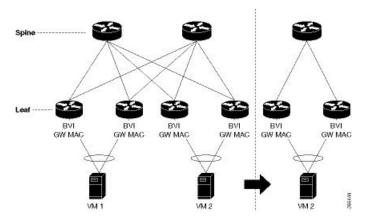


# Configure EVPN IRB, Distributed Anycast Gateway and E-tree


This chapter introduces you to Ethernet VPN (EVPN) Integrated Routing and Bridging (IRB), Distributed Anycast Gateway, and E-Tree features and their description.

- EVPN IRB, on page 1
- EVPN Single-Homing Access Gateway, on page 3
- EVPN Multihoming All-Active, on page 5
- EVPN Single-Active Multihoming for Anycast Gateway IRB, on page 5
- Enable Auto-BGP RT with Manual ESI Configuration, on page 9
- Supported EVPN IRB Scenarios, on page 9
- Distributed Anycast Gateway, on page 10
- Advertise EVPN Host IP Routes as IP Unicast Routes, on page 13
- BVI-Coupled Mode, on page 16
- VM Mobility Support, on page 17
- Duplicate IP Address Detection, on page 43
- EVPN Automatic Unfreezing of MAC and IP Addresses, on page 45
- EVPN E-Tree, on page 48
- EVPN E-Tree Using RT Constraints, on page 56
- EVPN E-Tree Per-PE (Scenario 1b), on page 71
- DHCPv4 Relay on IRB, on page 77
- DHCPv4 Relay Synchronization for All-Active Multihoming, on page 84
- DHCPv6 Relay IAPD on IRB, on page 85
- DHCPv6 PD Synchronization for All-Active Multihoming using Session Redundancy, on page 88
- IAPD Route Distribution and Withdrawal in DHCPv6 Relay, on page 91

## **EVPN IRB**

EVPN IRB feature enables a Layer 2 VPN and an Layer 3 VPN overlay that allows end hosts across the overlay to communicate with each other within the same subnet and across different subnets within the VPN.

Figure 1: EVPN IRB



The benefit of EVPN IRB is that it allows the hosts in an IP subnet to be provisioned anywhere in the data center. When a virtual machine (VM) in a subnet is provisioned behind a EVPN PE, and another VM is required in the same subnet, it can be provisioned behind another EVPN PE. The VMs do not have to be localized; they need not be directly connected; or be in the same complex. The VM is allowed to move across in the same subnet. Availability of IP MPLS network across all the EVPN PEs enables the provisioning of VM mobility. The EVPN PEs route traffic to each other through MPLS encapsulation.

The EVPN PEs are connected to each other by a spine so they have IP reachability to each other's loopback interfaces. The IP network and MPLS tunnels existing between these EVPN PEs constitute the IP MPLS underlay fabric.

You can configure the MPLS tunnels to tunnel Layer 2 traffic, and to overlay VPN on these tunnels. EVPN control plane distributes both Layer 2 MAC reachability and Layer 3 IP reachability for hosts within the context of the VPN; it overlays a tenant's VPN network on top of the MPLS underlay fabric. Thus you can have tenant's hosts, which are in the same subnet layer 2 domain, but distributed across the fabric, communicate to each other as if they are in a Layer 2 network.

The Layer 2 VLAN and the corresponding IP subnet are not only a network of physically connected hosts on Layer 2 links, but an overlayed network on top of underlayed IP MPLS fabric which is spread across the datacenter.

A routing service, which enables stretching of the subnet across the fabric, is available. It also provides Layer 3 VPN and performs routing between subnets within the context of the Layer 3 VPN. The EVPN PEs provide Layer 2 bridging service between hosts that are spread across the fabric within a Layer 2 domain that is stretched across the fabric, and Layer 3 VPN service or inter-subnet routing service for hosts in different subnets within Layer 3 VPN. For example, as shown in the above topology diagram, the two VM are in the same subnet but they are not connected directly through each other through a Layer 2 link. The Layer 2 link is replaced by MPLS tunnels that are connecting them. The whole fabric acts as a single switch and bridges traffic from one VM to the other. This also enables VM mobility.



Note

Egress marking is not supported on L2 interfaces in a bridge domain.

In the above topology diagram, the VMs, VM1 and VM2 are connected each other. When VM2 migrates to a different switch and different server, the VM's current MAC address and IP address are retained. When the subnet is stretched between two EVPN PEs, the same IRB configuration is applied on both the devices.

For stretching within the same subnet, you must configure the AC interface and the EVI; it is not required to configure IRB interface or VRF.



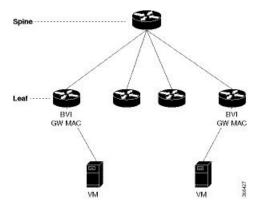
Note

Only a single custom MAC address is supported for all BVIs across the system.

#### Limitations

In case static MAC address is configured on a bundle-ether interface, the following limitations are applied:

- Locally generated packets, such as ICMP, BGP, and so on, going out from the interface have the source MAC address as the statically configured MAC address.
- Transit (forwarded) packets going out of the interface do not have the configured static MAC as source MAC address. In such a scenario, the upper 36-bits come from the system MAC address (or the original/dynamic MAC address) and the lower 12-bits set as zero. To check the dynamic pool of MAC addresses included, use the show ethernet mac-allocation detail command.


For example, if the dynamic MAC address is 008A.9624.48D8 and the configured static MAC address is 0011.2222.1111. Then, the source MAC for transit (forwarded) traffic will be 008A.9624.4000.

For more information on limitations, refer Limitations and Compatible Characteristics of Ethernet Link Bundles in Interface and Hardware Component Configuration Guide for Cisco NCS 5500 Series Routers

## **EVPN Single-Homing Access Gateway**

The EVPN provider edge (PE) devices learn the MAC address and IP address from the ARP traffic that they receive from the customer edge (CE) devices. The PEs create the MAC+IP routes. The PEs advertise the MAC+IP routes to MPLS core. They inject the host IP routes to IP-VPN gateway. Subnet routes are also advertised from the access EVPN PEs in addition to host routes. All the PE nodes add the host routes in the IP-VRF table. The EVPN PE nodes add MAC route to the MAC-VRF table. The IP-VPN PE advertise the subnet routes to the provider edge devices which add the subnet routes to IP-VRF table. On the PE devices, IRB gateway IP addresses and MAC addresses are not advertised through BGP. IRB gateway IP addresses or MAC addresses are used to send ARP requests towards the datacenter CEs.

Figure 2: EVPN Single-Homing Access Gateway



The above topology depicts how EVPN single-homing access gateway enables network connectivity by allowing a CE device to connect to one PE device. The PE device is attached to the Ethernet Segment through bundle or physical interfaces. Null Ethernet Segment Identifier (ESI) is used for single-homing.

## **Configure GRT example**

#### **Running Configuration**

This section shows the GRT running configuration.

```
cef adjacency route override rib
evpn
evi 41020
 advertise-mac
interface TenGigE0/0/0/5.417 l2transport
encapsulation dot1q 417
rewrite ingress tag pop 1 symmetric
interface BVI417
host-routing
ipv4 address 192.168.0.65 255.255.255.248
mac-address abf.4065.417
router bgp 65000
bgp router-id 1.1.1.1
address-family ipv4 unicast
 redistribute connected
address-family 12vpn evpn
 bgp implicit-import
neighbor 2.2.2.2
 remote-as 65000
 update-source Loopback0
  address-family ipv4 unicast
  address-family 12vpn evpn
  !
12vpn
bridge group test
 bridge-domain test
  interface TenGigE0/0/0/5.417
   routed interface BVI417
   - 1
   evi 41020
   !
```

# **EVPN Multihoming All-Active**

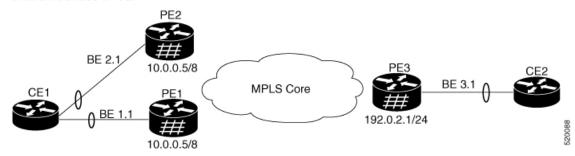
In EVPN IRB, both EVPN and IP VPN (both VPNv4 and VPNv6) address families are enabled between routers and Data Center Interconnect (DCI) gateways. When Layer 2 (L2) stretch is not available in multiple data centers (DC), routing is established through VPNv4 or VPNv6 routes. When Layer 2 stretch is available, host routing is applied where IP-MAC routes are learnt by ARP and are distributed to EVPN/BGP. In remote peer gateway, these IP-MAC EVPN routes are imported into IP VPN routing table from EVPN route-type 2 routes with secondary label and Layer 3 VRF route-target.

Figure 3: EVPN Multi-Homing All-Active



The above topology describes how EVPN Multi-homing access gateway enables redundant network connectivity by allowing a CE device to connect to more than one PE device. Disruptions to the network connectivity are prevented by allowing a CE device to be connected to a PE device or several PE devices through multi-homing. Ethernet segment is the bunch of Ethernet links through which a CE device is connected to more than one PE devices. The All-Active Link Aggregation Group bundle operates as an Ethernet segment. Only MC bundles that operates between two chassis are supported.

# **EVPN Single-Active Multihoming for Anycast Gateway IRB**


Table 1: Feature History Table

| Feature Name                         | Release Information | Feature Description                                                                                                                                                                                             |
|--------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EVPN<br>Single-Active<br>Multihoming | Release 7.3.1       | This feature is now supported on Cisco NCS 5700 series fixed port routers and the Cisco NCS 5500 series routers that have the Cisco NC57 line cards installed and operating in the native and compatible modes. |

The EVPN Single-Active Multihoming for Anycast Gateway IRB feature supports single-active redundancy mode. In this mode, the provider edge (PE) nodes locally connected to an Ethernet Segment load balance traffic to and from the Ethernet Segment based on EVPN service instance (EVI). Within an EVPN service instance, only one PE forwards traffic to and from the Ethernet Segment (ES). This feature supports intersubnet scenario only.

Figure 4: EVPN: Single-Active Multihoming for Anycast Gateway IRB

Different bundles on CE1



Consider a topology where CE1 is multihomed to PE1 and PE2. Bundle Ethernet interfaces BE 1.1, BE 2.1, and the ingress interface must belong to the same switching domain on CE1. Enable host routing and configure anycast gateway IP address on both these peering PEs. PE1 and PE2 are connected to PE3 through MPLS core. PE3 has reachability of subnet 10.0.0.5/8 to both peering PEs. Peering PEs has reachability to PE3 subnet 192.0.2.1/24. CE2 is connected to PE3 through an Ethernet interface bundle. PE1 and PE2 advertise Type 4 routes, and then performs designated forwarder (DF) election. The non-DF blocks the traffic in both the directions in single-active mode.

Consider a traffic flow from CE1 to CE2. CE1 sends an address resolution protocol (ARP) broadcast request to both PE1 and PE2. Peering PEs performs designated forwarder (DF) election for shared ESI. If PE1 is the designated forwarder for the EVI, PE1 replies to the ARP request from CE1. PE2 drops the traffic from CE1. Thereafter, all the unicast traffic is sent through PE1. PE2 is set to stand-by or blocked state and traffic is not sent over this path. PE1 advertises MAC to PE3. PE3 always sends and receives traffic through PE1. PE3 sends the traffic to CE2 over Ethernet interface bundle. If BE1 fails, PE2 becomes the DF and traffic flows through PE2.

## **Configure EVPN Single-Active Multihoming**

Perform the following tasks on PE1 and PE2 to configure EVPN Single-Active Multihoming feature:

- Configure EVPN IRB with host routing
- Configure EVPN Ethernet Segment
- Configure Layer 2 Interface
- Configure a Bridge Domain
- Configure VRF

## **Configure EVPN IRB with Host Routing**

Perform this task to configure EVPN IRB with host routing.

#### **Configuration Example**

```
Router# configure
Router(config)# 12vpn
Router(config-12vpn)# bridge group 6005
Router(config-12vpn-bg)# bridge-domain 6005
```

```
Router(config-l2vpn-bg-bd) # routed interface BVI50
Router(config-l2vpn-bg-bd-bvi) # exit
Router(config-l2vpn-bg-bd-bvi) # interface Bundle-Ether2.1
Router(config-l2vpn-bg-bd-ac) # evi 6005
Router(config-l2vpnbg-bd-evi) # commit
Router(config-l2vpnbg-bd-evi) # exit
Router(config) # interface BVI50
Router(config-if) # host-routing
Router(config-if) # vrf 30
Router(config-if) # ipv4 address 10.0.0.5 255.0.0.0
Router(config-if) # local-proxy-arp
Router(config-if) # mac-address 1.1.1
Router(config-if) # commit
```

#### **Running Configuration**

This section shows EVPN IRB with host routing running configuration.

```
configure
12vpn
bridge group 6005
bridge-domain 6005
interface Bundle-Ether2.1
   evi 6005
!
! interface BVI34
host-routing
vrf 30
ipv4 address 10.0.0.5 255.0.0.0
arp learning local
local-proxy-arp
mac-address 1.1.1
```

## **Configure EVPN Ethernet Segment**

Perform this task to configure the EVPN Ethernet segment.

```
Router# configure
Router(config) # evpn
Router(config-evpn) # interface Bundle-Ether1
Router(config-evpn-ac) # ethernet-segment
Router(config-evpn-ac-es) # identifier type 0 40.00.00.00.00.00.00.00.01
Router(config-evpn-ac-es) # load-balancing-mode single-active
Router(config-evpn-ac-es) # bgp route-target 4000.0000.0001
Router(config-evpn-ac-es) # commit
```

## **Running Configuration**

```
configure
evpn
interface Bundle-Ether1
  ethernet-segment
  identifier type 0 40.00.00.00.00.00.00.00.01
  load-balancing-mode single-active
  bgp route-target 4000.0000.0001
  !
!
```

## **Configure EVPN Service Instance (EVI) Parameters**

Perform this task to define EVPN service instance (EVI) parameters.

```
Router# configure
Router(config)# evpn
Router(config-evpn)# evi 6005
Router(config-evpn-evi)# bgp
Router(config-evpn-evi-bgp)# rd 200:50
Router(config-evpn-evi-bgp)# route-target import 100:6005
Router(config-evpn-evi-bgp)# route-target export 100:6005
Router(config-evpn-evi-bgp)# commit
```

## **Running Configuration**

```
configure
evpn
evi 6005
bgp
rd 200:50
route-target import 100:6005
route-target export 100:6005
!
```

## **Configure Layer 2 Interface**

Perform this task to define Layer 2 interface.

```
Router# configure
Router(config) # interface bundle-ether2.1 12transport
Router(config-subif-12) # no shutdown
Router(config-subif-12) # encapsulation dot1q 1
Router(config-subif-12) # rewrite ingress tag pop 1 symmetric
Router(config-subif-12) # commit
Router(config-subif-12) #exit
```

#### **Running Configuration**

This section shows the Layer 2 interface running configuration.

```
configure
  interface bundle-ether2.1 l2transport
  no shutdown
  encapsulation dotlq 1
  rewrite ingress tag pop 1 symmetric
```

## **Configure a Bridge Domain**

Perform the following steps to configure the bridge domain on PE1 and PE2.

```
Router# configure
Router(config)# 12vpn
Router(config-12vpn)# bridge group 6005
Router(config-12vpn-bg)# bridge-domain 6005
Router(config-12vpn-bg-bd)# interface Bundle-Ether2.1
```

```
Router(config-12vpn-bg-bd-ac)# evi 6005
Router(config-12vpnbg-bd-evi)# commit
Router(config-12vpnbg-bd-evi)# exit
```

### **Running Configuration**

This section shows the bridge domain running configuration.

```
configure
12vpn
bridge group 6005
bridge-domain 6005
interface Bundle-Ether2.1
evi 6005
```

## **Configure VRF**

Perform this task to configure VRF.

#### **Configuration Example**

```
Router# configure
Router(config)# vrf vrf1
Router(config-vrf)# address-family ipv4 unicast
Router(config-l2vpn-vrf-af)# route-target import 100:6005
Router(config-l2vpn-vrf-af)# route-target export 100:6005
Router(config-l2vpn-vrf-af)# commit
```

### **Running Configuration**

This section shows the VRF running configuration.

```
configure
  vrf vrf1
  address-family ipv4 unicast
  route-target import 100:6005
  route-target export 100:6005
```

# **Enable Auto-BGP RT with Manual ESI Configuration**

Configuring an ES-Import RT was previously mandatory for Type 0 ESI. The ES-Import RT is auto-extracted by default, and the configuration serves to override the default value. This feature is based on RFC 7432 but applied specifically to ESI Type 0. For more information, see Section 5 of RFC 7432.

# **Supported EVPN IRB Scenarios**

EVPN IRB supports the following scenarios:

Dual-homing supports the following methods:

- Only all-active mode is supported
- Only two PE gateways in a redundancy group

Single-homing supports the following methods:

- · Physical
- VLAN
- · Bundle-ethernet
- QinQ access
- Only IPv4 is supported.
- Subnet-stretch feature with EVPN IRB is supported in VRF as well as in Global Routing Table (GRT). In GRT, **bgp implicit-import** under the BGP address-family l2vpn evpn must be configured.

## **Distributed Anycast Gateway**

EVPN IRB for the given subnet is configured on all the EVPN PEs that are hosted on this subnet. To facilitate optimal routing while supporting transparent virtual machine mobility, hosts are configured with a single default gateway address for their local subnet. That single (anycast) gateway address is configured with a single (anycast) MAC address on all EVPN PE nodes locally supporting that subnet. This process is repeated for each locally defined subnet requires Anycast Gateway support.

The host-to-host Layer 3 traffic, similar to Layer 3 VPN PE-PE forwarding, is routed on the source EVPN PE to the destination EVPN PE next-hop over an IP or MPLS tunnel, where it is routed again to the directly connected host. Such forwarding is also known as Symmetric IRB because the Layer 3 flows are routed at both the source and destination EVPN PEs.

The following are the solutions that are part of the Distributed Anycast Gateway feature:

# **EVPNIRB** with All-Active Multi-Homing without Subnet Stretch or Host-Routing across the Fabric

For those subnets that are local to a set of multi-homing EVPN PEs, EVPN IRB Distributed Anycast Gateway is established through subnet routes that are advertised using EVPN Route Type 5 to VRF-hosting remote leafs. Though there is no need for the /32 routes within the subnet to be advertised, host MAC and ARP entries have to synced across the EVPN PE to which the servers are multi-homed.



Note

The Subnet Stretch feature with EVPN IRB is exclusively available for use within VRF instances and is not applicable to the global VRF.

This type of multi-homing has the following characteristics:

- All-active EV LAG on access
- Layer 3 ECMP for the fabric for dual-homed hosts based on subnet routes

- Absence of Layer 2 subnet stretch over the fabric
- Layer 2 stretch within redundancy group of leafs with orphan ports

Prefix-routing solution for a non-stretched subnet is summarized as below:

Across multi-homing EVPN PEs:

- Local ARP cache and MAC addresses are synchronized for dual-homed hosts through EVPN MAC+IP host route advertisements. They are imported as local, and are based on the local ESI match, for optimal forwarding to the access gateway.
- Orphan MAC addresses and host IP addresses are installed as remote addresses over the fabric.
- ES/EAD routes are exchanges for the designated forwarder (DF) election and split-horizon label.

#### Across remote EVPN PEs:

- Dual-homed MAC+IP EVPN Route Type 2 is exchanged with the ESI, EVI Label, Layer 2-Route Type. It is not imported across the fabric, if there is no subnet stretch or host-routing.
- The subnet IP EVPN Route Type 5 is exchanged with VRF label and Layer 3-Route Type.
- Layer 3 Route Type for the VRFs is imported that are present locally.
- Layer 2 Route Type for locally present BDs is imported. It is only imported from the leaf in the same redundancy group, if BD is not stretched.

# **EVPN IRB** with All-Active Multihoming with Subnet Stretch or Host-Routing across the Fabric

For a bridge domain or subnet that is stretched across remote EVPN PEs, both /32 host routes and MAC routes are distributed in a EVPN overlay control plane to enable Layer 2 and Layer 3 traffic to the end points in a stretched subnet.

This type of multihoming has the following characteristics:

- All-active EV-LAG on the access gateway
- Layer 2 or Layer 3 ECMP for the fabric for dual-homed hosts based on Route Type 1 and Route Type
- Layer 3 unipath over the fabric for single-homed hosts based on Route Type 2
- Layer 2 subnet stretch over the fabric
- Layer 2 stretch within redundancy group of leafs with orphan ports

MAC and host routing solution for a stretched subnet is summarized as follows:

Across multihoming EVPN PEs:

- The Local ARP cache and MAC addresses are synchronized for dual-homed hosts through EVPN MAC+IP host route advertisements. They are imported as local, based on the local ESI match, for optimal forwarding to the access gateway.
- Synchronized MAC+IP are re-originated for inter-subnet Layer 3 ECMP.

- Orphan MAC address and host IP address are installed as remote addresses over the fabric.
- ES/EAD route is exchanged for designated forwarder (DF) election and split-horizon label.

#### Across remote EVPN PEs:

- Dual-homed MAC+IP EVPN Route Type 2 is exchange with ESI, EVI label, Layer 2-Route Type, VRF label, and Layer 3-Route Type.
- Subnet IP EVPN Route Type 5 is exchanged for VRF label, Layer 3-Route Type for silent hosts, and non-stretched subnets.
- Layer 3 Route Type is imported for locally present VRFs.
- Layer 2 Route Type is imported for locally present bridge domains.

## **MAC and IP Unicast Control Plane**

This use case has following types:

#### Prefix Routing or No Subnet Stretch

IP reachability across the fabric is established using subnet prefix routes that are advertised using EVPN Route Type 5 with the VPN label and VRF RTs. Host ARP and MAC sync are established across multi-homing EVPN PEs using MAC+IP Route Type 2 based on a shared ESI to enable local switching through both the multi-homing EVPN PEs.

