
Accessing the Networking Stack

The Cisco IOS XR Software serves as a networking stack for communication. This section explains how
applications on IOS XR can communicate with internal processes, and with servers or outside devices.

• Packet I/O on IOS XR, on page 1
• Communication Outside Cisco IOS XR, on page 23
• East-West Communication for Third-Party Applications, on page 25
• Configuring Multiple VRFs for Application Hosting, on page 27

Packet I/O on IOS XR
This section illustrates how, with the Packet I/O functionality, you can use Linux applications to manage
communication with the IOS XR interfaces. It describes how the OS environment must be set up to establish
packet I/O communication with hosted applications.

Exposed IOS-XR Interfaces in Linux
DescriptionRelease InformationFeature Name

Now the configured interface
secondary IPv4 addresses on the
Cisco IOS XR software are
automatically synchronized to
Linux operating system.

The third-party applications on
Cisco IOS XR can use the
secondary IPv4 addresses without
any manual intervention.

Earlier, you had to configure the
secondary IPv4 addresses on the
Linux operating system manually.

Release 7.9.1Automatic Synchronization of
Secondary IPv4 addresses fromXR
to Linux OS

The secondary IPv4 addresses that are configured for an XR interface are now synchronized into the Linux
operating system automatically. With this secondary IPv4 address synchronization, the third party applications
that are deployed on Cisco IOS XR can now use the secondary IPv4 addresses. Prior to this release, only

Accessing the Networking Stack
1

primary IPv4 addresses were supported and the secondary IPv4 addresses had to be configured manually in
the Linux operating system.

Exposed XR interfaces (EXIs) and address-only interfaces support secondary IPv4 address synchronization:

• EXIs have secondary IP addresses added to their corresponding Linux interface

• Address-only interfaces have secondary IP addresses added to the Linux loopback device. For additional
information on address-only interfaces, see show linux networking interfaces address-only.

The restrictions of secondary IPv4 addresses synchronization are:

• Secondary IPv4 addresses are not synchronized from Linux to XR for Linux-managed interfaces.

• The ifconfig Linux command only displays the first configured IPv4 address. To view the complete list
of IPv4 addresses, use the ip addr show Linux command.

For additional information on secondary IPv4 addresses, see ipv4 address (network).

You can run bash commands at the IOS XR router prompt to view the interfaces and IP addresses stored in
global VRF. When you access the Cisco IOS XR Linux shell, you directly enter the global VRF.

SUMMARY STEPS

1. From your Linux box, access the IOS XR console through SSH, and log in.
2. View the ethernet interfaces on IOS XR.
3. Check the IP andMAC addresses of the interface that is in Up state. Here, interfaces HundredGigE0/0/0/24

and MgmtEth0/RP0/CPU0/0 are in the Up state.
4. Verify that the bash command runs in global VRF to view the network interfaces.
5. Access the Linux shell.
6. (Optional) View the IP routes used by the to_xr interfaces.

DETAILED STEPS

Step 1 From your Linux box, access the IOS XR console through SSH, and log in.

Example:
cisco@host:~$ ssh root@192.168.122.188
root@192.168.122.188's password:
Router#

Step 2 View the ethernet interfaces on IOS XR.

Example:
Router#show ip interface brief
Interface IP-Address Status Protocol Vrf-Name
FourHundredGigE0/0/0/0 unassigned Shutdown Down default
FourHundredGigE0/0/0/1 unassigned Shutdown Down default
FourHundredGigE0/0/0/2 unassigned Shutdown Down default
FourHundredGigE0/0/0/3 unassigned Shutdown Down default
FourHundredGigE0/0/0/4 unassigned Shutdown Down default
FourHundredGigE0/0/0/5 unassigned Shutdown Down default
FourHundredGigE0/0/0/6 unassigned Shutdown Down default
FourHundredGigE0/0/0/7 unassigned Shutdown Down default
FourHundredGigE0/0/0/8 unassigned Shutdown Down default
FourHundredGigE0/0/0/9 unassigned Shutdown Down default

Accessing the Networking Stack
2

Accessing the Networking Stack
Exposed IOS-XR Interfaces in Linux

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp7546444200
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp1732038984

FourHundredGigE0/0/0/10 unassigned Shutdown Down default
FourHundredGigE0/0/0/11 unassigned Shutdown Down default
FourHundredGigE0/0/0/12 unassigned Shutdown Down default
FourHundredGigE0/0/0/13 unassigned Shutdown Down default
FourHundredGigE0/0/0/14 unassigned Shutdown Down default
FourHundredGigE0/0/0/15 unassigned Shutdown Down default
FourHundredGigE0/0/0/16 unassigned Shutdown Down default
FourHundredGigE0/0/0/17 unassigned Shutdown Down default
FourHundredGigE0/0/0/18 unassigned Shutdown Down default
FourHundredGigE0/0/0/19 unassigned Shutdown Down default
FourHundredGigE0/0/0/20 unassigned Shutdown Down default
FourHundredGigE0/0/0/21 unassigned Shutdown Down default
FourHundredGigE0/0/0/22 unassigned Shutdown Down default
FourHundredGigE0/0/0/23 unassigned Shutdown Down default
HundredGigE0/0/0/24 10.1.1.10 Up Up default
HundredGigE0/0/0/25 unassigned Shutdown Down default
HundredGigE0/0/0/26 unassigned Shutdown Down default
HundredGigE0/0/0/27 unassigned Shutdown Down default
HundredGigE0/0/0/28 unassigned Shutdown Down default
HundredGigE0/0/0/29 unassigned Shutdown Down default
HundredGigE0/0/0/30 unassigned Shutdown Down default
HundredGigE0/0/0/31 unassigned Shutdown Down default
HundredGigE0/0/0/32 unassigned Shutdown Down default
HundredGigE0/0/0/33 unassigned Shutdown Down default
HundredGigE0/0/0/34 unassigned Shutdown Down default
HundredGigE0/0/0/35 unassigned Shutdown Down default
MgmtEth0/RP0/CPU0/0 192.168.122.22 Up Up default

Use the ip addr show or ip link show commands to view all corresponding interfaces in Linux. The IOS
XR interfaces that are admin-down state also reflects a Down state in the Linux kernel.

Note

Step 3 Check the IP and MAC addresses of the interface that is in Up state. Here, interfaces HundredGigE0/0/0/24 and
MgmtEth0/RP0/CPU0/0 are in the Up state.

Example:
Router#show interfaces HundredGigE0/0/0/24
...
HundredGigE0/0/0/24 is up, line protocol is up
Interface state transitions: 4
Hardware is HundredGigE0/0/0/24, address is 5246.e8a3.3754 (bia
5246.e8a3.3754)
Internet address is 10.1.1.1/24
MTU 1514 bytes, BW 1000000 Kbit (Max: 1000000 Kbit)
reliability 255/255, txload 0/255, rxload 0/255
Encapsulation ARPA,
Duplex unknown, 1000Mb/s, link type is force-up
output flow control is off, input flow control is off
loopback not set,
Last link flapped 01:03:50
ARP type ARPA, ARP timeout 04:00:00
Last input 00:38:45, output 00:38:45
Last clearing of "show interface" counters never
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
12 packets input, 1260 bytes, 0 total input drops
0 drops for unrecognized upper-level protocol
Received 2 broadcast packets, 0 multicast packets
0 runts, 0 giants, 0 throttles, 0 parity
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
12 packets output, 1224 bytes, 0 total output drops
Output 1 broadcast packets, 0 multicast packets

Step 4 Verify that the bash command runs in global VRF to view the network interfaces.

