Configure MACSec This module describes how to configure Media Access Control Security (MACsec) encryption on the NCS 5500 Network Convergence System Routers. MACsec is a Layer 2 IEEE 802.1AE standard for encrypting packets between two MACsec-capable routers. ## **Command History** | Release | Modification | |---------------|----------------------------------------------------------------------------------| | Release 6.1.3 | This feature is introduced for physical interfaces and bundle member interfaces. | - Understanding MACsec Encryption, on page 1 - MKA Authentication Process, on page 2 - MACsec Frame Format, on page 3 - Advantages of Using MACsec Encryption, on page 3 - MACsec Support on Line Cards, on page 3 - MACsec PSK, on page 3 - Configuring and Verifying MACsec Encryption, on page 4 - Creating a MACsec Keychain, on page 4 - Creating a User-Defined MACsec Policy, on page 7 - Applying MACsec Configuration on an Interface, on page 9 - Verifying MACsec Encryption on IOS XR, on page 10 - Verifying MACsec Encryption on NCS 5500, on page 14 # **Understanding MACsec Encryption** Security breaches can occur at any layer of the OSI model. At Layer 2, some of the common breaches are MAC address spoofing, ARP spoofing, Denial of Service (DoS) attacks against a DHCP server, and VLAN hopping. MACsec secures data on physical media, making it impossible for data to be compromised at higher layers. As a result, MACsec encryption takes priority over any other encryption method such as IPsec and SSL at higher layers. MACsec is configured on the Customer Edge (CE) router interfaces that connect to Provider Edge (PE) routers and on all the provider router interfaces. ## **MKA Authentication Process** MACsec provides the secure MAC Service on a frame-by-frame basis, using GCM-AES algorithm. MACsec uses the MACsec Key Agreement protocol (MKA) to exchange session keys, and manage encryption keys. The MACsec encryption process is illustrated in the following figure and description. Figure 1: MKA Encryption Process **Step 1**: When a link is first established between two routers, they become peers. Mutual peer authentication takes place by configuring a Pre-shared Key (PSK). - **Step 2**: On successful peer authentication, a connectivity association is formed between the peers, and a secure Connectivity Association Key Name (CKN) is exchanged. After the exchange, the MKA ICV is validated with a Connectivity Association Key (CAK), which is effectively a secret key. - **Step 3**: A key server is selected between the routers, based on the configured key server priority. Lower the priority value, higher the preference for the router to become the key server. If no value is configured, the default value of 16 is taken to be the key server priority value for the router. Lowest priority value configures that router as the key server, while the other router functions as a key client. The following rules apply to key server selection: - Numerically lower values of key server priority and SCI are accorded the highest preference. - Each router selects a peer advertising the highest preference as its key server provided that peer has not selected another router as its key server or is not willing to function as the key server. - In the event of a tie for highest preferred key server, the router with the highest priority SCI is chosen as key server (KS). - **Step 4**: A security association is formed between the peers. The key server generates and distributes the Secure Association Key (SAK) to the key client (peer). Each secure channel is supported by an overlapped sequence of Security Associations (SA). Each SA uses a new Secure Association Key (SAK). - **Step 5**: Encrypted data is exchanged between the peers. ## **MACsec Frame Format** The MACsec header in a frame consists of three components as illustrated in the following figure. Figure 2: MACsec Frame Format - SecTAG: The security tag is 8-16 bytes in length and identifies the SAK to be used for the frame. With Secure Channel Identifier (SCI) encoding, the security tag is 16 bytes in length, and without the encoding, 8 bytes in length (SCI encoding is optional). The security tag also provides replay protection when frames are received