

Use Cases: Application Hosting

This chapter describes use cases for running applications on IOS XR.

- Hosting iPerf in Docker Containers to Measure Network Performance using Application Manager, on page 1
- CPU-Based Packet Generator, on page 12

Hosting iPerf in Docker Containers to Measure Network Performance using Application Manager

Measuring the network performance is important to test the efficiency of the network. Network throughput, bandwidth, latency, and packet loss are some of the parameters used to measure the network performance. iPerf is a commonly used application for measuring network performance. The iPerf application is hosted on systems at both ends of the connection that is measured. One system is used as the server, and the other system is used as the client. At least one system must be a Cisco IOS XR router, the other system can be any other external entity like a controller or another router.

This use case illustrates the procedure for hosting the iPerf application in docker containers on two Cisco IOS XR routers, Router A and Router B to measure network performance. Router A hosts the iPerf server and Router B hosts the iPerf client.

In this usecase, we demonstrate the example of testing network bandwidth when a route update takes place. Router A hosts the iPerf Server and Router B hosts the iPerf Client. Router C and Router D are intermediate routers that allow traffic flow from Router A to Router B and vice-versa.

Figure 1: Hosting iPerf Application in Cisco IOS XR Routers

Verify Connection between Router A and Router B

The **ping** command verifies the connection between the IOS XR software on the routers, while the **bash ping** command verifies the connection between the linux kernel that hosts the IOS XR software on the routers.

Check the connection between Router A and Router B using the **ping** and **bash ping** commands.

```
Router#show ip route 30.5.7.1
Tue Dec 1 19:27:28.623 UTC
Routing entry for 30.5.7.0/31
 Known via "ospf 10", distance 110, metric 2, type intra area
  Installed Dec 1 18:09:44.525 for 01:17:44
 Routing Descriptor Blocks
   21.5.7.0, from 100.0.0.7, via FourHundredGigE0/0/0/1
     Route metric is 2
 No advertising protos.
Router#ping 30.5.7.1
Tue Dec 1 19:27:28.769 UTC
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 30.5.7.1, timeout is 2 seconds:
11111
Success rate is 100 percent (5/5), round-trip min/avg/max = 20/24/30 ms
Router#bash ping -c 5 30.5.7.1
PING 30.5.7.1 (30.5.7.1) 56(84) bytes of data.
64 bytes from 30.5.7.1: icmp seq=1 ttl=254 time=31.9 ms
64 bytes from 30.5.7.1: icmp_seq=2 ttl=254 time=37.7 ms
64 bytes from 30.5.7.1: icmp seq=3 ttl=254 time=30.5 ms
64 bytes from 30.5.7.1: icmp seq=4 ttl=254 time=27.5 ms
```

```
64 bytes from 30.5.7.1: icmp_seq=5 ttl=254 time=30.3 ms
--- 30.5.7.1 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4004ms
rtt min/avg/max/mdev = 27.549/31.621/37.719/3.371 ms
```

Install the iPerf Server Application

Step 1 Install the iPerf application RPM on Router A. Only the RPM file format is supported.

Router#appmgr package install rpm /misc/disk1/iperf-0.1.0-XR_7.3.1.x86_64.rpm

Step 2 Configure the application to run as iPerf server.

Router#config

```
Thu Dec 3 09:57:54.034 UTC
Router(config)#appmgr
Router(config-appmgr)#application iperf-server-app
Router(config-application)#activate type docker source iperf docker-run-opts "--net=host" docker-run-cmd
"iperf3 -s -d"
Router(config-application)#commit
Thu Dec 3 09:57:54.398 UTC
```

Step 3 Verify the basic details (application name and state) about the activated iPerf server application.

```
Router#show appmgr application-table
                    Type Config State Status
Name
_____
                    _____
                           _____
                                         _____
iperf-server-app
                    Docker Activated Up 2 seconds
Router#
Thu Dec 3 09:57:54.398 UTC
Router#show appmgr application name iperf-server-app info summary
Thu Dec 3 09:58:15.569 UTC
Application: iperf-server-app
   Type: Docker
   Source: iperf
   Config State: Activated
   Container ID: 0118f9006cde2787e9809eb7c62ad8b552925b559a689c7aaa80f80d7ce43c02
   Image: alpine1:latest
   Command: "iperf3 -s -d"
   Status: Up 7 seconds
Thu Dec 3 09:57:54.398 UTC
Router#show appmgr application name iperf-server-app info detail
Thu Dec 3 09:58:26.401 UTC
Application: iperf-server-app
   Type: Docker
   Source: iperf
   Config State: Activated
   Docker Information:
       Container ID: 0118f9006cde2787e9809eb7c62ad8b552925b559a689c7aaa80f80d7ce43c02
       Container name: iperf-server-app
       Labels:
```

```
Image: alpine1:latest
       Command: "iperf3 -s -d"
       Created at: 2020-12-03 09:58:08 +0000 UTC
       Running for: 18 seconds ago
        Status: Up 18 seconds
        Size: OB
       Ports:
       Mounts:
       Networks: host
       LocalVolumes: 0
Router#show appmgr application name iperf-server-app stats
Thu Dec 3 09:58:39.594 UTC
Application Stats: iperf-server-app
   CPU Percentage: 0.00%
   Memory Usage: 624KiB / 31.23GiB
  Memory Percentage: 0.00%
  Network IO: 0B / 0B
   Block IO: OB / OB
   PTDs: 1
Router#
```

Step 4 Verify if the iPerf server is listening on the default port (5201) by using the netstat command inside the container.

The appmgr application exec name *app_name* docker-exec-cmd command can be used to execute any commands inside the container.

```
Router#appmgr application exec name iperf-server-app docker-exec-cmd name netstat -lnput
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address
                                       Foreign Address
                                                             State
                                                                        PID/Program name
                                   POTETAN ----
       0 0 127.0.0.11:46727
                                                            LISTEN
tcp
tcp
         0
              0 0.0.0.0:5201
                                  0.0.0.0:*
                                                         LISTEN
udp
         0
              0 127.0.0.11:39552
                                     0.0.0.0:*
Router#
```

Install the iPerf Client Application

Step 1 Install the iPerf application RPM on Router B.

