/CPU0:Router#

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
163

Cisco Secure DDoS Edge Protection
Verify DDoS Edge Protection Application Configuration

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
164

Cisco Secure DDoS Edge Protection
Verify DDoS Edge Protection Application Configuration

C H A P T E R 7
Use Cases: Application Hosting

This chapter describes use cases for running applications on IOS XR.

• Hosting iPerf in Docker Containers to Measure Network Performance using Application Manager, on
page 165

• CPU-Based Packet Generator, on page 176

Hosting iPerf in Docker Containers to Measure Network
Performance using Application Manager

Measuring the network performance is important to test the efficiency of the network. Network throughput,
bandwidth, latency, and packet loss are some of the parameters used to measure the network performance.
iPerf is a commonly used application for measuring network performance. The iPerf application is hosted on
systems at both ends of the connection that is measured. One system is used as the server, and the other system
is used as the client. At least one system must be a Cisco IOS XR router, the other system can be any other
external entity like a controller or another router.

This use case illustrates the procedure for hosting the iPerf application in docker containers on two Cisco IOS
XR routers, Router A and Router B to measure network performance. Router A hosts the iPerf server and
Router B hosts the iPerf client.

In this usecase, we demonstrate the example of testing network bandwidth when a route update takes place.
Router A hosts the iPerf Server and Router B hosts the iPerf Client. Router C and Router D are intermediate
routers that allow traffic flow from Router A to Router B and vice-versa.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
165

Figure 18: Hosting iPerf Application in Cisco IOS XR Routers

Verify Connection between Router A and Router B
The ping command verifies the connection between the IOS XR software on the routers, while the bash ping
command verifies the connection between the linux kernel that hosts the IOS XR software on the routers.

Check the connection between Router A and Router B using the ping and bash ping commands.
Router#show ip route 30.5.7.1
Tue Dec 1 19:27:28.623 UTC

Routing entry for 30.5.7.0/31
Known via "ospf 10", distance 110, metric 2, type intra area
Installed Dec 1 18:09:44.525 for 01:17:44
Routing Descriptor Blocks
21.5.7.0, from 100.0.0.7, via FourHundredGigE0/0/0/1
Route metric is 2

No advertising protos.
Router#ping 30.5.7.1
Tue Dec 1 19:27:28.769 UTC
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 30.5.7.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 20/24/30 ms
Router#bash ping -c 5 30.5.7.1
PING 30.5.7.1 (30.5.7.1) 56(84) bytes of data.
64 bytes from 30.5.7.1: icmp_seq=1 ttl=254 time=31.9 ms
64 bytes from 30.5.7.1: icmp_seq=2 ttl=254 time=37.7 ms
64 bytes from 30.5.7.1: icmp_seq=3 ttl=254 time=30.5 ms
64 bytes from 30.5.7.1: icmp_seq=4 ttl=254 time=27.5 ms

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
166

Use Cases: Application Hosting
Verify Connection between Router A and Router B

64 bytes from 30.5.7.1: icmp_seq=5 ttl=254 time=30.3 ms

--- 30.5.7.1 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4004ms
rtt min/avg/max/mdev = 27.549/31.621/37.719/3.371 ms

Install the iPerf Server Application

Step 1 Install the iPerf application RPM on Router A. Only the RPM file format is supported.
Router#appmgr package install rpm /misc/disk1/iperf-0.1.0-XR_7.3.1.x86_64.rpm

Router#show appmgr source-table
Thu Dec 3 09:57:40.808 UTC
Name File
--------------- --
iperf iperf.tar.gz
Router#

Step 2 Configure the application to run as iPerf server.
Router#config
Thu Dec 3 09:57:54.034 UTC
Router(config)#appmgr
Router(config-appmgr)#application iperf-server-app
Router(config-application)#activate type docker source iperf docker-run-opts "--net=host" docker-run-cmd
"iperf3 -s -d"
Router(config-application)#commit
Thu Dec 3 09:57:54.398 UTC

Step 3 Verify the basic details (application name and state) about the activated iPerf server application.
Router#show appmgr application-table
Name Type Config State Status
-------- ------- ------------- -------------------------
iperf-server-app Docker Activated Up 2 seconds
Router#
Thu Dec 3 09:57:54.398 UTC
Router#show appmgr application name iperf-server-app info summary
Thu Dec 3 09:58:15.569 UTC
Application: iperf-server-app

Type: Docker
Source: iperf
Config State: Activated
Container ID: 0118f9006cde2787e9809eb7c62ad8b552925b559a689c7aaa80f80d7ce43c02
Image: alpine1:latest
Command: "iperf3 -s -d"
Status: Up 7 seconds

Thu Dec 3 09:57:54.398 UTC
Router#show appmgr application name iperf-server-app info detail
Thu Dec 3 09:58:26.401 UTC
Application: iperf-server-app

Type: Docker
Source: iperf
Config State: Activated
Docker Information:

Container ID: 0118f9006cde2787e9809eb7c62ad8b552925b559a689c7aaa80f80d7ce43c02
Container name: iperf-server-app
Labels:

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
167

Use Cases: Application Hosting
Install the iPerf Server Application

Image: alpine1:latest
Command: "iperf3 -s -d"
Created at: 2020-12-03 09:58:08 +0000 UTC
Running for: 18 seconds ago
Status: Up 18 seconds
Size: 0B
Ports:
Mounts:
Networks: host
LocalVolumes: 0

Router#show appmgr application name iperf-server-app stats
Thu Dec 3 09:58:39.594 UTC
Application Stats: iperf-server-app

CPU Percentage: 0.00%
Memory Usage: 624KiB / 31.23GiB
Memory Percentage: 0.00%
Network IO: 0B / 0B
Block IO: 0B / 0B
PIDs: 1

Router#

Step 4 Verify if the iPerf server is listening on the default port (5201) by using the netstat command inside the container.