out of sequence. - Secure Data: This is the data in the frame that is encrypted using MACsec and can be 2 or more octets in length. - ICV: The ICV provides the integrity check for the frame and is usually 8-16 bytes in length, depending on the cipher suite. Frames that do not match the expected ICV are dropped at the port. # **Advantages of Using MACsec Encryption** - Data Integrity Check: Integrity check value (ICV) is used to perform integrity check. The ICV is sent with the protected data unit and is recalculated and compared by the receiver to detect data modification. - Data Encryption: Enables a port to encrypt outbound frames and decrypt MACsec-encrypted inbound frames. - **Replay Protection**: When frames are transmitted through the network, there is a strong possibility of frames getting out of the ordered sequence. MACsec provides a configurable window that accepts a specified number of out-of-sequence frames. - **Support for Clear Traffic**: If configured accordingly, data that is not encrypted is allowed to transit through the port. ## **MACsec Support on Line Cards** The MACsec techology is supported only on 36-port 100 GE line cards. ## **MACsec PSK** A pre-shared key includes a connectivity association key name (CKN) and a connectivity association key (CAK). A pre-shared key is exchanged between two devices at each end of a point-to-point link to enable MACsec using static CAK security mode. The MACsec Key Agreement (MKA) protocol is enabled after the pre-shared keys are successfully verified and exchanged. The pre-shared keys, the CKN and CAK, must match on both ends of a link. For more information on MACsec PSK configuration, see Step 3, on page 10 of the Applying MACsec Configuration on an Interface, on page 9 section. ## **Configuring and Verifying MACsec Encryption** MACsec can be configured on physical ethernet interfaces or interface bundles (link bundles), as explained in this section. The following section describes procedures for configuring and verifying MACsec configuration in the described deployment modes. Prior to configuring MACsec on a router interface the MACsec keychain must be defined. If you apply the MACsec keychain on the router without specifying a MACsec policy, the default policy is applied. A default MACsec policy is pre-configured with default values. If you need to change any of the pre-configured values, create a different MACsec policy. Configuring MACsec involves the following steps: - 1. Creating a MACsec keychain - 2. Creating a user-defined MACsec policy - 3. Applying MACsec configuration on physical interfaces ## **Creating a MACsec Keychain** A MACsec keychain is a collection of keys used to authenticate peers needing to exchange encrypted information. While creating a keychain, we define the key(s), key string with password, the cryptographic algorithm, and the key lifetime. | MACsec Keychain Keyword | Description | |-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Key | The MACsec key or the CKN can be up to 64 characters in length. The key must be of an even number of characters. Entering an odd number of characters will exit the MACsec configuration mode. | | Key-string | The MACsec key-string or the CAK can be either 32 characters or 64 characters in length (32 for AES-128, 64 for AES-256). | | Lifetime | This field specifies the validity period of a key. It includes a start time, and an expiry time. We recommend you to set the value for expiry time as <i>infinite</i> . | **Guidelines for Configuring MACsec Keychain** MACsec keychain management has the following configuration guidelines: - MKA protocol uses the latest active key available in the Keychain. This key has the latest Start Time from the existing set of currently active keys. You can verify the values using the show key chain keychain-name command. - Deletion or expiry of current active key brings down the MKA session resulting in traffic hit. We recommend you to configure the keys with infinite lifetime. If fallback is configured, traffic is safeguarded using fallback on expiry or deletion of primary-keychain active key. - To achieve successful key rollover (CAK-rollover), the new key should be configured such that it is the latest active key, and kicks-in before the current key expires. - We recommend an overlap of at least one minute for hitless CAK rollover from current key to new key. - Start time and Expiry time can be configured with future time stamps, which allows bulk configuration for daily CAK rotation without any intervention of management agent. #### **SUMMARY STEPS** - 1. Enter the global configuration mode and provide a name for the MACsec keychain; for example, mac chain. - **2.