Step 2 Configure the application to run as iPerf client with a timeout (600s in this case).

```
Router#config

Thu Dec 3 09:57:54.034 UTC

Router(config)#appmgr

Router(config-appmgr)#application iperf-client-app

Router(config-application)#activate type docker source iperf docker-run-opts "--net=host" docker-run-cmd

"iperf3 -c 30.5.7.1 -t 600"

Router(config-application)#commit

Thu Dec 3 09:57:54.398 UTC
```

- **Note** Hosting the iPerf client application on Router B by providing the iPerf server physical interface IP address (30.5.7.1) establishes communication between Router B and Router A.
- **Step 3** Verify the basic details (application name and state) about the activated iPerf client application.

```
Router#show appmgr application-table
Thu Dec 3 09:59:47.628 UTC
Name
                    Туре
                           Config State Status
                    _____
_____
iperf-client-app
                   Docker
                             Activated Up 2 seconds
Router#
Thu Dec 3 09:57:54.398 UTC
Router#show appmgr application name iperf-client-app info summary
Thu Dec 3 09:59:54.534 UTC
Application: iperf-client-app
   Type: Docker
   Source: iperf
   Config State: Activated
   Container ID: 40e1730a97666b2b44c8c9313b94b0138925c9198ae63244ff3bd386132d9c9c
   Image: alpine1:latest
   Command: "iperf3 -c 30.5.7.1 -t 600"
   Status: Up 9 seconds
Router#show appmgr application name iperf-client-app info detail
Application: iperf-client-app
   Type: Docker
   Source: iperf
   Config State: Activated
   Docker Information:
       Container ID: 40e1730a97666b2b44c8c9313b94b0138925c9198ae63244ff3bd386132d9c9c
       Container name: iperf-client-app
       Labels:
       Image: alpine1:latest
       Command: "iperf3 -c 30.5.7.1 -t 600"
       Created at: 2020-12-03 09:59:45 +0000 UTC
       Running for: 20 seconds ago
       Status: Up 20 seconds
       Size: OB
       Ports:
       Mounts:
       Networks: host
       LocalVolumes: 0
Router#show appmgr application name iperf-client-app stats
Thu Dec 3 10:00:18.079 UTC
Application Stats: iperf-client-app
  CPU Percentage: 0.11%
  Memory Usage: 720KiB / 31.23GiB
  Memory Percentage: 0.00%
  Network IO: OB / OB
  Block IO: OB / OB
  PIDs: 1
Router#
```

Verify Connection between the iPerf Server and iPerf Client Applications

Verify whether the connection is established between iPerf server and iPerf clients by executing the **bash netstat -anput** command on Router A. When the iPerf client is up and running, the entry in the **State** field displays "ESTABLISHED".

Route	r# bash r	netstat	-anput			
Thu De	ec 3 10	0:00:33	.535 UTC			
Active	e Interr	net con	nections (servers	and established)		
Proto	Recv-Q	Send-Q	Local Address	Foreign Address	State	PID/Program name
tcp	0	0	0.0.0.0:646	0.0.0:*	LISTEN	8585/mpls_ldp
tcp	0	0	0.0.0:22	0.0.0:*	LISTEN	8567/ssh_server
tcp	0	0	0.0.0.0:830	0.0.0:*	LISTEN	8567/ssh server
tcp6	0	0	:::5201	:::*	LISTEN	20829/iperf3
tcp6	0	0	:::22	:::*	LISTEN	8567/ssh server
tcp6	0	0	:::830	:::*	LISTEN	8567/ssh_server
tcp6	0	0	30.5.7.1:5201	100.0.0.9:65322	ESTABLISHED	20829/iperf3
tcp6	0	0	30.5.7.1:5201	100.0.0.9:65302	ESTABLISHED	20829/iperf3
udp	0	0	0.0.0.0:646	0.0.0:*		8585/mpls_ldp
udp	0	0	0.0.0.0:3232	0.0.0:*		6833/pim
udp	0	0	0.0.0.0:3503	0.0.0:*		10762/lspv_server
udp	0	0	0.0.0.0:68	0.0.0:*		10704/xr_dhcpcd
udp	0	0	0.0.0.0:496	0.0.0:*		6833/pim
udp6	0	0	:::3503	:::*		10762/lspv_server

Measure Network Performance

Step 1 Verify the traffic route from Router B to Router A using the **show ip route** command, on Router B.


```
Routing Descriptor Blocks
21.5.7.0, from 100.0.0.7, via FourHundredGigE0/0/0/1
Route metric is 2
No advertising protos.
Router#
```

Step 2

Check the network performance between iPerf client and iPerf server (on Router B and Router A).

