cisco.

Netflow Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.6.x

First Published: 2019-05-01

Americas Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

The documentation set for this product strives to use bias-free language. For purposes of this documentation set, bias-free is defined as language that does not imply discrimination based on age, disability, gender, racial identity, ethnic identity, sexual orientation, socioeconomic status, and intersectionality. Exceptions may be present in the documentation due to language that is hardcoded in the user interfaces of the product software, language used based on standards documentation, or language that is used by a referenced third-party product.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2019 Cisco Systems, Inc. All rights reserved.

CONTENTS

P R E F A C E	Preface v				
	Changes to this Document v				
	Communications, Services, and Additional Information v				
CHAPTER 1	- New and Changed Feature Information 1				
	New and Changed Features in Cisco IOS XR Software 1				
CHAPTER 2	- Configuring NetFlow 3				
	Prerequisites for Configuring NetFlow 3				
	Restrictions for Configuring NetFlow 3				
	Information About Configuring NetFlow 4				
	NetFlow Overview 4				
	Exporter Map Overview 5				
	Monitor Map Overview 5				
	Sampler Map Overview 6				
	In-line Modification of Netflow Configuration 6				
	Use Case 7				
	Options Template Overview 8				
	IPFIX 10				
	Configuring IPFIX 10				
	IP Flow Information Export (IPFIX) 315 13				
	IPFIX 315 Implementation Considerations 13				
	Configuring IPFIX 315 14				
	NetFlow Configuration Submodes 16				
	Flow Monitor Map Configuration Submode 16				
	Flow Exporter Map Configuration Submode 17				

Flow Exporter Map Version Configuration Submode 17 Sampler Map Configuration Submode 18 Enabling the NetFlow BGP Data Export Function 18 MPLS Flow Monitor with IPv4 and IPv6 Support 18 MPLS Cache Reorganization to Support Both IPv4 and IPv6 18 MPLS Packets with IPv6 Flows 19 How to Configure NetFlow on Cisco IOS XR Software 20 Configuring an Exporter Map 20 Configuring a Sampler Map 23 Configuring a Monitor Map 24 Applying a Monitor Map and a Sampler Map to a Physical Interface 27 Applying a Monitor Map and a Sampler Map to a Layer 2 Bundle Interface 27 Clearing NetFlow Data 28 Configure NetFlow Collection of MPLS Packets with IPv6 Fields 29 Drop Codes on NetFlow 32 Additional References 32

Preface

This preface contains these sections:

- Changes to this Document, on page v
- · Communications, Services, and Additional Information, on page v

Changes to this Document

Note

This software release has reached end-of-life status. For more information, see the End-of-Life and End-of-Sale Notices.

This table lists the technical changes made to this document since it was first released.

Table 1: Changes to This Document

Date	Summary	
May 2019	Initial release of this document.	
December 2019	Republished for Release 6.6.3	

Communications, Services, and Additional Information

- To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.
- To get the business impact you're looking for with the technologies that matter, visit Cisco Services.
- To submit a service request, visit Cisco Support.
- To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit Cisco Marketplace.
- To obtain general networking, training, and certification titles, visit Cisco Press.
- To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system that maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. BST provides you with detailed defect information about your products and software.

New and Changed Feature Information

This table summarizes the new and changed feature information for the Netflow Configuration Guide for Cisco NCS 5500 Series Routers, and tells you where they are documented.

• New and Changed Features in Cisco IOS XR Software, on page 1

New and Changed Features in Cisco IOS XR Software

This table summarizes the new and changed information for Netflow Configuration Guide for Cisco NCS 5500 Series Routers

Table 2: New and Changed Information

Feature	Description	Changed in Release	Where Documented
None	No new features introduced.	Not applicable	Not applicable

Configuring NetFlow

A NetFlow flow is a unidirectional sequence of packets that arrive on a single interface, and have the same values for key fields.

NetFlow is useful for the following:

- Accounting/Billing—NetFlow data provides fine grained metering for highly flexible and detailed resource utilization accounting.
- Network Planning and Analysis—NetFlow data provides key information for strategic network planning.
- Network Monitoring-NetFlow data enables near real-time network monitoring capabilities.
- Prerequisites for Configuring NetFlow, on page 3
- Restrictions for Configuring NetFlow, on page 3
- Information About Configuring NetFlow, on page 4
- How to Configure NetFlow on Cisco IOS XR Software, on page 20
- Drop Codes on NetFlow, on page 32
- Additional References, on page 32

Prerequisites for Configuring NetFlow

To perform these configuration tasks, your Cisco IOS XR software system administrator must assign you to a user group associated with a task group that includes the corresponding command task IDs. If you need assistance with your task group assignment, contact your system administrator.

Restrictions for Configuring NetFlow

Consider these restrictions when configuring NetFlow in Cisco IOS XR software:

Tip

- Do not use the management interface to export the NetFlow packets.
 - NetFlow can be configured only in the ingress direction.
 - A source interface must always be configured. If you do not configure a source interface, the exporter will remain in a disabled state.

- Only export format Version 9 and IPFIX is supported.
- A valid record map name must always be configured for every flow monitor map.
- NetFlow is not supported on Bridge Virtual Interface (BVI).
- NetFlow on sub-interface routed via BVI is not supported.
- Destination-based Netflow accounting is not supported, only IPv4, IPv6 and MPLS record types are supported under monitor-map.
- Output interface field is not updated in data and flow records when the traffic is routed through ACL based forwarding (ABF).
- Output interface field is not updated in data and flow records for the multicast traffic.
- Output interface, source and destination prefix lengths fields are not set in data and flow records for GRE transit traffic.
- In-line modification of NetFlow configuration is not supported.
- For Netflow IPFIX315, configure the hw-module profile netflow ipfix315 command.
- If IPFIX315 is enabled on a line card then all the ports on that line card should have IPFIX315 configured.
- For **hw-module profile qos hqos-enable**, NetFlow does not give the output interface for cases like L2 bridging, xconnect, IPFIX, and so on.
- L4 header port numbers are supported only for TCP and UDP.
- NetFlow does not give the output interface for traffic terminating on GRE tunnel.

Information About Configuring NetFlow

NetFlow Overview

A flow is exported as part of a NetFlow export User Datagram Protocol (UDP) datagram under these circumstances:

- The flow has been inactive or active for too long.
- The flow cache is getting full.
- One of the counters (packets and or bytes) has wrapped.
- The user forces the flow to export.

NetFlow export UDP datagrams are sent to an external flow collector device that provides NetFlow export data filtering and aggregation. The export of data consists of expired flows and control information.

The NetFlow infrastructure is based on the configuration and use of these maps:

- Exporter map
- Monitor map

• Sampler map

These maps are described in the sections that follow.

Exporter Map Overview

An exporter map contains user network specification and transport layer details for the NetFlow export packet. The **flow exporter-map** command allows you to configure collector and version attributes. You can configure these collector information:

- · Export destination IP address
- DSCP value for export packet
- Source interface
- UDP port number (This is where the collector is listening for NetFlow packets.)
- Transport protocol for export packets

In Cisco IOS XR Software, UDP is the only supported transport protocol for export packets.