Accessing the Networking Stack
3

Accessing the Networking Stack
Exposed IOS-XR Interfaces in Linux

Example:
Router#bash -c ifconfig
Hu0_0_0_24 Link encap:Ethernet HWaddr 78:e7:e8:d3:20:c0
inet addr:10.1.1.10 Bcast:0.0.0.0 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:4 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:360 (360.0 B) TX bytes:0 (0.0 B)
Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 54:00:00:00:bd:49
inet addr:192.168.122.22 Bcast:0.0.0.0 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:3859 errors:0 dropped:0 overruns:0 frame:0
TX packets:1973 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:2377782 (2.2 MiB) TX bytes:593602 (579.6 KiB)
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:242 errors:0 dropped:0 overruns:0 frame:0
TX packets:242 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1
RX bytes:12100 (11.8 KiB) TX bytes:12100 (11.8 KiB)
to_xr Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:1 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:60 (60.0 B)

The to_xr interface indicates access to the global VRF.

Step 5 Access the Linux shell.

Example:
Router#bash
[ios:~]$

Step 6 (Optional) View the IP routes used by the to_xr interfaces.

Example:
[ios:~]$ip route
default dev to_xr scope link metric 2048
6.1.0.0/16dev Mg0_RP0_CPU0_0 proto kernel scope link src 6.1.22.41
20.1.0.0/16dev Hu0_0_0_0 proto kernel scope link src 20.1.1.1
20.2.0.0/16dev Hu0_0_0_20 proto kernel scope link src 20.2.1.1
30.1.0.0/24dev BE500 proto kernel scope link src 30.1.0.1
172.17.0.0/16dev docker0 proto kernel scope link src 172.17.0.1linkdown

You can also enter the global VRF directly after logging into IOSXR using the run ip netns exec vrf-default
bash command.

Note

Accessing the Networking Stack
4

Accessing the Networking Stack
Exposed IOS-XR Interfaces in Linux

Setting up Virtual IP Addresses
DescriptionRelease InformationFeature Name

Virtual IP addresses allow a single
IP address to connect to the current
active RP after an RP switchover
event. In addition, this functionality
enables your network stack to
support virtual IP addresses for
third-party applications and IOS
XR applications that use the Linux
networking stack.

The following commands are
modified:

• ipv4 virtual address

• ipv6 virtual address

• show linux networking
interfaces address-only

Release 7.5.2Virtual IP address in the Linux
networking stack

Interfaces configured on IOS XR are programmed into the Linux kernel. These interfaces allow Linux
applications to run as if they were running on a regular Linux system. This packet I/O capability ensures that
off-the-shelf Linux applications can be run alongside IOS XR, allowing operators to use their existing tools
and automate deployments with IOS XR.

The IP address on the Linux interfaces, MTU settings, MAC address are inherited from the corresponding
settings of the IOS XR interface. Accessing the global VRF network namespace ensures that when you issue
the bash command, the default or the global VRF in IOS XR is reflected in the kernel. This ensures default
reachability based on the routing capabilities of IOS XR and the packet I/O infrastructure.

Virtual addresses can be configured to access a router from the management network such as gRPC using a
single virtual IP address. On a device with two or more RPs, the virtual address refers to the management
interface that is currently active. This functionality can be used across RP failover without the information of
which RP is currently active. This is applicable to the Linux packet path.

Procedure

PurposeCommand or Action

You can use the following commands to verify the IP
Address in the Linux networking stack:

Step 1 • ipv4 virtual address

• ipv6 virtual address

• show linux networking interfaces address-only

Accessing the Networking Stack
5

Accessing the Networking Stack
Setting up Virtual IP Addresses

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp2718532061
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp7955588300
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp7546444200
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp7546444200
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp2718532061
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp7955588300
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp7546444200

Third-Party Application Networking in Named VRFs
DescriptionRelease InformationFeature Name

This feature empowers you to run
your native Linux applications on
Cisco IOS XR as-is, without any
modifications.

You can now configure a host of
utilities that allows for easy
integration of Linux devices and
applications. These utilities allow
applications hosted in containers to
interact with native Cisco IOS XR
applications (hosted in the XR
control plane).

The following commands are
modified:show linux networking
vrfs.

Release 7.9.1Virtual Routing and Forwarding for
Linux Third-Party
Applications using Data Port

Cisco IOS XR now supports the use of standard Linux APIs to send and receive packets, update routes,
interface state, interface IP addresses, and so on.

The supported utilities are:

• Default Route Source Address

• East-West Communication

• Hardware LPTS Support for Traffic Protection

• Management Route Export

• Automatic Mapping of Deprecated TPA Configuration

• Software Forwarding

• Statistics Synchronization

• VRF Disable

Default Route Source Address
The Default Route Source Address utility allows you to specify an interface in which the address should be
used as the source hint on Linux's default route.

This source hint is used for traffic where:

• The application is not bound to a specific address.

• The traffic is destined over a nonconnected route. This is commonly seen as Rx-inject traffic and represents
most of the traffic that is sent by Linux.

Ensure that the interface is synchronized to Linux, to qualify as a valid source hint interface.

Accessing the Networking Stack
6

Accessing the Networking Stack
Third-Party Application Networking in Named VRFs

• Its VRF must not be disabled.

• On XR platforms, it must not be the East-West interface.

• It is a supported interface type.

• If explicitly configured, it must be in the specified VRF.

The following configuration parameters are used to select the interface to be used:

• If an interface is specified explicitly and valid, it is used.

• If active-management is specified, the lowest-numbered valid management interface on the active RP
is used. The identity of this interface will change after RP switchover.

• If no configuration is specified, the lowest-numbered valid loopback interface in the VRF is used.

The address that is chosen from the selected source hint interface depends on the address family:

• IPv4: The primary address is used, when present. Secondary addresses are not considered.

• IPv6: The IP address that is numerically the lowest is used.

Following is the configuration for setting the default source hint interface address:
vrf blue
!
linux networking
vrf blue
east-west Loopback3
address-family ipv4
source-hint default-route interface Loopback2
!
address-family ipv6
source-hint default-route interface Loopback2
!
!
!
interface Loopback2
vrf blue
ipv4 address 192.0.2.1 255.255.255.255
ipv6 address 2001:db8::1/128
!
interface Loopback3
vrf blue
ipv6 address 2001:db8::ea57/128
!

Use the following show command to verify whether the default source hint interface address is configured:
RP/0/RP0/CPU0:ios#show linux networking vrfs vrf blue
VRF blue (Linux network namespace vrf-blue):
Status: active
IPv4 default route source hint: 192.0.2.1
IPv6 default route source hint: 2001:db8::1
IPv4 XR East-West: none
IPv6 XR East-West: 2001:db8::ea57

The following TPA configuration has been deprecated, from Cisco IOS XR Release 7.9.1:

tpa
vrf < vrf-name >

Accessing the Networking Stack
7

Accessing the Networking Stack
Default Route Source Address

address-family { ipv4 | ipv6 }
update-source dataports { < interface > | active-management }

East-West Communication
The East-West Communication utility allows you to specify a Cisco IOS XR interface that should be used for
communication between Linux and Cisco IOS XR applications.

Configuring an interface as East-West for a virtual routing and forwarding (VRF) ensures that all listed
addresses are reserved for East-West communication, with the following behaviour:

• Traffic cannot be routed from Linux to other devices using this IP address.

• Traffic destined to the listed addresses cannot be received by Linux applications.

• The IP addresses will not appear in Linux.

• For Linux applications: Traffic might be sourced from any local IP address present in Linux. Traffic
must be sent to one of the reserved East-West IP addresses.

• For Cisco IOS XR applications: Traffic must be sourced from one of the reserved East-West IP addresses.
Traffic might be sent to any local IP address present in Linux.

Ensure the following, for the interface to be qualified as a valid East-West interface:

• Be in a VRF that is not disabled.

• Have one or more IP addresses.

• The following configuration is used to select the interface to be used:

• If an interface is specified explicitly and valid, it is used.

• If no configuration is specified, Loopback1 is used.

• All IP addresses on the interface are reserved for East-West.