You can view the network monitoring parameters by executing the **show appmgr application name iperf-client-app logs** command, on Router B that hosts the iPerf client.

```
Router#show appmgr application name iperf-client-app logs
Tue Dec 1 12:50:27.862 UTC
Connecting to host 30.5.7.1, port 5201
[ 4] local 100.0.0.9 port 61384 connected to 30.5.7.1 port 5201
                                                    Cwnd
[ ID] Interval
                     Transfer Bandwidth Retr
[ 4] 0.00-1.00 sec 1.05 MBytes
                                  8.82 Mbits/sec 0
                                                      80.6 KBytes
                               10.6 Mbits/sec 0
                                                     136 KBytes
[ 4] 1.00-2.00 sec 1.26 MBytes
                               9.90 Mbits/sec 0
[ 4] 2.00-3.00 sec 1.18 MBytes
                                                     191 KBvtes
[ 4] 3.00-4.00 sec 1.24 MBytes
                               10.4 Mbits/sec 0
                                                     246 KBytes
[ 4] 4.00-5.00 sec 1.18 MBytes
                                9.90 Mbits/sec 0
                                                     301 KBytes
                               11.5 Mbits/sec 0
11.5 Mbits/sec 0
                                                     362 KBytes
423 KBytes
 4] 5.00-6.00 sec 1.37 MBytes
[ 4] 6.00-7.00 sec 1.37 MBytes
[ 4] 7.00-8.00 sec 1.43 MBytes
                                12.0 Mbits/sec 0
                                                     486 KBytes
[ 4] 8.00-9.00 sec 1.30 MBytes
                                11.0 Mbits/sec 0
                                                     547 KBytes
[ 4] 9.00-10.00 sec 1.43 MBytes
                                 12.0 Mbits/sec 0
                                                      611 KBytes
                                 13.6 Mbits/sec 0 707 KBytes
[ 4] 10.00-11.00 sec 1.62 MBytes
[ 4] 11.00-12.00 sec 1.62 MBytes
                                    13.6 Mbits/sec 0
                                                       875 KBytes
[ 4] 12.00-13.00 sec 1.93 MBytes
                                    16.2 Mbits/sec 0
                                                       1.07 MBvtes
[ 4] 13.00-14.00 sec 1.68 MBytes
                                  14.1 Mbits/sec 0
                                                     1.29 MBytes
[ 4] 14.00-15.00 sec 1.06 MBytes
                                  8.86 Mbits/sec 0 1.56 MBytes
                                  7.30 Mbits/sec 0
                                                    1.83 MBytes
[ 4] 15.00-16.00 sec 891 KBytes
[ 4] 16.00-17.00 sec 970 KBytes
                                  7.95 Mbits/sec 0
                                                       2.12 MBytes
[ 4] 17.00-18.00 sec 1.24 MBytes
                                   10.4 Mbits/sec 0
                                                       2.58 MBytes
[ 4] 18.00-19.00 sec 885 KBytes
                                  7.24 Mbits/sec 0
                                                      2.65 MBytes
[ 4] 19.00-20.00 sec 1.55 MBytes
                                   13.0 Mbits/sec 0 3.10 MBytes
[ 4] 20.00-21.00 sec 820 KBytes
                                  6.71 Mbits/sec 0
                                                      3.10 MBytes
                                                     2.42 MBytes
[ 4] 21.00-22.00 sec 1.72 MBytes
                                   14.4 Mbits/sec 6
[ 4] 22.00-23.00 sec 0.00 Bytes
                                   0.00 bits/sec 5
                                                        2.30 MBytes
[ 4] 23.00-24.00 sec 256 KBytes
                                  2.10 Mbits/sec 0
                                                       1.35 MBytes
[ 4] 24.00-25.00 sec 1.56 MBytes
                                  13.1 Mbits/sec 237 1.83 MBytes
[ 4] 25.00-26.00 sec 1.90 MBytes
                                   15.9 Mbits/sec 0 2.17 MBytes
[ 4] 26.00-27.00 sec 382 KBytes
                                  3.12 Mbits/sec 61
                                                       1.95 MBvtes
[ 4] 27.00-28.00 sec 0.00 Bytes
                                  0.00 bits/sec 0
                                                      1.39 MBytes
[ 4] 28.00-29.00 sec 3.35 MBytes
                                   28.1 Mbits/sec 0
                                                       1.52 MBytes
[ 4] 29.00-30.00 sec 954 KBytes
                                  7.82 Mbits/sec 0
                                                      1.58 MBytes
[ 4] 30.00-31.00 sec 1018 KBytes
                                8.34 Mbits/sec 0
                                                       1.64 MBytes
[ 4] 31.00-32.00 sec 1.24 MBytes
                                  10.4 Mbits/sec 0
                                                      1.71 MBytes
[ 4] 32.00-33.00 sec 1.25 MBytes
                                                      1.76 MBytes
                                   10.5 Mbits/sec 0
[ 4] 33.00-34.00 sec 1.61 MBytes
                                    13.5 Mbits/sec 0
                                                        1.80 MBvtes
                                   12.2 Mbits/sec 0
[ 4] 34.00-35.00 sec 1.46 MBytes
                                                        1.82 MBvtes
[ 4] 35.00-36.00 sec 1.18 MBytes
                                  9.89 Mbits/sec 0
                                                       1.83 MBytes
[ 4] 36.00-37.00 sec 1.36 MBytes
                                  11.4 Mbits/sec 0
                                                      1.84 MBytes
[ 4] 37.00-38.00 sec 1.36 MBytes
                                  11.4 Mbits/sec 0
                                                      1.84 MBytes
[ 4] 38.00-39.00 sec 1.24 MBytes
                                    10.4 Mbits/sec 0
                                                        1.84 MBytes
[ 4] 39.00-40.00 sec 1.25 MBytes
                                    10.5 Mbits/sec 0
                                                        1.85 MBytes
                                  10.5 Mbits/sec 0
[ 4] 40.00-41.00 sec 1.25 MBytes
                                                        1.86 MBvtes
[ 4] 41.00-42.00 sec 1.40 MBytes
                                  11.8 Mbits/sec 0
                                                       1.88 MBytes
[ 4] 42.00-43.00 sec 1.12 MBytes
                                  9.37 Mbits/sec 0
                                                       1.91 MBytes
[ 4] 43.00-44.00 sec 1.12 MBytes
                                   9.40 Mbits/sec 0
                                                        1.96 MBytes
[ 4] 44.00-45.00 sec 1.20 MBytes
                                    10.1 Mbits/sec 0
                                                        2.02 MBvtes
[ 4] 45.00-46.00 sec 1.27 MBytes
                                    10.7 Mbits/sec 0
                                                        2.11 MBvtes
                                10.9 Mbits/sec 0
[ 4] 46.00-47.00 sec 1.30 MBytes
                                                        2.22 MBytes
```

 [4] 47.00-48.00 sec 1.25 MBytes
 10.5 Mbits/sec 0
 2.36 MBytes

 [4] 48.00-49.00 sec 1.43 MBytes
 12.0 Mbits/sec 0
 2.53 MBytes

Step 3 Bring down the interface on Router D using the **shut** command to trigger a route update.

Router(config)#interface FourhundredGig0/0/0/0
Router(config-if)#shut
Router(config-if)#commit

- **Note** Because of the interface shutdown, the route to 30.5.7.1 needs to be updated and hence momentarily there will be no route to this address.
- **Step 4** During the route update, check the network performance by executing the **show appmgr application name** *app_name* **logs** command.

You will notice that the entries in the Bandwidth field is Zero for a short duration, when the new route is installed.

Router#show appmgr application name iperf-client-app logs Tue Dec 1 12:59:40.349 UTC Connecting to host 30.5.7.1, port 5201 [4] local 100.0.0.9 port 61384 connected to 30.5.7.1 port 5201 15 [ID] Interval Transfer Bandwidth Retr Cwnd [4] 0.00-1.00 sec 1.05 MBytes 8.82 Mbits/sec 0 80.6 KBytes [4] 1.00-2.00 sec 1.26 MBytes 10.6 Mbits/sec 0 136 KBytes [4] 2.00-3.00 sec 1.18 MBytes 9.90 Mbits/sec 0 191 KBytes [4] 3.00-4.00 sec 1.24 MBytes 10.4 Mbits/sec 0 246 KBytes [4] 4.00-5.00 sec 1.18 MBytes 9.90 Mbits/sec 0 301 KBytes [4] 5.00-6.00 sec 1.37 MBytes 11.5 Mbits/sec 0 362 KBytes [4] 6.00-7.00 sec 1.37 MBytes 11.5 Mbits/sec 0 423 KBytes [4] 7.00-8.00 sec 1.43 MBytes 12.0 Mbits/sec 0 486 KBytes [4] 8.00-9.00 sec 1.30 MBytes 11.0 Mbits/sec 0 547 KBytes [4] 9.00-10.00 sec 1.43 MBytes 12.0 Mbits/sec 0 611 KBytes [4] 10.00-11.00 sec 1.62 MBytes 13.6 Mbits/sec 0 707 KBytes [4] 11.00-12.00 sec 1.62 MBytes 13.6 Mbits/sec 0 875 KBytes