The appmgr application exec name app_name docker-exec-cmd command can be used to execute any commands inside
the container.
Router#appmgr application exec name iperf-server-app docker-exec-cmd name netstat -lnput
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 127.0.0.11:46727 0.0.0.0:* LISTEN -
tcp 0 0 0.0.0.0:5201 0.0.0.0:* LISTEN -
udp 0 0 127.0.0.11:39552 0.0.0.0:*
Router#

Install the iPerf Client Application

Step 1 Install the iPerf application RPM on Router B.
Router#appmgr package install rpm /misc/disk1/iperf-0.1.0-XR_7.3.1.x86_64.rpm
Router#show appmgr source-table
Thu Dec 3 09:57:40.808 UTC
Name File
--------------- --
iperf iperf.tar.gz
Router#

Step 2 Configure the application to run as iPerf client with a timeout (600s in this case).
Router#config
Thu Dec 3 09:57:54.034 UTC
Router(config)#appmgr
Router(config-appmgr)#application iperf-client-app
Router(config-application)#activate type docker source iperf docker-run-opts "--net=host" docker-run-cmd
"iperf3 -c 30.5.7.1 -t 600"
Router(config-application)#commit
Thu Dec 3 09:57:54.398 UTC

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
168

Use Cases: Application Hosting
Install the iPerf Client Application

Hosting the iPerf client application on Router B by providing the iPerf server physical interface IP address
(30.5.7.1) establishes communication between Router B and Router A.

Note

Step 3 Verify the basic details (application name and state) about the activated iPerf client application.
Router#show appmgr application-table
Thu Dec 3 09:59:47.628 UTC
Name Type Config State Status
-------- ------- ------------- -------------------------
iperf-client-app Docker Activated Up 2 seconds
Router#
Thu Dec 3 09:57:54.398 UTC
Router#show appmgr application name iperf-client-app info summary
Thu Dec 3 09:59:54.534 UTC
Application: iperf-client-app

Type: Docker
Source: iperf
Config State: Activated
Container ID: 40e1730a97666b2b44c8c9313b94b0138925c9198ae63244ff3bd386132d9c9c
Image: alpine1:latest
Command: "iperf3 -c 30.5.7.1 -t 600"
Status: Up 9 seconds

Router#show appmgr application name iperf-client-app info detail
Application: iperf-client-app

Type: Docker
Source: iperf
Config State: Activated
Docker Information:

Container ID: 40e1730a97666b2b44c8c9313b94b0138925c9198ae63244ff3bd386132d9c9c
Container name: iperf-client-app
Labels:
Image: alpine1:latest
Command: "iperf3 -c 30.5.7.1 -t 600"
Created at: 2020-12-03 09:59:45 +0000 UTC
Running for: 20 seconds ago
Status: Up 20 seconds
Size: 0B
Ports:
Mounts:
Networks: host
LocalVolumes: 0

Router#show appmgr application name iperf-client-app stats
Thu Dec 3 10:00:18.079 UTC
Application Stats: iperf-client-app

CPU Percentage: 0.11%
Memory Usage: 720KiB / 31.23GiB
Memory Percentage: 0.00%
Network IO: 0B / 0B
Block IO: 0B / 0B
PIDs: 1

Router#

Verify Connection between the iPerf Server and iPerf Client Applications

Verify whether the connection is established between iPerf server and iPerf clients by executing the bash netstat -anput
command on Router A. When the iPerf client is up and running, the entry in the State field displays "ESTABLISHED”.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
169

Use Cases: Application Hosting
Verify Connection between the iPerf Server and iPerf Client Applications

Router#bash netstat -anput
Thu Dec 3 10:00:33.535 UTC
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 0.0.0.0:646 0.0.0.0:* LISTEN 8585/mpls_ldp
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 8567/ssh_server
tcp 0 0 0.0.0.0:830 0.0.0.0:* LISTEN 8567/ssh_server
tcp6 0 0 :::5201 :::* LISTEN 20829/iperf3
tcp6 0 0 :::22 :::* LISTEN 8567/ssh_server
tcp6 0 0 :::830 :::* LISTEN 8567/ssh_server
tcp6 0 0 30.5.7.1:5201 100.0.0.9:65322 ESTABLISHED 20829/iperf3
tcp6 0 0 30.5.7.1:5201 100.0.0.9:65302 ESTABLISHED 20829/iperf3
udp 0 0 0.0.0.0:646 0.0.0.0:* 8585/mpls_ldp
udp 0 0 0.0.0.0:3232 0.0.0.0:* 6833/pim
udp 0 0 0.0.0.0:3503 0.0.0.0:* 10762/lspv_server
udp 0 0 0.0.0.0:68 0.0.0.0:* 10704/xr_dhcpcd
udp 0 0 0.0.0.0:496 0.0.0.0:* 6833/pim
udp6 0 0 :::3503 :::* 10762/lspv_server

Measure Network Performance

Step 1 Verify the traffic route from Router B to Router A using the show ip route command, on Router B.

Router#show ip route 30.5.7.1
Thu Dec 3 10:08:01.859 UTC

Routing entry for 30.5.7.0/31
Known via "ospf 10", distance 110, metric 2, type intra area
Installed Dec 3 04:49:22.281 for 05:18:39

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
170

Use Cases: Application Hosting
Measure Network Performance

Routing Descriptor Blocks
21.5.7.0, from 100.0.0.7, via FourHundredGigE0/0/0/1
Route metric is 2

No advertising protos.
Router#

Step 2 Check the network performance between iPerf client and iPerf server (on Router B and Router A).