#### **Host Routing or Stretched Subnet**

When a host is discovered through ARP, the MAC and IP Route Type 2 is advertised with both MAC VRF and IP VRF router targets, and with VPN labels for both MAC-VRF and IP-VRF. Particularly, the VRF route targets and Layer 3 VPN label are associated with Route Type 2 to achieve PE-PE IP routing identical to traditional L3VPNs. A remote EVPN PE installs IP/32 entries directly in Layer 3 VRF table through the advertising EVPN PE next-hop with the Layer 3 VPN label encapsulation, much like a Layer 3 VPN imposition PE. This approach avoids the need to install separate adjacency rewrites for each remote host in a stretched subnet. Instead, it inherits a key Layer 3 VPN scale benefit of being able to share a common forwarding rewrite or load-balance resource across all IP host entries reachable through a set of EVPN PEs.

### ARP and MAC sync

For hosts that are connected through LAG to more that one EVPN PE, the local host ARP and MAC entries are learnt in data plane on either or both of the multihoming EVPN PEs. Local ARP and MAC entries are synced across the two multihoming EVPN PEs using MAC and IP Route Type 2 based on a shared ESI to enable local switching through both the multihoming EVPN PEs. Essentially, a MAC and IP Route Type 2 that is received with a local ESI causes the installation of a synced MAC entry that points to the local AC port, and a synced ARP entry that is installed on the local BVI interface.

#### MAC and IP Route Re-origination

MAC and IP Route Type 2 received with a local ESI, which is used to sync MAC and ARP entries, is also re-originated from the router that installs a SYNC entry, if the host is not locally learnt and advertised based on local learning. This route re-origination is required to establish overlay IP ECMP paths on remote EVPN PEs, and to minimize traffic hit on local AC link failures, that can result in MAC and IP route withdraw in the overlay.



Note

If custom or static MAC address is configured on a BVI interface, the MAC address on the wire may be different than what is configured. This has no operational or functional impact.

## **Intra-subnet Unicast Data Plane**

The Layer 2 traffic is bridged on the source EVPN PE using ECMP paths to remote EVPN PEs, established through MAC+IP RT2, for every ES and for every EVI, ES and EAD Route Type 2 routes that are advertised from the local EVPN PEs.

## **Inter-subnet Unicast Data Plane**

Inter-subnet traffic is routed on the source ToRs through overlay ECMP to the destination ToR next-hops. Data packet are encapsulated with the VPN label advertised from the ToR and tunnel label for the BGP next-hop towards the spine. It is then routed again on the destination ToR using a local ARP adjacency towards the host. IP ECMP on the remote ToRs is established through local and re-originated routes advertised from the local ToRs.

## **Advertise EVPN Host IP Routes as IP Unicast Routes**

**Table 2: Feature History Table** 

| Feature Name | Release Information | Feature Description |
|--------------|---------------------|---------------------|
|--------------|---------------------|---------------------|

| Advertise EVPN<br>Host IP Routes as<br>IP Unicast Routes | Release 7.10.1 | Introduced in this release on: NCS 5500 fixed port routers; NCS 5700 fixed port routers; NCS 5500 modular routers (NCS 5500 line cards; NCS 5700 line cards [Mode: Compatibility; Native])                                                                                                                                                                             |
|----------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                          |                | You can now resume a disrupted video streaming by re-injecting locally learned EVPN host IP routes from multiple bridge domains back into a spine BGP router. The EVPN host routes can be advertised as IPv4 or IPv6 unicast routes to BGP peers. This allows spine BGP routers to install the host routes from a video core source in the Global Routing Table (GRT). |
|                                                          |                | When there is a link failure, the video streaming is disrupted. The GRT helps to track and locate the video core source, gets the multicast traffic to flow back into the network, and resumes the video streaming.                                                                                                                                                    |
|                                                          |                | The feature introduces these changes:                                                                                                                                                                                                                                                                                                                                  |
|                                                          |                | CLI:                                                                                                                                                                                                                                                                                                                                                                   |
|                                                          |                | • import from bridge-domain                                                                                                                                                                                                                                                                                                                                            |
|                                                          |                | YANG Data Model:                                                                                                                                                                                                                                                                                                                                                       |
|                                                          |                | • New XPaths for                                                                                                                                                                                                                                                                                                                                                       |
|                                                          |                | Cisco-IOS-XR-um-router-bgp-cfg.yang (see<br>GitHub, YANG Data Models Navigator)                                                                                                                                                                                                                                                                                        |
|                                                          |                |                                                                                                                                                                                                                                                                                                                                                                        |

A video core source forwards multicast traffic to the routers in a EVPN multi-homed network. A node receives the video through multicast stream and the traffic is received as EVPN host routes. You can configure the routers to advertise the EVPN host routes as IP unicast routes, so that the host routes are installed in the Global Routing Table (GRT) of spine BGP peers in the network. When there is a link failure that breaks the multicast traffic flow, the video streaming is disrupted. The spine routers advertise the Protocol Independent Multicast (PIM) join message based on the previously learned routes to restore the multicast traffic to flow back to the node, so that the video streaming is resumed.

The following illustration shows how traffic flows from a video core source to node in a network.

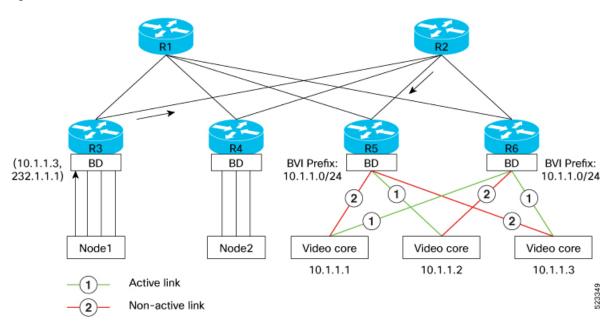



Figure 5: Traffic Flow from Video Core to Node

In this example:

- R1 and R2 are the spine routers.
- R3 and R4 are connected to the nodes.
- R5 and R6 are dual-homed that run BGP EVPN and connected to the video core through both active and non-active links.

The selection of active or inactive ports is controlled by the video core.

The Node1 behind R3 receives multicast video stream provided by video core (10.1.1.3) over the group (10.1.1.3, 232.1.1.1). The Node1 originates an Internet Group Management Protocol (IGMP) join for the group (10.1.1.3, 232.1.1.1) and sends the IGMP join message to R3. As a result, R3 originates a PIM join for group (10.1.1.3, 232, 1.1.1.1). The PIM join message is forwarded to the spine ECMP next-hop nodes (R1 or R2) and is sent to the video core through R5 or R6.

During a link failure, when the host routes from the video core are absent in the spine routers (R1 and R2), the spine routers advertise the PIM join message based on the IP prefix (10.1.1.0/24) that was previously advertised by both R5 and R6.

In this case, either one of the following happens:

- If the PIM join message is forwarded to R5, which is connected to the non-active link to video core (10.1.1.3), the multicast traffic will not flow to the receiver.
- If the PIM join message is forwarded to R6 that has the multicast flow connected to the active link to video core (10.1.1.3), the multicast traffic can flow back to the receiver node, Node1.

You can use the **import from bridge-domain** command to import the EVPN host routes from the bridge domain and advertise them as IP unicast routes, so that the host routes are installed in the Global Routing Table (GRT) of spine routers in the network. When you enable this functionality, the spine routers always advertise the PIM join message to the router with active link so that the multicast traffic flow is not affected.

## **Configure EVPN Host IP Routes as IP Unicast Routes**

The following example shows how to import the routes from the bridge domains as IPv4 and IPv6 unicast routes.

Configure the following on the spine routers, R1 and R2:

- 1. Enter the BGP configuration mode to configure BGP routing process.
- Configure an address family mode with IPv4 unicast, which enables the router to advertise IPv4 unicast routes.
- Configure the import from bridge-domain command to import the routes from all the bridge domains in the router.

If required, you can repeat the above steps for an address family configuration with IPv6 unicast.

```
Router(config)# router bgp 100
Router(config-bgp)# address-family ipv4 unicast
Router(config-bgp-af)# import from bridge-domain
Router(config-bgp-af)# exit
Router(config-bgp)# address-family ipv6 unicast
Router(config-bgp-af)# import from bridge-domain
```

#### **Running Configuration**

```
router bgp 100
address-family ipv4 unicast
  import from bridge-domain
address-family ipv6 unicast
  import from bridge-domain
```

# **BVI-Coupled Mode**

When ACs go down, the BVI also goes down. However, with this mode enabled, the state of the BVI remains Up even though the ACs go down. Hence, the BVI state becomes EVPN-aware.

BVI tracks the Up or Down state of ACs and PWs in a bridge. When the EVPN port is available, there may be an L2 redirect path over EVI to carry the traffic between L3 to L2. However, this depends on the remote or peer EVI-EAD routes received.

Under certain conditions, you can reduce the churns of BVI state adjacency by keeping the BVI state Up. BVI state drives the state of EVPN\_SYNC adjacencies being pushed to forwarding entries, thereby reducing the churns further. Keeping the BVI state Up, the router creates adjacencies in the forwarding table, which indicates that a local adjacency is invalid when an interface is down.

#### **Configure BVI-Coupled Mode**

Perform this task to configure BVI-coupled mode.

```
evpn
evi 101
bgp
  route-target import 60000:101
  route-target export 60000:101
!
bvi-coupled-mode
```

```
12vpn
bridge group BG-1
bridge-domain BD-1
interface Bundle-Ether100.101
!
  routed interface BVI101
!
  evi 101
```

#### **Verification**

Verify that the BVI-coupled mode is enabled.

#### Router# show evpn evi detail

```
VPN-ID Encap
                Bridge Domain
                                           Type
_______
101 MPLS BD-1
                                           EVPN
  Stitching: Regular
  Unicast Label: 35048
  Multicast Label: 33000
  Reroute Label: 0
  Flow Label: N
  Control-Word: Enabled
  E-Tree: Root
  Forward-class: 0
  Advertise MACs: Yes
  Advertise BVI MACs: No
  Aliasing: Enabled
  UUF: Enabled
  Re-origination: Enabled
  Multicast:
   Source connected : No
    IGMP-Snooping Proxy: No
    MLD-Snooping Proxy : No
  BGP Implicit Import: Enabled
  VRF Name: cust1
  Preferred Nexthop Mode: Off
BVI Coupled Mode: Yes -----> enabled
  BVI Subnet Withheld: ipv4 No, ipv6 No
  RD Config: none
  RD Auto : (auto) 201.201.201.1:101
  RT Auto : 60000:101
  Route Targets in Use
                            Type
  60000:101
                            Import
  60000:101
                            Export
```

# VM Mobility Support

VM mobility is the ability of virtual machines to migrate between one server and another while retaining their existing MAC and IP addresses.

The following are the two key components in EVPN Route Type 2 that enable VM Mobility:

• Host MAC advertisement component that is imported into local bridge MAC table, and Layer 2 bridged traffic across the network overlay.

• Host IP advertisement component that is imported into the IP routing table in a symmetric IRB design, enables routed traffic across the network overlay.

The above-mentioned components are advertised together in a single MAC + IP host route advertisement. An additional MAC-only route could also be advertised.

The following behaviors of VM are supported. The VM can:

- retain existing MAC and acquire a new IP address
- retain existing IP address and acquire a new MAC
- retain both existing MAC and IP address

## **MAC and MAC-IP Sequence Numbers**

The IRB gateway device assigns, manages, and advertises sequence numbers that are associated with the locally learnt MAC routes through hardware learning, and the locally learnt MAC-IP routes through ARP.

## Synchronized MAC and MAC-IP Sequence Numbers

In a host that is multi-homed to two ToRs, the locally learnt MAC and MAC-IP routes are synchronized across the two multi-homing peers through Route Type 2 learnt routes with a local ESI. So a device could have either MAC and MAC-IP, or both of them, learnt through both synchronized and local learning. Sequence numbers are synchronized across local and synchronized routes, because of which the sequence number that is advertised from the two ToRs for a given route is always the same. In certain situations, remote-sync route with same ESI can have a higher sequence number than a local route. In such a case, the local route sequence number is bumped up to match remote-sync route sequence number.

## **Local Sequence Number Updates**

Host mobility is triggered when a local route is learnt while a remote route already exists. When mobility occurs, the local route is assigned a sequence number that is one higher than the existing remote route. This new local route is then advertised to the rest of the network.

## **Best Route Selection after Host Movement**

When a host moves, the EVPN-PE at the new location of the host generates and advertises a higher sequence route to the network. When a higher sequence number route is received, as per RFC 7432, it is considered as the new best route and it is used for forwarding traffic. Best route selection is done for both MAC and MAC-IP routes.

## Stale Route Deletion after a Host Movement

After a host moves from local to remote ESI, if a remote route from a different ESI is received and if a local route for the same host with a lower sequence number exists, then the local route is deleted and is withdrawn from the network.

The new higher sequence number remote MAC route is now considered best and is used to forward traffic. An ARP probe is sent to the host at the old local location. Because the host is at new remote location, probe will not succeed, resulting in clearing old local MAC-IP route.

## **Host Movement Detection through GARP**

If a host sends a Gratuitous ARP (GARP) at its new location after a movement, the local MAC and local MAC-IP learning independently trigger mobility for both routes.

## **Host Move Detection with Silent Host**

If a host does not send a GARP or a data packet at its new location following a move, the aging of the local MAC at the old location triggers mobility for both routes.

## **Host Move Detection without GARP with Data Packet**

If the host does not send a GARP following a move, a data packet from the host triggers a proactive ARP probe to discover host MAC-IP and trigger mobility for this host across the overlay.

## **Duplicate MAC Detection**

Duplicate MAC detection and freezing is supported as per RFC 7432.

**Detection:** Duplicate detection and recovery parameters are configurable. The default configuration is five times in 180 seconds and route freezing after three duplicate cycles. With the default configuration, when a host moves five times in 180 seconds, it is marked as duplicate for 30 seconds. Route advertisement for hosts in Duplicate state is suppressed. Host is taken out of duplicate state after 30 seconds. After a host is detected as duplicate for 3 times, on the fourth duplicate cycle, the host is permanently frozen. All route advertisements are suppressed for the frozen hosts.

In multi-homed hosts, a MAC is not necessarily learnt locally but is learnt through synchronization. Duplicate detection is supported for both local and remote-sync hosts. Remote-sync routes are differentiated from remote routes.

**MAC-IP Handling:** If the MAC route is in duplicate or frozen state, the corresponding local MAC-IP is updated, except that the route deletes are not withheld.

**Duplicate State Handling:** When a host is in duplicate state, route advertisements are suppressed. However, local routes are programmed in hardware so that traffic on local EVPN-PE is forwarded to the local host.

**Recovery:** It is possible to unfreeze permanently frozen hosts. The following is the recommended procedure to clear frozen hosts:

- Shutdown the host which is causing duplicate traffic.
- Use the **clear l2route evpn frozen-mac frozen-flag** command to clear the frozen hosts.

## **Configuring EVPN IRB**

RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# interface Bundle-Ether 3

```
RP/0/RSP0/CPU0:router(config-if) # lacp system mac 1.1.1
RP/0/RSP0/CPU0:router(config-if)# exit
/* Configure EVPN L3VRF per DC tenant. */
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# vrf irb1
RP/0/RSP0/CPU0:router(config-vrf)# address-family ipv4 unicast
RP/0/RSP0/CPU0:router(config-vrf-af)# import route-target 1000:1
RP/0/RSP0/CPU0:router(config-vrf-af)# export route-target 1000:1
RP/0/RSP0/CPU0:router(config-vrf-af)# exit
/* Configure Layer 2 attachment circuit (AC) from multichassis (MC) bundle interface, and
bridge-group virtual interface (BVI) per bridge domain. */
/st Note: When a VM migrates from one subnet to another (subnet stretching), apply the
following IRB configuration to both the EVPN PEs. *\
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# interface bvi 1001
RP/0/RSP0/CPU0:router(config-if) # host-routing
RP/0/RSP0/CPU0:router(config-if)# vrf irb1
RP/0/RSP0/CPU0:router(config-if)# ipv4 address 10.10.0.4 255.255.255.0
RP/0/RSP0/CPU0:router(config-if)# ipv4 address 172.16.0.1 secondary
RP/0/RSP0/CPU0:router(config-if) # mac-address 00aa.1001.00aa
/* Configure EVPN Layer 2 bridging service. Note: This configuration is performed in Layer
2 gateway or bridging scenario. */
Router# configure
Router(config) # 12vpn
Router(config-l2vpn)# bridge group 1
Router(config-l2vpn-bg) # bridge-domain 1-1
Router(config-l2vpn-bg-bd) # interface GigabitEthernet 0/0/0/1.1
Router(config-12vpn-bg-bd-ac)# evi 1
Router(config-12vpn-bg-bd-ac-evi) # commit
Router(config-12vpnbg-bd-ac-evi)# exit
/* Configure BGP. */
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# router bgp 3107
RP/0/RSP0/CPU0:router(config-bgp)# vrf irb1
RP/0/RSP0/CPU0:router(config-bgp-vrf) # rd auto
RP/0/RSP0/CPU0:router(config-bgp-vrf) # address-family ipv4 unicast
RP/0/RSP0/CPU0:router(config-bgp-vrf-af)# redistribute connected
RP/0/RSP0/CPU0:router(config-bgp-vrf-af)# redistribute static
RP/0/RSP0/CPU0:router(config-bgp-vrf-af)# exit
/* Configure EVPN, and configure main bundle ethernet segment parameters in EVPN. */
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# evpn
RP/0/RSP0/CPU0:router(config-evpn)# evi 2001
RP/0/RSP0/CPU0:router(config-evpn-evi)# bgp
RP/0/RSP0/CPU0:router(config-evpn-evi-bgp) # route-target import 1000:1
RP/0/RSP0/CPU0:router(config-evpn-evi-bgp) # route-target export 1000:1
RP/0/RSP0/CPU0:router(config-evpn-evi-bgp)# exit
RP/0/RSP0/CPU0:router(config-evpn-evi)# advertise-mac
RP/0/RSP0/CPU0:router(config-evpn-evi)# unknown-unicast-suppression
```

```
/* Configure Layer 2 VPN. */

RP/0/RSP0/CPU0:router# configure

RP/0/RSP0/CPU0:router(config)# 12vpn

RP/0/RSP0/CPU0:router(config-12vpn)# bridge group irb

RP/0/RSP0/CPU0:router(config-12vpn-bg)# bridge-domain irb1

RP/0/RSP0/CPU0:router(config-12vpn-bg-bd)# interface bundle-Ether3.1001

RP/0/RSP0/CPU0:router(config-12vpn-bg-bd-ac)# routed interface BVI100

RP/0/RSP0/CPU0:router(config-12vpn-bg-bd-bvi)# split-horizon group core

RP/0/RSP0/CPU0:router(config-12vpn-bg-bd-bvi)# evi 10001
```

## **Running Configuration for EVPN IRB**

```
/* Configure LACP */
interface Bundle-Ether3
lacp system mac 1.1.1
/* Configure EVPN Layer 3 VRF per DC tenant. */
vrf irb1
address-family ipv4 unicast
  import route-target
  1000:1
 export route-target
  1000:1
/* Configure Layer 2 attachment circuit (AC) from multichassis (MC) bundle interface, and
bridge-group virtual interface (BVI) per bridge domain./*
interface Bundle-Ether3.1001 12transport
encapsulation dot1q 1001
rewrite ingress tag pop 1 symmetric
interface BVI1001
host-routing
vrf irb1
ipv4 address 10.0.1.1 255.255.255.0
mac-address 0000.3030.1
/* Configure BGP. */
router bgp 3107
vrf irb1
 rd auto
 address-family ipv4 unicast
 redistribute connected
 redistribute static
/* Configure EVPN. */
```

```
evpn
evi 10001
bgp
route-target import 1000:1
route-target export 1000:1
!
advertise-mac
unknown-unicast-suppression
!

/* Configure Layer2 VPN. */
12vpn
bridge group irb
bridge-domain irb1
interface Bundle-Ether3.1001
!
routed interface BVI1001
split-horizon group core
!
evi 10001
!
```

## **Verify EVPN IRB**

Verify the Address Resolution Protocol (ARP) protocol entries, and synced entries in multi-homing scenarios.

RP/0/RP0/CPU0:router# show arp vrf evpn1

| 0/1/CPU0                                                                 |                                |                                                                                                          |                                                                      |                                              |                                              |
|--------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|
| Address                                                                  | Age                            | Hardware Addr                                                                                            | State                                                                | Type                                         | Interface                                    |
|                                                                          |                                |                                                                                                          | Interface<br>Dynamic<br>EVPN_SYNC<br>Interface<br>Dynamic<br>Dynamic | ARPA<br>ARPA<br>ARPA<br>ARPA<br>ARPA<br>ARPA | BVI1<br>BVI1<br>BVI2<br>BVI2<br>BVI2<br>BVI2 |
| 0/0/CPU0                                                                 |                                |                                                                                                          |                                                                      |                                              |                                              |
| Address                                                                  | Age                            | Hardware Addr                                                                                            | State                                                                | Туре                                         | Interface                                    |
| 10.1.1.1<br>10.1.1.11<br>10.1.1.93<br>10.1.2.1<br>10.1.2.91<br>10.1.2.93 | 02:23:46<br>-<br>-<br>02:24:14 | 0010.0001.0001<br>1000.0001.0001<br>0000.f65a.357c<br>0011.0112.0001<br>0000.f65a.3570<br>0000.f65a.357d | Interface<br>Dynamic<br>EVPN_SYNC<br>Interface<br>Dynamic<br>Dynamic | ARPA<br>ARPA<br>ARPA<br>ARPA E<br>ARPA E     | BVI1<br>BVI1<br>BVI2<br>BVI2                 |

Verify the adjacency entries, particularly verify newly added information for synced IPv4 and IP ARP entries.

```
RP/0/RP0/CPU0:router# show adjacency ipv4 BVI 1 internal detail location 0/0/CPU0
BVI1, 10.1.1.93 (ipv4)
Version: 1169, references: 2, transient lock: 0
```

```
Encapsulation information (14 bytes) 0000f65a357c0000f65a357c0800 MTU: 1500
Adjacency pointer is: 0x770a9278
Platform adjacency pointer is: 0x7d7bc380
Last updated: Feb 28 15:58:21.998
Adjacency producer: arp (prod id: 10)
 Flags: incomplete adj,
Additional Adjacency Information (4 bytes long),
Upto first 4 bytes (in hex): 01000000
Netio idb pointer not cached Cached interface type: 78
Adjacency references:
bfd agent (JID 150, PID 3637), 0 reference
12fib_mgr (JID 185, PID 4003), 0 reference
fib mgr (JID 294, PID 3605), 1 reference
aib (JID 314, PID 3590), 1 reference
BVI1, 10.1.1.11 (ipv4) Version: 1493,
references: 3, transient lock: 0
Encapsulation information (14 bytes) 1000000100010001000100010800
MTU: 1500
Adjacency pointer is: 0x770ab778
Platform adjacency pointer is: 0x7d7bcb10
Last updated: Mar 2 17:22:00.544
Adjacency producer: arp (prod id: 10)
Flags: incomplete adj,
Netio idb pointer not cached Cached interface type: 78
Adjacency references:
bfd agent (JID 150, PID 3637), 0 reference
12fib mgr (JID 185, PID 4003), 1 reference
fib mgr (JID 294, PID 3605), 1 reference
aib (JID 314, PID 3590), 1 reference
```

Verify the entries to obtain details learnt in L2FIB line cards. In multi-homing active-active scenario, the link-local addresses are also updated and distributed to EVPN peer gateways.