[4]	12.00-13.00	sec 1.	93 MI	Bytes 1	16.2 I	Mbits/s	ec O	1.07 1	1Bytes
[41	13.00-14.00	sec 1.	68 MI	Bytes 1	14.1 1	Mbits/s	ec O	1.29 1	1Bytes
r	41	14.00-15.00	sec 1	0.6 M	Bytes 8	8.86 T	Mbits/s	ec O	1.56	Bytes
r r	- J / J	15 00-16 00	200 20	1 120.	yton 7	30 MI			1 93 MT	227000
L	4]	16.00 17.00	Sec of	I ND	yles /	. JU M	JILS/Se		1.05 M	byles
L	4]	16.00-17.00	sec 9/	U KB	yles /	.95 M	oits/se	C U	2.12 M	syles
L	4 J	17.00-18.00	sec 1.	24 M	Bytes :	10.4 1	Mbits/s	ec O	2.58 1	1Bytes
[4]	18.00-19.00	sec 88	5 KB	ytes 7	.24 M	bits/se	c 0	2.65 MH	Bytes
[4]	19.00-20.00	sec 1.	55 M	Bytes 1	13.0 I	Mbits/s	ec O	3.10 1	1Bytes
[4]	20.00-21.00	sec 82	0 KB	ytes 6	.71 M	bits/se	c 0	3.10 MH	Bytes
ſ	41	21.00-22.00	sec 1.	72 M	Bvtes '	14.4 1	Mbits/s	ec 6	2.42	/Bvtes
ſ	41	22 00-23 00	sec 0	00 B	vtes N	00 b	its/sec	5	2 30 MB	7798
r r	11	22.00 24.00	200 25	C VD	y c c c c c c c c c c c c c c c c c c c	10 M		~ 0	1 26 M	
L	4]	23.00-24.00	Sec Zu		ytes z	.10 1	UILS/Se		1.33 M	bytes
L	4 J	24.00-25.00	sec 1.	56 M	sytes .	13.1 1	MDITS/S	ec 237	1.8.	MBytes
L	4 J	25.00-26.00	sec 1.	90 M	Bytes :	15.9 I	Mbits/s	ec O	2.17 1	1Bytes
[4]	26.00-27.00	sec 38	2 KB	ytes 3	.12 M	bits/se	c 61	1.95 1	1Bytes
[4]	27.00-28.00	sec 0.	00 B	ytes O	.00 b	its/sec	0	1.39 MB	/tes
[4]	28.00-29.00	sec 3.	35 M	Bytes 2	28.1 I	Mbits/s	ec O	1.52 1	1Bytes
ſ	41	29.00-30.00	sec 95	4 KB	vtes 7	.82 M	bits/se	c 0	1.58 MH	Bytes
ſ	41	30.00-31.00	sec 10	18 K	Bvtes 8	8.34 T	Mbits/s	ec O	1.64	/Bvtes
ſ	41	31 00-32 00	sec 1	24 MI	Bytes '	10 4 1	Mhite/e		1 71 1	/Bytes
L F	11	22.00 22.00	202 1	25 M	Dyttog :	10.5			1 76 1	IDyccs (Dutes
L	4]	32.00-33.00	sec I.	2.5 M	syles .	10.5 1	MDILS/S		1.701	abytes
L	4]	33.00-34.00	sec 1.	61 M	Bytes .	13.5 [Mbits/s	ec U	1.80 1	lBytes
[4]	34.00-35.00	sec 1.	46 MI	Bytes 1	12.2 1	Mbits/s	ec O	1.82 1	lBytes
[4]	35.00-36.00	sec 1.	18 M	Bytes 9	9.89 1	Mbits/s	ec O	1.83 1	1Bytes
[4]	36.00-37.00	sec 1.	36 M	Bytes 3	11.4 1	Mbits/s	ec O	1.84 1	1Bytes
[4]	37.00-38.00	sec 1.	36 M	Bytes 3	11.4 1	Mbits/s	ec O	1.84 1	1Bytes
ſ	41	38.00-39.00	sec 1.	24 M	- Bvtes '	10.4 1	Mbits/s	ec O	1.84	/Bvt.es
ſ	41	39.00-40.00	sec 1.	25 M	Bytes '	10.5 1	Mbits/s	ec O	1.85	/Bvtes
r i	11	40 00-41 00	soc 1	25 MI	Butos '	10.5 i	White/e		1 86 1	Butes
L r	11	40.00 41.00	300 1.	20 M	Dytes .	11 0 1	Mbite/a		1 00 1	IDytes Dutes
L	4]	41.00-42.00	sec 1.	40 M	syles .	11.01			1.00 1	abytes D
L	4]	42.00-43.00	sec 1.	IZ M	sytes :	9.3/1	MDITS/S	ec u	1.91 1	abytes
L	4 J	43.00-44.00	sec 1.	12 M	Bytes 9	9.40 1	Mbits/s	ec O	1.96 1	1Bytes
[4]	44.00-45.00	sec 1.	20 MI	Bytes 1	10.1 1	Mbits/s	ec O	2.02 1	1Bytes
[4]	45.00-46.00	sec 1.	27 M	Bytes 3	10.7 I	Mbits/s	ec O	2.11 1	1Bytes
[4]	46.00-47.00	sec 1.	30 M	Bytes 3	10.9 I	Mbits/s	ec O	2.22 1	1Bytes
[4]	95.00-96.00	sec 1.	48 M	Bytes 3	12.4 1	Mbits/s	ec O	1.82 1	1Bytes
ſ	41	96.00-97.00	sec 1.	2.5 MI	- Bvtes '	10.5 1	Mbits/s	ec O	1.83	/Bvt.es
r	41	97 00-98 00	sec 1	25 MI	Rytes '	10 5 I	Mhits/s	ec ()	1 83 1	/Bytes
с Г	11	99,000 90.00	eec 1	70 M	Butos '	1251	White/e		1 8/ 1	Bytes
L r	11			251	Jyces . WDrrtog	10 5	Mb++a/		1 06	MDutes
L	4]	99.00-100.00	Sec 1	1 01	MDytes	10.5	MDIUS/	sec u	1.00	MBytes
L	4]	100.00-101.0	U sec	1.21	MBytes	s 10.	2 Mbits	/sec U	1.85	9 MBytes
L	4 J	101.00-102.0	0 sec	1.34	MByte	s 11.3	2 Mbits	/sec 0	1.94	l MBytes
[4]	102.00-103.0	0 sec	1.25	MByte	s 10.	5 Mbits	/sec 0	2.01	MBytes
[4]	103.00-104.0	0 sec	1.30	MBytes	s 10.	9 Mbits	/sec 0	2.09) MBytes
[4]	104.00-105.0	0 sec	1.25	MBytes	s 10.	5 Mbits	/sec 0	2.1	7 MBytes
[4]	105.00-106.0	0 sec	1.39	MBytes	s 11.	6 Mbits	/sec 0	2.33	8 MBytes
ſ	41	106.00-107.0	0 sec	1.01	MBvte	5 8.4	7 Mbits	/sec 0	2.4	6 MBvtes
r	41	107 00-108 0	0 sec	526	KRvtes	4 31	Mhits/	sec 0	2 54	MRvtes
L F	- I N 1	108 00-100 0	0 800	0 00	Butec	0 00	hita/~		2.01	Butec
L	41	108.00-109.0	o sec	0.00	bytes	0.00	DILS/S		2.54 1	iby tes
L	4]	109.00-110.0	0 sec	0.00	Bytes	0.00	bits/s	ec U	2.54 1	Bytes
[4]	110.00-111.0	0 sec	0.00	Bytes	0.00	bits/s	ec O	2.54 1	1Bytes
[4]	111.00-112.0	0 sec	0.00	Bytes	0.00	bits/s	ec 1	1.41 1	Bytes
[4]	112.00-113.0	0 sec	0.00	Bytes	0.00	bits/s	ec O	1.41 1	Bytes
[41	113.00-114.0	0 sec	0.00	Bytes	0.00	bits/s	ec O	1.41 1	Bytes
ī	41	114.00-115.0	0 sec	0.00	Bytes	0.00	bits/s	ec O	1.41	- (Bvtes
ř	<u>4</u> 1	115 00-116 0	0 800	0 00	Bytec	0 00	hite/a		1 / 1 1	Butes
L F		116 00 117 0	o sed	0.00	Dries	0.00	DILS/S		1 44 -	
L	4]	TT0.00-TT/.0	v sec	0.00	Bytes	0.00	DITS/S	eci	1.411	bytes
[4]	117.00-118.0	0 sec	0.00	Bytes	0.00	bits/s	ec O	1.41 1	Bytes
[4]	118.00-119.0	0 sec	0.00	Bytes	0.00	bits/s	ec O	1.41 1	Bytes
[4]	119.00-120.0	0 sec	0.00	Bytes	0.00	bits/s	ec O	1.41 1	Bytes
[4]	120.00-121.0	0 sec	0.00	Bytes	0.00	bits/s	ec O	1.41 1	Bytes
ī	41	121.00-122.0	0 sec	0.00	Bytes	0.00	bits/s	ec O	1.41	- Bvtes
ř	<u>4</u> 1	122 00-123 0	0 800	0 00	Bytee	0 00	hite/e		1 41 1	Bytee
L F	-1	122.00 123.0		0.00	Dutes	0.00	bi+=/-		1 41 7	Butes
L	~J	123.00-124.0	v sec	0.00	bytes	0.00	ມ_LS/S		I.41	wyues