Note NetFlow export packets use the IP address that is assigned to the source interface. If the source interface does not have an IP address assigned to it, the exporter will be inactive.

You can also configure these export version attributes:

- Template timeout
- Template data timeout
- Template options timeout
- Interface table timeout
- Sampler table timeout

Note

A single flow monitor map can support up to eight exporters.

Monitor Map Overview

A monitor map contains name references to the flow record map and flow exporter map. Monitor maps are applied to an interface. You can configure these monitor map attributes:

• Number of entries in the flow cache

- Type of cache (permanent or normal). Permanent caches do not have their entries removed from the cache unless they are explicitly cleared by the user
- Active flow timeout
- Inactive flow timeout
- Update timeout
- Default timeouts
- Record type of packets sampled and collected

Note The record name specifies the type of packets that NetFlow samples as they pass through the router. Currently, MPLS, IPv4, and IPv6 packet sampling is supported.

The active flow and inactive flow timeouts are associated with a normal cache type. The update timeout is associated with the permanent cache type.

Sampler Map Overview

The sampler map specifies the interval at which packets (one out of n packets) are sampled. On high bandwidth interfaces, applying NetFlow processing to every single packet can result in significant CPU utilization. Sampler map configuration is typically geared towards such high speed interfaces.

The sampling interval of 1:1000 packets is supported on Cisco NCS 5500 Router.

Consider these points before applying sampler map:

- You must remove the existing netflow configuration before applying a new sampler map on an already existing netflow interface configuration.
- Sub-interfaces and physical interfaces under a port must have the same sampler map configuration.

In-line Modification of Netflow Configuration

The In-line modification of Netflow configuration enables to add or remove flow attributes of a flow entity that is already applied to an interface.

A flow entity can be a monitor map, exporter map or a sampler map.

Netflow does not support in-line modification of all its configuration items. This table lists flow entries and flow attributes that are in-line modifiable.

Note

In-line modification of flow items clears the cache counters. As a result there could be flow accounting mismatch.

Note

The In-line modification of Netflow configuration is supported on Cisco IOS XR 64 bit software.

Flow Entity		Flow Attribute		
Monitor map		cache timeout active seconds		
Note Any modification to the cache attributes results in resetting of the cache counters. The cache flows are dropped not exported.		cache timeout inactive secondscache timeout update secondscache timeout rate-limit secondsexportercache entriescache permanentoption outphysint bgstrings		
		Cisco NCS 5500 Router.		
Exporte	r Map	source < <i>source interface</i> >		
Note Any modification to an exporter map results in resetting of the exporter counter.		destination <destinaiton address=""></destinaiton>		
		dscp < <i>dscp_value</i> >		
		version v9 ipfix		
Sampler Map		sampling interval		

Table 3: In-line Modifiable Flow Entities and Flow Attributes

Restriction

• In-line modification of the record ipv4 flow attribute is not supported.

Use Case

Consider a netflow configuration as shown below applied on Bundle interface.

```
RP/0/RP1/CPU0:router#show running-config interface bundle-ether 8888
Thu Oct 26 14:17:17.459 UTC
interface Bundle-Ether8888
ipv4 address 192.168.108.1 255.255.255.252
ipv6 address 192:168:108::1/126
flow ipv6 monitor MONITOR-8k sampler SAMPLER-8k ingress
!
RP/0/RP1/CPU0:router#show running-config flow monitor-map MONITOR-8k
Thu Oct 26 14:17:32.581 UTC
flow monitor-map MONITOR-8k
```

```
record ipv6
exporter NF-2
cache timeout update 30
!
```

The Netflow configuration includes:

- flow monitor map—MONITOR-8k: The flow monitor map do not have cache entries configured. Cache entries are the number of entries in the flow cache.
- exporter map—NF-2
- sampler map—SAMPLE-8k

The **cache entries** attribute is in-line modifiable. Let us configure the cache entries, while the flow monitor map is in use:

```
RP/0/RP1/CPU0:router#config
RP/0/RP1/CPU0:router(config)#flow monitor-map MONITOR-8k
RP/0/RP1/CPU0:router(config-fmm)#cache entries 8000
RP/0/RP1/CPU0:router(config-fmm)#commit
Thu Oct 26 14:18:24.625 UTC
RP/0/RP1/CPU0:Oct 26 14:18:24.879 : config[67366]: %MGBL-CONFIG-6-DB_COMMIT : Configuration
committed by user '<username>'.
Use 'show configuration commit changes 1000000556' to view the changes. /*configuration
commit is successfull. */
```

The above configuration changes are committed successfully.

Verification

To verify if the monitor map has chache entries of 8000 configured, use the **show flow monitor-map** command for MONITOR-8k map:

RP/0/RSP0/CPU0:router# show flow monitor-map MONITOR-8k

Flow Monitor Map : MONITOR-8k Id: 1 RecordMapName: ipv6 ExportMapName: NF-2 CacheAgingMode: Permanent CacheMaxEntries: 8000 CacheActiveTout: N/A CacheInactiveTout: N/A CacheUpdateTout: 30 seconds

Options Template Overview

NetFlow version 9 is a template-based version. The templates provide an extensible design to the record format. This feature allows enhancements to NetFlow services without requiring concurrent changes to the basic flow-record format. An options template is a special type of template record that is used to communicate the format of data related to the NetFlow process. Rather than supplying information about IP flows, the options are used to supply metadata about the NetFlow process itself. The sampler options template and the interface options template are different forms of options templates. These two tables are exported by the NetFlow process. The NetFlow process will also export the VRF table.

Sampler Table

The sampler options template consists of sampler tables. Similarly, the interface option templates consist of interface tables. By enabling the options for sampler table and interface table, it becomes easier for the collector to determine the information on data flow.

The sampler table consists of information on the active samplers. It is used by the collector to estimate the sampling rate for each data flow. The sampler table consists of the following information for each sampler:

Field Name	Value
FlowSamplerID	This ID is assigned to the sampler. It is used by the collector to retrieve information about the sampler for a data flow record.
FlowSamplerMode	This field indicates the mode in which the sampling has been performed.
FlowSamplerRandomInterval	This field indicates the rate at which the sampling is performed.
SamplerName	This field indicates the name of the sampler.

Interface Table

The interface table consists of information on interfaces that are being monitored for data flow. By using this information, the collector determines the names of interfaces associated with the data flow. The interface table consists of the following information:

Field Name	Value
ingressInterface	This field indicates the SNMP index assigned to the interface. By matching this value to the Ingress interface in the data flow record, the collector is able to retrieve the name of the interface.
interfaceDescription	This field indicates the name of the interface.

VRF Table

The VRF table consists of mapping of VRF IDs to the VRF names. By using this information, the collector determines the name of the required VRF. The VRF table consists of the following information:

Field Name	Value
ingressVRFID	The identifier of the VRF with the name in the VRF-Name field.
VRF-Name	The VRF name which has the VRFID value ingressVRFID. The value "default" indicates that the interface is not assigned explicitly to a VRF.