#### RP/0/RP0/CPU0:router# show 12vpn mac-learning mac-ipv4 all location 0/RP0/CPU0

| Topo ID | Producer | Next Hop(s) | Mac Address    | IP Address |
|---------|----------|-------------|----------------|------------|
| 6       | 0/0/CPU0 | BV1         | 1000.0001.0001 | 10.1.1.11  |
| 7       | 0/0/CPU0 | BV2         | 0000.f65a.3570 | 10.1.2.91  |
| 7       | 0/0/CPU0 | BV2         | 0000.f65a.357d | 10.1.2.93  |

#### RP/0/RP0/CPU0:router# show 12vpn mac-learning mac-ipv6 all location 0/RP0/CPU0

| 6 0/0/CPU0 BV1 0000.f65a.357c fe80::200:f6ff:fe5a:357c<br>7 0/0/CPU0 BV2 0000.f65a.3570 10:1:2::91<br>7 0/0/CPU0 BV2 0000.f65a.357d 10:1:2::93<br>7 0/0/CPU0 BV2 0000.f65a.357d fe80::200:f6ff:fe5a:3570 | Topo ID Producer | Next Hop(s) Mac          | Address IP                   | Address |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|------------------------------|---------|
| 7 0,0,0100 BVE 0000:1000:000 1000:200:1011:1000:001                                                                                                                                                      | 7 0/0/CPU0       | BV2 0000.f<br>BV2 0000.f | 65a.3570 10:<br>65a.357d 10: | 1:2::91 |

Verify sequence ID for VM mobility.

#### RP/0/RP0/CPU0:router# show 12route evpn mac-ip all detail

```
Sun Apr 30 18:09:19.368 PDT
Flags: (Stt)=Static; (L)=Local; (R)=Remote; (F)=Flood;
(N)=No Redistribution; (Rtr)=Router MAC; (B)=Best Route;
```

```
(P)=Probe; (S)=Peer Sync; (F)=Flush;
(D) = Duplicate MAC; (Z) = Frozen MAC;
Topo ID
       Mac Address IP Address Prod Next Hop(s)
                                                      Seq No Flags
Opaque Data Type Opaque Data Len Opaque Data Value
                ---- ------
_____
33 0022.6730.0001 10.130.0.2 L2VPN Bundle-Ether6.1300 0
                                                             SB 0 12
0x06000000
                0x22000080
                               0x0000000
Last Update: Sun Apr 30 15:00:01.911 PDT
         0022.6730.0002 10.130.0.3 LOCAL Bundle-Ether6.1300 0 B
                                                                          N/A
               N/A
                              N/A
RP/0/RP0/CPU0:router# show 12route evpn mac all detail
Flags: (Stt)=Static; (L)=Local; (R)=Remote; (F)=Flood;
       (N) = No Redistribution; (Rtr) = Router MAC; (B) = Best Route;
       (S) = Peer Sync; (Spl) = Split; (Rcv) = Recd;
       (D) = Duplicate MAC; (Z) = Frozen MAC;
                    Prod Next Hop(s)
Topo ID Mac Address
                                           Seq No Flags Slot ESI Opaque Data
Type Opaque Data Len Opaque Data Value
______
     0022.5830.0001 L2VPN Bundle-Ether5.1300 0
                                                  BSSpl 0 (F)
36
            0x06000000 0x25000080 0x00000000
Last Update: Thu Apr 20 09:04:44.358 PDT
```

#### **Configuration Example**

```
/* Mac Address Duplicate Detection Configuration */
Router# configure
Router(config)# evpn
Router(config-evpn)# host mac-address duplicate-detection
Router(config-evpn-host-mac-addr-dup-detection)# move-count 2
Router(config-evpn-host-mac-addr-dup-detection)# freeze-time 10
Router(config-evpn-host-mac-addr-dup-detection)# retry-count 2
Router(config-evpn-host-mac-addr-dup-detection)# commit
Running Configuration
```

```
/* This section shows the running configuration to detect duplicate IP address */
evpn
host mac-address duplicate-detection
move-count 2
freeze-time 10
retry-count 2
```

Verify the entries to obtain details learnt in L2FIB RP when it is an aggregator. Route processor (RP) entries are aggregated entries obtained from the line cards. In some cases of MAC move, there could be different states for the same MAC. This is displayed in RP aggregated entries. RP determines the update to be sent to L2RIB according to MAC-Learning algorithms.

#### RP/0/RP0/CPU0:router# show 12vpn mac-learning mac-ipv4 all location 0/RP0/CPU0

| Topo ID | Producer | Next Hop(s) | Mac Address    | IP Address |
|---------|----------|-------------|----------------|------------|
|         |          |             |                |            |
| 6       | 0/0/CPU0 | BV1         | 1000.0001.0001 | 10.1.1.11  |
| 7       | 0/0/CPU0 | BV2         | 0000.f65a.3570 | 10.1.2.91  |
| 7       | 0/0/CPU0 | BV2         | 0000.f65a.357d | 10.1.2.93  |

Verify the entries in L2RIB that are updated by RP L2FIB. Note the following when you verify the entries:

- The entries with producer as L2VPN and NH as remote IP are learnt from the remote peer gateways, which are learnt from BGP, updated to EVPN, and then updated to L2RIB. So these entries are not from local IP-MAC learning.
- The entries with producer as L2VPN and NH as local bundle interfaces are synced entries from MH-AA peer gateway.
- The entries with producer as LOCAL and NH as local bundle interfaces are dynamically learnt local entries.

#### RP/0/RP0/CPU0:router# show 12route evpn mac-ip evi 6

| Topo ID | Mac Address    | IP Address               | Prod  | Next Hop(s)         |
|---------|----------------|--------------------------|-------|---------------------|
|         |                |                          |       |                     |
| 6       | 0000.f65a.3569 | 10.1.1.101               | L2VPN | 172.16.0.2/24014/ME |
| 6       | 0000.f65a.3575 | 10.1.1.97                | L2VPN | 172.16.0.7/24025/ME |
| 6       | 0000.f65a.3575 | 10:1:1::97               | L2VPN | 172.16.0.7/24025/ME |
| 6       | 0000.f65a.3575 | fe80::200:f6ff:fe5a:3575 | L2VPN | 172.16.0.7/24025/ME |
| 6       | 0000.f65a.357c | 10.1.1.93                | L2VPN | Bundle-Ether1.11    |
| 6       | 0000.f65a.357c | 10:1:1::93               | L2VPN | Bundle-Ether1.11    |
| 6       | 0000.f65a.357c | fe80::200:f6ff:fe5a:357c | LOCAL | Bundle-Ether1.11    |
| 6       | 0010.0001.0012 | 10.1.1.12                | L2VPN | 172.16.0.7/24025/ME |
| 6       | 1000.0001.0001 | 10.1.1.11                | LOCAL | Bundle-Ether1.11    |
| 6       | 90e2.ba8e.c0c9 | 10.1.1.102               | L2VPN | 172.16.0.2/24014/ME |

#### Verify entries to obtain details of EVPN.

#### RP/0/RP0/CPU0:router# show evpn evi vpn-id 1 mac ipv4 10.1.1.93 detail

| EVI | MAC address    | IP address | Nexthop    | Label |
|-----|----------------|------------|------------|-------|
|     |                |            |            |       |
| 1   | 0000.f65a.357c | 10.1.1.93  | 172.16.0.2 | 24014 |

Ethernet Tag : 0

Multi-paths Resolved : True

Static : No

Local Ethernet Segment : N/A

Remote Ethernet Segment: 0100.6cbc.a77c.c180.0000

Local Sequence Number : N/A Remote Sequence Number : 0 Local Encapsulation : N/A Remote Encapsulation : MPLS

Verify local BGP entries with appropriate second label and second IP VRF route-target.

```
RP/0/RP0/CPU0:router# show bgp 12vpn evpn rd 172.16.0.1:1
[2][0][48][0000.f65a.357c][32][10.1.1.93]/136
BGP routing table entry for [2][0][48][0000.f65a.357c][32][10.1.1.93]/136, Route
Distinguisher: 172.16.0.1:1
Versions:
Process bRIB/RIB SendTblVer
Speaker 3772 3772
Local Label: 24013
Last Modified: Feb 28 16:06:37.073 for 2d19h
Paths: (2 available, best #1)
Advertised to peers (in unique update groups):
172.16.0.9
Path #1: Received by speaker 0
Advertised to peers (in unique update groups):
172.16.0.9
Local
0.0.0.0 from 0.0.0.0 (172.16.0.1)
Second Label 24027
                                                  >>>> Second label when IRB host-routing
is enabled.
Origin IGP, localpref 100, valid, redistributed, best, group-best, import-candidate,
rib-install
Received Path ID 0, Local Path ID 0, version 3772
Extended community: SoO:172.16.0.2:1 RT:100:100
EVPN ESI: 0100.6cbc.a77c.c180.0000
Path #2: Received by speaker 0
Not advertised to any peer
Local
172.16.0.2 (metric 101) from 172.16.0.9 (172.16.0.2)
Received Label 24014, Second Label 24031
Origin IGP, localpref 100, valid, internal, add-path, import-candidate, imported, rib-install
Received Path ID 0, Local Path ID 2, version 3769
Extended community: SoO:172.16.0.2:1 RT:200:1 RT:700:100 >>> Second RT is IP VRF RT for
remote to import into IP VRF routing table.
Originator: 172.16.0.2, Cluster list: 172.16.0.9
EVPN ESI: 0100.6cbc.a77c.c180.0000
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.2:1
RP/0/RP0/CPU0:router# show bgp 12vpn evpn rd 172.16.0.1:1
[2][0][48][0000.f65a.357c][128][10:1:1::93]/232
[2][0][48][0000.f65a.357c][128][10:1:1::93]/232
BGP routing table entry for [2][0][48][0000.f65a.357c][128][10:1:1::93]/232, Route
Distinguisher: 172.16.0.1:1
Versions:
Process bRIB/RIB SendTblVer
Speaker 3172 3172
Local Label: 24013
Last Modified: Feb 28 11:34:33.073 for 3d00h
Paths: (2 available, best #1)
Advertised to peers (in unique update groups):
172.16.0.9
Path #1: Received by speaker 0
Advertised to peers (in unique update groups):
172.16.0.9
Local
0.0.0.0 from 0.0.0.0 (172.16.0.1)
Second Label 24029
Origin IGP, localpref 100, valid, redistributed, best, group-best, import-candidate,
```

```
rib-install
Received Path ID 0, Local Path ID 0, version 3172
Extended community: So0:172.16.0.2:1 RT:100:100
EVPN ESI: 0100.6cbc.a77c.c180.0000
Path #2: Received by speaker 0
Not advertised to any peer
Local
172.16.0.2 (metric 101) from 172.16.0.9 (172.16.0.2)
Received Label 24014, Second Label 24033
Origin IGP, localpref 100, valid, internal, add-path, import-candidate, imported, rib-install
Received Path ID 0, Local Path ID 2, version 3167
Extended community: So0:172.16.0.2:1 RT:200:1 RT:700:100
Originator: 172.16.0.2, Cluster list: 172.16.0.9
EVPN ESI: 0100.6cbc.a77c.c180.0000
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.2:1
```

Verify the remote peer gateway BGP entries with correct label and route-target. Particularly verify the local auto-generated RD on a remote EVPN gateway. EVPN type-2 routes are imported into EVPN. The host routes of IPv4 /32 addresses are imported only into IP VRF route-table in the remote EVPN gateway, but not in the local EVPN gateway where local BVI adjacency is used to overwrite RIB entries.

```
RP/0/RP0/CPU0:router# show bgp 12vpn evpn rd 172.16.0.7:1
[2][0][48][0000.f65a.357c][32][10.1.1.93]/136
BGP routing table entry for [2][0][48][0000.f65a.357c][32][10.1.1.93]/136, Route
Distinguisher: 172.16.0.7:1
Versions:
Process bRIB/RIB SendTblVer
Speaker 16712 16712
Last Modified: Feb 28 16:06:36.448 for 2d19h
Paths: (2 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
172.16.0.1 from 172.16.0.9 (172.16.0.1)
Received Label 24013, Second Label 24027 >>>> First label for L2 MAC unicast bridging;
second label for EVPN IRB host-routing
Origin IGP, localpref 100, valid, internal, best, group-best, import-candidate, imported,
rib-install
Received Path ID 0, Local Path ID 0, version 16712
Extended community: So0:172.16.0.2:1 RT:100:1 RT:100:100
Originator: 172.16.0.1, Cluster list: 172.16.0.9
EVPN ESI: 0100.6cbc.a77c.c180.0000
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.1:1
Path #2: Received by speaker 0
Not advertised to any peer
Local
172.16.0.2 from 172.16.0.9 (172.16.0.2)
Received Label 24014, Second Label 24031
Origin IGP, localpref 100, valid, internal, backup, add-path, import-candidate, imported,
rib-install
Received Path ID 0, Local Path ID 1, version 16706
Extended community: So0:172.16.0.2:1 RT:200:1 RT:700:100
Originator: 172.16.0.2, Cluster list: 172.16.0.9
EVPN ESI: 0100.6cbc.a77c.c180.0000
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.2:1
```

```
RP/0/RP0/CPU0:router# show bgp 12vpn evpn rd 172.16.0.7:1
[2][0][48][0000.f65a.357c][128][10:1:1::93]/232
BGP routing table entry for [2][0][48][0000.f65a.357c][128][10:1:1::93]/232, Route
Distinguisher: 172.16.0.7:1
Versions:
Process bRIB/RIB SendTblVer
Speaker 6059 6059
Last Modified: Feb 28 12:03:22.448 for 2d23h
Paths: (2 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
172.16.0.1 from 172.16.0.9 (172.16.0.1)
Received Label 24013, Second Label 24029
Origin IGP, localpref 100, valid, internal, best, group-best, import-candidate, imported,
rib-install
Received Path ID 0, Local Path ID 0, version 6043
Extended community: So0:172.16.0.2:1 RT:100:1 RT:100:100
Originator: 172.16.0.1, Cluster list: 172.16.0.9
EVPN ESI: 0100.6cbc.a77c.c180.0000
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.1:1
Path #2: Received by speaker 0
Not advertised to any peer
Local
172.16.0.2 from 172.16.0.9 (172.16.0.2)
Received Label 24014, Second Label 24033
Origin IGP, localpref 100, valid, internal, backup, add-path, import-candidate, imported,
rib-install
Received Path ID 0, Local Path ID 1, version 6059
Extended community: So0:172.16.0.2:1 RT:200:1 RT:700:100
Originator: 172.16.0.2, Cluster list: 172.16.0.9
EVPN ESI: 0100.6cbc.a77c.c180.0000
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.2:1
```

Verify the remote peer gateway with host routes of IPv4/32 addresses imported into the IP VRF routing table.

```
RP/0/RP0/CPU0:router# show bqp vpnv4 unicast vrf evpn1 10.1.1.93/32
BGP routing table entry for 10.1.1.93/32, Route Distinguisher: 172.16.0.7:11
Versions:
Process bRIB/RIB SendTblVer
Speaker 22202 22202
Last Modified: Feb 28 16:06:36.447 for 2d19h
Paths: (2 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local
172.16.0.1 from 172.16.0.9 (172.16.0.1)
Received Label 24027
Origin IGP, localpref 100, valid, internal, best, group-best, import-candidate, imported
Received Path ID 0, Local Path ID 0, version 22202
Extended community: So0:172.16.0.2:1 RT:100:1 RT:100:100
Originator: 172.16.0.1, Cluster list: 172.16.0.9
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.1:1
>>>> The source from L2VPN and from synced ARP entry.
Path #2: Received by speaker 0
```

```
Not advertised to any peer
Local
172.16.0.2 from 172.16.0.9 (172.16.0.2)
Received Label 24031
Origin IGP, localpref 100, valid, internal, backup, add-path, import-candidate, imported
Received Path ID 0, Local Path ID 1, version 22201
Extended community: So0:172.16.0.2:1 RT:200:1 RT:700:100
Originator: 172.16.0.2, Cluster list: 17.0.0.9
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.2:1
>>>> source from L2VPN and from dynamic ARP entry
RP/0/RP0/CPU0:router# show bgp vpnv6 unicast vrf evpn1 10:1:1::93/128
BGP routing table entry for 10:1:1::93/128, Route Distinguisher: 172.16.0.7:11
Versions:
Process bRIB/RIB SendTblVer
Speaker 22163 22163
Last Modified: Feb 28 12:09:30.447 for 2d23h
Paths: (2 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local
172.16.0.1 from 172.16.0.9 (172.16.0.1)
Received Label 24029
Origin IGP, localpref 100, valid, internal, best, group-best, import-candidate, imported
Received Path ID 0, Local Path ID 0, version 22163
Extended community: So0:172.16.0.2:1 RT:100:1 RT:100:100
Originator: 172.16.0.1, Cluster list: 172.16.0.9
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.1:1 >>>
Source from L2VPN and from synced ARP entry.
Path #2: Received by speaker 0
Not advertised to any peer
Local
172.16.0.2 from 172.16.0.9 (172.16.0.2)
Received Label 24033
Origin IGP, localpref 100, valid, internal, backup, add-path, import-candidate, imported
Received Path ID 0, Local Path ID 1, version 22163
Extended community: SoO:172.16.0.2:1 RT:200:1 RT:700:100
Originator: 172.16.0.2, Cluster list: 172.16.0.9
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.2:1 >>>
Source from L2VPN and from dynamic ARP entry.
RP/0/RP0/CPU0:router# show bgp vpnv6 unicast vrf evpn1 10:1:1::93/128
BGP routing table entry for 10:1:1::93/128, Route Distinguisher: 172.16.0.7:11
Versions:
Process bRIB/RIB SendTblVer
Speaker 22163 22163
Last Modified: Feb 28 12:09:30.447 for 2d23h
Paths: (2 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
```

```
Not advertised to any peer
Local
172.16.0.1 from 172.16.0.9 (172.16.0.1)
Received Label 24029
Origin IGP, localpref 100, valid, internal, best, group-best, import-candidate, imported
Received Path ID 0, Local Path ID 0, version 22163
Extended community: So0:172.16.0.2:1 RT:100:1 RT:100:100
Originator: 172.16.0.1, Cluster list: 172.16.0.9
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.1:1
Path #2: Received by speaker 0
Not advertised to any peer
Local
172.16.0.2 from 172.16.0.9 (172.16.0.2)
Received Label 24033
Origin IGP, localpref 100, valid, internal, backup, add-path, import-candidate, imported
Received Path ID 0, Local Path ID 1, version 22163
Extended community: SoO:172.16.0.2:1 RT:200:1 RT:700:100
Originator: 172.16.0.2, Cluster list: 172.16.0.9
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.2:1
```

Verify local forwarding with local adjacency which overwrite the RIB entries, and remote peer that use the IP VRF host route entries for IP VPN forwarding.

```
RP/0/RP0/CPU0:router# show bgp vpnv4 unicast vrf evpn1 10.1.1.93/32
-- For local routing and forwarding
RP/0/RP0/CPU0:PE11-R1#show route vrf evpn1 10.1.1.93
Routing entry for 10.1.1.93/32
Known via "bgp 3107", distance 200, metric 0, type internal
Installed Feb 28 15:57:28.154 for 2d20h
Routing Descriptor Blocks
                                >>> From MH-AA peer.
172.16.0.2, from 172.16.0.9
Nexthop in Vrf: "default", Table: "default", IPv4 Unicast, Table Id: 0xe0000000
Route metric is 0
No advertising protos.
RP/0/RP0/CPU0:PE11-R1# show cef vrf evpn1 10.1.1.93 location 0/0/CPU0
10.1.1.93/32, version 0, internal 0x1120001 0x0 (ptr 0x7b40052c) [1], 0x0 (0x7b286010), 0x0
(0x0)
Updated Feb 28 15:58:22.688
local adjacency 10.1.1.93
Prefix Len 32, traffic index 0, Adjacency-prefix, precedence n/a, priority 15
via 10.1.1.93/32, BVI1, 2 dependencies, weight 0, class 0 [flags 0x0]
path-idx 0 NHID 0x0 [0x7f531f88 0x0]
next hop
local adjacency
                             >>> Forwarding with local synced ARP adjacency entries.
For remote routing and forwarding:
RP/0/RP0/CPU0:router# show route vrf evpn1 10.1.1.93
Routing entry for 10.1.1.93/32
Known via "bgp 3107", distance 200, metric 0
Number of pic paths 1 , type internal
Installed Feb 28 16:06:36.431 for 2d20h
Routing Descriptor Blocks
172.16.0.1, from 172.16.0.9
```

```
Nexthop in Vrf: "default", Table: "default", IPv4 Unicast, Table Id: 0xe0000000
Route metric is 0
172.16.0.2, from 172.16.0.9, BGP backup path
Nexthop in Vrf: "default", Table: "default", IPv4 Unicast, Table Id: 0xe0000000
Route metric is 0
No advertising protos.
RP/0/RP0/CPU0:router# show cef vrf evpn1 10.1.1.93 location 0/0/CPU0
10.1.1.93/32, version 86, internal 0x5000001 0x0 (ptr 0x99fac884) [1], 0x0 (0x0), 0x208
(0 \times 96 c 58494)
Updated Feb 28 16:06:39.285
Prefix Len 32, traffic index 0, precedence n/a, priority 3
via 172.16.0.1/32, 15 dependencies, recursive [flags 0x6000]
path-idx 0 NHID 0x0 [0x97955380 0x0]
recursion-via-/32
next hop VRF - 'default', table - 0xe0000000
next hop 172.16.0.1/32 via 34034/0/21
next hop 100.0.57.5/32 Te0/0/0/3 labels imposed {ImplNull 24011 24027}
next hop 100.0.67.6/32 Te0/0/0/1 labels imposed [ImplNull 24009 24027]
via 172.16.0.2/32, 11 dependencies, recursive, backup [flags 0x6100]
path-idx 1 NHID 0x0 [0x979554a0 0x0]
recursion-via-/32
next hop VRF - 'default', table - 0xe0000000
next hop 172.16.0.2/32 via 34035/0/21
next hop 100.0.57.5/32 Te0/0/0/3 labels imposed [ImplNull 24012 24031]
next hop 100.0.67.6/32 Te0/0/0/1 labels imposed {ImplNull 24010 24031}
```

The following sections describe how to verify the subnet stretching.