Following is the configuration to define the East-West communication:

vrf blue
!
linux networking
vrf blue
east-west Loopback3
address-family ipv4
source-hint default-route interface Loopback2
!
address-family ipv6
source-hint default-route interface Loopback2
!
!
!
interface Loopback2
vrf blue
ipv4 address 192.0.2.1 255.255.255.255
ipv6 address 2001:db8::1/128
!
interface Loopback3
vrf blue

Accessing the Networking Stack
8

Accessing the Networking Stack
East-West Communication

ipv6 address 2001:db8::ea57/128
!

Use the following show command to verify whether the east-west communication is configured:
RP/0/RP0/CPU0:ios#show linux networking vrfs vrf blue
VRF blue (Linux network namespace vrf-blue):
Status: active
IPv4 default route source hint: 192.0.2.1
IPv6 default route source hint: 2001:db8::1
IPv4 XR East-West: none
IPv6 XR East-West: 2001:db8::ea57

The following TPA configuration has been deprecated, from Cisco IOS XR Release 7.9.1:

tpa
vrf < vrf-name >
east-west < interface >

Hardware LPTS Support For Traffic Protection
The Hardware Local Packet Transport Services (LPTS) Support for Traffic Protection utility allows you to
specify traffic protection rules to be factored into as an LPTS programming that is done by the Linux Packet
I/O. This is in addition to the existing method where the rules were implemented using the Linux kernel's
software-based nftables firewall. The nftables firewall is a subsystem of the Linux kernel, and provides filtering
and classification of network packets. The nftables firewall is retained as a fallback, but augmented by higher
performance LPTS rules.

Linux Packet I/O programs the LPTS in response to Linux socket operations, to ensure that Linux clients can
receive traffic from other devices. When traffic protection rules are configured, this feature applies filtering
to the programmed LPTS rules to allow a restricted subset that matches the traffic protection rules.

The following TPA configuration has been deprecated, from Cisco IOS XR Release 7.9.1:

tpa
vrf < vrf-name >
address-family { ipv4 | ipv6 }
protection
allow protocol { tcp | udp } local-port < local-port >

{ remote-address < remote-address >/< prefix-len >
| local-address < local-address >/< prefix-len >
| interface < interface-name > }

Management Route Export
The Management Route Export utility allows for a subset of Cisco IOS XR static routes that resolve over the
active management interfaces to be replicated to Linux. This avoids the need for a line card NPU inject and
FIB lookup for routing Linux traffic matching these management routes.

In order for the routes to be exported from Cisco IOS XR to Linux, you must ensure that the routes:

• Resolve over the management interface.

• Are static.

• Not recursive.

• Not the default XR route.

Accessing the Networking Stack
9

Accessing the Networking Stack
Hardware LPTS Support For Traffic Protection

A specified source hint interface is qualified only if:

• Its VRF is not disabled.

• The interface is in the same VRF as the management interface.

• On Cisco IOS XR platforms, it is not the East-West interface.

• It is a supported interface type.

If the specified interface is valid, then the address that is chosen from it depends on the address family:

• IPv4: The primary address is used, when present. Secondary addresses are not considered.

• IPv6: The IP address that is numerically the lowest is used.

The following configuration allows for the source hint interface to be specified for the static routes which are
synchronized into Linux.
linux networking
vrf default
address-family ipv4
source-hint management-route interface Loopback2
!
!
!
interface Loopback0
ipv4 address 192.0.2.128 255.255.255.255
!
interface Loopback2
ipv4 address 192.0.2.200 255.255.255.255
!
interface MgmtEth0/RP0/CPU0/0
ipv4 address 192.0.2.1 255.255.255.240
!
router static
address-family ipv4 unicast
192.0.2.16/28 192.0.2.2
192.0.2.32/28 192.0.2.2
!
!

Use the following show command to verify whether the east-west communication is configured:

The management ethernet is directly connected to a device with the unicast route IP address.Note

RP/0/RP0/CPU0:ios#bash vrf default ip route
default dev to_xr scope link src 192.0.2.128 metric 2048 mtu 1500 advmss 1460
192.0.2.1/30 dev Mg0_RP0_CPU0_0 proto static scope link src 192.0.2.200
192.0.16.0/24 via 192.0.2.2 dev Mg0_RP0_CPU0_0 proto static src 192.0.2.200 metric 2048
192.0.17.0/24 via 192.0.2.2 dev Mg0_RP0_CPU0_0 proto static src 192.0.2.200 metric 2048

The verification for source hint config is to check that all Linux routes resolving via the management ethernet
interface are using the source address from the configured device. The verification for management route
export is to check that all static routes resolving via the management ethernet interfaceare exported to Linux.

The following TPA configuration has been deprecated, from Cisco IOS XR Release 7.9.1:

tpa

Accessing the Networking Stack
10

Accessing the Networking Stack
Management Route Export

vrf < vrf-name >
address-family { ipv4 | ipv6 }
update-source destination < management-interface > source < interface >

Mapping of Deprecated TPA Configuration
The Automatic Mapping of Deprecated TPA Configuration utility supports seamless migrations from a Cisco
IOS XR environment to Linux, with the Packet I/O functionality. The configuration is translated from the
deprecated TPA configuration (under tpa) to Linux, with the Packet I/O configuration (under linux
networking).

The configuration will be automatically translated to the equivalent Linux Packet I/O configuration, after
installation.

The following scenarios are relevant for this utility:

• Applying deprecated TPA configuration on a Cisco IOS XR device that supports Linux Packet I/O.

• Upgrading a Cisco IOS XR device from a version that does not support Linux Packet I/O, to a version
that supports Linux Packet I/O.

• Downgrading a Cisco IOS XR device from a version that supports Linux Packet I/O, to a version that
does not support Linux Packet I/O.

• The deprecated configuration is available until all Cisco XR platforms are migrated to support Linux
Packet I/O.

Downgrading to an unsupported version of Linux Packet I/O cannot be done automatically. The definitions
required to support Linux Packet I/O configuration does not exist on releases earlier to Cisco IOS XR Release
7.9.1.

Note

Software Forwarding
The Software Forwarding utility allows you to choose software forwarding over hardware forwarding. Software
forwarding is provided primarily for compatibility with Cisco IOS XR networking stack, where hardware
forwarding could not route packets over the management interface.

When software forwarding is configured, the Net I/O will be used for forwarding packets. The packet path
might be slow, although no change to Linux reachability is noticeable. You can use software forwarding to
avoid injecting traffic toward line card NPUs in scenarios where the Linux traffic in a VRF will be sent over
management interfaces.

Following is the configuration for software forwarding:
linux networking
vrf default
address-family ipv6
default-route software-forwarding
!
!
!

The following TPA configuration has been deprecated, from Cisco IOS XR Release 7.9.1:

tpa

Accessing the Networking Stack
11

Accessing the Networking Stack
Mapping of Deprecated TPA Configuration

vrf < vrf-name >
address-family { ipv4 | ipv6 }
default-route mgmt

Statistics Synchronization
The Statistics Synchronization utility allows you to specify the intervals when interface statistics for all
interfaces are synchronized to Linux, when using the Linux ethtool interface, to gather interface statistics.

For supported configurations, Cisco IOS XR's statsd infra is polled at specified intervals to retrieve cached
interface statistics for all interfaces that are exposed to Linux, as an exposed Cisco IOS XR interface (those
visible to the Linux ip link command).

However, statistics are not gathered for interfaces in disabled VRFs, or for those interfaces which are not
synchronized to Linux as an exposed interface.

This example shows how the bundle-ether interface packet statistics are synchronized between Cisco IOS XR
and Linux. The packet and byte counters that are maintained by Linux for Cisco IOS XR interfaces display
only the traffic that is sourced in Linux. You can configure to periodically synchronize these counters with
the Cisco IOS XR statistics for the interfaces.