The data records contain ingressVRFID as an extra field in each record. The values of these fields are used to lookup the VRF Table to find the VRF names. A value 0 in these fields indicates that the VRF is unknown.

The VRF table is exported at intervals specified by the optional **timeout** keyword that can be configured manually. The default value is 1800 seconds.

IPFIX

Internet Protocol Flow Information Export (IPFIX) is an IETF standard export protocol for sending Netflow packets. IPFIX is based on Netflow version 9.

The IPFIX feature formats Netflow data and transfers the Netflow information from an exporter to a collector using UDP as transport protocol.

Restrictions

These IPFIX features are not supported:

- · Variable-length information element in the IPFIX template
- Stream Control Transmission Protocol (SCTP) as the transport protocol

Limitations


- You cannot modify an exporter version of an exporter map that is already applied to an interface. To modify the exporter version, first remove the exporter configuration applied on the interface, later modify the version and apply the configuration to the interface.
- An interface can have three different monitor-maps but all the monitor maps should have the same version for the exporters. There can be different exporters for the three monitor maps but they all need to have the same exporter version either v9 or IPFIX.
- You can only have monitor-maps one of each record type attached to an interface, that is one monitor-map for IPv4 record, one monitor-map for IPv6 record and one for MPLS record. There can be different exporter maps for these three monitor-maps but all the exporter maps should have same exporter version configured, either v9 or IPFIX.
- Multiple sampler-maps can be configured but only two sampler maps can be appled to an interface across the system.

Configuring IPFIX

Consider SP-PE use case where SP (Service Provider) cloud is connected to the PE (Provider Edge) router through TenGigabit ethernet.

L

Figure 1: SP-PE Topology

Configuring NetFlow on PE router involves:

- 1. Configuring Exporter map with IPFIX as an exporter
- 2. Configuring Monitor map
- 3. Configuring Sampler map
- 4. Applying the Monitor map and Sampler map to an interface

Configuring Exporter map with IPFIX as the exporter version

```
flow exporter-map fem_ipfix
  destination 10.1.1.1
  source Loopback 0
  transport udp 1025
  exit
version ipfix
  template data timeout 600
  options sampler-table
exit
```

Configuring Monitor map

```
flow monitor-map fmm1
  record ipv4
  option filtered
  exporter fem_ipfix
  cache entries 10000
  cache timeout active 1800
  cache timeout inactive 15
  exit
```

Configuring Sampler map

```
sampler-map fsm1
random 1 out-of 4000 /*Sampling rate supported is 1:4000*/
exit
```

Applying the Monitor map to an interface

Now apply the monitor-map **fmm1** that is configured with an exporter version IPFIX and sampler-map **fsm1** to the 10GE 0/0/0/1 interface in the ingress direction:

```
configure
interface 10GE0/0/0/1
flow ipv4 monitor fmm1 sampler fsm1 ingress
exit
```

Verification

Use the **show flow flow-exporter map** command to verify the exporter version configured is IPFIX:

```
RP/0/RP0/CPU0:router# show flow exporter-map fem_ipfix
Flow Exporter Map : fem ipfix
```

```
Id: 3Packet-Length: 1468DestinationIpAddr: 10.1.1.1VRFName: defaultSourceIfName: Loopback1SourceIpAddr: 4.4.0.1DSCP: 40TransportProtocol: UDPTransportDestPort: 9001
```

Export Version: IPFIX

```
Common Template Timeout : 1800 seconds
Options Template Timeout : 1800 seconds
Data Template Timeout : 1800 seconds
Interface-Table Export Timeout : 0 seconds
Sampler-Table Export Timeout : 0 seconds
VRF-Table Export Timeout : 0 seconds
```

Exported packets in an IPFIX packet structure are in the form of template set or data set. The first data template is sent when the configuration is activated on the interface.

With constant stream, the flowset data does not change, so data is decoded. Data template is updated in the case of timeout on the template. To change the timeout options in the flow exporter, use the template options timeout command:

```
RP/0/RP0/CPU0:router(config)#flow exporter-map ipfix_exp1
RP/0/RP0/CPU0:router(config-fem)#version ipfix
RP/0/RP0/CPU0:router(config-fem-ver)#template options
RP/0/RP0/CPU0:TU-PE3(config-fem-ver)#template options timeout
RP/0/RP0/CPU0:router# show flow exporter-map ipfix_exp1
version ipfix
template data timeout 30
!
dscp 40
transport udp 9001
source Loopback0
destination 10.127.59.86
```

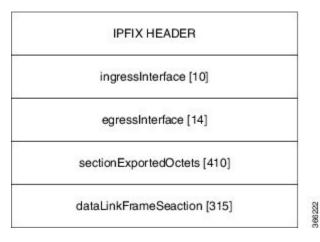
IP Flow Information Export (IPFIX) 315

Internet Protocol Flow Information Export (IPFIX) is an IETF standard export protocol (RFC 7011) for sending IP flow information. Cisco NCS 5500 Router supports IPFIX 315 format to export flow information. IPFIX 315 format facilitates sending 'n' octets frame information starting from ethernet header till trasport header of the traffic flow over the network. IPFIX 315 supports sending variable size packet record with variable payload information such as IPv4, IPv6, MPLS, and Nested packets like OuterIP-GRE-InnerIP etc. The process includes sampling and exporting the traffic flow information. Along with the ethernet frame information, IPFIX 315 format exports information of incoming and outgoing interface of the sampled packet.

The information of the packets flowing through a device is used for variety of purpose including network monitoring, capacity planning, traffic management, etc.

Note Cisco NCS 5500 Router does not support Netflow version 9 format to export flow information.

Sampling and Exporting Information


You must configure a sampling map to sample the traffic flow information. The sampler map specifies the rate at which packets (one out of n packets) are sampled. The minimun sampling rate is 1 out of 32,000 packets. Not all packets flowing through a device are exported; packets selected as per sampling rate are considered for exporting.

You must configure a sampling map to sample the traffic flow information. The sampler map specifies the rate at which packets (one out of n packets) are sampled.

The size of exported packet is untill and including L4 header.

The below figure IPFIX 315 Export Packet Format shows exported packet information.

Figure 2: IPFIX 315 Export Packet Format

A special cache type called Immediate Aging is used while exporting the packets. Immediate Aging ensures that the flows are exported as soon as they are added to the cache. Use the command **cache immediate** in flow monitor map configuration to enable Immediate Aging cache type.

IPFIX 315 Implementation Considerations

Here are few key points to consider before implementing IPFIX 315:

- Supported only in ingress direction.
- Supported on main interface only. The traffic on all sub-interfaces under the main interface is exported.
- Sampling rate for bundles is per member-link and not per bundle interface.
- The outgoing interface information may not be correct incase of packets that are multicasted or broadcasted on multiple ports.
- The incoming and outgoing interface will have information of main interface and not the sub-interface even if the packet is routed via sub-interface. Incase of bundles it will point to bundle main interface.
- IPFIX 315 is not supported on BVI interface.
- Sampling and exporting of the control packets is not supported.
- When you configure **ipfix315-enable**, then you must configure all the ports on that LC with datalinkframesection flow.
- When the HQoS profile is enabled, Netflow does not give correct Output Interface. DSP is unique for each sub-interface.
- Netflow on the L2 interface assumes IPv4/IPv6/MPLS traffic, and if the traffic is purely L2 based, then the system ignores that traffic.
- You must remove all v9 configurations before reloading an LC. Else, with the existing v9 configurations on LC reload, you might encounter a few configuration apply error. Or, flow might be seen on an interface even when apply on interface has failed.