Verify the VRF.

```
RP/0/RP0/CPU0:leafW# show run vrf cust130
vrf cust130
address-family ipv4 unicast
  import route-target
  130:130
!
  export route-target
  130:130
!
!!
!!
```

#### Verify the BGP configuration.

```
RP/0/RP0/CPU0:leafW# show run router bgp | begin vrf cust130
vrf cust130
  rd auto
  address-family ipv4 unicast
  label mode per-vrf
  maximum-paths ibgp 10
  redistribute connected
!
```

!

#### Verify the L2VPN.

```
RP/0/RP0/CPU0:leafW# show run 12vpn bridge group bg130

12vpn
bridge group bg130
  bridge-domain bd130
  interface Bundle-Ether1.1300
  !
  interface Bundle-Ether5.1300
  !
  routed interface BVI130
  evi 130
  !
  !
  !
  !
}
```

## **EVPN IPv6 Hosts with Mobility**

EVPN IPv6 Hosts with Mobility feature enables you to provide EVPN IPv6 service over IPv4-MPLS core network. This feature supports all-active multihoming and virtual machine (VM) or host move.

Service Providers (SPs) use a stable and established core with IPv4-MPLS backbone for providing IPv4 VPN services. The IPv6 VPN Provider Edge Transport over MPLS (IPv6 on Provider Edge Routers [6PE] and IPv6 on VPN Provider Edge Routers [6VPE]) facilitates SPs to offer IPv6 VPN services over IPv4 backbone without an IPv6 core. The provide edge (PE) routers run MP-iBGP to advertise IPv6 reachability and IPv6 label distribution. For 6PE, the labels are allocated per IPv6 prefix learnt from connected customer edge (CE) routers and for 6VPE, the PE router can be configured to allocate labels on a per-prefix or per-CE and per-VRF level.

## **Mobility Support**

In global VRF, mobility is not supported. However, you can move a host from one ES to another ES within the same bridge domain. The host gets a new MAC address and IP address. The host can have multiple IP addresses for the same MAC address.

In non-default VRF, mobility is supported with the following conditions:

- Basic MAC move: The IP address and MAC address remains the same. You can move a host from one ES to another ES with the same IP address and MAC address
- Same MAC address but with a different IP address: The host gets a new IP address
- Same IP address but with a different MAC address: The host gets a new MAC address but retains the same IP address
- Multiple IP addresses with the same MAC address: Many VMs are involved in the same the MAC move

#### Restrictions

• In customer VRFs, when host routing is not configured, MAC-IP advertisement is different between zero ESI and none-zero ESI. When host routing is not configured, MAC-IP with non-zero ESI is advertised

without L3 RT (VRF RT). MAC-IP with zero ESI is not advertised. The following table lists the behavior of MAC-IP advertisement with respect to ESI and host routing.

| ESI Type                 | With host routing         | Without host routing         |
|--------------------------|---------------------------|------------------------------|
| MAC-IP with non-zero ESI | Advertised with L3 VRF RT | Advertised without L3 VRF RT |
| MAC-IP with zero ESI     | Advertised with L3 VRF RT | Not advertised               |

- In global VRF, Layer 2 stretch is not supported.
- MAC move in global VRF is only supported if the host is within the same bridge domain. You can move a host from one ES to another ES within the same bridge domain.
- Duplication of IP address detection is not supported.
- Maximum number of leafs allowed per ESI is two.

## **Configure EVPN IPv6 Hosts with Mobility**

Perform the following tasks to configure EVPN IPv6 Hosts with Mobility feature:

- Configure VRF
- · Configure ISIS
- Configure BGP
- Configure AC interface
- · Configure BVI interface
- Configure EVPN
- Configure L2VPN



Note

A device can contain up to 128K MAC address entries. A bridge domain on a device can contain up to 65K MAC address entries.



Note

- You cannot configure the EVPN remote peer using the VPNv4 unicast if you have configured the advertise vpnv4 unicast re-originated command under the L2VPN EVPN address-family. You can either configure the VPNv4 unicast or the advertise vpnv4 unicast re-originated under L2VPN EVPN address-family.
- You cannot configure the EVPN remote peer using the VPNv6 unicast if
  you have configured the advertise vpnv6 unicast re-originated command
  under the L2VPN EVPN address-family. You can either configure the VPNv6
  unicast or the advertise vpnv6 unicast re-originated under L2VPN EVPN
  address-family.

```
/* Configure VRF */
Router# configure
Router(config) # vrf cust102
Router(config-vrf)# address-family ipv4 unicast
Router(config-vrf-af) # import route-target 160102:16102
Router(config-vrf-af)# export route-target 160102:16102
Router(config-vrf-af)# exit
Router(config-vrf) # address-family ipv6 unicast
Router(config-vrf-af) # import route-target 6160102:16102
Router(config-vrf-af)# export route-target 6160102:16102
Router(config-vrf-af) # commit
/* Configure ISIS */
Router# configure
Route(config) # router isis v6
Route(config-isis) # 49.0001.0000.0160.0005.00
Route(config-isis) # nsr
Route(config-isis)# log adjacency changes
Route (config-isis) # lsp-gen-interval maximum-wait 5000 initial-wait 1 secondary-wait
Route(config-isis)# lsp-mtu 1468
Route(config-isis)# lsp-refresh-interval 65000
Route(config-isis) # max-lsp-lifetime 65535
Route (config-isis) # address-family ipv4 unicast
Route(config-isis-af)# metric-style wide
Route(config-isis-af) # microloop avoidance protected
Route(config-isis-af)# spf-interval maximum-wait 5000 initial-wait 1 secondary-wait 20
Route(config-isis-af)# segment-routing mpls sr-prefer
Route (config-isis-af) # segment-routing prefix-sid-map advertise-local
Route(config-isis-af)# exit
Route(config-isis) # interface Bundle-Ether10
Route(config-isis-if) # point-to-point
Route(config-isis-if) # address-family ipv4 unicast
Route(config-isis-af)# fast-reroute per-prefix
Route(config-isis-af) # fast-reroute per-prefix ti-lfa
Route(config-isis-af) # metric 10
Route(config-isis-af)# exit
Route(config-isis)# interface Bundle-Ether20
Route(config-isis-if) # point-to-point
Route(config-isis-if) # address-family ipv4 unicast
Route(config-isis-af)# fast-reroute per-prefix
Route(config-isis-af)# fast-reroute per-prefix ti-lfa
Route(config-isis-af) # metric 10
Route(config-isis-af)# exit
Route(config-isis) # interface loopback0
Route(config-isis-if) # passive
Route(config-isis-if)# address-family ipv4 unicast
Route(config-isis-af)# exit
Route(config-isis)# interface loopback10
Route(config-isis-if) # passive
Route(config-isis-if) # address-family ipv4 unicast
Route(config-isis-af) # prefix-sid index 1605
Route(config-isis-af)# commit
Route(config-isis-af)# exit
```

```
/* Configure Segment Routing */
Router# configure
Router(config) # segment-routing
Router(config-sr)# global-block 16000 23999
Router(config-sr)# commit
/* Configure BGP */
Router(config) # router bgp 100
Router (config-bgp) # bfd minimum-interval 50
Router(config-bgp) # bfd multiplier 3
Router(config-bgp) # bgp router-id 160.0.0.5
Router(config-bgp) # address-family ipv4 unicast
                                                   ---> To support V4 Global VRF
Router(config-bqp-af) # maximum-paths ibqp 10 unequal-cost ---> ECMP
Router(config-bgp-af)# redistribute connected --> V4 Global VRF
Router(config-bgp-af) # exit
Router(config-bgp)# address-family ipv4 unicast
                                                    ---> VRF
Router(config-bgp-af) # vrf all
Router(config-bgp-af) # label mode per-vrf
Router(config-bgp-af)# exit
Router(config-bgp) # address-family ipv6 unicast ---> For 6PE
Router(config-bgp-af)# label mode per-vrf
Router(config-bgp-af) # maximum-paths ibgp 8
Router(config-bgp-af)# redistribute static
Router(config-bgp-af) # allocate-label all
Router(config-bgp-af)# exit
Router(config-bgp) # address-family vpnv6 unicast ---> 6 VPE
Router(config-bgp-af)# vrf all
Router(config-bgp-af) # label mode per-vrf
Router(config-bgp-af)# exit
Router(config-bgp) # address-family 12vpn evpn ----> EVPN
                                               ----> Global VRF
Router(config-bgp-af)# bgp implicit-import
Router(config-bgp-af)# exit
Router(config-bgp) # neighbor-group evpn-rr
Router(config-bgp-nbr) # remote-as 100
Router(config-bgp-nbr) # bfd fast-detect
Router(config-bgp-nbr)# update-source loopback0
Router(config-bgp-nbr)# address-family ipv4 unicast
Router(config-bgp-nbr-af) # route-policy pass-all in
Router(config-bgp-nbr-af) # route-policy nh-lo10 out
Router(config-bgp-nbr-af)# exit
Router(config-bgp-nbr)# address-family ipv6 labeled-unicast ---> For 6PE
Router(config-bgp-nbr-af) # route-policy pass-all out
Router(config-bqp-nbr-af) # exit
Router(config-bqp-nbr) # address-family 12vpn evpn
Router(config-bgp-nbr-af)# route-policy pass-all in
Router(config-bgp-nbr-af) # route-policy nh-lo10 out
Router(config-bgp-nbr-af)# advertise vpnv4 unicast re-originated -> For Route Type 5
Router(config-bgp-nbr-af) # advertise vpnv6 unicast re-originated -> For Route Type 5
Router(config-bgp-nbr-af)# exit
Router(config-bgp) # neighbor 160.0.0.1
Router(config-bgp-nbr) # use neighbor-group evpn-rr
```

```
Router(config-bgp-nbr) # exit
Router(config-bgp) # neighbor 160.0.0.2
Router(config-bgp-nbr) # use neighbor-group evpn-rr
Router(config-bqp-nbr)# exit
Router(config-bgp) # vrf all
Router(config-bgp-vrf) # rd 1605:102
Router(config-bgp-vrf) # address-family ipv4 unicast
Router(config-bgp-vrf-af)# label mode per-vrf
Router(config-bgp-vrf-af)# maximum-paths ibgp 10 unequal-cost
Router(config-bgp-vrf-af)# redistribute connected ---> Triggers Route Type 5
Router(config-bgp-vrf-af)# exit
!
Router(config-bgp-vrf) # address-family ipv6 unicast
Router(config-bgp-vrf-af)# label mode per-vrf
Router(config-bgp-vrf-af) # maximum-paths ibgp 10 unequal-cost
Router(config-bgp-vrf-af)# redistribute connected
Router(config-bgp-vrf-af)# exit
/* Configure AC interface */
Router(config) # interface Bundle-Ether1.102 12transport
Router(config-l2vpn-subif)# encapsulation dot1q 102
Router(config-l2vpn-subif)# rewrite ingress tag pop 1 symmetric
Router(config-12vpn-subif)# commit
Router(config-12vpn-subif)# exit
/* Configure BVI interface */
Router(config) # interface BVI100
Router(config-if) # ipv4 address 56.78.100.1 255.255.255.0
Router(config-if) # ipv6 address 56:78:100::1/64
Router(config-if) # mac-address 22.22.22
Router(config-if) # exit
Router(config)# interface BVI102
Router(config-if) # host-routing
Router(config-if) # vrf cust102
Router(config-if-vrf)# ipv4 address 56.78.102.1 255.255.255.0
Router(config-if-vrf) # ipv6 address 56:78:100::1/64
Router(config-if-vrf) # ipv6 address 56:78:102::1/64
Router(config-if-vrf) # mac-address 22.22.22
Router(config-if) # commit
^{\prime\star} Configure EVPN, and configure main bundle ethernet segment parameters in EVPN ^{\star\prime}
Router# configure
Router(config) # evpn
Router(config-evpn) # evi 102
Router(config-evpn-evi)# bgp
Router(config-evpn-evi) # rd 1605:102
Router(config-evpn-evi-bgp) # route-target import 160102:102
Router(config-evpn-evi-bgp) # route-target export 160102:102
Router(config-evpn-evi-bgp) # exit
Router(config-evpn-evi) # advertise-mac
Router(config-evpn-evi)# exit
Router(config-evpn) # interface Bundle-Ether1
Router(config-evpn-ac)# ethernet-segment
Router(config-evpn-ac-es)# identifier type 0 56.56.56.56.56.56.56.56.01
Router(config-evpn-ac-es)# exit
```

```
Router(config-evpn) # interface Bundle-Ether2
Router(config-evpn-ac)# ethernet-segment
Router(config-evpn-ac-es)# identifier type 0 56.56.56.56.56.56.56.56.02
Router(config-evpn-ac-es) # commit
/* Configure L2VPN */
Router# configure
Router(config) # 12vpn
Router(config-12vpn)# bridge group bg102
Router(config-12vpn-bg)# bridge-domain bd102
Router(config-l2vpn-bg-bd)# interface Bundle-Ether1.102
Router(config-12vpn-bg-bd-ac)# exit
Router(config-l2vpn-bg-bd) # interface Bundle-Ether2.102
Router(config-12vpn-bg-bd-ac)# exit
Router (config-12vpn-bg-bd) # interface Bundle-Ether3.102
Router(config-12vpn-bg-bd-ac) # exit
Router(config-12vpn-bg-bd) # interface Bundle-Ether4.102
Router(config-12vpn-bg-bd-ac)# exit
Router(config-l2vpn-bg-bd)# interface Bundle-Ether5.102
Router(config-12vpn-bg-bd-ac)# routed interface BVI102
Router(config-12vpn-bg-bd-bvi)# evi 102
Router(config-12vpn-bg-bd-bvi-evi) # commit
```

### **Running Configuration**

```
/* Configure VRF */
vrf cust102
address-family ipv4 unicast
import route-target
160102:16102
export route-target
160102:16102
address-family ipv6 unicast
import route-target
 6160102:16102
export route-target
 6160102:16102
!
/ * Configure ISIS */
router isis v6
net 49.0001.0000.0160.0005.00
nsr
log adjacency changes
 lsp-gen-interval maximum-wait 5000 initial-wait 1 secondary-wait 20
lsp-mtu 1468
lsp-refresh-interval 65000
max-lsp-lifetime 65535
address-family ipv4 unicast
```

```
metric-style wide
microloop avoidance protected
spf-interval maximum-wait 5000 initial-wait 1 secondary-wait 20
 segment-routing mpls sr-prefer
 segment-routing prefix-sid-map advertise-local
interface Bundle-Ether10
point-to-point
address-family ipv4 unicast
fast-reroute per-prefix
fast-reroute per-prefix ti-lfa
metric 10
interface Bundle-Ether20
point-to-point
address-family ipv4 unicast
fast-reroute per-prefix
fast-reroute per-prefix ti-lfa
metric 10
 1
interface Loopback0
passive
address-family ipv4 unicast
interface Loopback10
passive
address-family ipv4 unicast
prefix-sid index 1605
 1
/ * Configure Segment Routing */
segment-routing
global-block 16000 23999
/ * Configure BGP */
router bgp 100
bfd minimum-interval 50
bfd multiplier 3
bgp router-id 160.0.0.5
                                ---> To support V4 Global VRF
address-family ipv4 unicast
 maximum-paths ibgp 10 unequal-cost ---> ECMP
 redistribute connected
                           --> V4 Global VRF
address-family vpnv4 unicast ---> VRF
 vrf all
  label mode per-vrf
 address-family ipv6 unicast ---> For 6PE
 label mode per-vrf
 maximum-paths ibgp 8
 redistribute connected
 redistribute static
 allocate-label all
address-family vpnv6 unicast ---> 6VPE
 vrf all
```

```
label mode per-vrf
address-family 12vpn evpn ----> EVPN
bgp implicit-import
                            ---> Global VRF
neighbor-group evpn-rr
remote-as 100
bfd fast-detect
update-source Loopback0
address-family ipv4 unicast
 route-policy pass-all in
 route-policy nh-lo10 out
address-family ipv6 labeled-unicast ----> For 6PE
route-policy pass-all out
address-family 12vpn evpn
route-policy pass-all in
route-policy nh-lo10 out
advertise vpnv4 unicast re-originated ---> For Route Type 5
 advertise vpnv6 unicast re-originated
                                        ---> For Route Type 5
neighbor 160.0.0.1
use neighbor-group evpn-rr
neighbor 160.0.0.2
use neighbor-group evpn-rr
vrf cust102
rd 1605:102
address-family ipv4 unicast
 label mode per-vrf
maximum-paths ibgp 10 unequal-cost
redistribute connected <---- Triggers Route Type 5
address-family ipv6 unicast
label mode per-vrf
maximum-paths ibgp 10 unequal-cost
redistribute connected
 !
/* Configure AC interface */
interface Bundle-Ether1.102 12transport
encapsulation dot1q 102
rewrite ingress tag pop 1 symmetric
/* Configure BVI interface */
interface BVI100
ipv4 address 56.78.100.1 255.255.255.0
ipv6 address 56:78:100::1/64
mac-address 22.22.22
interface BVI102
host-routing
vrf cust102
ipv4 address 56.78.102.1 255.255.255.0
ipv6 address 56:78:100::1/64
ipv6 address 56:78:102::1/64
mac-address 22.22.22
```

```
/* Configure EVPN */
evpn
evi 102
bgp
rd 1605:102
route-target import 160102:102
route-target export 160102:102
advertise-mac
 1
interface Bundle-Ether1
ethernet-segment
identifier type 0 56.56.56.56.56.56.56.01
interface Bundle-Ether2
ethernet-segment
identifier type 0 56.56.56.56.56.56.56.02
/* Configure L2VPN */
12vpn
bridge group bg102
bridge-domain bd102
interface Bundle-Ether1.102
interface Bundle-Ether2.102
 interface Bundle-Ether3.102
interface Bundle-Ether4.102
interface Bundle-Ether5.102
routed interface BVI102
evi 102
 1
 !
```