You can view the network monitoring parameters by executing the show appmgr application name iperf-client-app
logs command, on Router B that hosts the iPerf client.
Router#show appmgr application name iperf-client-app logs
Tue Dec 1 12:50:27.862 UTC
Connecting to host 30.5.7.1, port 5201
[4] local 100.0.0.9 port 61384 connected to 30.5.7.1 port 5201
[ID] Interval Transfer Bandwidth Retr Cwnd
[4] 0.00-1.00 sec 1.05 MBytes 8.82 Mbits/sec 0 80.6 KBytes
[4] 1.00-2.00 sec 1.26 MBytes 10.6 Mbits/sec 0 136 KBytes
[4] 2.00-3.00 sec 1.18 MBytes 9.90 Mbits/sec 0 191 KBytes
[4] 3.00-4.00 sec 1.24 MBytes 10.4 Mbits/sec 0 246 KBytes
[4] 4.00-5.00 sec 1.18 MBytes 9.90 Mbits/sec 0 301 KBytes
[4] 5.00-6.00 sec 1.37 MBytes 11.5 Mbits/sec 0 362 KBytes
[4] 6.00-7.00 sec 1.37 MBytes 11.5 Mbits/sec 0 423 KBytes
[4] 7.00-8.00 sec 1.43 MBytes 12.0 Mbits/sec 0 486 KBytes
[4] 8.00-9.00 sec 1.30 MBytes 11.0 Mbits/sec 0 547 KBytes
[4] 9.00-10.00 sec 1.43 MBytes 12.0 Mbits/sec 0 611 KBytes
[4] 10.00-11.00 sec 1.62 MBytes 13.6 Mbits/sec 0 707 KBytes
[4] 11.00-12.00 sec 1.62 MBytes 13.6 Mbits/sec 0 875 KBytes
[4] 12.00-13.00 sec 1.93 MBytes 16.2 Mbits/sec 0 1.07 MBytes
[4] 13.00-14.00 sec 1.68 MBytes 14.1 Mbits/sec 0 1.29 MBytes
[4] 14.00-15.00 sec 1.06 MBytes 8.86 Mbits/sec 0 1.56 MBytes
[4] 15.00-16.00 sec 891 KBytes 7.30 Mbits/sec 0 1.83 MBytes
[4] 16.00-17.00 sec 970 KBytes 7.95 Mbits/sec 0 2.12 MBytes
[4] 17.00-18.00 sec 1.24 MBytes 10.4 Mbits/sec 0 2.58 MBytes
[4] 18.00-19.00 sec 885 KBytes 7.24 Mbits/sec 0 2.65 MBytes
[4] 19.00-20.00 sec 1.55 MBytes 13.0 Mbits/sec 0 3.10 MBytes
[4] 20.00-21.00 sec 820 KBytes 6.71 Mbits/sec 0 3.10 MBytes
[4] 21.00-22.00 sec 1.72 MBytes 14.4 Mbits/sec 6 2.42 MBytes
[4] 22.00-23.00 sec 0.00 Bytes 0.00 bits/sec 5 2.30 MBytes
[4] 23.00-24.00 sec 256 KBytes 2.10 Mbits/sec 0 1.35 MBytes
[4] 24.00-25.00 sec 1.56 MBytes 13.1 Mbits/sec 237 1.83 MBytes
[4] 25.00-26.00 sec 1.90 MBytes 15.9 Mbits/sec 0 2.17 MBytes
[4] 26.00-27.00 sec 382 KBytes 3.12 Mbits/sec 61 1.95 MBytes
[4] 27.00-28.00 sec 0.00 Bytes 0.00 bits/sec 0 1.39 MBytes
[4] 28.00-29.00 sec 3.35 MBytes 28.1 Mbits/sec 0 1.52 MBytes
[4] 29.00-30.00 sec 954 KBytes 7.82 Mbits/sec 0 1.58 MBytes
[4] 30.00-31.00 sec 1018 KBytes 8.34 Mbits/sec 0 1.64 MBytes
[4] 31.00-32.00 sec 1.24 MBytes 10.4 Mbits/sec 0 1.71 MBytes
[4] 32.00-33.00 sec 1.25 MBytes 10.5 Mbits/sec 0 1.76 MBytes
[4] 33.00-34.00 sec 1.61 MBytes 13.5 Mbits/sec 0 1.80 MBytes
[4] 34.00-35.00 sec 1.46 MBytes 12.2 Mbits/sec 0 1.82 MBytes
[4] 35.00-36.00 sec 1.18 MBytes 9.89 Mbits/sec 0 1.83 MBytes
[4] 36.00-37.00 sec 1.36 MBytes 11.4 Mbits/sec 0 1.84 MBytes
[4] 37.00-38.00 sec 1.36 MBytes 11.4 Mbits/sec 0 1.84 MBytes
[4] 38.00-39.00 sec 1.24 MBytes 10.4 Mbits/sec 0 1.84 MBytes
[4] 39.00-40.00 sec 1.25 MBytes 10.5 Mbits/sec 0 1.85 MBytes
[4] 40.00-41.00 sec 1.25 MBytes 10.5 Mbits/sec 0 1.86 MBytes
[4] 41.00-42.00 sec 1.40 MBytes 11.8 Mbits/sec 0 1.88 MBytes
[4] 42.00-43.00 sec 1.12 MBytes 9.37 Mbits/sec 0 1.91 MBytes
[4] 43.00-44.00 sec 1.12 MBytes 9.40 Mbits/sec 0 1.96 MBytes
[4] 44.00-45.00 sec 1.20 MBytes 10.1 Mbits/sec 0 2.02 MBytes
[4] 45.00-46.00 sec 1.27 MBytes 10.7 Mbits/sec 0 2.11 MBytes
[4] 46.00-47.00 sec 1.30 MBytes 10.9 Mbits/sec 0 2.22 MBytes

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
171

Use Cases: Application Hosting
Measure Network Performance

[4] 47.00-48.00 sec 1.25 MBytes 10.5 Mbits/sec 0 2.36 MBytes
[4] 48.00-49.00 sec 1.43 MBytes 12.0 Mbits/sec 0 2.53 MBytes

Step 3 Bring down the interface on Router D using the shut command to trigger a route update.
Router(config)#interface FourhundredGig0/0/0/0
Router(config-if)#shut
Router(config-if)#commit

Because of the interface shutdown, the route to 30.5.7.1 needs to be updated and hence momentarily there will
be no route to this address.

Note

Step 4 During the route update, check the network performance by executing the show appmgr application name app_name
logs command.

You will notice that the entries in the Bandwidth field is Zero for a short duration, when the new route is installed.

Router#show appmgr application name iperf-client-app logs
Tue Dec 1 12:59:40.349 UTC
Connecting to host 30.5.7.1, port 5201
[4] local 100.0.0.9 port 61384 connected to 30.5.7.1 port 5201
15
[ID] Interval Transfer Bandwidth Retr Cwnd
[4] 0.00-1.00 sec 1.05 MBytes 8.82 Mbits/sec 0 80.6 KBytes
[4] 1.00-2.00 sec 1.26 MBytes 10.6 Mbits/sec 0 136 KBytes
[4] 2.00-3.00 sec 1.18 MBytes 9.90 Mbits/sec 0 191 KBytes
[4] 3.00-4.00 sec 1.24 MBytes 10.4 Mbits/sec 0 246 KBytes
[4] 4.00-5.00 sec 1.18 MBytes 9.90 Mbits/sec 0 301 KBytes
[4] 5.00-6.00 sec 1.37 MBytes 11.5 Mbits/sec 0 362 KBytes
[4] 6.00-7.00 sec 1.37 MBytes 11.5 Mbits/sec 0 423 KBytes
[4] 7.00-8.00 sec 1.43 MBytes 12.0 Mbits/sec 0 486 KBytes
[4] 8.00-9.00 sec 1.30 MBytes 11.0 Mbits/sec 0 547 KBytes
[4] 9.00-10.00 sec 1.43 MBytes 12.0 Mbits/sec 0 611 KBytes
[4] 10.00-11.00 sec 1.62 MBytes 13.6 Mbits/sec 0 707 KBytes
[4] 11.00-12.00 sec 1.62 MBytes 13.6 Mbits/sec 0 875 KBytes