Configuring IPFIX 315

Configuring IPFIX 315 involves:

- 1. Configuring Exporter map
- 2. Configuring Monitor map
- 3. Configuring Sampler map
- 4. Enabling IPFIX 315 on a line card
- 5. Applying the Monitor map and Sampler map to an interface

Configuring Exporter map

```
flow exporter-map ipfix_exp
version ipfix
!
dscp 40
transport udp 9001
source Loopback1
destination 100.10.1.159
!
```

Configuring Monitor map

```
flow monitor-map ipfix_mon
  record datalinksectiondump
  exporter ipfix_exp
```

```
cache immediate
cache entries 1000000
cache timeout rate-limit 1000000
!
```

Configuring Sampler map

```
sampler-map ipfix_sm
random 1 out-of 32000
1
```

Note

The default cache size is 65535, hence you can configure sampling rate as 1 out of 65535 packets. However the recommended sampling rate is 1 out of 32000 packets.

Enabling IPFIX 315 on a line card

(config) # hw-module profile netflow ipfix315-enable location 0/0/CPU0

You should reload the LC for the changes to take effect.

Applying the Monitor map to an interface

```
interface HundredGigE 0/0/0/18
       flow datalinkframesection monitor ipfix mon sampler ipfix sm ingress
```

Verification

Use the show flow platform producer statistics location command to display the IPFIX 315 ingress packets flow statistics:

RP/0/RP0/CPU0# show flow platform Netflow Platform Producer Counter	<pre>producer statistics location 0/0/CPU0 cs:</pre>
IPv4 Ingress Packets:	0
IPv4 Egress Packets:	0
IPv6 Ingress Packets:	0
IPv6 Egress Packets:	0
MPLS Ingress Packets:	0
MPLS Egress Packets:	0
IPFIX315 Ingress Packets:	630478
IPFIX315 Egress Packets:	0
Drops (no space):	0
Drops (other):	0
Unknown Ingress Packets:	0
Unknown Egress Packets:	0
Worker waiting:	2443

Use the **show flow monitor <monitor-map> cache location** command to check the flow monitor stats. In this example flow statistics for *ipfix_mon* monitor map are displayed:

RP/0/RP0/CPU0#show flow monitor ipfix_mon cache location 0/0/CPU0

Cache summary for Flow Monitor	ipfix_mon:
Cache size:	65535
Current entries:	0
Flows added:	50399
Flows not added:	0
Ager Polls:	2784
- Active timeout	0
- Inactive timeout	0

- Immediate	50399	/*cache	type	immediate*/
- TCP FIN flag	0			
- Emergency aged	0			
- Counter wrap aged	0			
- Total	50399			
Periodic export:				
- Counter wrap	0			
- TCP FIN flag	0			
Flows exported	50399			
Matching entries:	0			

Above example shows that there were 50399 flows added to the cache and exported.

NetFlow Configuration Submodes

In Cisco IOS XR Software, NetFlow map configuration takes place in map-specific submodes. Cisco IOS XR Software supports these NetFlow map configuration submodes:

Note

The Cisco IOS XR Software allows you to issue most commands available under submodes as one single command string from mode. For example, you can issue the record ipv4 command from the flow monitor map configuration submode as follows:

```
RP/0/RP0/CPU0:router(config) # flow monitor-map fmm
RP/0/RP0/CPU0:router(config-fmm)# record ipv4
```

Alternatively, you can issue the same command from global configuration mode, as shown in the following example:

RP/0/RP0/CPU0:router(config) # flow monitor-map fmm record ipv4

Flow Monitor Map Configuration Submode

When you issue the **flow monitor-map** map_name command in mode, the CLI prompt changes to "config-fmm," indicating that you have entered the flow monitor map configuration submode.

In this sample output, the question mark (?) online help function displays all the commands available under the flow monitor map configuration submode:

<pre>RP/0/RP0/CPU0:router(config) # flow monitor-map fmm</pre>			
<pre>RP/0/RP0/CPU0:router(config-fmm) # ?</pre>			
cache	Specify flow cache attributes		
commit	Commit the configuration changes to running		
describe	Describe a command without taking real actions		
do	Run an exec command		
exit	Exit from this submode		
exporter	Specify flow exporter map name		
no	Negate a command or set its defaults		
record	Specify a flow record map name		
show	Show contents of configuration		

Flow Exporter Map Configuration Submode

When you issue the **flow exporter-map** *fem-name* command in mode, the command-line interface (CLI) prompt changes to "config-fem," indicating that you have entered the flow exporter map configuration submode.

In this sample output, the question mark (?) online help function displays all the commands available under the flow exporter map configuration submode:

RP/0/RP0/CPU0:router(config)# flow exporter-map fem RP/0/RP0/CPU0:router(config-fem)# ? Clear the uncommitted configuration clear clear Clear the configuration Commit the configuration changes to running commit describe Describe a command without taking real actions destination Export destination configuration Run an exec command do Specify DSCP value for export packets dscp exit Exit from this submode Negate a command or set its defaults no

Show contents of configuration

Specify export version parameters

Source interface

Commands used to reach current submode

Exit to the global configuration mode

pwd

root

show

source transport

version

Note

If you enter the **version** command, you enter the flow exporter map version configuration submode.

Specify the transport protocol for export packets

Note A single flow monitor map can support up to eight exporters.

Flow Exporter Map Version Configuration Submode

When you issue the **version v9** command in the flow exporter map configuration submode, the CLI prompt changes to "config-fem-ver," indicating that you have entered the flow exporter map version configuration submode.

In this sample output, the question mark (?) online help function displays all the commands available under the flow exporter map version configuration submode:

RP/0/RP0/CPU0:router(config-fem)# version v9
RP/0/RP0/CPU0:router(config-fem-ver)# ?
commit Commit the configuration changes to running
describe Describe a command without taking real actions
do Run an exec command
exit Exit from this submode
no Negate a command or set its defaults
options Specify export of options template
show Show contents of configuration

template Specify template export parameters

Sampler Map Configuration Submode

When you issue the **sampler-map** *map_name* command in mode, the CLI prompt changes to "config-sm," indicating that you have entered the sampler map configuration submode.

In this sample output, the question mark (?) online help function displays all the commands available under the sampler map configuration submode:

```
RP/0/RP0/CPU0:router(config)# sampler-map fmm
```

```
RP/0/RP0/CPU0:router(config-sm) # ?
clear
       Clear the uncommitted configuration
         Clear the configuration
clear
commit Commit the configuration changes to running
describe Describe a command without taking real actions
do
         Run an exec command
         Exit from this submode
exit
         Negate a command or set its defaults
no
bwq
         Commands used to reach current submode
random
         Use random mode for sampling packets
root.
         Exit to the global configuration mode
show
         Show contents of configuration
```

Enabling the NetFlow BGP Data Export Function

Use the **bgp attribute-download** command to enable NetFlow BGP routing attribute collection. The routing attributes are then exported. When no routing attributes are collected, zeroes (0) are exported.