C	4]	0.00-600.00) sec	: 70	02 MByt	es :	9.82	Mbits	s/sec		receive
[[ID] 4]	Interval 0.00-600.00) sec	Tra 2 7(ansfer)4 MByt	es !	Bandv 9.84	width Mbits	s/sec	Retr 12069	9 sender
L _	4] 		sec		мвутез 	·		⊥LS/S€ 	=C 23 -	Ţ	.ou mBytes
L F	4] // 1	170 01-171 00	sec	1 25	MBytes	5 10.1	o MDI 5 Mb÷	LTS/SE	+C U	ے۔ ۱	60 MPTTES
L	4] 4]	160 00 170 01	sec	1 07	MBytes	10.1	∠ MDI	LUS/Se		<u>ح</u>	12 MBytes
L	4]	160 02 160 02	sec	950 I	MD.	/.69	Mbit '-'M	ts/sec		3.12	2 MBytes
L	4]	166.00-167.00	sec	1.88	MBytes	15.°	/ Mbi	lts/se	ec U	2.9	94 MBytes
l	4]	165.00-166.00	sec	995 I	KBytes	8.16	Mbit	ts/sec	2 0	2.69	9 MBytes
[4]	164.00-165.00	sec	1.39	MBytes	11.	7 Mbi	its/se	ec O	2.5	56 MBytes
[4]	163.00-164.00	sec	1.11	MBytes	9.3	4 Mbi	its/se	ec O	2.4	46 MBytes
[4]	162.00-163.00	sec	1.42	MBytes	11.	9 Mbi	its/se	ec O	2.4	41 MBytes
[4]	161.00-162.00	sec	1.24	MBytes	10.	4 Mbi	its/se	ec O	2.3	34 MBytes
[4]	160.00-161.00	sec	1.29	MBytes	10.8	8 Mbi	its/se	ec O	2.2	27 MBytes
[4]	159.00-160.00	sec	1.14	MBytes	9.5	6 Mbi	its/se	ec O	2.2	23 MBytes
[4]	158.00-159.00	sec	1.26	MBytes	10.	6 Mbi	its/se	ec O	2.1	17 MBytes
[4]	157.00-158.00	sec	1.21	MBytes	10.2	2 Mbi	its/se	ec O	2.1	10 MBytes
[4]	156.00-157.00	sec	1.16	MBytes	9.7	1 Mbi	its/se	ec O	2.0	04 MBytes
[4]	155.00-156.00	sec	1.55	MBytes	: 13.0	0 Mbi	its/se	ec O	1.9	98 MBytes
[4]	154.00-155.00	sec	1.38	 MBytes	11.	6 Mbi	its/se	ec O	1.9	90 MBytes
Ē	4]	153.00-154.00	sec	1.08	MBytes	9.0	7 Mbi	its/se	ec O	1.8	85 MBytes
Ē	4]	152.00-153.00	sec	509 I	KBytes	4.17	Mbit	ts/sec	2 0	1.79	9 MBytes
Ē	4]	151.00-152.00	sec	954 I	KBytes	7.82	Mbit	ts/sec	993	1.	32 MBytes
[4]	150.00-151.00	sec	700 I	KBytes	5.73	Mbit	ts/sec	847	600) KBytes
Ē	4]	149.00-150.00	sec	0.00	Bytes	0.00	bits	s/sec	0	1.41	KBytes
Ē	41	148.00-149.00	sec	0.00	Bytes	0.00	bits	s/sec	0	1.41	KBytes
Ē	41	147.00-148.00	sec	0.00	Bytes	0.00	bits	s/sec	0	1.41	KBytes
r r		146.00-147.00	sec	0.00	Bytes	0.00	bite	s/sec	õ	1.41	KBytes
r r		145.00-146 00	sec	0.00	Bytes	0.00	bi+e		0	1.41	KBytes
r F	-≖J 41	144.00-145 00	sec	0.00	Bytes	0.00	bite		0	1.41	KBytes
r r	±_] ⊿1	143 00-144 00	sec	0.00	Bytes	0 00	bite		0	1 41	KBytes
L F	4-1 ⊿1	142 00-142.00	Sec	0.00	Bytes	0.00	bite		0	1 <u>4</u> 1	KBytes
L F	41 //1	141 00-141.00	sed	0.00	Butes	0.00	bite	s/sec	0	1 /1	KButes
L F	י≖」 ⊿1	140 00-141 00	Sec	0.00	Bytes	0.00	bite		0	1 41	KBytes
L F	±_] ⊿1	139 00-140 00	sec	0.00	Bytes	0.00	bi+-		0	1 /1	KBytes
L F	~⊒_] ∡1	138 00-139 00	Sec	0 00	Bytes Bytes	0 00	bite		0	1 41	KBytes
L F	±_] ⊿1	137 00-138 00	sec	0.00	Bytes	0.00	bite		0	1 41	KBytes
r r	±_] ⊿1	136 00-137 00	sec	0.00	Bytes	0 00	bi+4		0	1 41	KBytes
L F	-≖_] ⊿1	135 00-136 00	sec	0 00	Bytes	0 00	hi+4		0	1 41	KBytes
L F	~⊒_] ∡1	134 00-135 00	Sec	0 00	Bytes Bytes	0 00	bite		0	1 41	KBytes
r r	J 41	133 00-134 00	sec	0 00	Bytes	0 00	hite		0	1 41	KBytes
r r	-≖_] 41	132.00-133.00	sec	0.00	Bytes	0.00	bi+4		õ	1.41	KBytes
r r		131.00-132.00	sec	0.00	Bytes	0.00	bi+e		0	1.41	KBytes
r	41	130.00-131.00	sec	0.00	Bytes	0.00	bite	s/sec	0	1.41	KBvtes
r r	41	129.00-130.00	sec	0.00	Bytes	0.00	bite	s/sec	0	1.41	KBytes
r T	41	128.00-129.00	sec	0.00	Bytes	0.00	bits	s/sec	0	1.41	KBvtes
r r	41	127.00-128.00	sec	0.00	Bytes	0.00	bite	s/sec	1	1.41	KBytes
r	- J 41	126.00-127.00	sec	0.00	Bytes	0.00	bite	s/sec	0	1.41	KBvtes
r r	41	125.00-126.00	sec	0.00	Bytes	0.00	bite	s/sec	0	1.41	KBytes
Г	41	124.00-125.00	sec	0.00	Bvtes	0.00	bits	s/sec	0	1.41	KBvtes