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
172

Use Cases: Application Hosting
Measure Network Performance

[4] 12.00-13.00 sec 1.93 MBytes 16.2 Mbits/sec 0 1.07 MBytes
[4] 13.00-14.00 sec 1.68 MBytes 14.1 Mbits/sec 0 1.29 MBytes
[4] 14.00-15.00 sec 1.06 MBytes 8.86 Mbits/sec 0 1.56 MBytes
[4] 15.00-16.00 sec 891 KBytes 7.30 Mbits/sec 0 1.83 MBytes
[4] 16.00-17.00 sec 970 KBytes 7.95 Mbits/sec 0 2.12 MBytes
[4] 17.00-18.00 sec 1.24 MBytes 10.4 Mbits/sec 0 2.58 MBytes
[4] 18.00-19.00 sec 885 KBytes 7.24 Mbits/sec 0 2.65 MBytes
[4] 19.00-20.00 sec 1.55 MBytes 13.0 Mbits/sec 0 3.10 MBytes
[4] 20.00-21.00 sec 820 KBytes 6.71 Mbits/sec 0 3.10 MBytes
[4] 21.00-22.00 sec 1.72 MBytes 14.4 Mbits/sec 6 2.42 MBytes
[4] 22.00-23.00 sec 0.00 Bytes 0.00 bits/sec 5 2.30 MBytes
[4] 23.00-24.00 sec 256 KBytes 2.10 Mbits/sec 0 1.35 MBytes
[4] 24.00-25.00 sec 1.56 MBytes 13.1 Mbits/sec 237 1.83 MBytes
[4] 25.00-26.00 sec 1.90 MBytes 15.9 Mbits/sec 0 2.17 MBytes
[4] 26.00-27.00 sec 382 KBytes 3.12 Mbits/sec 61 1.95 MBytes
[4] 27.00-28.00 sec 0.00 Bytes 0.00 bits/sec 0 1.39 MBytes
[4] 28.00-29.00 sec 3.35 MBytes 28.1 Mbits/sec 0 1.52 MBytes
[4] 29.00-30.00 sec 954 KBytes 7.82 Mbits/sec 0 1.58 MBytes
[4] 30.00-31.00 sec 1018 KBytes 8.34 Mbits/sec 0 1.64 MBytes
[4] 31.00-32.00 sec 1.24 MBytes 10.4 Mbits/sec 0 1.71 MBytes
[4] 32.00-33.00 sec 1.25 MBytes 10.5 Mbits/sec 0 1.76 MBytes
[4] 33.00-34.00 sec 1.61 MBytes 13.5 Mbits/sec 0 1.80 MBytes
[4] 34.00-35.00 sec 1.46 MBytes 12.2 Mbits/sec 0 1.82 MBytes
[4] 35.00-36.00 sec 1.18 MBytes 9.89 Mbits/sec 0 1.83 MBytes
[4] 36.00-37.00 sec 1.36 MBytes 11.4 Mbits/sec 0 1.84 MBytes
[4] 37.00-38.00 sec 1.36 MBytes 11.4 Mbits/sec 0 1.84 MBytes
[4] 38.00-39.00 sec 1.24 MBytes 10.4 Mbits/sec 0 1.84 MBytes
[4] 39.00-40.00 sec 1.25 MBytes 10.5 Mbits/sec 0 1.85 MBytes
[4] 40.00-41.00 sec 1.25 MBytes 10.5 Mbits/sec 0 1.86 MBytes
[4] 41.00-42.00 sec 1.40 MBytes 11.8 Mbits/sec 0 1.88 MBytes
[4] 42.00-43.00 sec 1.12 MBytes 9.37 Mbits/sec 0 1.91 MBytes
[4] 43.00-44.00 sec 1.12 MBytes 9.40 Mbits/sec 0 1.96 MBytes
[4] 44.00-45.00 sec 1.20 MBytes 10.1 Mbits/sec 0 2.02 MBytes
[4] 45.00-46.00 sec 1.27 MBytes 10.7 Mbits/sec 0 2.11 MBytes
[4] 46.00-47.00 sec 1.30 MBytes 10.9 Mbits/sec 0 2.22 MBytes
[4] 95.00-96.00 sec 1.48 MBytes 12.4 Mbits/sec 0 1.82 MBytes
[4] 96.00-97.00 sec 1.25 MBytes 10.5 Mbits/sec 0 1.83 MBytes
[4] 97.00-98.00 sec 1.25 MBytes 10.5 Mbits/sec 0 1.83 MBytes
[4] 98.00-99.00 sec 1.49 MBytes 12.5 Mbits/sec 0 1.84 MBytes
[4] 99.00-100.00 sec 1.25 MBytes 10.5 Mbits/sec 0 1.86 MBytes
[4] 100.00-101.00 sec 1.21 MBytes 10.2 Mbits/sec 0 1.89 MBytes
[4] 101.00-102.00 sec 1.34 MBytes 11.2 Mbits/sec 0 1.94 MBytes
[4] 102.00-103.00 sec 1.25 MBytes 10.5 Mbits/sec 0 2.01 MBytes
[4] 103.00-104.00 sec 1.30 MBytes 10.9 Mbits/sec 0 2.09 MBytes
[4] 104.00-105.00 sec 1.25 MBytes 10.5 Mbits/sec 0 2.17 MBytes
[4] 105.00-106.00 sec 1.39 MBytes 11.6 Mbits/sec 0 2.33 MBytes
[4] 106.00-107.00 sec 1.01 MBytes 8.47 Mbits/sec 0 2.46 MBytes
[4] 107.00-108.00 sec 526 KBytes 4.31 Mbits/sec 0 2.54 MBytes
[4] 108.00-109.00 sec 0.00 Bytes 0.00 bits/sec 0 2.54 MBytes
[4] 109.00-110.00 sec 0.00 Bytes 0.00 bits/sec 0 2.54 MBytes
[4] 110.00-111.00 sec 0.00 Bytes 0.00 bits/sec 0 2.54 MBytes
[4] 111.00-112.00 sec 0.00 Bytes 0.00 bits/sec 1 1.41 KBytes
[4] 112.00-113.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 113.00-114.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 114.00-115.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 115.00-116.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 116.00-117.00 sec 0.00 Bytes 0.00 bits/sec 1 1.41 KBytes
[4] 117.00-118.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 118.00-119.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 119.00-120.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 120.00-121.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 121.00-122.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 122.00-123.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 123.00-124.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
173