** Provide a name for the MACsec key. - **3.** Enter the key string and the cryptographic algorithm to be used for the key. - 4. Enter the validity period for the MACsec key (CKN) also known as the lifetime period. - **5.** Commit your configuration. ## **DETAILED STEPS** **Step 1** Enter the global configuration mode and provide a name for the MACsec keychain; for example, mac chain. #### Example: RP/0/RP0/CPU0:router(config)# keychain mac chain ## **Step 2** Provide a name for the MACsec key. The key can be up to 64 characters in length. The key must be of an even number of characters. Entering an odd number of characters will exit the MACsec configuration mode. #### **Example:** ``` RP/0/RP0/CPU0:router(config-mac chain-MACsec) # key 1234abcd5678 ``` You can also configure a fall-back pre-shared key(PSK) to ensure that a PSK is always available to perform MACsec encryption and decryption. The fallback PSK along with the primary PSK ensures that the session remains active even if the primary PSK is mismatched or there is no active key for the primary PSK. The configured key is the CKN that is exchanged between the peers. Note If you are configuring MACsec to interoperate with a MACsec server that is running software prior to Cisco IOS XR Release 6.1.3, then ensure that the MACsec key length is of 64 characters. You can add extra zero characters to the MACseckey so that the length of 64-characters is achieved. If the key length is lesser than 64 characters, authentication will fail. ## **Step 3** Enter the key string and the cryptographic algorithm to be used for the key. ## **Example:** The key string is the CAK that is used for ICV validation by the MKA protocol. ! For AES 128-bit encryption ``` RP/0/RP0/CPU0:router(config-mac_chain-MacSec-1234abcd5678)# key-string 12345678123456781234567812345678 cryptographic-algorithm AES-128-CMAC ``` ! For AES 256-bit encryption **Note** In this example, we have used the AES 256-bit encryption algorithm, and therefore, the key string is 64 hexadecimal characters in length. A 256-bit encryption algorithm uses a larger key that requires more rounds of hacking to be cracked. 256-bit algorithms provide better security against large mass security attacks, and include the security provided by 128-bit algorithms. **Step 4** Enter the validity period for the MACsec key (CKN) also known as the lifetime period. The lifetime period can be configured, with a duration in seconds, as a validity period between two dates (for example, Jan 01 2014 to Dec 31 2014), or with infinite validity. The key is valid from the time you configure (in HH:MM:SS format). Duration is configured in seconds. ### **Example:** ``` RP/0/RP0/CPU0: router (config- mac_chain-MacSec-1234abcd5678) \# lifetime 05:00:00 01 \\ January 2015 duration 1800 ``` An example of configuring the lifetime for a defined period: ``` RP/0/RP0/CPU0:router(config-mac_chain-MacSec-1234abcd5678)# lifetime 05:00:00 20 february 2015 12:00:00 30 september 2015 ``` An example of configuring the lifetime as infinite: ``` RP/0/RP0/CPU0:router(config- mac_chain-MacSec-1234abcd5678)# lifetime 05:00:00 01 January 2015 infinite ``` Note When a key has expired, the MACsec session is torn down and running the **show macsec mka session** command does not display any information. If you run the **show macsec mka interface detail** command, the output displays *** No Active Keys Present *** in the PSK information. ## **Step 5** Commit your configuration. ``` RP/0/RP0/CPU0:router(config- mac_chain-MacSec-1234abcd5678)# exit RP/0/RP0/CPU0:router (config)# commit ``` This completes the configuration of the MACsec keychain. ## Creating a User-Defined MACsec Policy #### **SUMMARY STEPS** - 1. Enter the global configuration mode, and enter a name (mac_policy) for the MACsec policy. - **2.