1. Following is the configure for statistics synchronization, including the direction and synchronization
interval.
linux networking
statistics-synchronization from-xr every { 30s | 60s | 2m | 3m | 4m | 5m | 6m | 7m |

8m | 9m | 10m }

The following example shows statistics synchronization in global configuration:
Router(config)#linux networking statistics-synchronization from-xr
every 30s

The following example shows statistics synchronization in exposed-interface configuration:
Router(config)#linux networking exposed-interfaces interface
bundle-ether 1 statistics-synchronization from-xr every 10s

where—

• from-xr: The direction indicating that the interface packet statistics will be pushed from Cisco IOS
XR to the Linux kernel.

• every: Shows the frequency at which to synchronize statistics. The intervals that are supported for
global configuration are 30s and 60s. The intervals that are supported for exposed interfaces are 5s,
10s, 30s, or 60s. The interval s is in seconds.

2. Verify that the statistics synchronization is applied successfully on Cisco IOS XR.
Router#show run linux networking
linux networking
vrf default
address-family ipv4
protection
protocol tcp local-port all default-action deny
permit interface bundle-ether 1
!
!
!
!
exposed-interfaces
interface bundle-ether 1 linux-managed

Accessing the Networking Stack
12

Accessing the Networking Stack
Statistics Synchronization

statistics-synchronization from-xr every 10s
!
!
!

You can use the show tech-support linux networking command to display debugging information, with
regard to statistics synchronisation.

The following TPA configuration has been deprecated, from Cisco IOS XR Release 7.9.1:

tpa
statistics update-frequency < 1 - 99999999 >

The integer values here are mapped to the nearest matching value in supported configuration:

• For values not exceeding 600 seconds, it is corrected to the nearest matching interval.

• For values exceeding 600 seconds, it is corrected to 10 minutes.

Note

VRF Disable
The VRF Disable utility enables you to specify the virtual routing and forwarding (VRF) that should not be
synchronized to Linux, and will not be used by applications using the Linux packet path. This configuration
improves performance. Communication using Linux Packet I/O (including East-West communication) will
not be functional in the VRF or network namespace which was disabled.

The usage of the VRF Disable utility depends on whether you are using the Cisco IOS XR default VRF or
the nondefault VRF:

• For the default VRF, no interfaces, routes, or addresses are synchronized to Linux, but a network
namespace called "vrf-default" still exists.

• For nondefault VRFs, the corresponding network namespace is deleted.

You can run the VRF Disable utility by using the following configuration:

vrf green
!
linux networking
vrf green
disable
!
!

Use the following show command to verify whether the VRF is disabled:
RP/0/RP0/CPU0:ios#show linux networking vrfs vrf green
VRF green (Linux network namespace not created):
Status: VRF disabled

The following TPA configuration has been deprecated, from Cisco IOS XR Release 7.9.1:

tpa
vrf < vrf-name >
disable

Accessing the Networking Stack
13

Accessing the Networking Stack
VRF Disable

Program Routes in Linux
The basic routes required to allow applications to send or receive traffic can be programmed into the kernel.
The Linux network stack that is part of the kernel is used by normal Linux applications to send/receive packets.
In an IOS XR stack, IOS XR acts as the network stack for the system. Therefore to allow the Linux network
stack to connect into and use the IOS XR network stack, basic routes must be programmed into the Linux
Kernel.

Step 1 View the routes from the bash shell.

Example:
[ios:~]$ip route
default dev to_xr scope link src 10.1.1.10 metric 2048
10.1.1.0/24 dev Hu0_0_0_24 proto kernel scope link src 10.1.1.10
192.168.122.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 192.168.122.22

Step 2 Programme the routes in the kernel.

Two types of routes can be programmed in the kernel:

• Default Route: The default route sends traffic destined to unknown subnets out of the kernel using a special to_xr
interface. This interface sends packets to IOS XR for routing using the routing state in XR Routing Information
Base (RIB) or Forwarding Information Base (FIB). The to_xr interface does not have an associated IP address. In
Linux, most applications expect the outgoing packets to use the IP address of the outgoing interface as the source
IP address.

With the to_xr interface, because there is no IP address, a source hint is required. The source hint can be changed
to use the IP address another physical interface IP or loopback IP address. In the following example, the source hint
is set to 10.1.1.10, which is the IP address of the Hu0_0_0_24 interface. To use the Management port IP address,
change the source hint:
Router#bash

[ios:~]$ip route replace default dev to_xr scope link src 192.168.122.22 metric 2048

[ios:~]$ip route
default dev to_xr scope link src 192.168.122.22 metric 2048
10.1.1.0/24 dev Hu0_0_0_24 proto kernel scope link src 10.1.1.10
192.168.122.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 192.168.122.22

With this updated source hint, any default traffic exiting the system uses the Management port IP address as the
source IP address.

• Local or Connected Routes: The routes are associated with the subnet configured on interfaces. For example, the
10.1.1.0/24 network is associated with the Hu0_0_0_24 interface, and the 192.168.122.0/24 subnet is associated with
the Mg0_RP0_CPU0 interface .

Configure VRFs in Linux
VRFs configured in IOS XR are automatically synchronized to the kernel. In the kernel, the VRFs appear as
network namespaces (netns). For every globally-configured VRF, a Linux network namespace is created.
With this capability it is possible to isolate Linux applications or processes into specific VRFs like an
out-of-band management VRF and open-up sockets or send or receive traffic only on interfaces in that VRF.

Accessing the Networking Stack
14

Accessing the Networking Stack
Program Routes in Linux

Every VRF, when synchronized with the Linux kernel, is programmed as a network namespace with the same
name as a VRF but with the string vrf prefixed to it. The default VRF in IOS XR has the name default. This
name gets programmed as vrf-default in the Linux kernel.

The following example shows how to configure a custom VRF blue:

Step 1 Identify the current network namespace or VRF.

Example:
[ios:~]$ip netns identify $$
vrf-default
global-vrf

Step 2 Configure a custom VRF blue.

Example:
Router#conf t

Router(config)#vrf blue
Router(config-vrf)#commit

Step 3 Verify that the VRF blue is configured in IOS XR.

Example:
Router#show run vrf
vrf blue
!

Step 4 Verify that the VRF blue is created in the kernel.

Example:
Router#bash

[ios:~]$ls -l /var/run/netns
total 0
-r--r--r--. 1 root root 0 Jul 30 04:17 default
-r--r--r--. 1 root root 0 Jul 30 04:17 global-vrf
-r--r--r--. 1 root root 0 Jul 30 04:17 tpnns
-r--r--r--. 1 root root 0 Aug 1 17:01 vrf-blue
-r--r--r--. 1 root root 0 Jul 30 04:17 vrf-default
-r--r--r--. 1 root root 0 Jul 30 04:17 xrnns

Step 5 Access VRF blue to launch and execute processes from the new network namespace.

Example:
[ios:~]$ip netns exec vrf-blue bash
[ios:~]$
[ios:~]$ip netns identify $$
vrf-blue
[ios:~]$

Running an ifconfig command shows only the default to-xr interface because there is no IOS XR interface in this VRF.
[ios:~]$ifconfig
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

Accessing the Networking Stack
15

Accessing the Networking Stack
Configure VRFs in Linux

collisions:0 txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
to_xr Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
[ios:~]$

Step 6 Configure an interface in the VRF blue in IOS XR. This interface will be configured automatically in the network
namespace vrf-blue in the kernel.

Example:

The following example shows how to configure HundredGigE 0/0/0/24 interface in vrf-blue from IOS XR:
Router#conf t
Router(config)#int HundredGigE 0/0/0/24
Router(config-if)#no ipv4 address
Router(config-if)#vrf blue
Router(config-if)#ipv4 address 10.1.1.10/24
Router(config-if)#commit

Step 7 Verify that the HundredGigE 0/0/0/24 interface is configured in the VRF blue in IOS XR.

Example:
Router#show run int HundredGigE 0/0/0/24
interface HundredGigE0/0/0/24
vrf blue
ipv4 address 10.1.1.10 255.255.255.0
!