iperf Done.

[4]

<!-On Router A!> Router#show appmgr application name iperf-server-app stats Thu Dec 3 11:45:47.790 UTC Application Stats: iperf-server-app CPU Percentage: 0.00% Memory Usage: 816KiB / 31.23GiB Memory Percentage: 0.00% Network IO: 0B / 0B Block IO: 0B / 0B

receiver

```
PIDs: 1
<!-On Router B!>
Router#show appmgr application name iperf-client-app stats
Thu Dec 3 11:45:59.418 UTC
Application Stats: iperf-client-app
   CPU Percentage: 0.00%
   Memory Usage: 0B / 0B
   Memory Percentage: 0.00%
   Network IO: 0B / 0B
   Block IO: 0B / 0B
   PIDs: 0
```

Stop iPerf Applications

Stop the iPerf applications on Router A and Router B using the **appmgr application stop name** *app_name* command. The **application stop** command can only be used for applications that are registered, activated, and are currently running. The **application stop** command stops only the application and does not clean up the resources used by the application.

You can verify the status of the application using the **show appmgr application-table** command. The **Status** is displayed as **Exited** if the application has been stopped successfully.

Start iPerf Applications

Start or restart an application that has been stopped (and not deactivated) using the **appmgr application start name** *app_name* command.

```
Router#appmgr application start name iperf-server-app

Tue Dec 1 13:06:21.996 UTC

Router#show appmgr application-table

Mon Nov 30 13:38:36.999 UTC

Name Type Config State Status

------- iperf-server-app Docker Activated UP(1) Less than a second

Router#
```

Deactivate iPerf Applications

Step 1 Deactivate the iPerf applications using the **no appmgr application** *app_name* command. You deactivate the installed application when you want to release all resources used by the application.

```
Router#config
Router(config)#no appmgr application iperf-server-app
Router(config)#commit
```

Step 2 Verify the status of the application by using the **show appmgr application-table** *app_name* **stats** command.

```
Router#show appmgr application-table
Mon Nov 30 13:39:51.197 UTC
Router#
```

Note You can activate a deactivated application using the **appmgr application** *app_name* **activate type docker source** *source_name* command.

Uninstall iPerf Applications

Uninstall the applications using the appmgr package uninstall package package_name command.

After the application is successfully uninstalled, executing the **show appmgr source-table** command displays no result.

```
Router#appmgr package uninstall package iperf table
```

```
Mon Nov 30 13:41:05.155 UTC
Router#show appmgr source-table
Mon Nov 30 13:41:05.936 UTC
Router#
```

CPU-Based Packet Generator

Table 1: Feature History Table

Feature Name	Release Information	Feature Description
CPU-Based Packet Generator on NCS 5700 fixed port routers	Release 24.2.11	Introduced in this release on: NCS 5700 fixed port routers This feature support is now extended to NCS 5700 fixed port routers.

L

Feature Name	Release Information	Feature Description
CPU-Based Packet Generator	Release 24.2.1	Introduced in this release on: NCS 5500 fixed port routers; NCS 5500 modular routers(NCS 5500 line cards; NCS 5700 line cards [Mode: Compatibility; Native])
		You can now use a CPU-based packet generator for IOS-XR routers to simplify the diagnostic process for routers experiencing problems. This tool allows you to generate a wide range of traffic streams directly within the production environment without physically isolating the routers and moving them to a lab setup. This tool is beneficial in environments that use routers from different vendors or different models from the same vendor.
		Options command with different options to generate different types of packets.