Use Cases: Application Hosting
Measure Network Performance

[4] 124.00-125.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 125.00-126.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 126.00-127.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 127.00-128.00 sec 0.00 Bytes 0.00 bits/sec 1 1.41 KBytes
[4] 128.00-129.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 129.00-130.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 130.00-131.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 131.00-132.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 132.00-133.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 133.00-134.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 134.00-135.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 135.00-136.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 136.00-137.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 137.00-138.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 138.00-139.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 139.00-140.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 140.00-141.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 141.00-142.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 142.00-143.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 143.00-144.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 144.00-145.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 145.00-146.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 146.00-147.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 147.00-148.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 148.00-149.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 149.00-150.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes
[4] 150.00-151.00 sec 700 KBytes 5.73 Mbits/sec 847 600 KBytes
[4] 151.00-152.00 sec 954 KBytes 7.82 Mbits/sec 993 1.32 MBytes
[4] 152.00-153.00 sec 509 KBytes 4.17 Mbits/sec 0 1.79 MBytes
[4] 153.00-154.00 sec 1.08 MBytes 9.07 Mbits/sec 0 1.85 MBytes
[4] 154.00-155.00 sec 1.38 MBytes 11.6 Mbits/sec 0 1.90 MBytes
[4] 155.00-156.00 sec 1.55 MBytes 13.0 Mbits/sec 0 1.98 MBytes
[4] 156.00-157.00 sec 1.16 MBytes 9.71 Mbits/sec 0 2.04 MBytes
[4] 157.00-158.00 sec 1.21 MBytes 10.2 Mbits/sec 0 2.10 MBytes
[4] 158.00-159.00 sec 1.26 MBytes 10.6 Mbits/sec 0 2.17 MBytes
[4] 159.00-160.00 sec 1.14 MBytes 9.56 Mbits/sec 0 2.23 MBytes
[4] 160.00-161.00 sec 1.29 MBytes 10.8 Mbits/sec 0 2.27 MBytes
[4] 161.00-162.00 sec 1.24 MBytes 10.4 Mbits/sec 0 2.34 MBytes
[4] 162.00-163.00 sec 1.42 MBytes 11.9 Mbits/sec 0 2.41 MBytes
[4] 163.00-164.00 sec 1.11 MBytes 9.34 Mbits/sec 0 2.46 MBytes
[4] 164.00-165.00 sec 1.39 MBytes 11.7 Mbits/sec 0 2.56 MBytes
[4] 165.00-166.00 sec 995 KBytes 8.16 Mbits/sec 0 2.69 MBytes
[4] 166.00-167.00 sec 1.88 MBytes 15.7 Mbits/sec 0 2.94 MBytes
[4] 167.00-168.02 sec 950 KBytes 7.69 Mbits/sec 0 3.12 MBytes
[4] 168.02-169.00 sec 1.79 MBytes 15.2 Mbits/sec 0 3.12 MBytes
[4] 169.00-170.01 sec 1.27 MBytes 10.6 Mbits/sec 0 3.12 MBytes
[4] 170.01-171.00 sec 1.25 MBytes 10.5 Mbits/sec 23 1.60 MBytes
- -
[ID] Interval Transfer Bandwidth Retr
[4] 0.00-600.00 sec 704 MBytes 9.84 Mbits/sec 12069 sender
[4] 0.00-600.00 sec 702 MBytes 9.82 Mbits/sec receiver

iperf Done.

<!-On Router A!>
Router#show appmgr application name iperf-server-app stats
Thu Dec 3 11:45:47.790 UTC
Application Stats: iperf-server-app

CPU Percentage: 0.00%
Memory Usage: 816KiB / 31.23GiB
Memory Percentage: 0.00%
Network IO: 0B / 0B
Block IO: 0B / 0B

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
174

Use Cases: Application Hosting
Measure Network Performance

PIDs: 1
<!-On Router B!>
Router#show appmgr application name iperf-client-app stats
Thu Dec 3 11:45:59.418 UTC
Application Stats: iperf-client-app

CPU Percentage: 0.00%
Memory Usage: 0B / 0B
Memory Percentage: 0.00%
Network IO: 0B / 0B
Block IO: 0B / 0B
PIDs: 0

Stop iPerf Applications

Stop the iPerf applications on Router A and Router B using the appmgr application stop name app_name command.
The application stop command can only be used for applications that are registered, activated, and are currently running.
The application stop command stops only the application and does not clean up the resources used by the application.

You can verify the status of the application using the show appmgr application-table command. The Status is displayed
as Exited if the application has been stopped successfully.
Router#appmgr application stop name iperf-server-app
Mon Nov 30 13:38:36.202 UTC
Router#show appmgr application-table
Mon Nov 30 13:38:36.999 UTC
Name Type Config State Status
-------- ------- ------------- -------------------------
iperf-server-app Docker Activated Exited (1) Less than a se
Router#

Start iPerf Applications

Start or restart an application that has been stopped (and not deactivated) using the appmgr application start name
app_name command.
Router#appmgr application start name iperf-server-app
Tue Dec 1 13:06:21.996 UTC
Router#show appmgr application-table
Mon Nov 30 13:38:36.999 UTC
Name Type Config State Status
-------- ------- ------------- -------------------------
iperf-server-app Docker Activated UP(1) Less than a second
Router#

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
175

Use Cases: Application Hosting
Stop iPerf Applications

Deactivate iPerf Applications

Step 1 Deactivate the iPerf applications using the no appmgr application app_name command. You deactivate the installed
application when you want to release all resources used by the application.
Router#config
Router(config)#no appmgr application iperf-server-app
Router(config)#commit

Step 2 Verify the status of the application by using the show appmgr application-table app_name stats command.
Router#show appmgr application-table
Mon Nov 30 13:39:51.197 UTC
Router#

You can activate a deactivated application using the appmgr application app_name activate type docker source
source_name command.

Note

Uninstall iPerf Applications

Uninstall the applications using the appmgr package uninstall package package_name command.