When BGP attribute download is enabled, BGP downloads the attribute information for prefixes (community, extended community, and as-path) to the Routing Information Base (RIB) and Forwarding Information Base (FIB). This enables FIB to associate the prefixes with attributes and send the NetFlow statistics along with the associated attributes.

MPLS Flow Monitor with IPv4 and IPv6 Support

Cisco IOS XR Software supports the NetFlow collection of MPLS packets. It also supports the NetFlow collection of MPLS packets carrying IPv4, IPv6, or both IPv4 and IPv6 payloads.

MPLS Cache Reorganization to Support Both IPv4 and IPv6

In Cisco IOS XR Software, at a time, you can have only one MPLS flow monitor running on an interface. If you apply an additional MPLS flow monitor to the interface, the new flow monitor overwrites the existing one.

You can configure the MPLS flow monitor to collect IPv4 fields, IPv6 fields, or IPv4-IPv6 fields. IPv4-IPv6 configuration collects both IPv4 and IPv6 addresses using one MPLS flow monitor. IPv4 configuration collects only IPv4 addresses. IPv6 configuration collects only IPv6 addresses.

The MPLS flow monitor supports up to 1,000,000 cache entries. NetFlow entries include these types of fields:

- IPv4 fields
- IPv6 fields

- MPLS with IPv4 fields
- MPLS with IPv6 fields

The maximum number of bytes per NetFlow cache entry is as follows:

- IPv4-88 bytes per entry
- IPv6–108 bytes per entry
- MPLS with IPv4 fields-108 bytes per entry
- MPLS with IPv6 fields-128 bytes per entry

Note The different types of NetFlow entries are stored in separate caches. Consequently, the number of NetFlow entries on a line card can significantly impact the amount of available memory on the line card. Also, even though the sampling rate for IPv6 is the same as the sampling rate for IPv4, the CPU utilization for IPv6 is higher due to the longer keys used by the IPv6 fields.

MPLS Packets with IPv6 Flows

Table 4: Feature History Table

Feature Name	Release Information	Feature Description
MPLS top label type 4 for BGP Labeled Unicast traffic	Release 7.4.1	This feature is an enhancement to how Netflow MPLS records are verified. This feature allows the user to analyze the traffic types by providing more visibility on the granularity of the information. This feature helps you to monitor the traffic data. This feature introduces the new MPLS label type BGP. This label type is a field in the MPLS label that identifies the control protocol which allocates the top-of-stack label. MPLS label types enable verification of Netflow MPLS records.

The collection of IPv6 flows in MPLS packets is an option. The CPU uses 128 bytes for each IPv6 field. IPv6 flows may contain these types of information:

- Source IP address
- Destination IP address
- Traffic class value
- Layer 4 protocol number
- Layer 4 source port number
- Layer 4 destination port number
- Flow ID
- · Header option mask

To collect the IPv6 fields in MPLS packets, you must activate the MPLS record type, ipv6-fields by running the **record mpls ipv6-fields** command. You can also specify the number of labels to be used for aggregation with this command.

How to Configure NetFlow on Cisco IOS XR Software

The steps that follow provide a general overview of NetFlow configuration:

We recommend that you not use the default ethernet VLAN (VLAN-1) in any of your network configurations. Traffic tagged with VLAN-1 may cause conflicts with other configurations.

- **Step 1** Create and configure an exporter map.
- **Step 2** Create and configure a monitor map and a sampler map.
 - **Note** The monitor map must reference the exporter map you created in Step 1. If you do not apply an exporter-map to the monitor-map, the flow records are not exported, and aging is done according to the cache parameters specified in the monitor-map.
- **Step 3** Apply the monitor map and sampler map to an interface.

These steps are described in detail in these sections:

Configuring an Exporter Map

Configure an exporter map and apply it to the monitor map with the **flow monitor-map** *map_name* **exporter** *map_name* command. You can configure the exporter map prior to configuring the monitor map, or you can configure the monitor map first and then configure and apply an exporter map later on.

Note Cisco IOS XR Software supports the configuration of a single collector only in the exporter map.

The steps that follow describe how to create and configure an exporter map and enable exporting of the sampler table or the interface table.

Step 1 configure

Example:

RP/0/RP0/CPU0:router#configure

Enters global configuration mode.

Step 2 flow exporter-map map_name

Example:

	RP/0/RP0/CPU0:router(config)#flow exporter-map expmap-dtxr2
	Creates an exporter map, configures the exporter map name, and enters flow exporter map configuration mode.
Step 3	destination hostname_or_IP_address
	Example:
	RP/0/RP0/CPU0:router(config-fem) # destination 1.76.31.1
	Configures the export destination for the flow exporter map. The destination can be a hostname or an IPv4/IPv6 address.
Step 4	dscp_value
	Example:
	RP/0/RP0/CPU0:router(config-fem) # dscp 10
	(Optional) Specifies the differentiated services codepoint (DSCP) value for export packets. Replace the <i>dscp_value</i> argument with a value in the range from 0 through 63.
Step 5	source type interface-path-id
	Example:
	RP/0/RP0/CPU0:router(config-fem) # source Loopback 0
	Specifies a source interface, in the format type interface-path-id.
Step 6	transport udp port
	Example:
	RP/0/RP0/CPU0:router(config-fem)# transport udp 5999
	(Optional) Specifies the destination port for UDP packets. Replace <i>port</i> with the destination UDP port value, in the range from 1024 through 65535.
Step 7	version v9
	Example:
	RP/0/RP0/CPU0:router(config-fem-ver)# version v9
	(Optional) Enters flow exporter map version configuration submode.
Step 8	options {interface-table sampler-table vrf-table} [timeout seconds]
	Example:
	RP/0/RP0/CPU0:router(config-fem-ver)# options sampler-table timeout 1800
	(Optional) Configures the export timeout value for the sampler table. Replace <i>seconds</i> with the export timeout value, in the range from 1 through 604800 seconds.
	Default is 1800 seconds.
Step 9	template [data options] timeout seconds
	Example:
	RP/0/RP0/CPU0:router(config-fem-ver)# template data timeout 600
	(Optional) Configures the export period for data packets. Replace <i>seconds</i> with the export timeout value, in the range from 1 through 604800 seconds.
Step 10	commit

Step 11 exit

Example:

RP/0/RP0/CPU0:router(config-fem-ver) # exit

Exits flow exporter map version configuration submode.

Step 12 exit

Example:

RP/0/RP0/CPU0:router(config) # exit

Enters XR EXEC mode.