Need for CPU-Based Packet Generator

Diagnosing network problems in production environments, such as traffic drops and mis-forwarding issues, is crucial for network management. Traditionally, routers are physically isolated for debugging, requiring moving equipment into lab environments with traffic generators. The CPU-Based Packet Generator can be used in the production environment, eliminating the need to isolate the routers to a lab environment for troubleshooting purposes.

Benefits of CPU-Based Packet Generator

- Versatile Traffic Crafting: Create complex nested packets, such as IPinIPinIPinIPinIP, to test and diagnose a variety of scenarios.
- In-Production Diagnosis: Directly diagnose routers in a problem state without disrupting the network setup.

Restrictions of CPU-Based Packet Generator

- CPU-based packet generators are not optimized for high-speed packet processing; therefore, they may not match the performance of NPU-based packet generators.
- CPU-based packet generators can potentially introduce higher CPU loads during operation, which may affect the router performance.

• The probe packet rate is 80 kpps.

Topology of CPU-Based Packet Generator

The following diagram depicts the software architecture of CPU-based packet generator.

Figure 2: Architecture of CPU-Based Packet Generator

The Cisco IOS-XR PacketIO serves as a host for third-party applications on the XR platform, with PacketIO infrastructure facilitating packet transport and interactions between Linux and XR environments. Leveraging this existing infrastructure, the CPU-based packet generator is implemented as a Linux application and packaged within the supported XR platform base image, ensuring seamless distribution.

The Linux infrastructure maintains a database of all XR interfaces including bundles. The CPU-based packet generator is used to send a specific packet type over a chosen interface.

Capabilities of CPU-based Packet Generator

• **Support different packet types:** The CPU-based packet generator supports various packet types, including:

• ARP

- TCP
- UDP
- GRE
- MPLS
- IPinIP
- ICMPv4
- ICMPv6
- **Corrupt or error packet generation:** There are times when routers receive packets that are either corrupted or contain errors for various reasons. To identify and troubleshoot these issues, it becomes necessary to generate similar packets that can be used for debugging purposes. The CPU-based packet generator can create these packets and aid debugging.

Examples include:

- IPv4 packet with TTL 0
- · IPv4 packet with wrong checksum
- IPv4 packet with mismatch between IP option length field and the IP header

How to Use CPU-based Packet Generator?

You can use CPU-based packet generator using:

- **CLI:** Use the **packetgen** command with different options to run the tool from XR bash environment. As the XR interfaces show up as Linux interfaces in bash environment, you can directly use the XR interface names.
- pcap file: Use an already captured pcap file in production routers and replay it.

packetgen -i interface_name -pcap pcap_file

CLI Options

The following table outlines the different options available for the packetgen command.

Table 2: Packetgen CLI Options

Option	Description
-accounting	Turn on accounting for packets. Only works if packets come back to the packet generator.
-arp-destination-hw-address string	ARP target hardware address (default: uses interface MAC address)
-arp-destination-ip-address string	ARP target IP address (default: 127.0.0.1 or ::1)

Option	Description
-arp-operation uint	ARP operation (1: request, 2: reply, 3: rarp)
-arp-source-hw-address string	ARP sender hardware address (default : uses interface MAC)
-arp-source-ip-address string	ARP sender IP address (default: uses interface IP)
-burst int	Number of packets to be injected at a time. To be used in conjunction with -sleep.
-count int	Number of packets to be generated.
-data-type string	constant, incrementing, random (default: no payload)
-ethernet-dmac string	Destination MAC address (default: ff:ff:ff:ff:ff:ff)
-ethernet-smac string	Source MAC address (default: use interface MAC address)
-file string	Write packets to file
-gre	Enable GRE
-gre-checksum-present	Enable GRE checksum present bit
-gre-key-present	Enable GRE key present bit
-gre-over-mpls	Enable GRE over MPLS
-gre-protocol uint	Set the protocol type of the GRE payload (default: 0x0800 (IP)
-gre-seq-present	Enable GRE sequence number present bit
-gre-version uint	Set the GRE version number (default 0)
-header string	Custom header for all packets
-hex	Print hex dump of packets
-i string	Interface name for packet injection
-icmp-code uint	ICMP code (default: 0)
-icmp-type uint	ICMP type (default: 0)
-inc-dmac	Increment destination MAC
-inc-smac	Increment source mac
-inner-ethernet-dmac string	Inner Ethernet destination MAC address (default: ff:ff:ff:ff:ff:ff)
-inner-ethernet-smac string	Inner Ethernet source MAC address (default: ff:ff:ff:ff:ff:ff)

Option	Description
-inner-ip-checksum uint	Inner IP checksum (default: compute checksum automatically)
-inner-ip-dont-fragment uint	Set inner IP Don't Fragment flag as 1
-inner-ip-dst string	Inner destination IP address (default: 127.0.0.1 or ::1)
-inner-ip-flow-label uint	Inner IPv6 Flow Label value (default: 0)
-inner-ip-frag-offset uint	Inner IP fragment offset in units of 64-bits (e.g. 1 = 64 bits)
-inner-ip-protocol string	Inner IP protocol . Supports protocol text (TCP, UDP) and code (63 for TCP) (default: TCP)
-inner-ip-src string	Inner source IP address (default: 127.0.0.1 or ::1)
-inner-ip-tos uint	Inner IP Type Of Service (TOS) value (default: 0)
-inner-ip-traffic-class uint	ip-traffic-class (traffic-class) value (default: 0)
-inner-ip-ttl uint	Inner IP time to live (ttl). (Default ttl = 64
-inner-ip-version int	Inner IP version (default: 4)
-inner-vlan-id uint	Inner VLAN id (default: 0)
-inner-vlan-tpid uint	Inner VLAN ethernet type (default: 33024 :Dot1Q)
-inner-vlan-vpri uint	Inner VLANpriority (default: 0
-ip-checksum string	IP checksum (default: compute checksum automatically)
-ip-dont-fragment string	Set IP flag -ip-dont-fragment 0 -> 000
	Nothing set -ip-dont-fragment 1 -> 001
	More Fragments -ip-dont-fragment 2 -> 010
	Dont Fragment -ip-dont-fragment 4 -> 100 set reserved bit
-ip-dst string	Destination IP address (default: 127.0.0.1 or ::1)
-ip-flow-label string	IPv6 Flow Label value (default: 0)
-ip-frag-offset string	Fragment offset in units of 64-bits (1 = 64 bits)
-ip-protocol string	IP protocol. Supports protocol text (TCP, UDP, GRE, VXLAN, ICMP, NDP) and code (63 for TCP) (default: TCP)
-ip-src string	Source IP address (default: use interface ip)
-ip-tos string	IP Type Of Service value (default: 0)
-ip-traffic-class string	IP traffic class (traffic-class) value (default: 0)