After the application is successfully uninstalled, executing the show appmgr source-table command displays no result.
Router#appmgr package uninstall package iperf
table
Mon Nov 30 13:41:05.155 UTC
Router#show appmgr source-table
Mon Nov 30 13:41:05.936 UTC
Router#

CPU-Based Packet Generator
Table 17: Feature History Table

Feature DescriptionRelease InformationFeature Name

Introduced in this release on: NCS
5700 fixed port routers

This feature support is now
extended to NCS 5700 fixed port
routers.

Release 24.2.11CPU-Based Packet Generator on
NCS 5700 fixed port routers

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
176

Use Cases: Application Hosting
Deactivate iPerf Applications

Feature DescriptionRelease InformationFeature Name

Introduced in this release on: NCS
5500 fixed port routers; NCS 5500
modular routers(NCS 5500 line
cards; NCS 5700 line cards [Mode:
Compatibility; Native])

You can now use a CPU-based
packet generator for IOS-XR
routers to simplify the diagnostic
process for routers experiencing
problems. This tool allows you to
generate a wide range of traffic
streams directly within the
production environment without
physically isolating the routers and
moving them to a lab setup. This
tool is beneficial in environments
that use routers from different
vendors or different models from
the same vendor.

The feature introduces the CLI
Options command with different
options to generate different types
of packets.

Release 24.2.1CPU-Based Packet Generator

Need for CPU-Based Packet Generator

Diagnosing network problems in production environments, such as traffic drops and mis-forwarding issues,
is crucial for network management. Traditionally, routers are physically isolated for debugging, requiring
moving equipment into lab environments with traffic generators.The CPU-Based Packet Generator can be
used in the production environment, eliminating the need to isolate the routers to a lab environment for
troubleshooting purposes.

Benefits of CPU-Based Packet Generator
• Versatile Traffic Crafting: Create complex nested packets, such as IPinIPinIPinIP, to test and diagnose
a variety of scenarios.

• In-Production Diagnosis: Directly diagnose routers in a problem state without disrupting the network
setup.

Restrictions of CPU-Based Packet Generator
• CPU-based packet generators are not optimized for high-speed packet processing; therefore, they may
not match the performance of NPU-based packet generators.

• CPU-based packet generators can potentially introduce higher CPU loads during operation, which may
affect the router performance.

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
177

Use Cases: Application Hosting
Benefits of CPU-Based Packet Generator

• The probe packet rate is 80 kpps.

Topology of CPU-Based Packet Generator
The following diagram depicts the software architecture of CPU-based packet generator.

Figure 19: Architecture of CPU-Based Packet Generator

The Cisco IOS-XR PacketIO serves as a host for third-party applications on the XR platform, with PacketIO
infrastructure facilitating packet transport and interactions between Linux and XR environments. Leveraging
this existing infrastructure, the CPU-based packet generator is implemented as a Linux application and packaged
within the supported XR platform base image, ensuring seamless distribution.

The Linux infrastructure maintains a database of all XR interfaces including bundles. The CPU-based packet
generator is used to send a specific packet type over a chosen interface.

Capabilities of CPU-based Packet Generator
• Support different packet types: The CPU-based packet generator supports various packet types,
including:

• ARP

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
178

Use Cases: Application Hosting
Topology of CPU-Based Packet Generator

• TCP

• UDP

• GRE

• MPLS

• IPinIP

• ICMPv4

• ICMPv6

• Corrupt or error packet generation: There are times when routers receive packets that are either
corrupted or contain errors for various reasons. To identify and troubleshoot these issues, it becomes
necessary to generate similar packets that can be used for debugging purposes. The CPU-based packet
generator can create these packets and aid debugging.

Examples include:

• IPv4 packet with TTL 0

• IPv4 packet with wrong checksum

• IPv4 packet with mismatch between IP option length field and the IP header

How to Use CPU-based Packet Generator?
You can use CPU-based packet generator using:

• CLI: Use the packetgen command with different options to run the tool from XR bash environment.
As the XR interfaces show up as Linux interfaces in bash environment, you can directly use the XR
interface names.

• pcap file: Use an already captured pcap file in production routers and replay it.

packetgen -i interface_name -pcap pcap_file

CLI Options

The following table outlines the different options available for the packetgen command.

Table 18: Packetgen CLI Options

DescriptionOption

Turn on accounting for packets. Only works if packets come back to the packet
generator.

-accounting

ARP target hardware address (default: uses interface MAC address)-arp-destination-hw-address
string

ARP target IP address (default: 127.0.0.1 or ::1)-arp-destination-ip-address
string

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
179

Use Cases: Application Hosting
How to Use CPU-based Packet Generator?

DescriptionOption

ARP operation (1: request, 2: reply , 3: rarp)-arp-operation uint

ARP sender hardware address (default : uses interface MAC)-arp-source-hw-address
string

ARP sender IP address (default: uses interface IP)-arp-source-ip-address
string

Number of packets to be injected at a time. To be used in conjunction with -sleep.-burst int

Number of packets to be generated.-count int

constant, incrementing, random (default: no payload)-data-type string

Destination MAC address (default: ff:ff:ff:ff:ff:ff)-ethernet-dmac string

Source MAC address (default: use interface MAC address)-ethernet-smac string

Write packets to file-file string

Enable GRE-gre

Enable GRE checksum present bit-gre-checksum-present

Enable GRE key present bit-gre-key-present

Enable GRE over MPLS-gre-over-mpls

Set the protocol type of the GRE payload (default: 0x0800 (IP)-gre-protocol uint

Enable GRE sequence number present bit-gre-seq-present

Set the GRE version number (default 0)-gre-version uint

Custom header for all packets-header string

Print hex dump of packets-hex

Interface name for packet injection-i string

ICMP code (default: 0)-icmp-code uint

ICMP type (default: 0)-icmp-type uint

Increment destination MAC-inc-dmac

Increment source mac-inc-smac

Inner Ethernet destination MAC address (default: ff:ff:ff:ff:ff:ff)-inner-ethernet-dmac
string

Inner Ethernet source MAC address (default: ff:ff:ff:ff:ff:ff)-inner-ethernet-smac
string

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
180

Use Cases: Application Hosting
How to Use CPU-based Packet Generator?