** Configure the cipher suite to be used for MACsec encryption. - **3.** Configure the confidentiality offset for MACsec encryption. - **4.** Enter the key server priority. - **5.** Configure the security policy parameters, either Must-Secure or Should-Secure. - **6.** Configure the replay protection window size. - **7.** Configure the ICV for the frame arriving on the port. - **8.** Commit your configuration and exit the global configuration mode. - **9.** Confirm the MACsec policy configuration. #### **DETAILED STEPS** **Step 1** Enter the global configuration mode, and enter a name (mac_policy) for the MACsec policy. #### **Example:** ``` RP/0/RP0/CPU0:router# configure RP/0/RP0/CPU0:router(config)# macsec-policy mac policy ``` **Step 2** Configure the cipher suite to be used for MACsec encryption. #### Example: ``` RP/0/RP0/CPU0:router(config-mac_policy)# cipher-suite GCM-AES-XPN-256 RP/0/RP0/CPU0:router(config-mac_policy)#GCM-AES-128 GCM-AES-256 GCM-AES-XPN-128 GCM-AES-XPN-256 ``` Note In this example, we have used the GCM-AES-XPN-256 encryption algorithm. A 256-bit encryption algorithm uses a larger key that requires more rounds of hacking to be cracked. 256-bit algorithms provide better security against large mass security attacks, and include the security provided by 128-bit algorithms. Extended Packet Numbering (XPN) is used to reduce the number of key rollovers while data is sent over high speed links. It is therefore highly recommended to use GCM-AES-XPN-256 encryption algorithm for higher data ports. **Step 3** Configure the confidentiality offset for MACsec encryption. ## **Example:** $\label{eq:rp-order} \mbox{RP/O/RPO/CPU0:router(config-mac_policy)$\#$ conf-offset CONF-OFFSET-30}$ **Step 4** Enter the key server priority. You can enter a value between 0-255. Lower the value, higher the preference to be selected as the key server. In this example, a value of 0 configures the router as the key server, while the other router functions as a key client. The key server generates and maintains the SAK between the two routers. The default key server priority value is 16. ## **Example:** RP/0/RP0/CPU0:router(config-mac policy) # key-server-priority 0 **Step 5** Configure the security policy parameters, either Must-Secure or Should-Secure. **Must-Secure**: Must-Secure imposes only MACsec encrypted traffic to flow. Hence, until MKA session is not secured, traffic will be dropped. ### **Example:** RP/0/RP0/CPU0:router(config-mac policy) # security-policy must-secure **Should-Secure**: Should-Secure allows unencrypted traffic to flow until MKA session is secured. After the MKA session is secured, Should-Secure policy imposes only encrypted traffic to flow. ## Example: RP/0/RP0/CPU0:router(config-mac policy)# security-policy should-secure #### **Table 1: MACsec Security Policies** | MKA | | Secured MKA Session | Unsecured MKA Session | |-----------------|---------------|---------------------|-----------------------------------| | Security Policy | Must-secure | Encrypted traffic | Traffic drop (no Tx and no Rx) | | | Should-secure | Encrypted traffic | Plain text or unencrypted traffic | ## **Step 6** Configure the replay protection window size. #### Example: RP/0/RP0/CPU0:router(config-mac policy)# window-size 64 This dictates the maximum out-of-sequence frames that are accepted. You can configure a value between 0 and 1024. **Step 7** Configure the ICV for the frame arriving on the port. ## Example: RP/0/RP0/CPU0:router(config-mac policy)# include-icv-indicator This parameter configures inclusion of the optional ICV Indicator as part of the transmitted MACsec Key Agreement PDU (MKPDU). This configuration is necessary for MACsec to interoperate with routers that run software prior to IOS XR version 6.1.3. This configuration is also important in a service provider WAN setup where MACsec interoperates with other vendor MACsec implementations that expect ICV indicator to be present in the MKPDU. **Step 8** Commit your configuration and exit the global configuration mode. ### **Example:** ``` RP/0/RP0/CPU0:router(config-mac_policy)# exit RP/0/RP0/CPU0:router(config)# commit RP/0/RP0/CPU0:router(config)# exit ``` ## **Step 