Step 8 Verify that the interface is configured in the VRF blue in the kernel.

Example:
Router#bash
Thu Aug 1 17:09:39.314 UTC
[ios:~]$
[ios:~]$ip netns exec vrf-blue bash
[ios:~]$
[ios:~]$ifconfig
Hu0_0_0_24 Link encap:Ethernet HWaddr 78:e7:e8:d3:20:c0
inet addr:10.1.1.10 Bcast:0.0.0.0 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
to_xr Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500

Accessing the Networking Stack
16

Accessing the Networking Stack
Configure VRFs in Linux

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
[ios:~]$

Open Linux Sockets
The socket entries are programmed into the Local Packet Transport Services (LPTS) infrastructure that
distributes the information through the line cards. Any packet received on a line card interface triggers an
LPTS lookup to send the packet to the application opening the socket. Because the required interfaces and
routes already appear in the kernel, the applications can open the sockets — TCP or UDP.

Step 1 Verify that applications open up sockets.

Example:
Router#bash
[ios:~]$nc -l 0.0.0.0 -p 5000 &
[1] 1160
[ios:~]$
[ios:~]$netstat -nlp
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 0.0.0.0:5000 0.0.0.0:* LISTEN 1160/nc
tcp 0 0 0.0.0.0:57777 0.0.0.0:* LISTEN 14723/emsd
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 8875/ssh_server
tcp6 0 0 :::22 :::* LISTEN 8875/ssh_server
udp 0 0 0.0.0.0:68 0.0.0.0:* 13235/xr_dhcpcd
Active UNIX domain sockets (only servers)
Proto RefCnt Flags Type State I-Node PID/Program name Path
[ios:~]$exit
Logout
Router#
Router#show lpts pifib brief | i 5000
Thu Aug 1 17:16:00.938 UTC
IPv4 default TCP any 0/RP0/CPU0 any,5000 any
Router#

Step 2 Verify that the socket is open.

Example:
Router#show lpts pifib brief | i 5000
IPv4 default TCP any 0/RP0/CPU0 any,5000 any

Netcat starts listening on port 5000, which appears as an IPv4 TCP socket in the netstat output like a typical Linux kernel.
This socket gets programmed to LPTS, creating a corresponding entry in the hardware to the lookup tcp port 5000. The
incoming traffic is redirected to the kernel of the active RP where the netcat runs.

Send and Receive Traffic
Connect to the nc socket from an external server. For example, the nc socket was started in the vrf-default
network namespace. So, connect over an interface that is in the same VRF.
[root@localhost ~]#nc -vz 192.168.122.22 5000
Ncat: Version 7.50 (https://nmap.org/ncat)

Accessing the Networking Stack
17

Accessing the Networking Stack
Open Linux Sockets

Ncat: Connected to 192.168.122.22:5000.
Ncat: 0 bytes sent, 0 bytes received in 0.01 seconds.

Manage IOS XR Interfaces through Linux
The Linux system contains a number of individual network namespaces. Each namespace contains a set of
interfaces that map to a single interface in the XR control plane. These interfaces represent the exposed XR
interfaces (eXI). By default, all interfaces in IOS XR are managed through the IOS XR configuration (CLI
or YANG models), and the attributes of the interface (IP address, MTU, and state) are inherited from the
corresponding configuration and the state of the interface in XR.

With the new Packet I/O functionality, it is possible to have an IOS XR interface completely managed by
Linux. This also means that one or more of the interfaces can be configured to be managed by Linux, and
standard automation tools can be used on Linux servers can be used to manage interfaces in IOS XR.

Secondary IPv4 addresses cannot be managed by Linux.Note

Configure an Interface to be Linux-Managed
This section shows how to configure an interface to be Linux-managed.

Step 1 Check the available exposed-interfaces in the system.

Example:
Router(config)#linux networking exposed-interfaces interface ?

Bundle-Ether Aggregated Ethernet interface(s) | short name is BE
FiftyGigE FiftyGigabitEthernet/IEEE 802.3 interface(s) | short name is Fi
FortyGigE FortyGigabitEthernet/IEEE 802.3 interface(s) | short name is Fo
FourHundredGigE FourHundredGigabitEthernet/IEEE 802.3 interface(s) | short name is FH
GigabitEthernet GigabitEthernet/IEEE 802.3 interface(s) | short name is Gi
HundredGigE HundredGigabitEthernet/IEEE 802.3 interface(s) | short name is Hu
Loopback Loopback interface(s) | short name is Lo
MgmtEth Ethernet/IEEE 802.3 interface(s) | short name is Mg
TenGigE TenGigabitEthernet/IEEE 802.3 interface(s) | short name is Te
TwentyFiveGigE TwentyFiveGigabitEthernet/IEEE 802.3 interface(s) | short name is TF
TwoHundredGigE TwoHundredGigabitEthernet/IEEE 802.3 interface(s) | short name is TH

Step 2 Configure the interface to be managed by Linux.

Example:

The following example shows how to configure a HundredGigE interface to be managed by Linux:
Router#configure
Router(config)#linux networking exposed-interfaces interface HundredGigE 0/0/0/24 linux-managed
Router(config-exi-if)#commit

Step 3 View the interface details and the VRF.

Example:

The following example shows the information for HundredGigE interface:
Router#show run interface HundredGigE0/0/0/24
interface HundredGigE0/0/0/24

Accessing the Networking Stack
18

Accessing the Networking Stack
Manage IOS XR Interfaces through Linux

mtu 4110
vrf blue
ipv4 mtu 4096
ipv4 address 10.1.1.10 255.255.255.0
ipv6 mtu 4096
ipv6 address fe80::7ae7:e8ff:fed3:20c0 link-local
!

Step 4 Verify the configuration in XR.

Example:

The following example shows the configuration for HundredGigE interface:
Router#show running-config linux networking

linux networking
exposed-interfaces
interface HundredGigE0/0/0/24 linux-managed
!
!
!

Step 5 Verify the configuration from Linux.

Example:

The following example shows the configuration for HundredGigE interface:
Router#bash
Router:Aug 1 17:40:02.873 UTC: bash_cmd[67805]: %INFRA-INFRA_MSG-5-RUN_LOGIN : User vagrant logged
into shell from vty0

[ios:~]$ip netns exec vrf-blue bash

[ios:~]$ifconfig
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
to_xr Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

[ios:~]$ifconfig -a
Hu0_0_0_24 Link encap:Ethernet HWaddr 78:e7:e8:d3:20:c0
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1

Accessing the Networking Stack
19

Accessing the Networking Stack
Configure an Interface to be Linux-Managed

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
to_xr Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Configure New IP address on the Interface in Linux
This section shows how to configure a new IP address on the Linux-managed interface.

Step 1 Configure the IP address on the interface.

Example:
[ios:~]$ip addr add 10.1.1.10/24 dev Hu0_0_0_24
[ios:~]$Router:Aug 1 17:41:11.546 UTC: xlncd[253]: %MGBL-CONFIG-6-DB_COMMIT : Configuration
committed by user 'system'. Use 'show configuration commit changes 1000000021' to view the changes.

Step 2 Verify that the new IP address is configured.

Example:
[ios:~]$ifconfig Hu0_0_0_24
Hu0_0_0_24 Link encap:Ethernet HWaddr 78:e7:e8:d3:20:c0
inet addr:10.1.1.10 Bcast:0.0.0.0 Mask:255.255.255.0
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Configure Custom MTU Setting
This section shows how to bring up the interface and configure a customMTU in a Linux-managed interface.

Step 1 Configure the MTU setting.