#### Verification

Verify that you have configured EVPN IPv6 Hosts with Mobility feature is configured.

```
/* 6PE and Static Route Advertisement */
Host route is advertised as EVPN Route Type 2
Router# show bgp ipv6 unicast 56:78:100::2
BGP routing table entry for 56:78:100::2/128
Versions:
   Process bRIB/RIB SendTblVer
   Speaker 212 212
   Local Label: 2
Last Modified: Oct 31 19:13:10.998 for 00:00:19
Paths: (1 available, best #1)
Not advertised to any peer
   Path #1: Received by speaker 0
```

```
Not advertised to any peer
Local
160.5.5.5 (metric 20) from 160.0.0.1 (160.0.0.5)
Received Label 2
Origin IGP, localpref 100, valid, internal, best, group-best, imported
Received Path ID 0, Local Path ID 0, version 212
Extended community: Flags 0x20: SoO:160.5.5.5:100 RT:160100:100
mac: 00:06:01:00:01:02
Originator: 160.0.0.5, Cluster list: 100.0.0.4
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 1605:100
/* Manually configured static route in global VRF */
Router# show bgp ipv6 unicast 56:78:100::2
BGP routing table entry for 30::1/128
Versions:
Process bRIB/RIB SendTblVer
Speaker 9 9
Local Label: 2
Last Modified: Oct 30 20:25:17.159 for 23:15:55
Paths: (2 available, best #2)
Advertised to update-groups (with more than one peer):
0.2
Path #1: Received by speaker 0
Not advertised to any peer
Local
160.0.0.6 (metric 20) from 160.0.0.1 (160.0.0.6)
 Received Label 2
Origin incomplete, metric 0, localpref 100, valid, internal, labeled-unicast
Received Path ID 0, Local Path ID 0, version 0
mac: 10:11:04:64:f2:7f
Originator: 160.0.0.6, Cluster list: 100.0.0.4
 Path #2: Received by speaker 0
Advertised to update-groups (with more than one peer):
0.2
56:78:100::2 from :: (160.0.0.5)
Origin incomplete, metric 0, localpref 100, weight 32768, valid, redistributed, best,
group-best
Received Path ID 0, Local Path ID 0, version 9
mac: 10:11:04:64:f2:7f
/* Verify Ethernet Segments are peering for Dual homing */
Router# show evpn ethernet-segment int bundle-Ether 1
Ethernet Segment Id Interface Nexthops
0056.5656.5656.5656.5601 BE1 160.5.5.5
                              160.6.6.6
/* Verify DF election */
Router# show evpn ethernet-segment int bundle-Ether 1 carving detail
A - Load-balancing mode and Access Protection incompatible,
B - No Forwarders EVPN-enabled,
C - Backbone Source MAC missing (PBB-EVPN),
RT - ES-Import Route Target missing,
E - ESI missing,
H - Interface handle missing,
I - Name (Interface or Virtual Access) missing,
```

```
M - Interface in Down state,
O - BGP End of Download missing,
 P - Interface already Access Protected,
Pf - Interface forced single-homed,
R - BGP RID not received,
 S - Interface in redundancy standby state,
X - ESI-extracted MAC Conflict
SHG - No local split-horizon-group label allocated
Ethernet Segment Id Interface Nexthops
0056.5656.5656.5656.5601 BE1 160.5.5.5
160.6.6.6
ES to BGP Gates : Ready
ES to L2FIB Gates : Ready
Main port :
 Interface name : Bundle-Ether1
 Interface MAC: 008a.9644.acdd
IfHandle: 0x080004dc
 State : Up
Redundancy: Not Defined
ESI type : 0
Value: 56.5656.5656.5656.5601
ES Import RT: 5656.5656.5656 (from ESI)
Source MAC: 0000.0000.0000 (N/A)
Topology :
Operational : MH
 Configured: All-active (AApF) (default)
 Primary Services : Auto-selection
Secondary Services: Auto-selection
 Service Carving Results:
Forwarders: 161
Permanent: 10
EVI:ETag P: 700:1, 701:1, 702:1, 703:1, 704:1, 705:1
EVI:ETag P: 706:1, 707:1, 708:1, 709:1
Elected: 76
EVI E : 100, 102, 104, 106, 108, 110
EVI E : 112, 114, 116, 118, 120, 122,
 EVI E: 124, 126, 128, 130, 132, 134,
EVI E: 136, 138, 140, 142, 144, 146,
EVI E: 148, 150, 152, 154, 156, 158,
EVI E: 160, 162, 164, 166, 168, 170,
EVI E: 172, 174, 176, 178, 180, 182,
EVI E : 184, 186, 188, 190, 192, 194,
EVI E: 196, 198, 200, 202, 204, 206,
EVI E: 208, 210, 212, 214, 216, 218,
EVI E: 220, 222, 224, 226, 228, 230,
EVI E: 232, 234, 236, 238, 240, 242,
EVI E : 244, 246, 248, 250
Not Elected: 75
EVI NE: 101, 103, 105, 107, 109, 111
EVI NE : 113, 115, 117, 119, 121, 123,
EVI NE : 125, 127, 129, 131, 133, 135,
EVI NE : 137, 139, 141, 143, 145, 147,
EVI NE: 149, 151, 153, 155, 157, 159,
EVI NE : 161, 163, 165, 167, 169, 171,
EVI NE : 173, 175, 177, 179, 181, 183,
EVI NE: 185, 187, 189, 191, 193, 195,
EVI NE : 197, 199, 201, 203, 205, 207,
EVI NE : 209, 211, 213, 215, 217, 219,
EVI NE: 221, 223, 225, 227, 229, 231,
EVI NE: 233, 235, 237, 239, 241, 243,
EVI NE : 245, 247, 249
MAC Flushing mode : STP-TCN
```

```
Peering timer: 3 sec [not running]
Recovery timer: 30 sec [not running]
Carving timer: 0 sec [not running]
Local SHG label: 68663
Remote SHG labels: 1
68670: nexthop 160.6.6.6
```

# **Duplicate IP Address Detection**

Table 3: Feature History Table

| Feature Name                         | Release Information | Feature Description                                                                                                               |
|--------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Duplicate IP<br>Address<br>Detection | Release 7.3.1       | This feature is now supported on routers that have Cisco NC57 line cards installed and operate in native and compatibility modes. |

The Duplicate IP Address Detection feature automatically detects any host with a duplicate IP address and blocks all MAC-IP routes that have a duplicate IP address.

This protects the network from hosts that are assigned duplicate IP addresses unintentionally or by malicious intent in an EVPN fabric. Hosts with duplicate IP address cause unnecessary churn in a network and causes traffic loss to either or both the hosts with the same IP address.

The system handles mobility of EVPN hosts by keeping track of MAC and IP addresses as they move from one host to another. If two hosts are assigned the same IP address, the IOS XR system keeps learning and re-learning MAC-IP routes from both the hosts. Each time it learns the MAC-IP route from one host, it is counted as one move since the newly learnt route supersedes the route previously learnt from the other host. This continues back and forth until the IP address is marked as duplicate based on the configured parameters.

It uses the following parameters to determine when an IP address should be marked as duplicate, and frozen or unfrozen as it moves between different hosts. The configurable parameters are:

- move-interval: The period within which a MAC or IP address has to move certain number of times between different hosts to be considered as duplicate and frozen temporarily. This number is specified in the move-count parameter.
- move-count: The number of times a MAC or IP address has to move within the interval specified for the move-interval parameter between different hosts to be considered a duplicate.
- **freeze-time**: The length of time a MAC or IP address is locked after it has been detected as a duplicate. After this period, the IP address is unlocked and it is allowed to learn again.
- **retry-count**: The number of times a MAC or IP address is unlocked after it has been detected as a duplicate before it is frozen permanently.

The system maintains a count of the number of times an IP address has been moved from one host to another host, either to another local host or to a host behind a remote Top of Rack (TOR). If an IP address moves certain number of times specified in the **move-count** parameter within the interval specified in the **move-interval** parameter is considered a duplicate IP address. All MAC-IP routes with that IP address is frozen for the time specified in the **freeze-time** parameter. A syslog notifies the user that the particular IP address is frozen. While an IP address is frozen, any new MAC-IP routes or updates to existing MAC-IP routes with the frozen IP address are ignored.

After **freeze-time** has elapsed, the corresponding MAC-IP routes are unfrozen and the value of the **move-count** is reset to zero. For any unfrozen local MAC-IP routes, an ARP probe and flush are initiated while the remote MAC-IP routes are put in the probe mode. This restarts the duplicate detection process.

The system also maintains the information about the number of times a particular IP address has been frozen and unfrozen. If an IP address is marked as duplicate after it is unfrozen **retry-count** times, it is frozen permanently until user manually unfreezes it. Use the following commands to manually unfreeze frozen MAC, IPv4 and IPv6 addresses respectively:

```
    clear l2route evpn mac{ mac-address} | all [evi evi] frozen-flag
    clear l2route evpn ipv4{ ipv4-address} | all [evi evi] frozen-flag
    clear l2route evpn ipv6{ ipv6-address} | all [evi evi] frozen-flag
```

# **Configure Duplicate IP Address Detection**

Perfrom these tasks to configure Duplicate IP Address Detection feature.

# **Configuration Example**

```
/* Ipv4 Address Duplicate Detection Configuration */
Router# configure
Router(config) # evpn
Router(config-evpn) # host ipv4-address duplicate-detection
Router(config-evpn-host-ipv4-addr) # move-count 2
Router(config-evpn-host-ipv4-addr) # freeze-time 10
Router(config-evpn-host-ipv4-addr)# retry-count 2
Router(config-evpn-host-ipv4-addr) # commit
/* Ipv6 Address Duplicate Detection Configuration */
Router# configure
Router(config) # evpn
Router(config-evpn) # host ipv6-address duplicate-detection
Router(config-evpn-host-ipv6-addr)# move-count 2
Router(config-evpn-host-ipv6-addr) # freeze-time 10
Router(config-evpn-host-ipv6-addr) # retry-count 2
Router(config-evpn-host-ipv6-addr) # commit
```

# **Running Configuration**

This section shows the running configuration to detect duplicate IP address.

```
evpn
host ipv4-address duplicate-detection
move-count 2
freeze-time 10
retry-count 2
!
evpn
host ipv6-address duplicate-detection
move-count 2
freeze-time 10
retry-count 2
!
```

## Verification

The show output given in the following section display the details of the duplicate IP address detection and recovery parameters.

#### Router#show 12route evpn mac-ip all detail

### **Related Topics**

• Duplicate IP Address Detection, on page 43

### **Associated Commands**

- evpn host ipv4-address duplicate-detection
- evpn host ipv6-address duplicate-detection
- show 12route evpn mac-ip all detail

# **EVPN Automatic Unfreezing of MAC and IP Addresses**

The EVPN Automatic Unfreezing of MAC and IP Addresses feature unfreezes the permanently frozen MAC and IP addresses automatically. This feature provides a configurable option to enable a MAC or IP address to undergo infinite duplicate detection and recovery cycles without being frozen permanently. The MAC or IP address is permanently frozen when duplicate detection and recovery events occur three times within a 24-hour window. If any of the duplicate detection events happen outside the 24-hour window, the MAC or IP address undergoes only one duplicate detection event and all previous events are ignored.

Use the **infinity** keyword to prevent freezing of the duplicate MAC or IP address permanently.

## Example

```
host ipv4-address duplicate-detection retry-count infinity host ipv6-address duplicate-detection retry-count infinity host mac-address duplicate-detection retry-count infinity
```

Use the **no** form of the above command to enable permanent freezing of MAC or IP address after the default retry count.

#### **Example**

no host ipv4-address duplicate-detection retry-count infinity

```
no host ipv6-address duplicate-detection retry-count infinity no host mac-address duplicate-detection retry-count infinity
```

The 24-hour check for consecutive duplicate detection and recovery events before permanent freezing is enabled by default. Use the **reset-freeze-count-interval** keyword to configure a non-default interval after which the retry-count is reset. The range is from is 1 hour to 48 hours. The default is 24 hours.

#### **Example**

```
host ipv4-address duplicate-detection reset-freeze-count-interval 20 host ipv6-address duplicate-detection reset-freeze-count-interval 20 host mac-address duplicate-detection reset-freeze-count-interval 20
```

Use the following commands to manually unfreeze frozen MAC, IPv4 and IPV6 addresses respectively:

```
    clear l2route evpn mac{ mac-address} | all [evi evi] frozen-flag
    clear l2route evpn ipv4{ ipv4-address} | all [evi evi] frozen-flag
    clear l2route evpn ipv6{ ipv6-address} | all [evi evi] frozen-flag
```

# **Configure EVPN Automatic Unfreezing of MAC or IP Address**

Infinite duplicate detection and recovery is disabled by default. However, you can enable it using the following configuration.

### **Configuration Example**

```
/* IPv4 Address Duplicate Detection Configuration */
Router# configure
Router(config) # evpn
Router(config-evpn)# host ipv4-address duplicate-detection
Router(config-evpn-host-ipv4-addr) # move-count 5
Router(config-evpn-host-ipv4-addr) # move-interval 180
Router(config-evpn-host-ipv4-addr) # freeze-time 30
Router(config-evpn-host-ipv4-addr)# retry-count 3
Router(config-evpn-host-ipv4-addr) # reset-freeze-count-interval 24
Router(config-evpn-host-ipv4-addr) # commit
/* IPv6 Address Duplicate Detection Configuration */
Router# configure
Router(config)# evpn
Router(config-evpn) # host ipv4-address duplicate-detection
Router(config-evpn-host-ipv6-addr) # move-count 5
Router (config-evpn-host-ipv6-addr) # move-interval 180
Router(config-evpn-host-ipv6-addr)# freeze-time 30
Router(config-evpn-host-ipv6-addr) # retry-count 3
Router(config-evpn-host-ipv6-addr) # reset-freeze-count-interval 24
Router(config-evpn-host-ipv6-addr) # commit
/* MAC Address Duplicate Detection Configuration */
Router# configure
Router(config)# evpn
Router(config-evpn) # host MAC-address duplicate-detection
Router(config-evpn-host-mac-addr-dup-detection) # move-count 5
Router (config-evpn-host-mac-addr-dup-detection) # freeze-time 30
Router(config-evpn-host-mac-addr-dup-detection) # move-interval 180
Router(config-evpn-host-mac-addr-dup-detection) # retry-count infinite
```

```
Router(config-evpn-host-mac-addr-dup-detection)# reset-freeze-count-interval 24 Router(config-evpn-host-mac-addr-dup-detection)# commit
```

#### **Running Configuration**

This section shows the EVPN automatic unfreezing of MAC or IP address running configuration.

```
evpn
host ipv4-address duplicate-detection
 move-count 5
 freeze-time 30
 retry-count 3
 reset-freeze-count-interval 24
evpn
host ipv6-address duplicate-detection
 move-count 5
 freeze-time 30
 retry-count 3
evpn
host mac-address duplicate-detection
 move-count 5
 freeze-time 30
 move-interval 180
 reset-freeze-count-interval 24
```

#### Verification

The show output given in this section display the details of the duplicate MAC and IP address detection and recovery parameters.

#### Router#show 12route summary

| Duplica | ate Detectio | on Paramet | ters  |          |          |                |
|---------|--------------|------------|-------|----------|----------|----------------|
|         |              |            |       |          |          |                |
| Type    | Disabled     | Freeze     | Move  | Move     | Retry    | Freeze-Count   |
|         |              | Time       | Count | Interval | Count    | Reset-Interval |
|         |              |            |       |          |          |                |
| MAC     | False        | 30         | 5     | 180      | Infinite | 24             |
| IPv4    | False        | 30         | 5     | 180      | 3        | 24             |
| IPv6    | False        | 30         | 5     | 180      | 3        | 24             |

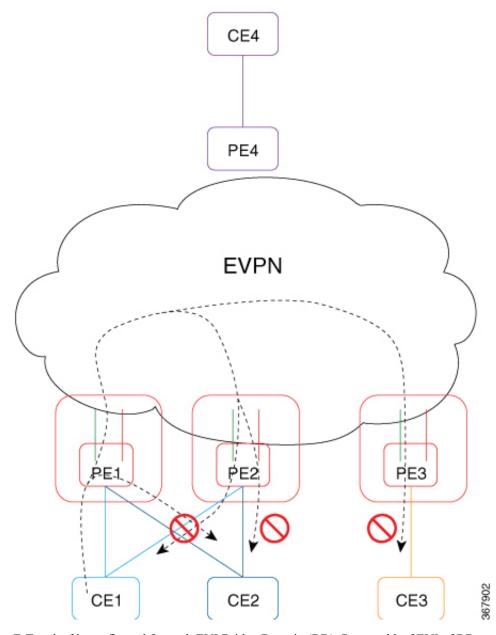
## **Related Topics**

EVPN Automatic Unfreezing of MAC and IP Addresses, on page 45

#### **Associated Commands**

- host ipv4-address duplicate-detection
- host ipv6-address duplicate-detection
- · host mac-address duplicate-detection
- show 12route summary

# **EVPN E-Tree**


Table 4: Feature History Table

| Feature Name | Release Information | Feature Description                                                                                                                                                                                                                                                                                                                                                           |
|--------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EVPN E-Tree  | Release 7.5.1       | This feature is now supported on routers that have Cisco NC57 line cards installed and operate in native mode.  The EVPN E-Tree feature provides a rooted-multipoint Ethernet service over MPLS core. The E-Tree service enables you to define attachment circuits (ACs) as either a root site or a leaf site, which helps in load balancing and avoiding loops in a network. |

The EVPN E-Tree feature provides a rooted-multipoint Ethernet service over MPLS core. The EVPN Ethernet Tree (E-Tree) service enables you to define attachment circuits (ACs) as either a root site or a leaf site, which helps in load balancing and avoiding loops in a network.

In this topology, consider PE1, PE2, and PE3 as leaf ACs, and PE4 as root AC. Root ACs can communicate with all other ACs. Leaf ACs can communicate with root ACs but not with other leaf ACs with either L2 unicast or L2 BUM traffic. If a PE is not configured as E-Tree leaf, it is considered as root by default. This feature only supports leaf or root sites per PE.

Figure 6: EVPN E-Tree



E-Tree leaf is configured for each EVI Bridge Domain (BD). Root and leaf EVI of BD exports or imports single Routed Targets (RTs). The configuration of E-Tree leaf per EVI implies the following:

- All ACs inherit the leaf indicator.
- Split-horizon group between the ACs (leaf) on same EVI is enabled automatically.
- Each PE leaf advertises per Ethernet Segment per Ethernet Auto Discovery Route (ES-EAD), Ethernet Segment Identifier (ESI), ES-EAD ESI 0 route with leaf indicator and E-Tree label to BGP.
- All local MACs learned under this EVI are re-advertised to BGP with E-Tree leaf indicator.
- Each PE maintains a list of remote PEs.



Note

- If you modify the E-Tree leaf configuration, all the locally learned MAC addresses are flushed out. All the locally learned MAC addresses are flushed out even when bridge port's "encapsulation" or "rewrite" on sub-interface, or "split-horizon group" configuration is modified under the bridge port.
- A BVI interface configured in the bridge domain always exhibits the root behaviour.

#### **Unicast Rules**

The following table describes the unicast rules upon reception of type-2 MAC route on root and leaf.

| MAC Route Received                                | MAC Route Handling                                                                                                                                                   |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MAC address with non-local ESI from root EVI (BD) | Remote MAC address.                                                                                                                                                  |
| MAC address with local ESI from root EVI (BD)     | MAC address synhronization, re-originate.                                                                                                                            |
| MAC address with non-local ESI from leaf EVI (BD) | Remote MAC address.                                                                                                                                                  |
|                                                   | Remote MAC route with leaf indicator is dropped.                                                                                                                     |
| MAC address with local ESI from leaf EVI (BD)     | MAC address synhronization, re-originate. MAC address points to the local AC.                                                                                        |
|                                                   | Upon local AC failure, synchronization MAC route becomes a remote MAC route. Remote MAC route with leaf indicator is dropped as opposed to pointing to a peering PE. |

#### **Multicast Rules**

Multicast is used to discover the leaf in the network when:

- RT-1 ES-EAD ESI-0 route with E-Tree extended community is sent per EVI (BD) to indicate to other network PEs which EVIs are setup as E-Tree leaf.
- RT-1 ES-EAD ESI-0 route with E-Tree extended community route and RT-3 IMCAST route are received on a leaf EVI (BD).



Note

Per local EVI (BD) split-horizon group prevents local AC to AC traffic flow.

#### Communication between CE1 and CE4 (Inter-subnet)

- 1. CE1 sends an ARP request to its gateway, which is IRB interface. CE1 resolves the BVI IP address.
- 2. ARP request reaches the bridge domain on PE1. It learns the entry and floods it.
- **3.** ARP requests to all remote PEs that have been pruned is dropped. It is replicated to all root remote PEs and to local BVI interface.
- 4. BVI interface on PE1 sends an ARP response to CE1 using its BVI IP address and BVI MAC address.

- **5.** At the same time, since host routing is configured, PE1 advertises CE1 host route through EVPN using route type-2.
- **6.** After receiving type-2 route, different rules apply based on the PE. After receiving route type-2 on:
  - **a.** PE2: MAC and IP address of ESI match local ESI. Program MAC address as synchronization route. Program IP address in RIB to point to PE1, but MAC address points to CE1. Upon link failure to CE1, MAC address is marked as dropped in the hardware instead of pointing to peering PE1.
  - **b.** PE3: MAC and IP address of ESI are not local. Since local EVI (BD) is leaf, MAC address is marked as dropped in the hardware. Program IP address in RIB pointing to PE1.
  - c. PE4: MAC and IP address of ESI are not local. Since local EVI (BD) is root, program MAC as remote. Program IP address in RIB pointing to PE1.
- 7. PE4 is aware of CE1. CE1 and CE4 communicate with each other.
- **8.** For example, a routing packet coming from CE4 reaches PE4. An IP lookup is performed. PE1 is found as the best destination due to the host route /32. The packet is forwarded to PE1.
- 9. On PE1, an IP lookup is performed. The BVI interface is found. The packet is encapsulated with CE1 as destination MAC address as learned by ARP. Source MAC address remains as the BVI MAC address. Destination MAC address lookup is performed in the corresponding bridge domain. The packet is forwarded to proper output interface.



#### Note

If CE4 sends packet to CE1 before CE1 starts communication, the packet may go to peering PE2. GLEAN adjacency is affected and traffic is dropped until it is resolved. To resolve the entry, PE2 BVI interface starts probing.

- 1. ARP probing coming from BVI is sent to all ACs and EVI as well (L2 stretch).
- 2. PE1 and PE3 receive the ARP probe from EVI interface and replicate to all local ACs. CE1 sends ARP reply where PE1 BVI interface accepts it since IRB on all the leafs are configured in a distributed anycast gateway.

### Communication between CE1 and CE3 (Intra-subnet)

- 1. CE1 and CE3 are within the same subnet.
- **2.** CE1 sends an ARP request to CE3.
- 3. ARP request reaches the bridge domain on PE1. It learns the entry and floods it.
- **4.** ARP requests for all remote PEs that have been pruned is dropped. It is replicated to all root remote PEs and to local BVI interface.
- 5. CE3 does not receive ARP request from CE1. CE1 with does not communicate with CE3.
- **6.** If you want CE1 and CE3 to communicate within intra-subnet, then you must configure local\_proxy\_arp under BVI interface on both local and remote PEs.

#### Communication between CE1 and CE2 (Intra-subnet)

- **1.** CE1 and CE2 are within the same subnet.
- **2.** CE1 sends an ARP request to CE2.
- 3. ARP request reaches the bridge domain on PE1. It learns the entry and floods it.
- **4.** ARP requests for all remote PEs that have been pruned is dropped. It is not replicated to any local ACs due to common split-horizon group.
- **5.** CE2 does not receive ARP request from CE1. CE1 does not communication with CE2.



Note

Communication between local CE1 and remote CE1:

- The BUM traffic from local CE1 on PE1 to remote CE1 on PE2 is dropped as PE2 is pruned.
- The BUM traffic from local CE1 on PE1 to local CE1 on PE1 in the case of AC-Aware VLAN bundling feature is dropped due to ESI-filtering.