DescriptionOption

Inner IP checksum (default: compute checksum automatically)-inner-ip-checksum uint

Set inner IP Don't Fragment flag as 1-inner-ip-dont-fragment
uint

Inner destination IP address (default: 127.0.0.1 or ::1)-inner-ip-dst string

Inner IPv6 Flow Label value (default: 0)-inner-ip-flow-label uint

Inner IP fragment offset in units of 64-bits (e.g. 1 = 64 bits)-inner-ip-frag-offset uint

Inner IP protocol . Supports protocol text (TCP, UDP) and code (63 for TCP)
(default: TCP)

-inner-ip-protocol string

Inner source IP address (default: 127.0.0.1 or ::1)-inner-ip-src string

Inner IP Type Of Service (TOS) value (default: 0)-inner-ip-tos uint

ip-traffic-class (traffic-class) value (default: 0)-inner-ip-traffic-class
uint

Inner IP time to live (ttl). (Default ttl = 64-inner-ip-ttl uint

Inner IP version (default: 4)-inner-ip-version int

Inner VLAN id (default: 0)-inner-vlan-id uint

Inner VLAN ethernet type (default: 33024 :Dot1Q)-inner-vlan-tpid uint

Inner VLANpriority (default: 0-inner-vlan-vpri uint

IP checksum (default: compute checksum automatically)-ip-checksum string

Set IP flag -ip-dont-fragment 0 -> 000

Nothing set -ip-dont-fragment 1 -> 001

More Fragments -ip-dont-fragment 2 -> 010

Dont Fragment -ip-dont-fragment 4 -> 100 set reserved bit

-ip-dont-fragment string

Destination IP address (default: 127.0.0.1 or ::1)-ip-dst string

IPv6 Flow Label value (default: 0)-ip-flow-label string

Fragment offset in units of 64-bits (1 = 64 bits)-ip-frag-offset string

IP protocol. Supports protocol text (TCP, UDP, GRE, VXLAN, ICMP, NDP) and
code (63 for TCP) (default: TCP)

-ip-protocol string

Source IP address (default: use interface ip)-ip-src string

IP Type Of Service value (default: 0)-ip-tos string

IP traffic class (traffic-class) value (default: 0)-ip-traffic-class string

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
181

Use Cases: Application Hosting
How to Use CPU-based Packet Generator?

DescriptionOption

IP time to live (ttl). (Default ttl = 64-ip-ttl string

IP version should always be set for accurate IP packet creation, ip version (default:
4).

-ip-version string

Comma separated MPLS EXP (Experimental) value (default: 0)-mpls-exp string

Comma separated list ofMultiprotocol Label Switching (MPLS) labels to be added
to the packet. Specified from top to bottom

-mpls-label string

Comma separated MPLS TTL (Time To Live) value (default: 64)-mpls-ttl string

Specify the neighbor discovery protocol: nbr-solicit, nbr-advt-ndp string

NDP target address (default: for advertisement source IP, for solicitation destination
IP

-ndp-target-address
string

File to replay pcap-pcap string

Display a progress bar-progress

Seed for pseudo random payload generator-seed int

Size of payload-size int

Time duration to sleep during each burst. To be used together with -burst.-sleep string

Print packets to stdout-stdout

TCP destination port (default: 40000)-tcp-dport int

Set TCP control flags:

• U (Urgent): Indicates that the data should be processed urgently.

• A (Acknowledgement): Acknowledges the receipt of data.

• P (Push): Instructs the sender to push the data to the receiving application
immediately.

• R (Reset): Resets the connection.

• S (Synchronize): Synchronizes sequence numbers to initiate a connection.

• F (Finish): Indicates the sender has finished sending data and wants to
terminate the connection.

-tcp-flags string

TCP source port (default: 40000)-tcp-sport int

UDP destination port (default: 40000)-udp-dport int

UDP source port (default: 40000)-udp-sport int

VLAN id (default: 0)-vlan-id uint

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
182

Use Cases: Application Hosting
How to Use CPU-based Packet Generator?

DescriptionOption

VLAN ethernet type (default: 33024 :Dot1Q)-vlan-tpid uint

VLAN priority (default: 0-vlan-vpri uint

UDP destination port for VXLAN (default: 4789)-vxlan-udp-dport int

UDP source port for VXLAN (default: 0)-vxlan-udp-sport int

VXLAN VNI (default: 0)-vxlan-vni uint

Sample Commands

This section lists sample commands for some common packet types.

Table 19: Sample Packetgen Commands

Sample CommandPacket Type

packetgen -i enp0s8 -ip-ttl 32 -arp-operation 1 -progress -count 10000 -inc-smac
-arp-destination-ip-address 192.168.56.1

ARP

packetgen -i enp0s8 -ip-ttl 32 -tcp-sport 40000 -progress -count 10000 -inc-smacTCP

packetgen -i enp0s8 -ip-ttl 32 -udp-sport 40000 -progress -count 10000 -inc-smacUDP

packetgen -i enp0s8 -ip-ttl 32 -icmp-type 8 -progress -count 10000 -ip-dst 192.168.56.1ICMP - PING

packetgen -i enp0s8 -ip-ttl 32 -gre -count 100 -inner-ip-ttl 32 -tcp-sport 3222 -progressGRE

packetgen -i enp0s8 -count 100 -tcp-sport 3222 -progress -ip-src="1.1.1.1,2.2.2.2"IP in IP

packetgen -i enp0s8 -ip-ttl 32 -count 100 -inner-ip-version 6 -tcp-sport 3222 -progress
-inner-ethernet-smac ff:ff:ff:ff:ff:ff

ETHER-IP

packetgen -i enp0s8 -ip-ttl 32 -tcp-sport 40000 -progress -count 10000 -inc-smac -vlan-id
2

VLAN

packetgen -i enp0s8 -ip-ttl 32 -tcp-sport 40000 -progress -count 10000 -inc-smac -vlan-id
2 -inner-vlan-id 2

QinQ

packetgen -i enp0s8 -ip-ttl 32 -tcp-sport 40000 -progress -count 10000 -inc-smac -vxlan-vni
3 -vxlan-udp-sport 4444 -inner-ip-version 4 -inner-ethernet-smac ff:ff:ff:ff:ff:ff -data-type
constant

VXLAN

packetgen -i enp0s8 -ip-version 6 -ndp nbr-advt -count 100 -ip-checksum 1 -progressNDP

packetgen -i enp0s8 -ip-version 4 -mpls-label 1,2,3,4,5 -tcp-sport 4556 -count 1000
-progress

MPLS

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
183

Use Cases: Application Hosting
How to Use CPU-based Packet Generator?