Step 13 show flow exporter-map *map_name*

Example:

RP/0/RP0/CPU0:router# show flow exporter-map expmap-dtxr2

```
Flow Exporter Map : expmap-dtxr2
_____
Id
                 : 1
DestinationIpAddr : 1.76.31.1
VRFName
                 : default
                : Loopback0
SourceIfName
SourceIpAddr
                : 10.200.58.1
DSCP
                 : 10
TransportProtocol
                 : UDP
                : 5999
TransportDestPort
Export Version: 9
  Common Template Timeout : 1800 seconds
  Options Template Timeout : 1800 seconds
  Data Template Timeout : 600 seconds
  Interface-Table Export Timeout : 1800 seconds
  Sampler-Table Export Timeout : 0 seconds
  VRF-Table Export Timeout : 0 seconds
```

Displays exporter map data.

Example

This example shows how to create a new flow exporter map called "fem1," which uses the version 9 (V9) export format for NetFlow export packets. The data template flow-set is inserted into the V9 export packets once every 10 minutes, and the options interface table flow-set is inserted into the V9 export packet. The export packets are sent to the flow collector destination 10.1.1.1, where the source address is identical to the interface IP address of Loopback 0. The UDP destination port is 1024, and the DSCP value is 10:

```
RP/0/RP0/CPU0:router(config) # flow exporter-map fem1
RP/0/RP0/CPU0:router(config-fem) # destination 10.1.1.1
RP/0/RP0/CPU0:router(config-fem) # source Loopback 0
RP/0/RP0/CPU0:router(config-fem) # transport udp 1024
RP/0/RP0/CPU0:router(config-fem) # dscp 10
RP/0/RP0/CPU0:router(config-fem) # exit
```

```
RP/0/RP0/CPU0:router(config-fem) # version v9
RP/0/RP0/CPU0:router(config-fem-ver)# template data timeout 600
RP/0/RP0/CPU0:router(config-fem-ver) # options interface-table
RP/0/RP0/CPU0:router(config-fem-ver)# exit
```

Configuring a Sampler Map

Step 1	configure
	Example:
	RP/0/RSP0/CPU0:router#configure
	Enters global configuration mode.
Step 2	sampler-map map_name
	Example:
	RP/0/RP0/CPU0:router(config)# sampler-map onein8k RP/0/RP0/CPU0:router(config-sm)#
	Creates a sampler map and enters sampler map configuration mode.
Step 3	random 1 out-of sampling_interval
	Example:
	<pre>RP/0/RP0/CPU0:router(config-sm) # random 1 out-of 8000</pre>
	Configures the sampling interval to use random mode for sampling packets. Replace the <i>sampling_interval</i> argument with a number, in the range from 1 through 65535 units.
	Note The sampling interval of 1:1000 packets is supported.
Step 4	commit
Step 5	exit
	Example:
	RP/0/RP0/CPU0:router(config-sm) # exit
	Exits sampler map configuration mode and enters the XR Config mode.
Step 6	exit
	Example:
	RP/0/RP0/CPU0:router(config)# exit
	Exits the mode and enters XR EXEC mode.
Step 7	show sampler-map map_name
	Example:
	RP/0/RP0/CPU0:router#show sampler-map onein8k
	Sampler Map : onein8k

Id: 1 Mode: Random (1 out of 8000 Pkts)

Displays sampler map data.

Example

This example shows how to create a new sampler map called "fsm1," which samples 1 out of 65535 packets:

```
RP/0/RP0/CPU0:router# sampler-map fsm1
RP/0/RP0/CPU0:router(config-sm)# random 1 out-of 65535
RP/0/RP0/CPU0:router(config)# exit
```

Configuring a Monitor Map

Step 1 configure

Example:

RP/0/RSP0/CPU0:router#configure

Enters global configuration mode.

Step 2 flow monitor-map map_name

Example:

RP/0/RP0/CPU0:router(config) # flow monitor-map fmm-ipv4-dtxr2 RP/0/RP0/CPU0:router(config-fmm) #

Creates a monitor map and configures a monitor map name and enters flow monitor map configuration submode.

Step 3 Do one of the following:

- record ipv4
- record ipv4 [peer as]
- record ipv6
- record mpls [labels number]
- record mpls [ipv4-fields] [labels number]
- record mpls [ipv6-fields] [labels number]
- record mpls [ipv4-ipv6-fields] [labels number]

Example:

RP/0/RP0/CPU0:router(config-fmm) # record ipv4

Configures the flow record map name for IPv4, IPv6, or MPLS.

- Use the **record ipv4** command to configure the flow record map name for IPv4. By default, you collect and export the originating autonomous system (AS) numbers.
- Use the **record ipv4** [peer-as] command to record peer AS. Here, you collect and export the peer AS numbers.

- **Note** Ensure that the **bgp attribute-download** command is configured. Else, no AS is collected when the **record ipv4** or **record ipv4 peer-as** command is configured.
 - Use the **record ipv6** command to configure the flow record map name for IPv6.
 - Use the **record mpls labels** command with the *number* argument to specify the number of labels that you want to aggregate. By default, MPLS-aware NetFlow aggregates the top six labels of the MPLS label stack. The maximum value is 6.
 - Use the **record mpls ipv4-fields** command to collect IPv4 fields in the MPLS-aware NetFlow.
 - Use the record mpls ipv6-fields command to collect IPV6 fields in the MPLS-aware NetFlow.
 - Use the **record mpls ipv4-ipv6-fields** command to collect IPv4 and IPv6 fields in the MPLS-aware NetFlow.
 - **Note** For the **outbundlemember** option to be effective; you must configure monitor-map as following:

```
flow monitor-map nfmpls
record mpls ipv4-ipv6-fields
option outbundlemember
```

Step 4 cache entries number

Example:

RP/0/RP0/CPU0:router(config-fmm) # cache entries 65535

(Optional) Configures the number of entries in the flow cache. Replace the *number* argument with the number of flow entries allowed in the flow cache, in the range from 4096 through 1000000.

The default number of cache entries is 65535.

Step 5 cache permanent

Example:

RP/0/RP0/CPU0:router(config-fmm) # flow monitor-map fmm cache permanent

(Optional) Disables removal of entries from flow cache.

Step 6 cache timeout {active timeout_value | inactive timeout_value | update timeout_value}

Example:

RP/0/RP0/CPU0:router(config-fmm) # cache timeout inactive 120

(Optional) Configures the active, inactive, or update flow cache timeout value.

- The default timeout value for the inactive flow cache is 15 seconds.
- The default timeout value for the active flow cache is 1800 seconds.
- The default timeout value for the update flow cache is 1800 seconds.
- **Note** The **update** *timeout_value* keyword argument is used for permanent caches only. It specifies the timeout value that is used to export entries from permanent caches. In this case, the entries are exported but remain the cache.

Step 7 exporter map_name

Example:

RP/0/RP0/CPU0:router(config-fmm) # exporter expmap-dtxr2

Associates an exporter map with a monitor map.

Note A single flow monitor map can support up to eight exporters.