Example:
[ios:~]$ifconfig Hu0_0_0_24 up

[ios:~]$Router:Aug 1 17:41:54.824 UTC: ifmgr[266]: %PKT_INFRA-LINK-3-UPDOWN : Interface
HundredGigE0/0/0/24, changed state to Down
Router:Aug 1 17:41:54.824 UTC: ifmgr[266]: %PKT_INFRA-LINEPROTO-5-UPDOWN : Line protocol on
Interface HundredGigE0/0/0/24, changed state to Down
Router:Aug 1 17:41:56.448 UTC: xlncd[253]: %MGBL-CONFIG-6-DB_COMMIT : Configuration committed by
user 'system'. Use 'show configuration commit changes 1000000022' to view the changes.
Router:Aug 1 17:41:56.471 UTC: ifmgr[266]: %PKT_INFRA-LINK-3-UPDOWN : Interface
HundredGigE0/0/0/24, changed state to Up
Router:Aug 1 17:41:56.484 UTC: ifmgr[266]: %PKT_INFRA-LINEPROTO-5-UPDOWN : Line protocol on
Interface HundredGigE0/0/0/24, changed state to Up
Router:Aug 1 17:41:58.493 UTC: xlncd[253]: %MGBL-CONFIG-6-DB_COMMIT : Configuration committed by
user 'system'. Use 'show configuration commit changes 1000000023' to view the changes.

Accessing the Networking Stack
20

Accessing the Networking Stack
Configure New IP address on the Interface in Linux

[ios:~]$
[ios:~]$ ip link set dev Hu0_0_0_24 mtu 4096
[ios:~]$
[ios:~]$Router:Aug 1 17:42:46.830 UTC: xlncd[253]: %MGBL-CONFIG-6-DB_COMMIT : Configuration
committed by user 'system'. Use 'show configuration commit changes 1000000024' to view the changes.

Step 2 Verify that the MTU setting has been updated in Linux.

Example:
[ios:~]$ifconfig
Hu0_0_0_24 Link encap:Ethernet HWaddr 78:e7:e8:d3:20:c0
inet addr:10.1.1.10 Bcast:0.0.0.0 Mask:255.255.255.0
inet6 addr: fe80::7ae7:e8ff:fed3:20c0/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:4096 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:648 (648.0 B)
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
to_xr Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Step 3 Check the effect on the IOS XR configuration with the change in MTU setting on this interface.

Example:
Router#show running-config int HundredGigE0/0/0/24
interface HundredGigE0/0/0/24
mtu 4110
vrf blue
ipv4 mtu 4096
ipv4 address 10.1.1.10 255.255.255.0
ipv6 mtu 4096
ipv6 address fe80::7ae7:e8ff:fed3:20c0 link-local
!
!
!
Router#
Router#show ip int br | i HundredGigE0/0/0/24
HundredGigE0/0/0/24 10.1.1.10 Up Up blue

The output indicates that the interface acts as a regular Linux interface, and IOS XR configuration receives inputs from
Linux.

Configure Traffic Protection for Linux Networking
Traffic protection provides a mechanism to configure Linux firewalls using IOS XR configuration. These
rules can be used to restrict traffic to Linux applications. You can restrict traffic to Linux applications using

Accessing the Networking Stack
21

Accessing the Networking Stack
Configure Traffic Protection for Linux Networking

native Linux firewalls or configuring IOS XR Linux traffic protection. It is not recommended to use both
mechanisms at the same time. Any combination of remote address, local address and ingress interface can be
specified as rules to either allow or deny traffic. However, at least one parameter must be specified for the
traffic protection rule to be valid.

If traffic is received on a protocol or port combination that has no traffic protection rules configured, then all
traffic is allowed by default.

Note

This example explains how to configure a traffic protection rule on IOS XR to deny all traffic on port 999
except for traffic arriving on interface HundredGigE0/0/0/25.

Step 1 Configure traffic protection rules.

Example:
Router(config)#linux networking vrf default address-family ipv4 protection protocol
tcp local-port 999 default-action deny permit hundredgigE0/0/0/25
Router(config)#commit

where —

• address-family: Configuration for a particular IPv4 or IPv6 address family.

• protection: Configure traffic protection for Linux networking.

• protocol: Select the supported protocol - TCP or UDP.

• local-port: L4 port number to specify traffic protection rules for Linux networking.

• port number: Port number ranges from 1 to 65535 or all ports.

• default-action: Default action to take for packets matching this traffic protection service.

• deny: Drop packets for this service.

• permit: Permit packets to reach Linux application for this service.

Step 2 Verify that the traffic protection rule is applied successfully.

Example:
Router(config)#show run linux networking
linux networking
vrf default
address-family ipv4
protection
protocol tcp local-port 999 default-action deny
permit interface HundredGigE0/0/0/25
!
!
!

!

Accessing the Networking Stack
22

Accessing the Networking Stack
Configure Traffic Protection for Linux Networking

Communication Outside Cisco IOS XR
Table 1: Feature History Table

DescriptionRelease InformationFeature Name

Virtual IP addresses allow a single
IP address to connect to the current
active RP after an RP switchover
event. In addition, this functionality
enables your network stack to
support virtual IP addresses for
third-party applications and IOS
XR applications that use the Linux
networking stack.

The following commands are
modified:

• ipv4 virtual address

• ipv6 virtual address

• show kim status

Release 7.5.2Virtual IP address in the Linux
networking stack

To communicate outside Cisco IOS XR, applications use the fwdintf interface address that maps to the
loopback0 interface or a configured Gigabit Ethernet interface address. For information on the various
interfaces on IOS XR, see Application Hosting on the Cisco IOS XR Linux Shell.

To have an iPerf or Chef client on IOS XR communicate with its respective server outside IOS XR, you must
configure an interface address as the source address on XR. The remote servers must configure this route
address to reach the respective clients on IOS XR.

Virtual addresses can be configured to access a router from the management network, using the Linux-based
app gRPC, through a single virtual IP address. On a device with two or more RPs, the virtual address refers
to the management interface that is currently active. This functionality can be used across RP failover without
the information of which RP is currently active. This is applicable to the Linux packet path.

This section provides an example of configuring a Gigabit Ethernet interface address as the source address
for external communication.

Using a Gigabit Ethernet Interface for External Communication

To configure a GigE interface on IOS XR for external communication, use these steps:

1. Configure a GigE interface.
RP/0/RP0/CPU0:ios(config)# interface GigabitEthernet 0/0/0/1
RP/0/RP0/CPU0:ios(config-if)# ipv4 address 192.57.43.10 255.255.255.0
RP/0/RP0/CPU0:ios(config-if)# no shut
RP/0/RP0/CPU0:ios(config-if)# commit
Fri Oct 30 07:51:14.785 UTC
RP/0/RP0/CPU0:ios(config-if)# exit
RP/0/RP0/CPU0:ios(config)# exit

Accessing the Networking Stack
23

Accessing the Networking Stack
Communication Outside Cisco IOS XR

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ip-addresses-cr-ncs5500/network-stack-commands.html#reference_BF8ECB2646D847FF829AC80E81C79849
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ip-addresses-cr-ncs5500/network-stack-commands.html#reference_3520D6A1EFBF4A93B4E77600C7C54B03
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ip-addresses-cr-ncs5500/network-stack-commands.html#reference_vy5_1pj_jtb
b-application-hosting-configuration-guide-ncs5500_chapter2.pdf#nameddest=unique_11

2. Verify whether the configured interface is up and operational on IOS XR.
RP/0/RP0/CPU0:ios# show ipv4 interface brief
Fri Oct 30 07:51:48.996 UTC

Interface IP-Address Status Protocol
Loopback0 1.1.1.1 Up Up
Loopback1 8.8.8.8 Up Up
GigabitEthernet0/0/0/0 192.164.168.10 Up Up
GigabitEthernet0/0/0/1 192.57.43.10 Up Up
GigabitEthernet0/0/0/2 unassigned Shutdown Down
MgmtEth0/RP0/CPU0/0 192.168.122.197 Up Up
RP/0/RP0/CPU0:ios#

3. Enter the Linux bash shell and verify if the configured interface is up and running.

/* If you are using Cisco IOS XR Version 6.0.0, run the following command */
RP/0/RP0/CPU0:ios# run ip netns exec tpnns bash