# **Configure EVPN E-Tree**

Perform this task to configure EVPN E-Tree feature on the leaf PEs.

```
/* Configure EVPN E-Tree service on PE1 and PE2 */
Router# configure
Router(config)# evpn
Router(config-evpn)# evi 1
Router(config-evpn-evi)# etree leaf
```

# **Configuration Example**

```
/* Configure EVPN Multihoming on PE1 and PE2*/
Router# configure
Router(config)# evpn
Router(config-evpn)# interface bundle-Ether 1121
Router(config-evpn-ac)# ethernet-segment identifier type 0 20.00.00.00.00.00.00.11.21

/* Configure AC interface on PE1 and PE2*/
Router(config)# interface Bundle-Ether1121.1 12transport
Router(config-l2vpn-subif)# encapsulation dot1q 1
Router(config-l2vpn-subif)# rewrite ingress tag pop 1 symmetric

/* Configure BVI interface on PE1 and PE2 */
Router(config)# interface BVI1
Router(config-if)# host-routing
Router(config-if)# vrf vpn1
Router(config-if)# ipv4 address 192.0.2.1 255.255.255.0
Router(config-if)# proxy-arp
```

```
Router(config-if)# local-proxy-arp
Router(config-if) # ipv6 address 2001:DB8::1/32
Router(config-if) # mac-address 10.1111.aaaa
Router(config-if) # load-interval 30
/* Configure the bridge on PE1 and PE2 */
Router(config) # 12vpn
Router(config-l2vpn)# bridge group bg1
Router(config-l2vpn-bg) # bridge-domain bd1
Router(config-l2vpn-bg-bd)# interface Bundle-Ether1121.1
Router(config-l2vpn-bg-bd-ac)# exit
Router(config-l2vpn-bg-bd)# routed interface BVI1
Router(config-l2vpn-bg-bd-bvi) # exit
Router(config) # evpn
Router(config-evpn) # evi 1
Router(config-evpn-evi)# etree leaf
Router(config-evpn-instance) # commit
```

# **Running Configuration**

This section shows EVPN E-Tree running configuration.

```
/* EVPN E-Tree running configuration on PE1 *
evpn
 evi 1
 etree
   leaf
 interface Bundle-Ether1121
 ethernet-segment
   identifier type 0 20.00.00.00.00.00.00.11.21
12vpn
bridge group bg1
 bridge-domain bd1
  interface Bundle-Ether1121.1
   routed interface BVI1
  1
  evi 1
interface Bundle-Ethel121.1
12transport
encapsulation dot1q 1
rewrite ingress tag pop 1 symmetric
interface BVI1
host-routing
vrf vpn1
ipv4 address 192.0.2.1 255.255.255.0
 proxy-arp
local-proxy-arp
ipv6 address 2001:DB8::1/32
mac-address 10.1111.aaaa
load-interval 30
/* EVPN E-Tree running configuration On PE2 */
```

```
evpn
 evi 1
  etree
   leaf
 interface Bundle-Ether1121
 ethernet-segment
   identifier type 0 20.00.00.00.00.00.011.21
12vpn
bridge group bg1
 bridge-domain bd1
   interface Bundle-Ether1121.1
   routed interface BVI1
  evi
 1
interface Bundle-Ethel121.1
12transport
encapsulation dot1q 1
rewrite ingress tag pop 1 symmetric
interface BVI1
host-routing
vrf vpn1
ipv4 address 192.0.2.1 255.255.255.0
proxy-arp
local-proxy-arp
 ipv6 address 2001:DB8::1/32
mac-address 10.1111.aaaa
load-interval 30
 1
!
```

## **Verification**

The show output given in the following section display the details of the EVPN E-Tree configuration.

The following output shows Leaf excom advertised in RT-1 ES0.

```
Router#show bgp 12vpn evpn rd 10.0.0.1:0

[1][10.0.0.1:1][0000.0000.0000.0000.0000][4294967295]/184

Extended community: EVPN E-TREE:0x00:824348 RT:100:1 RT:100:2 RT:100:3 RT:100:4 RT:100:5 RT:100:10 RT:100:11

RT:100:12 RT:100:13 RT:100:14 RT:100:15 RT:100:16 RT:100:17 RT:100:18 RT:100:19 RT:100:20 RT:100:21 RT:100:22 RT:100:23 RT:100:24 RT:100:25 RT:100:26 RT:100:27 RT:100:28 RT:100:29 RT:100:30 RT:100:31 RT:100:32 RT:100:33 RT:100:34 RT:100:35
```

```
RT:100:36 RT:100:37 RT:100:38 RT:100:39 RT:100:40 RT:100:41 RT:100:42 RT:100:43 RT:100:44 RT:100:45 RT:100:46 RT:100:47 RT:100:48 RT:100:49 RT:100:50
```

The following output shows RT-2 of MAC advertisement.

```
Router#show bgp 12vpn evpn rd 10.0.0.1:1 [2][1][48][0011.1100.0001][0]/104
Paths: (2 available, best #1)
Advertised to peers (in unique update groups):
    172.16.0.1
Path #1: Received by speaker 0
Advertised to peers (in unique update groups):
    172.16.0.1
Local
    0.0.0.0 from 0.0.0.0 (10.0.0.1)
    Origin IGP, localpref 100, valid, redistributed, best, group-best, import-candidate, rib-install
    Received Path ID 0, Local Path ID 1, version 315227
    Extended community: So0:192.168.0.1:1 EVPN E-TREE:0x01:0 RT:100:1
    EVPN ESI: 0020.0000.0000.0000.1121
```

The following output shows one RT-2 of MAC address and IP address advertisement.

```
\texttt{Router\#show bgp 12vpn evpn rd } 10.0.0.1:1 \ \ [2][1][48][0011.1100.0001][32][101.0.1.103]/136
Tue Oct 2 16:44:26.755 EDT
BGP routing table entry for [2][1][48][0011.1100.0001][32][101.0.1.103]/136, Route
Distinguisher: 10.0.0.1:1
Versions:
                   bRIB/RIB SendTblVer
 Process
  Speaker
                     313139
                                313139
   Local Label: 820002
Last Modified: Oct 2 13:26:08.477 for 03:18:18
Paths: (2 available, best #1)
  Advertised to peers (in unique update groups):
   172.16.0.1
  Path #1: Received by speaker 0
 Advertised to peers (in unique update groups):
   172.16.0.1
  Local
    0.0.0.0 from 0.0.0.0 (10.0.0.1)
      Second Label 825164
      Origin IGP, localpref 100, valid, redistributed, best, group-best, import-candidate,
 rib-install
      Received Path ID 0, Local Path ID 1, version 313139
     Extended community: Flags 0xe: So0:192.168.0.1:1 EVPN E-TREE:0x01:0 RT:100:1 RT:991:1
      EVPN ESI: 0020.0000.0000.0000.1121
```

The following output shows aggregation of RT-3 inclusive-multicast and RT-1 ES0 routes in EVPN.

```
Router#show evpn evi vpn-id 1 inclusive-multicast detail
         MPLS 0
                            192.168.0.1
1
   TEPid : 0x02000001
   PMSI Type: 0
   Nexthop: 192.168.0.1
    Label : 810120
   Source : Remote
   E-Tree: Leaf
         MPLS
                 0
                           10.0.0.1
   TEPid : 0xffffffff
   PMSI Type: 6
   Nexthop: ::
   Label : 820120
```

Source: Local
E-Tree: Leaf

MPLS 0 172.16.0.1
TEPid: 0x02000003
PMSI Type: 0
Nexthop: 172.16.0.1
Label: 840120
Source: Remote
E-Tree: Root

### **Related Topics**

• EVPN E-Tree, on page 48

#### **Associated Commands**

- · etree leaf
- show bgp l2vpn evpn rd

# **EVPN E-Tree Using RT Constraints**

The EVPN E-Tree using RT constraints feature enables you to configure BGP RT import and export policies for an attachment circuit. This feature allows you to define communication between the leaf and root nodes. The provider edge (PE) nodes can receive L2 traffic either from the attachment circuit (AC) of a bridge domain (BD) or from the remote PE node. For a given BD, L2 communication can only happen from root to leaf and leaf to root. This feature does not allow any L2 communication between the ACs of two or more leafs. This feature uses two BGP RTs for every EVI. Associate one RT with root ACs and the other with leaf ACs. For example, there are two distinct sets of RTs, one for root-rt and another for leaf-rt.

This feature provides you with the following benefits by performing filtering of unicast and multicast traffic at the ingress PE nodes:

- Achieve efficiency of the BGP MAC routes scale
- Reduce the consumption of hardware resources
- Utilize the link bandwidth efficiently

### Rules for Import and Export Policies under the BGP of EVPN EVI Instances

- Root PE exports its ROOT-RT using BGP export policy. It also imports other ROOT-RT from the
  corresponding root PE for the same EVI. This is necessary where there is more than one root for a
  particular BD and EVPN EVI. For example, in a multihome active-active scenario or multihome port-active
  and single-active scenarios.
- Root PE imports LEAF-RT using BGP import policy for a EVPN EVI. This enables the root to be aware
  of all remote L2 MAC addresses through EVPN RT2 advertisement of leaf PE node for a given E-Tree
  EVI.
- Leaf PE exports its LEAF-RT using BGP export policy to let the root to be aware of the reachability of its directly connected L2 endpoints through EVPN RT2 advertisement.

- Leaf PE imports ROOT-RT using BGP import policy. It helps the leaf to know about the L2 endpoints which are reachable through the AC of BD under EVPN EVI instance of root PE. You must not import LEAF-RT using BGP Import policy to avoid L2 Communication between two leaf PEs.
- Use split-horizon filtering to block traffic among leaf ACs on a BD for a given E-Tree EVI.

The BGP import and export policies applies to all EVPN RTs along with the RT2 advertisement.

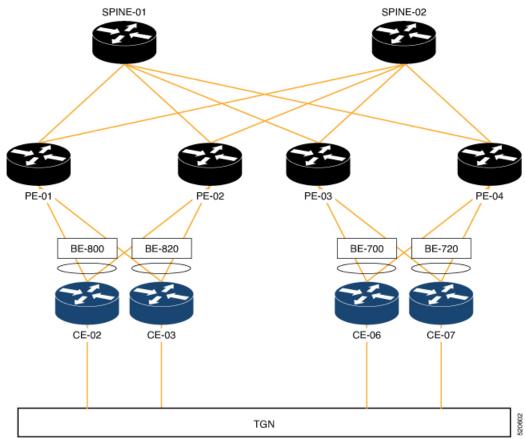
#### **MAC Address Learning**

- L2 MAC addresses are learnt on AC of a particular BD on leaf PE as type LOCAL. The same MAC address is advertised to root PE as EVPN RT2. On the remote root PE, the MAC table replicates the entry of MAC address with the learn type as L2VPN. Also, it associates the MPLS label of its BGP peer, which advertises RT2 to root PE node.
- L2 MAC addresses are learnt on AC of a particular BD on the root as type LOCAL. The same MAC address is advertised to peer root (except for MH A/A) or leaf PE as EVPN RT2. On the remote root PE or leaf PE, the MAC table replicates the entry of MAC address with the learn type as L2VPN. Also, it associates the MPLS label of its BGP peer, which advertises RT2 to PE node.
- L2 MAC addresses are learnt on AC of a particular BD on the root as type LOCAL. The same MAC address is advertised to peer root for MH A/A as EVPN RT2. The MAC table of the peer root node synchronizes the replicated entry of MAC address with the learn type as L2VPN for same the ESI and with the same AC as the next hop. This avoids flooding and duplication of known unicast traffic.

The following scenario describes the feature topology::

# CE with Multihoming Active-Active and CE with Multihoming Active-Active

Consider a topology where you connect CE-02 and CE-03 to PE-01 and PE-02. Both the CEs are in multihoming active-active mode. Connect CE-02 to PE-01 and PE-02 using AC BE-800.305. Connect CE-03 to PE-01 and PE-02 using AC BE-820.305. Connect CE-06 and CE-07 to PE-03 and PE-04. Connect CE-06 to PE-03 and PE-04 using AC BE-700.305. Connect CE-07 to PE-03 and PE-04 using AC BE-720.305. Associate the bridge domain BD-305 with other AC on the respective PEs along with EVI-305 instance. Configure the respective RT on root and leaf with its import and export RTs for EVI-305. Configure PE-01 and PE-02 as root. Configure PE-03 and PE-04 as leaf.


As you are using EVPN E-Tree with RT constraints and rt-leaf indicator set, the rt-leaf configuration causes EVPN to add the ES-import-RT to the mac-only RT-2s to support All-Active syncing for a Bundle Multihomed by Leafs. This is required when using RT constraints, otherwise the PE can end up flooding unicast traffic to its local ACs forever.

```
(D) = Duplicate MAC; (Z) = Frozen MAC; (Sfa) = Single Flow Active
      (A) =Access; (Gw) =Gateway;
Topo ID Mac Address
                      Producer Next Hop(s)
                                                          Seq No Flags
                                                                       Slot
                                                                                  ESI
 Opaque Data Type Opaque Data Len Opaque Data Value
----- ----- -----
 _____
      0000.0100.0003 LOCAL
                               Bundle-Ether11.2002, N/A 0
                                                               BLRcv 0/0/CPU0 (F)
Last Update: Tue Mar 28 12:58:00.730
Router# show evpn ethernet-segment interface bundle-Ether 11 carving private
Ethernet Segment Id Interface Nexthops
0010.1010.1010.1010.1011 BE11 172.16.45.3
172.16.45.4
ES to BGP Gates : Ready
ES to L2FIB Gates : Ready
Main port :
Interface name : Bundle-Ether11
Interface MAC : bc2c.e654.b8dc
IfHandle : 0x20008034
State : Up
Redundancy : Not Defined
ESI ID: 0x2
ESI type : 0
Value : 0010.1010.1010.1010.1011
ES Import RT: 1010.1010.1010 (from ESI)
Source MAC : 0000.0000.0000 (N/A)
Topology :
Operational : MH, All-active
Configured: All-active (AApF) (default)
Service Carving : Auto-selection
Multicast : Disabled
Convergence : Reroute
Peering Details : 2 Nexthops
172.16.45.3 [MOD:P:00:T][2]
172.16.45.4 [MOD:P:7fff:T][0]
Router# show bgp 12vpn evpn rd [2][0][48][0000.0100.0003][0]/104 DET
BGP routing table entry for [2][0][48][0000.0100.0003][0]/104, Route Distinguisher:
172.16.45.4:2001
Versions:
Process bRIB/RIB SendTblVer
Speaker 5373 5373
Local Label: 26064 (no rewrite);
Flags: 0x00040001+0x00000000;
Last Modified: Jun 2 03:42:14.557 for 2d12h
Paths: (1 available, best #1)
Advertised to update-groups (with more than one peer):
0.2
Path #1: Received by speaker 0
Flags: 0x202002000504000b+0x00, import: 0x000, EVPN: 0x1
Advertised to update-groups (with more than one peer):
0.2
Local
0.0.0.0 from 0.0.0.0 (172.16.45.4), if-handle 0x00000000
Origin IGP, localpref 100, valid, redistributed, best, group-best,
import-candidate, rib-install
Received Path ID 0, Local Path ID 1, version 5367
Extended community: SoO:172.16.45.4:2001 EVPN ES Import:1010.1010.1010 EVI RT:fd84.0000.07d1
0x060e:0000.007d.2fff RT:2001:64900
EVPN ESI: 0010.1010.1010.1010.101
```

RP/0/RP0/CPU0:router# show evpn evi mac 0000.0100.0003 detail

Tue Apr 4 16:50:33.090 NZST

| VPN-ID Encap                                                                                       | MAC address                                                                                                                          | IP address | Nexthop                                                                                                              | Label  | SID |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------|--------|-----|
| 2001 MPLS                                                                                          | 0000.0100.0003                                                                                                                       | ::         | Bundle-Ether11.2002                                                                                                  | 26064  |     |
| Multi-path Local Stat Remote Sta Local Ethe Remote Eth Local Sequ Remote Seq Local Enca Remote Enc | s Resolved s Internal label ic tic rnet Segment ernet Segment ence Number uence Number psulation apsulation ee ree ching E-Tree RT D |            | : 0 : False : 0 : No : No : No : 0010.1010.1010.101 : N/A : 0 : N/A : MPLS : N/A : Leaf : Root : No : 0x7d2fff : 0x0 | 0.1011 |     |



# Configuration

Perform the following tasks on PE-01, PE-02, PE-03, and PE-04.

- · Configure bridge domain
- Configure attachment circuit
- Configure EVPN EVI
- Configure bundle Ethernet
- Configure EVPN interface



Note

Use the **etree rt-leaf** command only if the leaf sites are in the EVPN all-active multihoming mode and not required for EVPN single homing mode.