9** Confirm the MACsec policy configuration. RP/0/RP0/CPU0:router# show running-config macsec-policy macsec-policy mac_policy conf-offset CONF-OFFSET-30 security-policy must-secure window-size 64 cipher-suite GCM-AES-XPN-256 key-server-priority 0 include-icv-indicator This completes the configuration of the MACsec policy. Note - Small packets might be dropped when Data Delay Protection (DDP) is enabled on many MACsec enabled interfaces of a scaled setup. To avoid this, enable DDP only on the interfaces which are absolutely necessary. - For Cisco NCS 5500 Series Routers to interoperate with Cisco ASR9000 Series Routers that are older than Release 6.2.3, configure a user defined MACsec policy with the policy-exception lacp-in-clear command to bring up the MKA sessions over bundle interfaces running in LACP modes. ## **Applying MACsec Configuration on an Interface** The MACsec service configuration is applied to the host-facing interface of a CE router. ### **Guidelines for MACsec Interface Configuration** Following are the guidelines for configuring MACsec interface: - Configure different keychains for primary and fallback PSKs. - We do not recommend to update both primary and fallback PSKs simultaneously, because fallback PSK is intended to recover MACsec session on primary key mismatch. ## Before you begin Note Under the IS-IS instance, use the **lsp-mtu** command to configure the maximum transmission unit (MTU) size of link-state packets (LSPs) on each router where MACsec is enabled. The LSP MTU should be set to 32 bytes less than the interface MTU, to account for MACsec overhead. ### **SUMMARY STEPS** - **1.** Enter the global configuration mode. - **2.** Enter the interface configuration mode. - **3.** Apply the MACsec configuration on an interface. - **4.** Commit your configuration. ## **DETAILED STEPS** **Step 1** Enter the global configuration mode. #### **Example:** RP/0/RP0/CPU0:router# configure **Step 2** Enter the interface configuration mode. ## Example: RP/0/RP0/CPU0:router(config) # interface Te0/3/0/1/4 **Step 3** Apply the MACsec configuration on an interface. ## **MACsec PSK Configuration** To apply MACsec PSK configuration on an interface, use the following command. ### **Example:** ``` RP/0/RP0/CPU0:router(config-if)# macsec psk-keychain mac_chain policy mac_policy RP/0/RP0/CPU0:router(config-if)# exit ``` To apply MACsec configuration on a physical interface without the MACsec policy, use the following command. #### **Example:** ``` RP/0/RP0/CPU0:router(config-if)# macsec psk-keychain script_key_chain2 RP/0/RP0/CPU0:router(config-if)# exit ``` **Step 4** Commit your configuration. ### **Example:** RP/0/RP0/CPU0:router(config) # commit # **Verifying MACsec Encryption on IOS XR** MACsec encryption on IOS XR can be verified by running relevant commands in the Privileged Executive Mode. The verification steps are the same for MACsec encryption on L2VPN or L3VPN network. To verify if MACsec encryption has been correctly configured, follow these steps. ## **SUMMARY STEPS** - **1.** Verify the MACsec policy configuration. - **2.** Verify the MACsec configuration on the respective interface. - **3.** Verify whether the interface of the router is peering with its neighbor after MACsec configuration. - **4.** Verify whether the MKA session is secured with MACsec on the respective interface. **5.** Verify the MACsec session counter statistics. #### **DETAILED STEPS** **Step 1** Verify the MACsec policy configuration. ### **Example:** If the values you see are different from the ones you configured, then check your configuration by running the **show run macsec-policy** command. **Step 2** Verify the MACsec configuration on the respective interface. You can verify the MACsec encryption on the configured interface bundle (MPLS network). ## Example: The **Status** field in the output confirms that the respective interface is **Secured**. If MACsec encryption is not successfully configured, you will see a status such as **Pending** or **Init**. **Note** In the VPLS network, because of the configuration on a multi-point interface, the number of live peers displayed is more than 1. Run the **show run macsec-policy** command in the privileged executive