/* If you are using Cisco IOS XR Version 6.0.2, run the following command */
RP/0/RP0/CPU0:ios# bash

[xr-vm_node0_RP0_CPU0:~]$ ifconfig
Gi0_0_0_0 Link encap:Ethernet HWaddr 52:46:04:87:19:3c

inet addr:192.164.168.10 Mask:255.255.255.0
inet6 addr: fe80::5046:4ff:fe87:193c/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Gi0_0_0_1 Link encap:Ethernet HWaddr 52:46:2e:49:f6:ff
inet addr:192.57.43.10 Mask:255.255.255.0
inet6 addr: fe80::5046:2eff:fe49:f6ff/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41
inet addr:192.168.122.197 Mask:255.255.255.0
inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:3 errors:0 dropped:0 overruns:0 frame:0
TX packets:6 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:294 (294.0 B) TX bytes:504 (504.0 B)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:4 errors:0 dropped:0 overruns:0 frame:0
TX packets:6 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:392 (392.0 B) TX bytes:532 (532.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1482 Metric:1

Accessing the Networking Stack
24

Accessing the Networking Stack
Communication Outside Cisco IOS XR

RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:1500 Metric:1
RX packets:8 errors:0 dropped:0 overruns:0 frame:0
TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:672 (672.0 B) TX bytes:672 (672.0 B)

lo:0 Link encap:Local Loopback
inet addr:1.1.1.1 Mask:255.255.255.255
UP LOOPBACK RUNNING MTU:1500 Metric:1

4. Exit the Linux bash shell and configure the GigE interface as the source address for external communication.

[xr-vm_node0_RP0_CPU0:~]$ exit

RP/0/RP0/CPU0:ios# config
Fri Oct 30 08:55:17.992 UTC
RP/0/RP0/CPU0:ios(config)# tpa address-family ipv4 update-source gigabitEthernet 0/0/0/1
RP/0/RP0/CPU0:ios(config)# commit
Fri Oct 30 08:55:38.795 UTC

By default, the fwdintf interface maps to the loopback0 interface for external communication. This is similar
to binding a routing process or router ID to the loopback0 interface. When you use the tpa address-family

ipv4 update-source command to bind the fwdintf interface to a Gigabit Ethernet interface, network
connectivity can be affected if the interface goes down.

Note

5. Enter the Linux bash shell and verify whether the GigE interface address is used by the fwdintf interface
for external communication.

/* If you are using Cisco IOS XR Version 6.0.0, run the following command */
RP/0/RP0/CPU0:ios# run ip netns exec tpnns bash

/* If you are using Cisco IOS XR Version 6.0.2, run the following command */
RP/0/RP0/CPU0:ios# bash

[xr-vm_node0_RP0_CPU0:~]$ ip route
default dev fwdintf scope link src 192.57.43.10
8.8.8.8 dev fwd_ew scope link
192.168.122.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 192.168.122.197
[xr-vm_node0_RP0_CPU0:~]$

External communication is successfully enabled on IOS XR.

East-West Communication for Third-Party Applications
East-West communication on IOS XR is a mechanism by which applications hosted in containers interact
with native XR applications (hosted in the XR control plane).

Accessing the Networking Stack
25

Accessing the Networking Stack
East-West Communication for Third-Party Applications

The following figure illustrates how a third-party application hosted on IOS XR interacts with the XR Control
Plane.

The application sends data to the Forwarding Information Base (FIB) of IOS XR. The application is hosted
in the east portion of IOS XR, while the XR control plane is located in the west region. Therefore, this form
of communication between a third-party application and the XR control plane is termed as East-West (E-W)
communication.

Third-party applications such as Chef Client and Puppet Agent use this mode of communication to configure
and manage containers, packages, and applications on IOS XR. In the future, this support could be extended
to IOS XR, configured and managed by such third-party applications.

East-West communication is not supported on IOS XR from software release 7.9.1.Note

Figure 1: East-West Communication on IOS XR

For a third-party application to communicate with IOS XR, the Loopback1 interface must be configured. This
is explained in the following procedure.

1. Configure the Loopback1 interface on IOS XR.
RP/0/RP0/CPU0:ios(config)# interface Loopback1
RP/0/RP0/CPU0:ios(config-if)# ipv4 address 8.8.8.8/32
RP/0/RP0/CPU0:ios(config-if)# no shut
RP/0/RP0/CPU0:ios(config-if)# commit
RP/0/RP0/CPU0:ios(config-if)# exit
RP/0/RP0/CPU0:ios(config)#

2. Verify the creation of the Loopback1 interface.
RP/0/RP0/CPU0:ios# show ipv4 interface brief
Thu Nov 12 10:01:00.874 UTC

Interface IP-Address Status Protocol
Loopback0 1.1.1.1 Up Up
Loopback1 8.8.8.8 Up Up
GigabitEthernet0/0/0/0 192.164.168.10 Up Up
GigabitEthernet0/0/0/1 192.57.43.10 Up Up
GigabitEthernet0/0/0/2 unassigned Shutdown Down
MgmtEth0/RP0/CPU0/0 192.168.122.197 Up Up
RP/0/RP0/CPU0:ios#

3. Enter the third-party network namespace or global VRF depending on the version of IOS XR version you
are using for your network.
/* If you are using Cisco IOS XR Version 6.0.0, run the following command */
RP/0/RP0/CPU0:ios# run ip netns exec tpnns bash

Accessing the Networking Stack
26

Accessing the Networking Stack
East-West Communication for Third-Party Applications

/* If you are using Cisco IOS XR Version 6.0.2, run the following command */
RP/0/RP0/CPU0:ios# bash

4. Verify whether the Loopback1 interface address has been mapped to the E-W interface.
[xr-vm_node0_RP0_CPU0:~]$ ip route
default dev fwdintf scope link src 192.57.43.10
8.8.8.8 dev fwd_ew scope link
192.168.122.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 192.168.122.197
[xr-vm_node0_RP0_CPU0:~]$

Configuring Multiple VRFs for Application Hosting
Cisco NCS 540 routers support the configuration of multiple VRFs. The applications hosted in third-party
containers can communicate with VRFs configured on XR, after east-west communication has been enabled
on the VRFs.

This section describes the configuration for creating mulitple VRFs, and enabling east-west communication
between the applications and the VRFs.

Configuration Procedure

Use the following steps to configure multiple VRFs for use on Cisco IOS XR.

1. Configure VRFs on XR.

RP/0/RP0/CPU0:ios(config)# vrf purple
RP/0/RP0/CPU0:ios(config-vrf)# address-family ipv4
RP/0/RP0/CPU0:ios(config-vrf)# address-family ipv6
RP/0/RP0/CPU0:ios(config-vrf)# exit

RP/0/RP0/CPU0:ios(config)# vrf green
RP/0/RP0/CPU0:ios(config-vrf)# address-family ipv4
RP/0/RP0/CPU0:ios(config-vrf)# address-family ipv6
RP/0/RP0/CPU0:ios(config-vrf)# exit

RP/0/RP0/CPU0:ios(config)# telnet vrf purple ipv4 server max-servers 2
RP/0/RP0/CPU0:ios(config)# telnet vrf purple ipv6 server max-servers 2
RP/0/RP0/CPU0:ios(config)# telnet vrf green ipv4 server max-servers 2
RP/0/RP0/CPU0:ios(config)# telnet vrf green ipv6 server max-servers 2
RP/0/RP0/CPU0:ios(config)# telnet ipv4 server max-servers 2
RP/0/RP0/CPU0:ios(config)# telnet ipv6 server max-servers 2