### **Configuration Example**

```
/* Configure PE-01 (as root) */
/* Configure bridge domain */
Router # configure
Router(config)# 12vpn
Router(config-12vpn) # bridge group EVPN BD
Router(config-12vpn-bg) # bridge-domain evpn bvi 305
Router(config-12vpn-bg-bd) # interface Bundle-Ether800.305
Router(config-12vpn-bg-bd-ac)# exit
Router (config-12vpn-bg-bd) # interface Bundle-Ether820.305
Router(config-12vpn-bg-bd-ac) # exit
Router (config-12vpn-bg-bd) # evi 305
Router (config-12vpn-bg-bd-evi)# commit
/* Configure attachment circuit */
Router# configure
Router(config) # interface Bundle-Ether800.305 12transport
Router(config-12vpn-subif) # encapsulation dot1q 305
Router(config-12vpn-subif) # rewrite ingress tag pop 1 symmetric
Router(config-12vpn-subif)# commit
Router# configure
Router(config)# interface Bundle-Ether820.305 12transport
Router(config-l2vpn-subif)# encapsulation dot1q 305
Router(config-l2vpn-subif)# rewrite ingress tag pop 1 symmetric
Router(config-12vpn-subif) # commit
/* Configure EVPN EVI */
Router# configure
Router(config)# evpn
Router(config-evpn)# evi 305
Router(config-evpn-instance)# bgp
Router(config-evpn-instance-bqp) # route-target import 1001:305
Router(config-evpn-instance-bgp) # route-target export 1001:305
Router(config-evpn-instance-bgp)# route-target import 1001:5305
Router(config-evpn-instance-bgp) # exit
Router (config-evpn-instance) # advertise-mac
Router(config-evpn-instance-mac) # commit
/* Configure bundle Ethernet */
Router# configure
```

```
Router(config) # interface Bundle-Ether800
Router(config-if) # lacp system mac 00aa.aabb.2020
Router(config-if) # lacp switchover suppress-flaps 300
Router(config-if) # lacp cisco enable link-order signaled
Router(config-if) # bundle wait-while 100
Router(config-if) # commit
Router# configure
Router(config) # interface Bundle-Ether820
Router(config-if) # lacp system mac 00aa.aabb.2222
Router(config-if) # lacp switchover suppress-flaps 300
Router(config-if) # lacp cisco enable link-order signaled
Router(config-if)# bundle wait-while 100
Router(config-if) # commit
/* Configure EVPN interface */
Router(config) # evpn
Router(config-evpn) # interface Bundle-Ether800
Router(config-evpn-ac) # ethernet-segment
Router(config-evpn-ac-es) # identifier type 0 00.88.88.88.88.88.88.88.00
Router(config-evpn-ac-es)# bgp route-target 0001.0000.0001
Router(config-evpn-ac-es) # commit
Router(config) # evpn
Router(config-evpn) # interface Bundle-Ether820
Router(config-evpn-ac)# ethernet-segment
Router(config-evpn-ac-es) # identifier type 0 00.88.88.88.88.88.88.88.20
Router(config-evpn-ac-es)# bgp route-target 0001.0000.0020
Router(config-evpn-ac-es) # commit
/* Configure PE-02 (as root) */
/* Configure bridge domain */
Router # configure
Router(config) # 12vpn
Router(config-12vpn) # bridge group EVPN BD
Router(config-l2vpn-bg) # bridge-domain evpn_bvi_305
Router(config-12vpn-bg-bd) # interface Bundle-Ether800.305
Router(config-12vpn-bg-bd-ac) # exit
Router (config-12vpn-bg-bd) # interface Bundle-Ether820.305
Router(config-12vpn-bg-bd-ac)# exit
Router (config-12vpn-bg-bd) # evi 305
Router (config-12vpn-bg-bd-evi) # commit
/* Configure attachment circuit */
Router# configure
Router(config) # interface Bundle-Ether800.305 12transport
Router(config-12vpn-subif) # encapsulation dot1q 305
Router(config-l2vpn-subif)# rewrite ingress tag pop 1 symmetric
Router(config-12vpn-subif)# commit
Router# configure
Router(config) # interface Bundle-Ether820.305 12transport
Router(config-12vpn-subif) # encapsulation dot1g 305
Router(config-l2vpn-subif)# rewrite ingress tag pop 1 symmetric
Router(config-l2vpn-subif)# commit
/* Configure EVPN EVI */
Router# configure
Router(config)# evpn
Router(config-evpn) # evi 305
Router(config-evpn-instance) # bgp
```

```
Router (config-evpn-instance-bgp) # route-target import 1001:305
Router(config-evpn-instance-bgp)# route-target export 1001:305
Router(config-evpn-instance-bgp)# route-target import 1001:5305
Router(config-evpn-instance-bgp) # exit
Router(config-evpn-instance)# advertise-mac
Router(config-evpn-instance-mac) # commit
/* Configure bundle Ethernet */
Router# configure
Router(config) # interface Bundle-Ether800
Router(config-if) # lacp system mac 00aa.aabb.2020
Router(config-if) # lacp switchover suppress-flaps 300
Router(config-if) # lacp cisco enable link-order signaled
Router(config-if) # bundle wait-while 100
Router(config-if)# commit
Router# configure
Router(config) # interface Bundle-Ether820
Router(config-if) # lacp system mac 00aa.aabb.2222
Router(config-if) # lacp switchover suppress-flaps 300
Router(config-if) # lacp cisco enable link-order signaled
Router(config-if) # bundle wait-while 100
Router(config-if) # commit
/* Configure EVPN interface */
Router(config)# evpn
Router(config-evpn) # interface Bundle-Ether800
Router(config-evpn-ac)# ethernet-segment
Router(config-evpn-ac-es)# identifier type 0 00.88.88.88.88.88.88.88.00
Router(config-evpn-ac-es) # bgp route-target 0001.0000.0001
Router(config-evpn-ac-es) # commit
Router(config) # evpn
Router(config-evpn) # interface Bundle-Ether820
Router(config-evpn-ac)# ethernet-segment
Router(config-evpn-ac-es) # identifier type 0 00.88.88.88.88.88.88.88.20
Router(config-evpn-ac-es) # bgp route-target 0001.0000.0020
Router(config-evpn-ac-es) # commit
/* Configure PE-03 (as leaf) */
/* Configure bridge domain */
Router # configure
Router(config) # 12vpn
Router(config-12vpn) # bridge group EVPN BD
Router(config-12vpn-bg) # bridge-domain evpn bvi 305
Router(config-l2vpn-bg-bd) # interface Bundle-Ether700.305
Router(config-12vpn-bg-bd-ac) # split-horizon group
Router (config-12vpn-bg-bd-ac)# exit
Router(config-12vpn-bg-bd) # interface Bundle-Ether720.305
Router(config-12vpn-bg-bd-ac)# split-horizon group
Router (config-12vpn-bg-bd-ac) # exit
Router (config-12vpn-bg-bd) # evi 305
Router (config-12vpn-bg-bd-evi)# commit
/* Configure attachment circuit */
Router# configure
Router(config)# interface Bundle-Ether700.305 12transport
Router(config-l2vpn-subif)# encapsulation dot1q 305
Router(config-l2vpn-subif) # rewrite ingress tag pop 1 symmetric
Router(config-12vpn-subif) # commit
```

```
Router# configure
Router(config) # interface Bundle-Ether720.305 12transport
Router(config-12vpn-subif) # encapsulation dot1q 305
Router(config-12vpn-subif) # rewrite ingress tag pop 1 symmetric
Router(config-12vpn-subif)# commit
/* Configure EVPN EVI */
Router# configure
Router(config)# evpn
Router(config-evpn) # evi 305
Router(config-evpn-instance) # bgp
Router(config-evpn-instance-bgp)# route-target import 1001:305
Router(config-evpn-instance-bgp)# route-target export 1001:5305
Router(config-evpn-instance-bgp) # exit
Router(config-evpn-instance) # etree
Router(config-evpn-instance-etree) # rt-leaf
Router(config-evpn-instance) # exit
Router(config-evpn-instance) # advertise-mac
Router(config-evpn-instance-mac) # commit
/* Configure bundle Ethernet */
Router# configure
Router(config)# interface Bundle-Ether700
Router(config-if) # lacp system mac 00aa.aabb.1010
Router(config-if) # lacp switchover suppress-flaps 300
Router(config-if) # lacp cisco enable link-order signaled
Router(config-if)# bundle wait-while 100
Router(config-if)# commit
Router# configure
Router(config) # interface Bundle-Ether720
Router(config-if) # lacp system mac 00aa.aabb.1212
Router(config-if)# lacp switchover suppress-flaps 300
Router(config-if)# lacp cisco enable link-order signaled
Router(config-if) # bundle wait-while 100
Router(config-if) # commit
/* Configure EVPN interface */
Router(config) # evpn
Router(config-evpn) # interface Bundle-Ether700
Router(config-evpn-ac) # ethernet-segment
\texttt{Router(config-evpn-ac-es)} \ \ \textbf{identifier type 0 00.77.77.77.77.77.77.77.00}
Router(config-evpn-ac-es)# bgp route-target 0000.0000.0001
Router(config-evpn-ac-es) # commit
Router(config) # evpn
Router(config-evpn) # interface Bundle-Ether720
Router(config-evpn-ac)# ethernet-segment
Router(config-evpn-ac-es) # identifier type 0 00.77.77.77.77.77.77.20
Router(config-evpn-ac-es)# bgp route-target 0000.0000.0020
Router(config-evpn-ac-es) # commit
/* Configure PE-04 (as leaf) */
/* Configure bridge domain */
Router # configure
Router(config) # 12vpn
Router(config-12vpn) # bridge group EVPN BD
Router(config-12vpn-bg) # bridge-domain evpn bvi 305
Router(config-12vpn-bg-bd) # interface Bundle-Ether700.305
```

```
Router (config-12vpn-bg-bd-ac) # split-horizon group
Router (config-12vpn-bg-bd-ac)# exit
Router(config-12vpn-bg-bd) # interface Bundle-Ether720.305
Router(config-12vpn-bg-bd-ac) # split-horizon group
Router (config-12vpn-bg-bd-ac) # exit
Router (config-12vpn-bg-bd) # evi 305
Router (config-12vpn-bg-bd-evi)# commit
/* Configure attachment circuit */
Router# configure
Router(config) # interface Bundle-Ether700.305 12transport
Router(config-12vpn-subif) # encapsulation dot1q 305
Router(config-12vpn-subif) # rewrite ingress tag pop 1 symmetric
Router(config-12vpn-subif)# commit
Router# configure
Router(config) # interface Bundle-Ether720.305 12transport
Router(config-l2vpn-subif) # encapsulation dot1q 305
Router(confiq-12vpn-subif) # rewrite ingress tag pop 1 symmetric
Router(config-12vpn-subif) # commit
/* Configure EVPN EVI */
Router# configure
Router(config) # evpn
Router(config-evpn)# evi 305
Router(config-evpn-instance) # bgp
Router(config-evpn-instance-bgp) # route-target import 1001:305
Router(config-evpn-instance-bgp) # route-target export 1001:5305
Router(config-evpn-instance-bgp) # exit
Router(config-evpn-instance) # etree
Router(config-evpn-instance-etree) # rt-leaf
Router(config-evpn-instance)# exit
Router(config-evpn-instance) # advertise-mac
Router(config-evpn-instance-mac) # commit
/* Configure bundle Ethernet */
Router# configure
Router(config) # interface Bundle-Ether700
Router(config-if)# lacp system mac 00aa.aabb.1010
Router(config-if)# lacp switchover suppress-flaps 300
Router(config-if) # lacp cisco enable link-order signaled
Router(config-if) # bundle wait-while 100
Router(config-if) # commit
Router# configure
Router(config) # interface Bundle-Ether720
Router(config-if) # lacp system mac 00aa.aabb.1212
Router(config-if)# lacp switchover suppress-flaps 300
Router(config-if)# lacp cisco enable link-order signaled
Router(config-if) # bundle wait-while 100
Router(config-if)# commit
/* Configure EVPN interface */
Router(config)# evpn
Router(config-evpn)# interface Bundle-Ether700
Router(config-evpn-ac)# ethernet-segment
Router(config-evpn-ac-es)# identifier type 0 00.77.77.77.77.77.77.00
Router(config-evpn-ac-es)# bgp route-target 0000.0000.0001
Router(config-evpn-ac-es)# commit
Router(config)# evpn
Router(config-evpn) # interface Bundle-Ether720
```

```
Router(config-evpn-ac)# ethernet-segment
Router(config-evpn-ac-es)# identifier type 0 00.77.77.77.77.77.77.77.20
Router(config-evpn-ac-es)# bgp route-target 0000.0000.0020
Router(config-evpn-ac-es)# commit
```

#### **Running Configuration**

This section shows the PE-01, PE-02, PE-3, and PE-04 running configuration.

```
/* PE-01 Configuration */
12vpn
bridge group EVPN BD
 bridge-domain evpn bvi 305
   interface Bundle-Ether800.305
   interface Bundle-Ether820.305
  .
   evi 305
   1
 !
 1
interface Bundle-Ether800.305 12transport
encapsulation dot1q 305
rewrite ingress tag pop 1 symmetric
interface Bundle-Ether820.305 12transport
encapsulation dot1q 305
rewrite ingress tag pop 1 symmetric
evpn
evi 305
 bgp
  route-target import 1001:305
  route-target export 1001:305
  route-target import 1001:5305
  advertise-mac
 !
 !
1
interface Bundle-Ether800
 lacp system mac 00aa.aabb.2020
lacp switchover suppress-flaps 300
lacp cisco enable link-order signaled
bundle wait-while 100
interface Bundle-Ether820
lacp system mac 00aa.aabb.2222
lacp switchover suppress-flaps 300
lacp cisco enable link-order signaled
bundle wait-while 100
evpn
interface Bundle-Ether800
 ethernet-segment
  identifier type 0 00.88.88.88.88.88.88.00
  bgp route-target 0001.0000.0001
!
interface Bundle-Ether820
```

```
ethernet-segment
  identifier type 0 00.88.88.88.88.88.88.20
  bgp route-target 0001.0000.0020
 !
 !
/* PE-02 Configuration */
12vpn
bridge group EVPN_BD
 bridge-domain evpn_bvi_305
   interface Bundle-Ether800.305
  interface Bundle-Ether820.305
  evi 305
  1
 interface Bundle-Ether800.305 12transport
encapsulation dot1g 305
rewrite ingress tag pop 1 symmetric
interface Bundle-Ether820.305 12transport
encapsulation dot1q 305
rewrite ingress tag pop 1 symmetric
evpn
evi 305
 bgp
  route-target import 1001:305
  route-target export 1001:305
  route-target import 1001:5305
  advertise-mac
 !
interface Bundle-Ether800
lacp system mac 00aa.aabb.2020
 lacp switchover suppress-flaps 300
lacp cisco enable link-order signaled
bundle wait-while 100
interface Bundle-Ether820
lacp system mac 00aa.aabb.2222
lacp switchover suppress-flaps 300
lacp cisco enable link-order signaled
bundle wait-while 100
evpn
interface Bundle-Ether800
 ethernet-segment
  identifier type 0 00.88.88.88.88.88.88.00
  bgp route-target 0001.0000.0001
 !
evpn
interface Bundle-Ether820
 ethernet-segment
  identifier type 0 00.88.88.88.88.88.88.20
  bgp route-target 0001.0000.0020
 !
```

```
/* PE-03 Configuration */
12vpn
bridge group EVPN BD
 bridge-domain evpn_bvi 305
  interface Bundle-Ether700.305
   split-horizon group
  interface Bundle-Ether720.305
   split-horizon group
   !
   evi 305
  . !
 1
interface Bundle-Ether700.305 12transport
encapsulation dot1q 305
rewrite ingress tag pop 1 symmetric
interface Bundle-Ether720.305 12transport
encapsulation dot1q 305
rewrite ingress tag pop 1 symmetric
evpn
evi 305
 bgp
  route-target import 1001:305
  route-target export 1001:5305
 etree
  rt-leaf
  1
  advertise-mac
 !
1
interface Bundle-Ether700
lacp system mac 00aa.aabb.1010
 lacp switchover suppress-flaps 300
 lacp cisco enable link-order signaled
bundle wait-while 100
interface Bundle-Ether720
 lacp system mac 00aa.aabb.1212
lacp switchover suppress-flaps 300
lacp cisco enable link-order signaled
bundle wait-while 100
evpn
interface Bundle-Ether700
 ethernet-segment
  identifier type 0 00.77.77.77.77.77.77.00
  bgp route-target 0000.0000.0001
evpn
 interface Bundle-Ether720
 ethernet-segment
  identifier type 0 00.77.77.77.77.77.77.20
  bgp route-target 0000.0000.0020
```

```
/* PE-04 Configuration */
12vpn
bridge group EVPN BD
 bridge-domain evpn bvi 305
  interface Bundle-Ether700.305
   split-horizon group
  interface Bundle-Ether720.305
   split-horizon group
  evi 305
  .
 !
interface Bundle-Ether700.305 12transport
encapsulation dot1q 305
rewrite ingress tag pop 1 symmetric
interface Bundle-Ether720.305 12transport
encapsulation dot1q 305
rewrite ingress tag pop 1 symmetric
evpn
evi 305
 bgp
  route-target import 1001:305
  route-target export 1001:5305
 etree
  rt-leaf
 advertise-mac
interface Bundle-Ether700
lacp system mac 00aa.aabb.1010
lacp switchover suppress-flaps 300
lacp cisco enable link-order signaled
bundle wait-while 100
interface Bundle-Ether720
lacp system mac 00aa.aabb.1212
lacp switchover suppress-flaps 300
lacp cisco enable link-order signaled
bundle wait-while 100
evpn
interface Bundle-Ether700
 ethernet-segment
  identifier type 0 00.77.77.77.77.77.77.00
  bgp route-target 0000.0000.0001
 1
 !
evpn
interface Bundle-Ether720
  ethernet-segment
  identifier type 0 00.77.77.77.77.77.77.20
  bgp route-target 0000.0000.0020
```

```
!
```

### **Verification**

This section shows how the L2 MAC addresses are synchronized as LOCAL and L2VPN with multihoming active-active peers PE. Also, the root PE is aware of MAC addresses learnt on leaf PE remotely through RT2 advertisements.

| Router:P | E-01# show 12ro        | ute evpn mac | all                  |         |
|----------|------------------------|--------------|----------------------|---------|
| Topo ID  | Mac Address            | Producer     | Next Hop(s)          |         |
|          |                        |              |                      |         |
| 204      | 001f.0100.0001         |              | Bundle-Ether820.305, |         |
| 204      | 001f.0100.0001         |              | Bundle-Ether820.305, |         |
| 204      | 001f.0100.0002         |              | Bundle-Ether820.305, |         |
| 204      | 001f.0100.0002         |              | Bundle-Ether820.305, |         |
| 204      | 001f.0100.0003         |              | Bundle-Ether820.305, |         |
| 204      | 001f.0100.0003         |              | Bundle-Ether820.305, |         |
| 204      | 001f.0100.0004         |              | Bundle-Ether820.305, |         |
| 204      | 001f.0100.0004         |              | Bundle-Ether820.305, |         |
| 204      | 001f.0100.0005         |              | Bundle-Ether820.305, |         |
| 204      | 001f.0100.0005         |              | Bundle-Ether820.305, | N/A     |
| 204      | 0020.0100.0001         |              | 26791/I/ME, N/A      |         |
| 204      | 0020.0100.0002         | L2VPN        | 26791/I/ME, N/A      |         |
| 204      | 0020.0100.0003         | L2VPN        | 26791/I/ME, N/A      |         |
| 204      | 0020.0100.0004         | L2VPN        | 26791/I/ME, N/A      |         |
| 204      | 0020.0100.0005         | L2VPN        | 26791/I/ME, N/A      |         |
| 204      | 0021.0100.0001         | L2VPN        | Bundle-Ether800.305, | N/A     |
| 204      | 0021.0100.0002         | L2VPN        | Bundle-Ether800.305, | N/A     |
| 204      | 0021.0100.0003         | LOCAL        | Bundle-Ether800.305, | N/A     |
| 204      | 0021.0100.0004         | L2VPN        | Bundle-Ether800.305, | N/A     |
| 204      | 0021.0100.0005         | LOCAL        | Bundle-Ether800.305, | N/A     |
| 204      | 0022.0100.0001         | L2VPN        | 26790/I/ME, N/A      |         |
| 204      | 0022.0100.0002         | L2VPN        | 26790/I/ME, N/A      |         |
| 204      | 0022.0100.0003         | L2VPN        | 26790/I/ME, N/A      |         |
| 204      | 0022.0100.0004         |              | 26790/I/ME, N/A      |         |
| 204      | 0022.0100.0005         |              | 26790/I/ME, N/A      |         |
|          |                        |              |                      |         |
| Router:P | E-02# <b>show 12ro</b> | ute evpn mac | all                  |         |
| Topo ID  | Mac Address            | Producer     | Next Hop(s)          |         |
| 204      | 001f.0100.0001         | T OCAT       | Bundle-Ether820.305, | NI / 7\ |
| 204      | 001f.0100.0001         |              | Bundle-Ether820.305, |         |
|          |                        |              | ·                    |         |
| 204      | 001f.0100.0002         |              | Bundle-Ether820.305, |         |
| 204      | 001f.0100.0002         |              | Bundle-Ether820.305, |         |
| 204      | 001f.0100.0003         |              | Bundle-Ether820.305, |         |
| 204      | 001f.0100.0003         |              | Bundle-Ether820.305, |         |
| 204      | 001f.0100.0004         |              | Bundle-Ether820.305, |         |
| 204      | 001f.0100.0004         |              | Bundle-Ether820.305, |         |
| 204      | 001f.0100.0005         |              | Bundle-Ether820.305, |         |
| 204      | 001f.0100.0005         |              | Bundle-Ether820.305, | N/A     |
| 204      | 0020.0100.0001         |              | 27367/I/ME, N/A      |         |
| 204      | 0020.0100.0002         |              | 27367/I/ME, N/A      |         |
| 204      | 0020.0100.0003         |              | 27367/I/ME, N/A      |         |
| 204      | 0020.0100.0004         |              | 27367/I/ME, N/A      |         |
| 204      | 0020.0100.0005         |              | 27367/I/ME, N/A      |         |
| 204      | 0021.0100.0001         | LOCAL        | Bundle-Ether800.305, | N/A     |
| 204      | 0021.0100.0002         | LOCAL        | Bundle-Ether800.305, | N/A     |
| 204      | 0021.0100.0003         | L2VPN        | Bundle-Ether800.305, | N/A     |
| 204      | 0021.0100.0004         | LOCAL        | Bundle-Ether800.305, | N/A     |
| 204      | 0021.0100.0005         | L2VPN        | Bundle-Ether800.305, | N/A     |

| 204 | 0022.0100.0001 | L2VPN | 27366/I/ME, | N/A |
|-----|----------------|-------|-------------|-----|
| 204 | 0022.0100.0002 | L2VPN | 27366/I/ME, | N/A |
| 204 | 0022.0100.0003 | L2VPN | 27366/I/ME, | N/A |
| 204 | 0022.0100.0004 | L2VPN | 27366/I/ME, | N/A |
| 204 | 0022.0100.0005 | L2VPN | 27366/I/ME, | N/A |

The following output shows how the multihoming PE is aware of its local L2 MAC addresses as well as the MAC addresses learnt on the root node only. Leaf multihoming PE is not aware of any other MAC addresses learnt on other leaf PE nodes except if they are learnt on a multihoming active-active ethernet-segment on the peer leaf PE.

```
Router:PE-03# show 12route evpn mac all
Topo ID Mac Address
                     Producer Next Hop(s)
        ______
200
        0011.0100.0003 T2VPN
                                 30579/T/ME, N/A
        0011.0100.0005 L2VPN
                                 30579/I/ME, N/A
204
        001f.0100.0001 L2VPN
                                 30588/I/ME, N/A
        001f.0100.0002 L2VPN
                                   30588/I/ME, N/A
204
        001f.0100.0003 L2VPN
                                   30588/I/ME, N/A
204
2.04
        001f.0100.0004 L2VPN
                                   30588/I/ME, N/A
        001f.0100.0005 L2VPN
                                  30588/I/ME, N/A
204
        0020.0100.0001 LOCAL
                                  Bundle-Ether720.305, N/A
204
                                  Bundle-Ether720.305, N/A
        0020.0100.0001 L2VPN
204
204
        0020.0100.0002 LOCAL
                                  Bundle-Ether720.305, N/A
204
        0020.0100.0002 L2VPN
                                   Bundle-Ether720.305, N/A
2.04
        0020.0100.0003 TOCAL
                                  Bundle-Ether720.305, N/A
204
        0020.0100.0003 L2VPN
                                   Bundle-Ether720.305, N/A
204
        0020.0100.0004 LOCAL
                                  Bundle-Ether720.305, N/A
204
        0020.0100.0004 L2VPN
                                   Bundle-Ether720.305, N/A
        0020.0100.0005 LOCAL
                                   Bundle-Ether720.305, N/A
204
2.04
        0020.0100.0005 L2VPN
                                   Bundle-Ether720.305, N/A
        0021.0100.0001 L2VPN
                                   30587/I/ME, N/A
2.04
204
        0021.0100.0002 L2VPN
                                   30587/I/ME, N/A
204
        0021.0100.0003 L2VPN
                                   30587/I/ME, N/A
204
        0021.0100.0004 L2VPN
                                   30587/I/ME, N/A
2.04
        0021.0100.0005 L2VPN
                                   30587/I/ME, N/A
2.04
        0022.0100.0001 LOCAL
                                   Bundle-Ether700.305, N/A
        0022.0100.0001 L2VPN
                                   Bundle-Ether700.305, N/A
204
        0022.0100.0002 LOCAL
                                  Bundle-Ether700.305, N/A
        0022.0100.0002 L2VPN
204
                                   Bundle-Ether700.305, N/A
204
        0022.0100.0003 LOCAL
                                   Bundle-Ether700.305, N/A
2.04
        0022.0100.0003 L2VPN
                                   Bundle-Ether700.305, N/A
204
        0022.0100.0004 LOCAL
                                   Bundle-Ether700.305, N/A
204
        0022.0100.0004 L2VPN
                                   Bundle-Ether700.305, N/A
2.04
        0022.0100.0005 LOCAL
                                  Bundle-Ether700.305, N/A
204
        0022.0100.0005 L2VPN
                                   Bundle-Ether700.305, N/A
Router: PE-04# show 12route evpn mac all
Topo ID Mac Address Producer Next Hop(s)
______
        0011.0100.0003 T2VPN
                                  30545/I/ME, N/A
200
200
        0011.0100.0005 L2VPN
                                   30545/I/ME, N/A
204
        001f.0100.0001 L2VPN
                                   30550/I/ME, N/A
        001f.0100.0002 T2VPN
                                  30550/I/ME, N/A
2.04
        001f.0100.0003 L2VPN
                                   30550/I/ME, N/A
204
                                  30550/I/ME, N/A
204
        001f.0100.0004 L2VPN
204
        001f.0100.0005 L2VPN
                                   30550/I/ME, N/A
                                   Bundle-Ether720.305, N/A
204
        0020.0100.0001 LOCAL
204
        0020.0100.0001 T2VPN
                                  Bundle-Ether720.305, N/A
204
        0020.0100.0002 LOCAL
                                  Bundle-Ether720.305, N/A
204
        0020.0100.0002 L2VPN
                                  Bundle-Ether720.305, N/A
        0020.0100.0003 TOCAT
2.04
                                  Bundle-Ether720.305, N/A
204
        0020.0100.0003 L2VPN
                                  Bundle-Ether720.305, N/A
```

| 204 | 0020.0100.0004 | LOCAL | Bundle-Ether720.305, | N/A |
|-----|----------------|-------|----------------------|-----|
| 204 | 0020.0100.0004 | L2VPN | Bundle-Ether720.305, | N/A |
| 204 | 0020.0100.0005 | LOCAL | Bundle-Ether720.305, | N/A |
| 204 | 0020.0100.0005 | L2VPN | Bundle-Ether720.305, | N/A |
| 204 | 0021.0100.0001 | L2VPN | 30549/I/ME, N/A      |     |
| 204 | 0021.0100.0002 | L2VPN | 30549/I/ME, N/A      |     |
| 204 | 0021.0100.0003 | L2VPN | 30549/I/ME, N/A      |     |
| 204 | 0021.0100.0004 | L2VPN | 30549/I/ME, N/A      |     |
| 204 | 0021.0100.0005 | L2VPN | 30549/I/ME, N/A      |     |
| 204 | 0022.0100.0001 | LOCAL | Bundle-Ether700.305, | N/A |
| 204 | 0022.0100.0001 | L2VPN | Bundle-Ether700.305, | N/A |
| 204 | 0022.0100.0002 | LOCAL | Bundle-Ether700.305, | N/A |
| 204 | 0022.0100.0002 | L2VPN | Bundle-Ether700.305, | N/A |
| 204 | 0022.0100.0003 | LOCAL | Bundle-Ether700.305, | N/A |
| 204 | 0022.0100.0003 | L2VPN | Bundle-Ether700.305, | N/A |
| 204 | 0022.0100.0004 | LOCAL | Bundle-Ether700.305, | N/A |
| 204 | 0022.0100.0004 | L2VPN | Bundle-Ether700.305, | N/A |
| 204 | 0022.0100.0005 | LOCAL | Bundle-Ether700.305, | N/A |
| 204 | 0022.0100.0005 | L2VPN | Bundle-Ether700.305, | N/A |

### **Related Topics**

• #unique\_402

#### **Associated Commands**

- etree rt-leaf
- show 12route evpn mac all

# **EVPN E-Tree Per-PE (Scenario 1b)**

Table 5: Feature History Table

| Feature Name                           | Release Information | Feature Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EVPN E-Tree<br>Per-PE (Scenario<br>1b) | Release 7.5.1       | This feature allows you to configure an attachment circuit on a PE device either as a root site or a leaf site using the <b>etree leaf</b> label for an EVPN Instance (EVI) or for a given bridge-domain. By preventing communication among leaf ACs connected to the same PE and belonging to the same EVI, you can segregate traffic received and sent from different geographical locations. This segregation helps in load balancing traffic and avoiding traffic from going into loops in a network. |

EVPN Ethernet Tree (E-Tree) is a rooted-multipoint Ethernet service over MPLS core and enables you to define attachment circuits (ACs) as either a root site or a leaf site. The provider edge (PE) nodes can receive L2 traffic either from the attachment circuit (AC) of a bridge domain (BD) or from the remote PE node. For a given BD or EVI, L2 communication can only happen from root to leaf and leaf to root, and root to root. L2 communication between the ACs of two or more leafs is not allowed.