Command Example

This section shows an example command to send an ICMP ping request from source address 10.0.0.1 to
destination address 10.0.0.2 via interface Hu0_0_0_25.
Router# bash
[ios:~]$ packetgen -i Hu0_0_0_25 -ip-ttl 32 -progress -count 50 -icmp-type 8 -ip-dst 10.0.0.2
-ip-src 10.0.0.1 --ethernet-smac 78:c5:51:84:48:c4 --ethernet-dmac 00:00:00:1e:ca:fc
INFO[0000] [ETH IP ICMP]
INFO[0000] Setting SRC IP to 10.0.0.1
INFO[0000] Setting DST IP to 10.0.0.2
INFO[0000] Opening Handle Hu0_0_0_25
INFO[0000] Opened Handle Hu0_0_0_25
INFO[0000] Starting Packet Injection
Sending Packets... 2% | | (1/50, 254 packet/s) [0s:0s] /* Truncated output. */

Address Age Hardware Addr State Type Interface
10.0.0.1 - 78c5.5184.48c4
Interface ARPA HundredGigE0/0/0/25
10.0.0.2 00:50:23 0000.001e.cafc Dynamic ARPA HundredGigE0/0/0/25

Source stats:
Stat Name Port Name Control Packet Tx. Control Packet Rx. Ping Reply Tx.
20.0.0.2/
Card01/Port01 Ethernet - VM - 001 51 51 50

Interface stats:
Input Punt XIPC InputQ XIPC PuntQ
ClientID Drop/Total Drop/Total Cur/High/Max Cur/High/Max
--
ipv6_icmp 0/0 0/0 0/0/1000 0/0/1000
icmp 0/50 0/0 0/15/1000 0/0/1000

Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
184

Use Cases: Application Hosting
How to Use CPU-based Packet Generator?

	Application Hosting Configuration Guide for Cisco NCS 5500 Series Routers, Cisco IOS XR Releases
	Contents
	Changes to This Document
	New and Changed Feature Information
	New and Changed Application Hosting Features

	Getting Started with Application Hosting
	Need for Application Hosting
	Deep Dive Into Application Hosting
	Application Hosting on the Cisco IOS XR Linux Shell
	Accessing the Third-Party Network Namespace on Cisco IOS XR Linux Shell
	Accessing Global VRF on the Cisco IOS XR Linux Shell

	Getting Started with Using Vagrant for Application Hosting
	Accessing Global VRF on the Cisco IOS XR Linux Shell by Using a Vagrant Box
	Applying Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box

	Accessing the Networking Stack
	Packet I/O on IOS XR
	Exposed IOS-XR Interfaces in Linux
	Setting up Virtual IP Addresses
	Third-Party Application Networking in Named VRFs
	Default Route Source Address
	East-West Communication
	Hardware LPTS Support For Traffic Protection
	Management Route Export
	Mapping of Deprecated TPA Configuration
	Software Forwarding
	Statistics Synchronization
	VRF Disable

	Program Routes in Linux
	Configure VRFs in Linux
	Open Linux Sockets
	Send and Receive Traffic
	Manage IOS XR Interfaces through Linux
	Configure an Interface to be Linux-Managed
	Configure New IP address on the Interface in Linux
	Configure Custom MTU Setting

	Configure Traffic Protection for Linux Networking

	Communication Outside Cisco IOS XR
	East-West Communication for Third-Party Applications
	Configuring Multiple VRFs for Application Hosting

	Hosting Applications on IOS XR
	Application Hosting in IOS XR Container
	Container Application Hosting
	Running iPerf as a Container Application
	Using Docker for Hosting Applications on Cisco IOS XR
	Hosting and Seamless Activation of Third Party Applications Using Application Manager
	Configuring a Docker with Multiple VRFs

	Customize Docker Run Options Using Application Manager
	Docker Application Management using IPv6 Address
	Configure VRF Forwarding
	Verifying VRF Forwarding for Application Manager

	Using Vagrant for Hosting Applications
	Setting up an Application Development Topology By Using Vagrant
	Deploying an Application Development Topology by Using Vagrant
	Hosting a Wind River Linux (WRL7) Application Natively By Using Vagrant
	Hosting an Application within a Linux Container (LXC) by Using Vagrant
	Installing Docker on Cisco IOS XR By Using Vagrant

	Secure Onboarding of Signed Third-Party Applications
	Key Terms
	How Can I Onboard My Applications Securely?
	Establish Device Ownership
	Generate KeyPackage
	Customer Keys (X509 or GPG)
	Key Package Configuration File

	Onboard Key Package on Router
	Provisioning Key Packages on the Router

	Generate Signed RPM
	Onboard Signed RPM Package on Router
	Build a Golden ISO

	TPA Life Cycle
	Appendix
	Secure ZTP Work Flow

	Hosting Applications Using Configuration Management Tools
	Using Chef for Configuring Cisco IOS XR
	Installing and Configuring the Chef Client
	Creating a Chef Cookbook with Recipes

	Using Puppet for Configuring Cisco IOS XR
	Installing and Configuring the Puppet Agent
	Creating a Puppet Manifest
	Using Yang Models with Puppet on IOS XR

	Using Configuration Management Tools on Vagrant
	Using Puppet on Vagrant
	Using Ansible for Hosting Applications
	Using Ansible On Vagrant
	Launching a Linux Container (LXC) By Using Ansible on Vagrant

	Using Netmiko and Napalm on Vagrant

	Cisco Secure DDoS Edge Protection
	Guidelines for Installing DDoS Edge Protection
	Restrictions of DDoS Edge Protection Solution
	Install and Configure DDoS Edge Protection
	Verify DDoS Edge Protection Application Configuration

	Use Cases: Application Hosting
	Hosting iPerf in Docker Containers to Measure Network Performance using Application Manager
	Verify Connection between Router A and Router B
	Install the iPerf Server Application
	Install the iPerf Client Application
	Verify Connection between the iPerf Server and iPerf Client Applications
	Measure Network Performance
	Stop iPerf Applications
	Start iPerf Applications
	Deactivate iPerf Applications
	Uninstall iPerf Applications

	CPU-Based Packet Generator
	Benefits of CPU-Based Packet Generator
	Restrictions of CPU-Based Packet Generator
	Topology of CPU-Based Packet Generator
	Capabilities of CPU-based Packet Generator
	How to Use CPU-based Packet Generator?