Step 8 Step 9	commit exit
0.00	Example:
	RP/0/RP0/CPU0:router(config-fmm)# exit
	Exits flow monitor map configuration submode.
Step 10	exit
	Example:
	RP/0/RP0/CPU0:router(config)# exit
	Exits XR Config mode.
Step 11	<pre>show flow monitor-map map_name</pre>
	Example:
	RP/0/RP0/CPU0:router# show flow monitor-map fmm-ipv4-dtxr2 Flow Monitor Map : fmm-ipv4-dtxr2
	Id: 1 RecordMapName: ipv4-raw ExportMapName: expmap-dtxr2 CacheAgingMode: Normal

____ CacheMaxEntries: 65535 CacheActiveTout: 60 seconds

Displays flow monitor map data.

CacheInactiveTout: 120 seconds

2000

Example

CacheUpdateTout: N/A CacheRateLimit:

> This example shows how to create a new flow monitor map with name "fmm1". This flow monitor map references the flow exporter map "fem1," and sets the flow cache attributes to 10000 cache entries. The active entries from the cache are aged every 30 seconds, while the inactive entries from the cache are aged every 15 seconds. The record map for this monitor map is IPv4:

```
RP/0/RP0/CPU0:router(config)# flow monitor-map fmm1
RP/0/RP0/CPU0:router(config-fmm) # record ipv4
RP/0/RP0/CPU0:router(config-fmm) # exporter fem1
RP/0/RP0/CPU0:router(config-fmm) # cache entries 10000
RP/0/RP0/CPU0:router(config-fmm)# cache timeout active 30
```

```
RP/0/RP0/CPU0:router(config-fmm) # cache timeout inactive 15
RP/0/RP0/CPU0:router(config-fmm) # exit
```

Applying a Monitor Map and a Sampler Map to a Physical Interface

Perform these steps to apply a monitor map and a sampler map to an interface.

Step 1	configure
Step 2	interface type number

Step 1

Example:

```
RP/0/RP0/CPU0:router(config) # interface HundredGigE 0/4/0/8
RP/0/RP0/CPU0:router(config-if)#
```

Enters interface configuration mode.

Step 3 flow [ipv4 | ipv6 | mpls] monitor monitor_map sampler sampler_map {ingress}

Example:

RP/0/RP0/CPU0:router(config-if)# flow ipv4 monitor fmm sampler fsm ingress

Associates a monitor map and a sampler map with an interface.

Note Only Ingress mode is supported.

Enter **ipv4** to enable IPV4 NetFlow on the specified interface. Enter **ipv6** to enable IPV6 NetFlow on the specified interface. Enter mpls to enable MPLS-aware NetFlow on the specified interface.

Step 4 commit

Example

This example shows how to apply the flow monitor "fmm1" and the sampler "fsm1" to the HundredGigE 0/3/0/0 interface in the ingress direction:

RP/0/RP0/CPU0:router(config) #interface HundredGigE 0/3/0/0 RP/0/RP0/CPU0:router(config-if)#flow ipv4 monitor fmm1 sampler fsm1 ingress RP/0/RP0/CPU0:router(config-if) #exit

This example shows how to apply the flow monitor "MPLS-IPv6-fmm" and the sampler "FSM" to the HundredGigE 0/3/0/0 interface in the ingress direction:

```
RP/0/RP0/CPU0:router(config) #interface HundredGigE 0/3/0/0
RP/0/RP0/CPU0:router(config-if) # flow mpls monitor MPLS-IPv6-fmm sampler FSM ingress
RP/0/RP0/CPU0:router(config-if) #exit
```

Applying a Monitor Map and a Sampler Map to a Layer 2 Bundle Interface

Perform these steps to apply a monitor map and a sampler map to a Layer 2 bundle interface.

Step 1 configure

Step 2 interface type number

Example:

RP/0/RP0/CPU0:router(config)# interface bundle-ethernet 1
RP/0/RP0/CPU0:router(config-if)#

Enters interface configuration mode.

Step 3 flow [ipv4 | ipv6 | mpls] monitor monitor_map sampler sampler_map {ingress}

Example:

RP/0/RP0/CPU0:router(config-if)# flow ipv4 monitor fmm sampler fsm ingress

Associates a monitor map and a sampler map with an interface.

Note Only Ingress mode is supported.

Enter **ipv4** to enable IPV4 NetFlow on the specified interface. Enter **ipv6** to enable IPV6 NetFlow on the specified interface. Enter **mpls** to enable MPLS-aware NetFlow on the specified interface.

Step 4 commit

Example

This example shows how to apply the flow monitor "fmm1" and the sampler "fsm1" to the bundle-ethernet 1 interface in the ingress direction:

RP/0/RP0/CPU0:router(config)#interface bundle-ethernet 1
RP/0/RP0/CPU0:router(config-if)#flow ipv4 monitor fmm1 sampler fsm1 ingress
RP/0/RP0/CPU0:router(config-if)#exit

This example shows how to apply the flow monitor "MPLS-IPv6-fmm" and the sampler "FSM" to the bundle-ethernet 1 interface in the ingress direction:

```
RP/0/RP0/CPU0:router(config)#interface bundle-ethernet 1
RP/0/RP0/CPU0:router(config-if)# flow mpls monitor MPLS-IPv6-fmm sampler FSM ingress
RP/0/RP0/CPU0:router(config-if)#exit
```

Clearing NetFlow Data

Step 1 clear flow exporter [*exporter_name*] {**restart** | **statistics**} **location** *node-id*

Example:

RP/0/RP0/CPU0:router# clear flow exporter statistics location 0/0/CPU0

Clears the flow exporter data.

Specify the **statistics** option to clear exporter statistics. Specify the **restart** option to export all of the templates that are currently configured on the specified node.

Step 2 clear flow monitor [monitor_name] **cache** [**force-export** | **statistics**] **location** node-id}

Example:

RP/0/RP0/CPU0:router# clear flow monitor cache force-export location 0/0/CPU0

Clears the flow monitor data.

Specify the **statistics** option to clear cache statistics. Specify the **force-export** option to export the data from cache to server first and then clear the entries from cache.

Configure NetFlow Collection of MPLS Packets with IPv6 Fields

The following example shows how to collect MPLS traffic with IPv4 payloads.

```
Router(config)#flow monitor-map MPLS-IPv4-fmm
Router(config-fmm)#record mpls IPv4-fields labels 3
Router(config-fmm)#cache permanent
Router(config-fmm)#exit
Router(config)#interface HundredGigE 0/3/0/0
Router(config-if)#flow mpls monitor MPLS-IPv4-fmm sampler fsm ingress
```

The following example shows how to collect MPLS traffic with IPv6 payloads.

```
Router(config)#flow monitor-map MPLS-IPv6-fmm
Router(config-fmm)# record mpls IPv6-fields labels 3
Router(config-fmm)#cache permanent
Router(config-fmm)#exit
Router(config)#interface HundredGigE 0/3/0/0
Router(config-if)#flow mpls monitor MPLS-IPv6-fmm sampler fsm ingress
```