Option	Description
-ip-ttl string	IP time to live (ttl). (Default ttl = 64
-ip-version string	IP version should always be set for accurate IP packet creation, ip version (default: 4).
-mpls-exp string	Comma separated MPLS EXP (Experimental) value (default: 0)
-mpls-label string	Comma separated list of Multiprotocol Label Switching (MPLS) labels to be added to the packet. Specified from top to bottom
-mpls-ttl string	Comma separated MPLS TTL (Time To Live) value (default: 64)
-ndp string	Specify the neighbor discovery protocol: nbr-solicit, nbr-advt
-ndp-target-address string	NDP target address (default: for advertisement source IP, for solicitation destination IP
-pcap string	File to replay pcap
-progress	Display a progress bar
-seed int	Seed for pseudo random payload generator
-size int	Size of payload
-sleep string	Time duration to sleep during each burst. To be used together with -burst.
-stdout	Print packets to stdout
-tcp-dport int	TCP destination port (default: 40000)
-tcp-flags string	Set TCP control flags:
	• U (Urgent): Indicates that the data should be processed urgently.
	• A (Acknowledgement): Acknowledges the receipt of data.
	• P (Push): Instructs the sender to push the data to the receiving application immediately.
	• R (Reset): Resets the connection.
	• S (Synchronize): Synchronizes sequence numbers to initiate a connection.
	• F (Finish): Indicates the sender has finished sending data and wants to terminate the connection.
-tcp-sport int	TCP source port (default: 40000)
-udp-dport int	UDP destination port (default: 40000)
-udp-sport int	UDP source port (default: 40000)
-vlan-id uint	VLAN id (default: 0)

Option	Description
-vlan-tpid uint	VLAN ethernet type (default: 33024 :Dot1Q)
-vlan-vpri uint	VLAN priority (default: 0
-vxlan-udp-dport int	UDP destination port for VXLAN (default: 4789)
-vxlan-udp-sport int	UDP source port for VXLAN (default: 0)
-vxlan-vni uint	VXLAN VNI (default: 0)

Sample Commands

This section lists sample commands for some common packet types.

Table 3: Sample Packetgen Commands

Packet Type	Sample Command
ARP	packetgen -i enp0s8 -ip-ttl 32 -arp-operation 1 -progress -count 10000 -inc-smac -arp-destination-ip-address 192.168.56.1
ТСР	packetgen -i enp0s8 -ip-ttl 32 -tcp-sport 40000 -progress -count 10000 -inc-smac
UDP	packetgen -i enp0s8 -ip-ttl 32 -udp-sport 40000 -progress -count 10000 -inc-smac
ICMP - PING	packetgen -i enp0s8 -ip-ttl 32 -icmp-type 8 -progress -count 10000 -ip-dst 192.168.56.1
GRE	packetgen -i enp0s8 -ip-ttl 32 -gre -count 100 -inner-ip-ttl 32 -tcp-sport 3222 -progress
IP in IP	packetgen -i enp0s8 -count 100 -tcp-sport 3222 -progress -ip-src="1.1.1.1,2.2.2.2"
ETHER-IP	packetgen -i enp0s8 -ip-ttl 32 -count 100 -inner-ip-version 6 -tcp-sport 3222 -progress -inner-ethernet-smac ff:ff:ff:ff:ff:ff:ff
VLAN	packetgen -i enp0s8 -ip-ttl 32 -tcp-sport 40000 -progress -count 10000 -inc-smac -vlan-id 2
QinQ	packetgen -i enp0s8 -ip-ttl 32 -tcp-sport 40000 -progress -count 10000 -inc-smac -vlan-id 2 -inner-vlan-id 2
VXLAN	packetgen -i enp0s8 -ip-ttl 32 -tcp-sport 40000 -progress -count 10000 -inc-smac -vxlan-vni 3 -vxlan-udp-sport 4444 -inner-ip-version 4 -inner-ethernet-smac ff:ff:ff:ff:ff:ff:ff:ff:data-type constant
NDP	packetgen -i enp0s8 -ip-version 6 -ndp nbr-advt -count 100 -ip-checksum 1 -progress
MPLS	packetgen -i enp0s8 -ip-version 4 -mpls-label 1,2,3,4,5 -tcp-sport 4556 -count 1000 -progress

Command Example

This section shows an example command to send an ICMP ping request from source address 10.0.0.1 to destination address 10.0.0.2 via interface Hu0_0_0_25.

Router# bash
[ios:~]\$ packetgen -i Hu0_0_0_25 -ip-ttl 32 -progress -count 50 -icmp-type 8 -ip-dst 10.0.0.2
 -ip-src 10.0.0.1 --ethernet-smac 78:c5:51:84:48:c4 --ethernet-dmac 00:00:00:1e:ca:fc
INF0[0000] [ETH IP ICMP]
INF0[0000] Setting SRC IP to 10.0.0.1
INF0[0000] Setting DST IP to 10.0.0.2
INF0[0000] Opening Handle Hu0_0_0_25
INF0[0000] Opened Handle Hu0_0_0_25
INF0[0000] Starting Packet Injection
Sending Packets... 2% | | (1/50, 254 packet/s) [0s:0s] /* Truncated output. */

Address Age Hardware Addr State Type Interface 10.0.0.1 - 78c5.5184.48c4 Interface ARPA HundredGigE0/0/0/25 10.0.0.2 00:50:23 0000.001e.cafc Dynamic ARPA HundredGigE0/0/0/25

Source stats:

 Stat Name
 Port Name
 Control Packet Tx.
 Control Packet Rx.
 Ping Reply Tx.

 20.0.0.2/
 Card01/Port01
 Ethernet - VM - 001
 51
 50

Interface stats:

 Input
 Punt XIPC
 InputQ
 XIPC
 PuntQ

 ClientID
 Drop/Total
 Drop/Total
 Cur/High/Max
 Cur/High/Max

 ipv6_icmp
 0/0
 0/0
 0/0/1000
 0/0/1000

 icmp
 0/50
 0/0
 0/15/1000
 0/0/1000