mode to troubleshoot the configuration entered. **Step 3** Verify whether the interface of the router is peering with its neighbor after MACsec configuration. ## Example: The **#Peers** field in the following output confirms the presence of the peer you have configured on the physical interface, **Fo0/0/0/1/0**. If the number of peers is not reflected accurately in this output, run the **show run** command and verify the peer configuration on the interface. Note If the MKA session status is shown as **Secured** with **0 (Zero)** peer count, this means that the link is locally secured (Tx). This is because of MKA peer loss caused by **No Rx Packets (MKA Packet)** from that peer. **Step 4** Verify whether the MKA session is secured with MACsec on the respective interface. ``` RP/0/RP0/CPU0:router# show macsec mka session interface Fo0/0/0/1/0 detail MKA Detailed Status for MKA Session _____ Status: SECURED - Secured MKA Session with MACsec Local Tx-SCI : 6219.8864.e338/0001 Local Tx-SSCI : 1 Interface MAC Address : 6219.8864.e338 MKA Port Identifier : 1 Interface Name : Hu0/5/0/26 CAK Name (CKN) : 22220000000 CAK Name (CKN) CA Authentication Mode : PRIMARY-PSK Kevchain : kc Member Identifier (MI) : 89766F3FE9445FDCDD714CCE Message Number (MN) : 25711 Authenticator : NO : NO Key Server MKA Cipher Suite : AES-256-CMAC Latest SAK Status : Rx & Tx Latest SAK AN Latest SAK KI (KN) : 0 : E3D39135831AFBCDA7AA9DBB00000001 (1) Old SAK Status : FIRST-SAK Old SAK AN : 0 Old SAK KI (KN) : FIRST-SAK (0) SAK Transmit Wait Time : Os (Not waiting for any peers to respond) SAK Retire Time : 0s (No Old SAK to retire) Time to SAK Rekey : NA : *DEFAULT POLICY* MKA Policy Name Key Server Priority : 16 Replay Window Size : 64 Confidentiality Offset : 0 Algorithm Agility : 80C201 SAK Cipher Suite : 0080C20001000004 (GCM-AES-XPN-256) MACsec Capability : 3 (MACsec Integrity, Confidentiality, & Offset) MACsec Desired : YES # of MACsec Capable Live Peers # of MACsec Capable Live Peers Responded : 0 ``` ``` Live Peer List: MI MN Rx-SCI (Peer) SSCI KS-Priority ``` The **Status** field in the output verifies if the MKA session is secured with MACsec encryption. The output also displays information about the interface and other MACsec parameters. **Step 5** Verify the MACsec session counter statistics. ## **Example:** RP/0/RP0/CPU0:router# show macsec mka statistics interface Fo0/0/0/1/0 ``` MKA Statistics for Session on interface (Fo0/0/0/1/0) _____ Reauthentication Attempts.. 0 CA Statistics Pairwise CAKs Derived... 0 Pairwise CAK Rekeys..... 0 Group CAKs Generated.... 0 Group CAKs Received.... 0 SA Statistics SAKs Generated.......... 3 SAKs Rekeyed..... 2 SAKs Received..... 0 SAK Responses Received.. 3 MKPDU Statistics MKPDUs Transmitted..... 5425 "Distributed SAK".. 8 "Distributed CAK".. 0 MKPDUs Validated & Rx... 4932 "Distributed SAK".. 0 "Distributed CAK".. 0 MKA IDB Statistics MKPDUs Tx Success..... 5425 MKPDUs Tx Fail..... 0 MKPDUS Tx Pkt build fail... 0 MKPDUs Rx CA Not found.... 0 MKPDUs Rx Error..... 0 MKPDUs Rx Success..... 4932 MKPDU Failures MKPDU Rx Validation (ICV)......0 MKPDU Rx Bad Peer MN...... 0 MKPDU Rx Non-recent Peerlist MN..... 0 MKPDU Rx Drop SAKUSE, KN mismatch..... 0 MKPDU Rx Drop SAKUSE, Rx Not Set..... 0 MKPDU Rx Drop SAKUSE, Key MI mismatch.. 0 MKPDU Rx Drop SAKUSE, AN Not in Use.... 0 MKPDU Rx Drop SAKUSE, KS Rx/Tx Not Set. 0 SAK Failures SAK Generation..... 0 Hash Key Generation..... 0 SAK Encryption/Wrap..... 0 SAK Decryption/Unwrap..... 0 ``` The counters display the MACsec PDUs transmitted, validated, and received. The output also displays transmission errors, if any. This completes the verification of MACsec encryption on the IOS-XR. ## **Verifying MACsec Encryption on NCS 5500** MACsec encryption on the router hardware can be verified by running relevant commands in the Privileged Executive Mode. To verify if MACsec encryption has been correctly configured, follow these steps. #### SUMMARY STEPS - 1. Verify the MACsec encryption and hardware interface descriptor block (IDB) information on the interface. - 2. Use the IDB handle retrieved from Step 1 to verify the platform hardware information. - **3.