The following example shows how to configure the NetFlow monitor to collect MPLS packets with IPv6 fields:

```
Router# config
Router(config) # flow exporter-map exp1
Router(config-fem) # version v9
Router(config-fem-ver) # options interface-table timeout 300
Router (config-fem-ver) # options sampler-table timeout 300
Router(config-fem-ver) # template data timeout 300
Router(config-fem-ver) # template options timeout 300
Router(config-fem-ver) # exit
Router(config-fem) # transport udp 12515
Router(config-fem) # source Loopback0
Router(config-fem) # destination 170.1.1.11
Router(config-fmm) # exit
Router(config) # flow monitor-map MPLS-IPv6-fmm
Router(config-fmm) # record mpls ipv6-fields labels 3
Router(config-fmm) # exporter expl
Router(config-fmm) # cache entries 10000
Router (config-fmm) # cache permanent
Router(config-fmm) # exit
Router(config) # sampler-map FSM
Router(config-sm) # random 1 out-of 65535
Router(config-sm) # exit
Router(config) # interface HundredGigE 0/3/0/0
Router(config-if) # flow mpls monitor MPLS-IPv6-fmm sampler FSM ingress
```

The following example shows how to collect MPLS traffic with both IPv6 and IPv4 fields.

```
Router(config)# flow monitor-map MPLS-IPv4-IPv6-fmm
Router(config-fmm)# record mpls IPv4-IPv6-fields labels 3
Router(config-fmm)# cache permanent
Router(config-fmm)# exit
Router(config)# interface HundredGigE 0/3/0/0
Router(config-if)# flow mpls monitor MPLS-IPv4-IPv6-fmm sampler fsm ingress
```

```
Note
```

Flow records are exported using the Version 9 format.

Running Configuration

```
/* This configuration collects MPLS traffic with IPv4 payloads. */
flow monitor-map MPLS-IPv4-fmm
record mpls IPv4-fields labels 3
cache permanent
exit
interface HundredGigE 0/3/0/0
flow mpls monitor MPLS-IPv4-fmm sampler fsm ingress
/* This configuration collects MPLS traffic with IPv6 payloads. ^{\star/}
flow monitor-map MPLS-IPv6-fmm
record mpls IPv6-fields labels 3
cache permanent
exit
interface HundredGigE 0/3/0/0
flow mpls monitor MPLS-IPv6-fmm sampler fsm ingress
/* This configuration collects MPLS packets with IPv6 fields */
flow exporter-map expl
 version v9
 options interface-table timeout 300
 options sampler-table timeout 300
 template data timeout 300
 template options timeout 300
  exit
  transport udp 12515
 source Loopback0
 destination 170.1.1.11
 exit
 flow monitor-map MPLS-IPv6-fmm
 record mpls ipv6-fields labels 3
 exporter expl
cache entries 10000
 cache permanent
exit
sampler-map FSM
random 1 out-of 65535
exit
 interface HundredGigE 0/3/0/0
flow mpls monitor MPLS-IPv6-fmm sampler FSM ingress
/* This configuration collects MPLS traffic with both IPv6 and IPv4 fields ^{\prime\prime}
flow monitor-map MPLS-IPv4-IPv6-fmm
record mpls IPv4-IPv6-fields labels 3
cache permanent
exit
 interface HundredGigE 0/3/0/0
 flow mpls monitor MPLS-IPv4-IPv6-fmm sampler fsm ingress
```

L

Verification

Verify the flow monitor map data.

Router# show flow monitor-map MPLS-IPv6-fmm

Flow Monitor Map : MPLS-IPv6-fmm Id: 1 RecordMapName: ipv4-raw ExportMapName: expmap-dtxr2 CacheAgingMode: Normal CacheMaxEntries: 65535 CacheActiveTout: 60 seconds CacheInactiveTout: 120 seconds CacheUpdateTout: N/A CacheRateLimit: 2000

Verify the exporter map data.

Router# show flow exporter-map expmap-dtxr2

Flow Exporter Map : expmap-dtxr2

: 1
: 170.1.1.11
: default
: Loopback0
: 10.200.58.1
: 10
: UDP
: 12515
imeout : 300 seconds
Timeout : 300 seconds
eout : 600 seconds
xport Timeout : 300 seconds
ort Timeout : O seconds
Timeout : O seconds

Verify the netflow cache record for MPLS packet.

```
Router# show flow monitor MPLS-IPv6-fmm cache format record location 0/0/CPU0
Thu Feb 25 05:14:11.474 IST
Cache summary for Flow Monitor FNF MONITOR MAP MPLS2:
Cache size:
                                  256000
Current entries:
                                      1
                                      74
Flows added:
Flows not added:
                                      0
Ager Polls:
                                    4418
 - Active timeout
                                      73
 - Inactive timeout
                                      0
 - Immediate
                                       0
 - TCP FIN flag
                                       0
 - Emergency aged
                                      0
 - Counter wrap aged
                                      0
 - Total
                                      73
Periodic export:
 - Counter wrap
                                       0
 - TCP FIN flag
                                       0
                                      73
Flows exported
======= Record number: 1 ========
LabelType : BGP
Prefix/Length : ::/0
```

Label1-EXP-S	:	0-0-0
Label2-EXP-S	:	24026-0-1
Label3-EXP-S	:	-
Label4-EXP-S	:	-
Label5-EXP-S	:	-
Label6-EXP-S	:	-
InputInterface	:	BE100
OutputInterface	:	Hu0/0/0/3.1001
ForwardStatus	:	Fwd
FirstSwitched	:	00 06:33:48:047
LastSwitched	:	00 06:33:54:838
ByteCount	:	1002010
PacketCount	:	1033
Dir	:	Ing
SamplerID	:	1
IPv6SrcAddr	:	3001:10::2
IPv6DstAddr	:	1001:10::2
IPv6TC	:	0
IPv6FlowLabel	:	7
IPv60ptHdrs	:	0x10
IPV6Prot	:	59
L4SrcPort	:	0
L4DestPort	:	0
L4TCPFlags	:	0
InputVRFID	:	default
OutputVRFID	:	default

Drop Codes on NetFlow

The following table lists supported drop codes on NetFlow:

Drop Reason(s)	IPFIX/V9 Code	sFlow Code
Unknown	128	256
ACL Deny	129	258
Adjacency	132	1
Bad Header Checksum	134	275
Bad TTL	137	257

Table 5: Drop Codes on NetFlow

Additional References

These sections provide references related to interface configuration.

Related Documents

Related Topic	Document Title
Cisco IOS XR interface configuration commands	Interface and Hardware Component Command Reference for Cisco NCS 5500 and NCS 540 and NCS 560 Series Routers
Initial system bootup and configuration information for a router using the Cisco IOS XR software.	
Information about user groups and task IDs	Interface and Hardware Component Command Reference for Cisco NCS 5500 and NCS 540 and NCS 560 Series Routers
Information about configuring interfaces and other components from a remote Craft Works Interface (CWI) client management application.	Cisco Craft Works Interface User Guide

Standards

Standards	Title]
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	-	

MIBs

MIBs	MIBs Link
—	Text for MIBs: To locate and download MIBs using Cisco IOS XR software, use the MIB Locator found at the Cisco Feature Navigator.
	Iound at the Cisco Feature Navigator.

RFCs

RFC s	Title
3954	NetFlow services export protocol Version 9.
7011	IPFIX protocol

Technical Assistance