2. Configure the interfaces to be used with the VRFs.
RP/0/RP0/CPU0:ios(config)# interface loopback1
RP/0/RP0/CPU0:ios(config-if)# vrf purple
RP/0/RP0/CPU0:ios(config-if)# ipv4 address 1.1.1.1 255.255.255.0
RP/0/RP0/CPU0:ios(config-if)# ipv6 address 10::1/64
RP/0/RP0/CPU0:ios(config-if)# exit

RP/0/RP0/CPU0:ios(config)# interface loopback2
RP/0/RP0/CPU0:ios(config-if)# vrf purple
RP/0/RP0/CPU0:ios(config-if)# ipv4 address 2.2.2.2 255.255.255.0
RP/0/RP0/CPU0:ios(config-if)# ipv6 address 20::1/64
RP/0/RP0/CPU0:ios(config-if)# exit

Accessing the Networking Stack
27

Accessing the Networking Stack
Configuring Multiple VRFs for Application Hosting

RP/0/RP0/CPU0:ios(config)# interface loopback3
RP/0/RP0/CPU0:ios(config-if)#vrf green
RP/0/RP0/CPU0:ios(config-if)# ipv4 address 3.3.3.3 255.255.255.0
RP/0/RP0/CPU0:ios(config-if)# ipv6 address 30::1/64
RP/0/RP0/CPU0:ios(config-if)# exit

RP/0/RP0/CPU0:ios(config)# interface loopback4
RP/0/RP0/CPU0:ios(config-if)# vrf green
RP/0/RP0/CPU0:ios(config-if)# ipv4 address 4.4.4.4 255.255.255.0
RP/0/RP0/CPU0:ios(config-if)# ipv6 address 40::1/64
RP/0/RP0/CPU0:ios(config-if)# exit

RP/0/RP0/CPU0:ios(config)# interface mgmtEth 0/RP0/CPU0/0
RP/0/RP0/CPU0:ios(config-if)# vrf purple
RP/0/RP0/CPU0:ios(config-if)# ipv4 address dhcp
RP/0/RP0/CPU0:ios(config-if)# exit

RP/0/RP0/CPU0:ios(config)# interface GigabitEthernet 0/0/0/0
RP/0/RP0/CPU0:ios(config-if)# vrf purple
RP/0/RP0/CPU0:ios(config-if)# ipv4 address 10.20.30.40 255.255.255.0
RP/0/RP0/CPU0:ios(config-if)# ipv6 address 24::1/64
RP/0/RP0/CPU0:ios(config-if)# exit

RP/0/RP0/CPU0:ios(config)# interface gigabitEthernet 0/0/0/1
RP/0/RP0/CPU0:ios(config-if)# vrf green
RP/0/RP0/CPU0:ios(config-if)# ipv4 address 40.30.20.10 255.255.255.0
RP/0/RP0/CPU0:ios(config-if)# ipv6 address 22::1/64
RP/0/RP0/CPU0:ios(config-if)# exit
RP/0/RP0/CPU0:ios(config)# commit
Fri Sep 1 12:04:37.796 UTC

3. Configure TPA VRFs.
RP/0/RP0/CPU0:ios(config)# tpa
RP/0/RP0/CPU0:ios(config-tpa)# vrf purple
RP/0/RP0/CPU0:ios(config-tpa-vrf)# east-west loopback1
RP/0/RP0/CPU0:ios(config-tpa-vrf)# east-west loopback2
RP/0/RP0/CPU0:ios(config-tpa-vrf)# address-family ipv4
RP/0/RP0/CPU0:ios(config-tpa-vrf-afi)# update-source GigabitEthernet 0/0/0/0
RP/0/RP0/CPU0:ios(config-tpa-vrf-afi)# exit
RP/0/RP0/CPU0:ios(config-tpa-vrf)# address-family ipv6
RP/0/RP0/CPU0:ios(config-tpa-vrf-afi)# update-source Gigabitethernet 0/0/0/0
RP/0/RP0/CPU0:ios(config-tpa-vrf-afi)# exit
RP/0/RP0/CPU0:ios(config-tpa-vrf)# exit

RP/0/RP0/CPU0:ios(config-tpa)# vrf green
RP/0/RP0/CPU0:ios(config-tpa-vrf)# east-west loopback3
RP/0/RP0/CPU0:ios(config-tpa-vrf)# east-west loopback4
RP/0/RP0/CPU0:ios(config-tpa-vrf)# address-family ipv4
RP/0/RP0/CPU0:ios(config-tpa-vrf-afi)# update-source GigabitEthernet 0/0/0/1
RP/0/RP0/CPU0:ios(config-tpa-vrf-afi)# exit
RP/0/RP0/CPU0:ios(config-tpa-vrf)# address-family ipv6
RP/0/RP0/CPU0:ios(config-tpa-vrf-afi)# update-source Gigabitethernet 0/0/0/1
RP/0/RP0/CPU0:ios(config-tpa-vrf-afi)# exit
RP/0/RP0/CPU0:ios(config-tpa-vrf)# exit
RP/0/RP0/CPU0:ios(config-tpa)# exit

4. Validate the configuration.
RP/0/RP0/CPU0:ios(config)# show run
Fri Sep 1 12:06:35.596 UTC
...

Accessing the Networking Stack
28

Accessing the Networking Stack
Configuring Multiple VRFs for Application Hosting

vrf purple
address-family ipv4
address-family ipv6
vrf green
address-family ipv4
address-family ipv6

telnet vrf green ipv4 server max-servers 2
telnet vrf green ipv6 server max-servers 2
telnet vrf purple ipv4 server max-servers 2
telnet vrf purple ipv6 server max-servers 2
telnet vrf default ipv4 server max-servers 2
telnet vrf default ipv6 server max-servers 2
...
!
tpa
vrf purple
east-west loopback1
east-west loopback2
address-family ipv4
update-source GigabitEthernet0/0/0/0

!
address-family ipv6
update-source GigabitEthernet0/0/0/0

!

vrf green
east-west loopback3
east-west loopback4
address-family ipv4
update-source GigabitEthernet0/0/0/1

!
address-family ipv6
update-source GigabitEthernet0/0/0/1

!
!
interface loopback1
vrf purple
ipv4 address 1.1.1.1 255.255.255.0
ipv6 address 10::1/64
!
interface loopback2
vrf purple
ipv4 address 2.2.2.2 255.255.255.0
ipv6 address 20::1/64
!
interface loopback3
vrf green
ipv4 address 3.3.3.3 255.255.255.0
ipv6 address 30::1/64
!
interface loopback4
vrf green
ipv4 address 4.4.4.4 255.255.255.0
ipv6 address 40::1/64
!
interface MgmtEth0/RP0/CPU0/0
vrf purple
ipv4 address dhcp
!
router static
address-family ipv4 unicast
0.0.0.0/0 MgmtEth0/RP0/CPU0/0 10.0.2.2

Accessing the Networking Stack
29

Accessing the Networking Stack
Configuring Multiple VRFs for Application Hosting

!
!

You have successfully configured multiple VRFs for use on Cisco IOS XR.

Accessing the Networking Stack
30

Accessing the Networking Stack
Configuring Multiple VRFs for Application Hosting

	Accessing the Networking Stack
	Packet I/O on IOS XR
	Exposed IOS-XR Interfaces in Linux
	Setting up Virtual IP Addresses
	Third-Party Application Networking in Named VRFs
	Default Route Source Address
	East-West Communication
	Hardware LPTS Support For Traffic Protection
	Management Route Export
	Mapping of Deprecated TPA Configuration
	Software Forwarding
	Statistics Synchronization
	VRF Disable

	Program Routes in Linux
	Configure VRFs in Linux
	Open Linux Sockets
	Send and Receive Traffic
	Manage IOS XR Interfaces through Linux
	Configure an Interface to be Linux-Managed
	Configure New IP address on the Interface in Linux
	Configure Custom MTU Setting

	Configure Traffic Protection for Linux Networking

	Communication Outside Cisco IOS XR
	East-West Communication for Third-Party Applications
	Configuring Multiple VRFs for Application Hosting