** Use the Transmitter SA retrieved from Step 2 to verify the MACsec SA information programmed in the hardware. - **4.** Verify the MACsec Secure Channel (SC) information programmed in the hardware. #### **DETAILED STEPS** **Step 1** Verify the MACsec encryption and hardware interface descriptor block (IDB) information on the interface. ``` RP/0/RP0/CPU0:router# show macsec ea idb interface Fo0/0/0/1/0 ``` ``` IDB Details: if sname : Fo0/0/0/1/0 if handle : 0x3480 Replay window size : 64 Local MAC : 00:1d:e5:e9:aa:39 Rx SC Option(s): Validate-Frames Replay-Protect Tx SC Option(s): Protect-Frames Always-Include-SCI Security Policy : MUST SECURE Sectag offset : 8 Rx SC 1 Rx SCI: 001de5e9b1bf0019 Peer MAC : 00:1d:e5:e9:b1:bf Stale : NO SAK Data SAK[0] : *** SAK Len : 32 HashKey[0] : *** HashKey Len: 16 Conf offset: 30 Cipher Suite : GCM-AES-XPN-256 CtxSalt[0] : 83 c3 7b ad 7b 6f 63 16 09 8f f3 d2 Rx SA Program Req[0]: 2015 Oct 09 15:20:53.082 Rx SA Program Rsp[0]: 2015 Oct 09 15:20:53.092 ``` ``` Tx SC Tx SCI : 001de5e9aa39001a Active AN : 0 Old AN : 255 Next PN : 1, 0, 0, 0 SAK Data SAK[0] : *** SAK Len : 32 HashKey[0] : *** HashKey Len : 16 Conf offset : 30 Cipher Suite : GCM-AES-XPN-256 CtxSalt[0] : 83 c3 7b ae 7b 6f 63 16 09 8f f3 d2 Tx SA Program Req[0]: 2015 Oct 09 15:20:55.053 Tx SA Program Rsp[0]: 2015 Oct 09 15:20:55.064 ``` The **if handle** field provides the IDB instance location. The **Replay window size** field displays the configured window size. The **Security Policy** field displays the configured security policy. The Local Mac field displays the MAC address of the router. The **Peer Mac** field displays the MAC address of the peer. This confirms that a peer relationship has been formed between the two routers. **Step 2** Use the IDB handle retrieved from Step 1 to verify the platform hardware information. ### Example: ``` RP/0/RP0/CPU0:router# show macsec platform hardware idb location 0/0/CPU0 | b 3480 if handle : 0x00003480 NPPort: 099 [0x063] LdaPort : 016 [0x010] SerdesPort : 000 [0x000] NetSoftPort: 061 [0x03d] SysSoftPort: 062 [0x03e] Active AN : 0x00000000 Idle AN : 0x000000ff Match-All Tx SA: 0x80010001 Match-All Rx SA: 0x00010001 Match-All Tx Flow: 0x80000003 Match-All Rx Flow: 0x00000003 Bypass Tx SA : 0x80000000 Bypass Rx SA : 0x00000000 Tx SA[0]: 0x80020002 Tx Flow[0]: 0x8000000c Tx SA[1] : 0xfffffffff Tx Flow[1] : 0xffffffff Tx SA[2] : Oxfffffffff Tx Flow[2] : Oxffffffff Tx SA[3] : Oxfffffffff Tx Flow[3] : Oxffffffff Rx SA[0]: 0x00020002 Rx Flow[0]: 0x0000000c Rx SA[1] : 0xffffffff Rx Flow[1] : 0xffffffff Rx SA[2] : 0xffffffff Rx Flow[2] : 0xffffffff Rx SA[3] : 0xfffffffff Rx Flow[3] : 0xffffffff ``` **Step 3** Use the Transmitter SA retrieved from Step 2 to verify the MACsec SA information programmed in the hardware. ``` RP/0/RP0/CPU0:router# show macsec platform hardware sa 0x80020002 interface Fo0/0/0/1/0 location 0/0/CPU0 MACsec HW SA Details: Action Type: 0x00000003 Direction: Egress ``` The output displays the details of the encryption, such as the AES key, the Auth key, and other parameters. **Step 4** Verify the MACsec Secure Channel (SC) information programmed in the hardware. ## **Example:** ``` RP/0/RP0/CPU0:router# show macsec platform hardware msc interface Fo0/0/0/1/0 location 0/0/CPU0 MACsec HW Cfg Details: Mode : 0x5 Counter Clear on Read : 0x0 SA Fail Mask : Oxffff Global SecFail Mask : Oxffffffff Latency: 0xff StaticBypass : 0x0 Should secure : 0x0 Global Frame Validation: 0x2 Ctrl Pkt CC Bypass : 0x1 NonCtrl Pkt CC Bypass: 0x1 Sequence Number Threshold: 0xbfffffb8 Sequence Number Threshold 64bit : 0x000002fffffffffd Non Matching Non Control Pkts Programming Untagged : Bypass: 0x0 DestPort : 0x2, DropType : 0x2 Tagged : Bypass: 0x0 DestPort : 0x2, DropType : 0x2 BadTagged : Bypass: 0x0 DestPort : 0x2, DropType : 0x2 KayTagged: Bypass: 0x0 DestPort: 0x2, DropType: 0x2 Non Matching Control Pkts Programming Untagged : Bypass: 0x1 DestPort : 0x2, DropType : 0xffffffff Tagged : Bypass: 0x0 DestPort : 0x2, DropType : 0x2 BadTagged : Bypass: 0x0 DestPort : 0x2, DropType : 0x2 KayTagged : Bypass: 0x0 DestPort : 0x2, DropType : 0x2 ``` This completes the verification of MACsec encryption on the router hardware. This completes the configuration and verification of MACsec encryption.