You can implement E-Tree in the following two ways:

- Scenario 1 All ACs at a particular PE for a given EVI or BD can be either root or leaf site and all traffic for an EVI from a PE in the network is from either a root or a leaf. In this scenario you have two options to configure E-Tree:
  - Scenario 1a You can configure E-Tree with route-targets (RT) constraints using two RTs per EVI. For more information, see the *EVPN E-Tree Using RT Constraints* section.
  - Scenario 1b You can configure E-Tree without route-targets (RT) constraints and using **etree leaf** label.

#### Scenario 1b

In this scenario, you can configure E-Tree without route-targets (RT) constraints and using **etree leaf** label.

For known unicast traffic, MAC advertisements originating from a leaf site is identified with an **etree leaf** label to classify that the source is a leaf. Ingress filtering is performed, and traffic originating at leaf AC destined for a remote leaf MAC is dropped. If the remote PE is also a leaf, the ingress traffic from the source leaf is dropped. If the remote PE is a root, the ingress traffic from the source leaf is forwarded.

For BUM traffic, egress filtering is performed and leaf nodes transmit an **etree leaf** label to identify that leaf sites are connected to the PE. Then, at the ingress node, BUM traffic originating from a leaf node is tagged with the corresponding remote **etree leaf** label. At the egress PE, traffic is tagged with the matching **etree leaf** label that is dropped at leaf ACs.

For E-Tree with IRB, BVI interfaces are considered as a root site. However, if you configure the PE as a leaf site that has ACs with BVI, ingress filtering is performed instead of egress filtering as defined by Option B in RFC 8317. Tagging of ingress BUM traffic with **etree leaf** label is performed for the packets destined for a remote node.

#### Scenario 1b Behavior

- E-Tree leaf is configured per bridge domain or EVI. No leaf configuration means the bridge domain or EVI is a root.
- All ACs inherit E-Tree leaf designation from the bridge domain or EVI.
- Split-horizon group between ACs of a leaf is enabled automatically.
- All local MACs learned under the BD or EVI is advertised to BGP with etree leaf indicator.
- Upon first leaf configuration, a special E-Tree ethernet segment with ESI-0 is created to allocate a split-horizon label, referred to as the local etree leaf label.
- ES/EAD with ESI-0 (ES-0/EAD) is advertised to BGP with etree leaf label.
- EVPN E-Tree with IRB is also supported, but BVI interfaces are always treated as a root sites, even if BD or EVI itself is a leaf.

#### Restrictions

- If a BVI interface is part of a bridge domain, we recommend you to configure etree leaf under EVPN EVI configuration. When BVI is associated with an AC, etree leaf under the bridge domain is not supported due to hardware limitation.
- If an AC is not associated with BVI under a bridge domain, you can configure **etree leaf** under EVPN EVI or bridge domain configuration.

- Scenario 1a and Scenario 1b with IRB may not interopeate with any other flavors on E-Tree; this misconfiguration cannot be detected automatically.
- For non-supported interfaces, such as VNI, BVI, and PW, are not be marked as a leaf when the BD is configured as a leaf.
- You cannot configure a BD as E-Tree leaf when AC is a BVI interface. If an IRB interface is required, you must use the Cisco implementation (which is non-RFC compliant) of E-Tree where the EVI is configured as an E-Tree leaf.
- This feature is not supported on Cisco NCS57 line cards.

## Configure EVPN E-Tree Per-PE (Scenario1b)

Router# configure

Perform this task to configure EVPN E-Tree Per-PE (Scenario1b).

Configure EVPN E-Tree leaf per bridge domain.

```
Router(config) # 12vpn
Router(config-12vpn) # bridge group bg_201
Router(config-12vpn-bg) # bridge-domain bd 201
Router(config-12vpn-bg-bd) # etree leaf
Router(config-12vpn-bg-bd) # interface Bundle-Ether3501.3601
Router(config-12vpn-bg-bd-ac) # evi 201
Router(config-12vpnbg-bd-evi)# commit
Configure EVPN E-Tree leaf per EVI.
Router# configure
Router(config) # evpn
Router(config-evpn)# evi 200
Router(config-evpn-instance) # bgp route-target import 64600:200
Router(config-evpn-instance) # bqp route-target export 64600:200
Router(config-evpn-instance)# etree leaf
Router(config-evpn-instance)# advertise-mac
Router(config-evpn-instance-mac) # commit
```

#### **Running Configuration**



Note

The E-Tree configuration under EVI is required only when BVI is used in the BD.

```
/* EVPN E-Tree leaf per bridge domain */
l2vpn
bridge group bg_201
bridge-domain bd_201
etree
   leaf
!
interface Bundle-Ether3501.3601
!
evi 201
!
/* EVPN E-Tree leaf per EVI */
```

```
evpn
 evi 200
 bgp
  route-target import 64600:200
  route-target export 64600:200
  etree
  leaf
  advertise-mac
/* EVPN E-Tree with BVI */
12vpn
bridge group bg1
 bridge-domain bd1
   interface Bundle-Ether200.1
   interface Bundle-Ether201.1001
   !
   routed interface BVI1
   split-horizon group core
   evi 200
   !
```

#### **Verification**

Verify that the etree leaf is configured per bridge domain.

```
Router# show 12vpn bridge-domain bd-name bd 201 detail
Legend: pp = Partially Programmed.
Bridge group: etree bg, bridge-domain: bd 201, id: 162, state: up, ShgId: 0, MSTi: 0
  Coupled state: disabled
 VINE state: EVPN Native
 MAC learning: enabled
 MAC withdraw: enabled
   MAC withdraw for Access PW: enabled
   MAC withdraw sent on: bridge port up
   MAC withdraw relaying (access to access): disabled
  Flooding:
   Broadcast & Multicast: enabled
   Unknown unicast: enabled
  MAC aging time: 300 s, Type: inactivity
  MAC limit: 64000, Action: none, Notification: syslog
 MAC limit reached: no, threshold: 75%
  MAC port down flush: enabled
 MAC Secure: disabled, Logging: disabled
 Split Horizon Group: none
 E-Tree: Leaf
  Dynamic ARP Inspection: disabled, Logging: disabled
  IP Source Guard: disabled, Logging: disabled
  DHCPv4 Snooping: disabled
  DHCPv4 Snooping profile: none
  IGMP Snooping: disabled
  IGMP Snooping profile: none
  MLD Snooping profile: none
  Storm Control: disabled
  Bridge MTU: 1500
 MIB cvplsConfigIndex: 163
```

```
Filter MAC addresses:
  P2MP PW: disabled
  Multicast Source: Not Set
  Create time: 25/10/2021 15:50:01 (00:50:39 ago)
  No status change since creation
  ACs: 1 (0 up), VFIs: 0, PWs: 0 (0 up), PBBs: 0 (0 up), VNIs: 0 (0 up)
  List of EVPNs:
   EVPN, state: up
      evi: 1 (MPLS)
      XC ID 0x8000009f
     Statistics:
       packets: received 0 (unicast 0), sent 0
      bytes: received 0 (unicast 0), sent 0
      MAC move: 0
  List of ACs:
   AC: Bundle-Ether3501.3601, state is up (Segment-up)
      Type VLAN; Num Ranges: 1
      Rewrite Tags: []
      VLAN ranges: [3601, 3601]
      MTU 1500; XC ID 0xa00001e0; interworking none; MSTi 2
      MAC learning: enabled
      Flooding:
        Broadcast & Multicast: enabled
       Unknown unicast: enabled
      MAC aging time: 300 s, Type: inactivity
      MAC limit: 64000, Action: none, Notification: syslog
      MAC limit reached: no, threshold: 75%
      MAC port down flush: enabled
      MAC Secure: disabled, Logging: disabled
      Split Horizon Group: enabled (inherited)
      E-Tree: Leaf (inherited)
      Dynamic ARP Inspection: disabled, Logging: disabled
      IP Source Guard: disabled, Logging: disabled
      DHCPv4 Snooping: disabled
      DHCPv4 Snooping profile: none
      IGMP Snooping: disabled
      IGMP Snooping profile: none
      MLD Snooping profile: none
      Storm Control: bridge-domain policer
      Static MAC addresses:
      PD System Data: AF-LIF-IPv4: 0x00000000 AF-LIF-IPv6: 0x00000000 FRR-LIF: 0x00000000
  List of Access PWs:
  List of VFIs:
  List of Access VFIs:
Router# show 12vpn bridge-domain bd-name bd1 detail
Legend: pp = Partially Programmed.
Bridge group: bg1, bridge-domain: bd1, id: 6, state: up, ShgId: 0, MSTi: 0
  Coupled state: disabled
  VINE state: EVPN-IRB
  MAC learning: enabled
  MAC withdraw: enabled
   MAC withdraw for Access PW: enabled
   MAC withdraw sent on: bridge port up
   MAC withdraw relaying (access to access): disabled
  Flooding:
   Broadcast & Multicast: enabled
   Unknown unicast: enabled
  MAC aging time: 300 s, Type: inactivity
  MAC limit: 64000, Action: none, Notification: syslog
  MAC limit reached: no, threshold: 75%
  MAC port down flush: enabled
  MAC Secure: disabled, Logging: disabled
```

```
Split Horizon Group: none
E-Tree: Leaf (inherited)
Dynamic ARP Inspection: disabled, Logging: disabled
IP Source Guard: disabled, Logging: disabled
DHCPv4 Snooping: disabled
DHCPv4 Snooping profile: none
IGMP Snooping: disabled
IGMP Snooping profile: none
MLD Snooping profile: none
Storm Control: disabled
Bridge MTU: 1500
MIB cvplsConfigIndex: 7
Filter MAC addresses:
P2MP PW: disabled
Multicast Source: Not Set
Create time: 25/10/2021 15:50:01 (00:47:35 ago)
No status change since creation
ACs: 3 (0 up), VFIs: 0, PWs: 0 (0 up), PBBs: 0 (0 up), VNIs: 0 (0 up)
List of EVPNs:
 EVPN, state: up
   evi: 200 (MPLS)
   XC ID 0x80000003
   Statistics:
    packets: received 0 (unicast 0), sent 0
    bytes: received 0 (unicast 0), sent 0
List of ACs:
 AC: BVI1, state is up (Segment-up)
   Type Routed-Interface
   MTU 1514; XC ID 0x800007d3; interworking none
   BVI MAC address:
     0011.1111.1111
    Split Horizon Group: Core
    PD System Data: AF-LIF-IPv4: 0x00000000 AF-LIF-IPv6: 0x00000000 FRR-LIF: 0x00000000
  AC: Bundle-Ether200.1, state is up (Segment-up)
    Type VLAN; Num Ranges: 1
   Rewrite Tags: []
   VLAN ranges: [1, 1]
   MTU 1500; XC ID 0xa00000be; interworking none; MSTi 9
   MAC learning: enabled
   Flooding:
     Broadcast & Multicast: enabled
     Unknown unicast: enabled
   MAC aging time: 300 s, Type: inactivity
   MAC limit: 64000, Action: none, Notification: syslog
   MAC limit reached: no, threshold: 75%
   MAC port down flush: enabled
   MAC Secure: disabled, Logging: disabled
   Split Horizon Group: enabled (inherited)
   E-Tree: Leaf (inherited)
   Dynamic ARP Inspection: disabled, Logging: disabled
   IP Source Guard: disabled, Logging: disabled
    DHCPv4 Snooping: disabled
   DHCPv4 Snooping profile: none
    IGMP Snooping: disabled
    IGMP Snooping profile: none
   MLD Snooping profile: none
   Storm Control: bridge-domain policer
   Static MAC addresses:
   AC: Bundle-Ether201.1001, state is up (Segment-up)
    Type VLAN; Num Ranges: 1
```

```
Rewrite Tags: []
   VLAN ranges: [1001, 1001]
   MTU 1500; XC ID 0xa000017c; interworking none; MSTi 9
   MAC learning: enabled
   Flooding:
     Broadcast & Multicast: enabled
     Unknown unicast: enabled
   MAC aging time: 300 s, Type: inactivity
   MAC limit: 64000, Action: none, Notification: syslog
   MAC limit reached: no, threshold: 75%
   MAC port down flush: enabled
   MAC Secure: disabled, Logging: disabled
   Split Horizon Group: enabled (inherited)
   E-Tree: Leaf (inherited)
   Dynamic ARP Inspection: disabled, Logging: disabled
   IP Source Guard: disabled, Logging: disabled
    DHCPv4 Snooping: disabled
   DHCPv4 Snooping profile: none
   IGMP Snooping: disabled
   IGMP Snooping profile: none
   MLD Snooping profile: none
   Storm Control: bridge-domain policer
   Static MAC addresses:
   PD System Data: AF-LIF-IPv4: 0x0001272c AF-LIF-IPv6: 0x0001272d FRR-LIF: 0x00000000
List of Access PWs:
List of VFTs:
List of Access VFIs:
```

## **DHCPv4 Relay on IRB**

DHCPv4 Relay on Integrated Routing and Bridging (IRB) feature provides DHCP support for the end users in EVPN all-active multihoming scenario. This feature enables reduction of traffic flooding, increase in load sharing, optimize traffic, faster convergence during link and device failures, and simplification of data center automation.

DHCPv4 relay agent sends request packets coming over access interface towards external DHCPv4 server to request address (/32) allocation for the end user. DHCPv4 relay agent acts as stateless for end users by not maintaining any DHCPv4 binding and respective route entry for the allocated address.

DHCPv4 relay profiles are configured on bridge-group virtual interface (BVI) interfaces which act as access interfaces by integrating routing and bridge domains for the end users. It relays DHCPv4 requests from Layer 2 attachment circuit (AC) to external DHCP servers for host IPv4 addresses (/32).

#### **Multihoming All-Active EVPN Gateways**

Multihoming all-active EVPN gateways are configured with anycast IP address and MAC addresses. The Cisco routers have centralized L2 or L3 gateway. Based on native EVPN and MAC learning, IRB uses distributed anycast IP address and anycast MAC address. Static clients are configured with anycast gateway address as the default gateway. DHCP client sends DHCP requests for IP address allocation over the BVI interface. L2 access can be either single homing or multihoming, not all access protocols are supported with IRB. BVI IP address acts as a default gateway for the end user. The external DHCPv4 server provides this BVI interface IP address as default gateway in route options. No EVPN is configured on the Internet gateway.

#### **EVPN IRB Route Distribution**

In EVPN IRB DHCPv4, DHCP application processes and DHCP packet forwarding are independent of EVPN IRB L2 and L3 routing. There is no subscriber routing information with the stateless DHCP relay. But DHCP clients work similar to static clients in the EVPN core for L2 and L3 bridging and routing. When the **relay information option** and **relay information option vpn** commands are configured on the DHCP relay agent, the DHCP relay agent inserts the sub options of DHCP Option 82, such as subnet selection and VPN ID options. These options are considered by DHCP server while allocating the IP addresses.

The IP address allocation for the end user at DHCPv4 server is based on **relay agent information** option (Remote-ID+ Circuit-ID) values. DHCP clients use the L2 AC interface to access EVPN bridge domain and use BVI interface as default gateway. So the clients must get the IP addresses from the DHCP server from the same subnet of BVI interface.

After the DHCPv4 application receive the access side DHCPv4 packets over BVI interface based on **relay-option policy {encapsulate | drop | keep}** command, DHCPv4 application includes option-82 Relay-Agent Information, Remote-ID, and Circuit-ID for DHCPv4 Server.

The following table provides the attributes that qualify the DHCPv4 relay packets for the configured Relay-Information details. The information given in the table is used for configuring **relay-option policy** {encapsulate | drop | keep} command.

| Relay-Option Policy | DHCPv4 Access Side<br>Packet                       | Local Configuration                                                                          | DHCPv4 Relay Packet<br>Decision                                                               |
|---------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Encapsulate         | No Relay-Information                               | DHCPv4-Profile with<br>Remote-ID<br>L2Transport AC with<br>Circuit-ID                        | Relay-Agent with<br>Remote-ID and Circuit-ID                                                  |
| Encapsulate         | Relay-Information<br>(Remote-ID and<br>Circuit-ID) | DHCPv4-Profile with<br>Remote-ID<br>L2Trasnsport AC with<br>Circuit-ID                       | Override Relay-Agent<br>Information with Local<br>Configuration (Remote-ID<br>and Circuit-ID) |
| Encapsulate         | No Relay-Information                               | DHCPv4-Profile with<br>Remote-ID and<br>VPN-Information<br>L2Transport AC with<br>Circuit-ID | Relay-Agent with<br>Remote-ID, Circuit-ID<br>and VPN-Information                              |
| Keep                | Relay-Information<br>(Remote-ID and<br>Circuit-ID) | No configuration                                                                             | DHCPv4 Relay-Agent<br>does not change any<br>Relay-Information                                |
| Кеер                | Relay-Information<br>(Remote-ID and<br>Circuit-ID) | DHCPv4-Profile with<br>Remote-ID<br>L2 Transport AC with<br>Circuit-ID                       | DHCPv4 Relay-Agent<br>does not change any<br>Relay-Information                                |

| Relay-Option Policy | DHCPv4 Access Side<br>Packet                       | Local Configuration                                                                           | DHCPv4 Relay Packet<br>Decision                                          |
|---------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Keep                | Relay-Information<br>(Remote-ID and<br>Circuit-ID) | DHCPv4-Profile with<br>Remote-ID and<br>VPN-Information<br>L2 Transport AC with<br>Circuit-ID | DHCPv4 Relay-Agent<br>does not change any<br>Relay-Information           |
| Drop                | Relay-Information<br>(Remote-ID and<br>Circuit-ID) | No configuration                                                                              | Exclude Relay-Agent<br>Information and include<br>None in Relayed-Packet |
| Drop                | Relay-Information<br>(Remote-ID and<br>Circuit-ID) | DHCPv4-Profile with<br>Remote-ID<br>L2 Transport AC with<br>Circuit-ID                        | Exclude Relay-Agent<br>Information and include<br>None in Relayed-Packet |
| Drop                | Relay-Information<br>(Remote-ID and<br>Circuit-ID) | DHCPv4-Profile with<br>Remote-ID and<br>VPN-Information<br>L2 Transport AC with<br>Circuit-ID | Exclude Relay-Agent<br>Information and include<br>None in Relayed-Packet |

#### **DHCP Request Forwarding Path**

Clients broadcast requests to the access switch with DH-AA to EVPN PE routers. The access switch does load balancing. The load balancing configurations in access switch impacts PE in DH-AA and DHCP to send the DHCP requests. The DHCP request reaches the Bridge Domain (BD) BVI interface which is configured with DHCP relay. Because all-active PE routers are configured with the same IP address, BVI IP addresses cannot be used as DHCP relay source IP address. For DHCPv4 relay, access (BVI) interface is tied-up with relay profile. The device intercept packets are received over BVI interface and each relay profile is defined with Gateway IP Address (GIADDR), which acts as source IP address for initiated relayed packets towards DHCPv4 server. This GIADDR is unique across Top of Racks (ToRs) for respective BVI interfaces. Loopback interface with unique IPv4 address can be configured in VRF that is reachable to DHCP servers. Configuring DHCP relay source address is not supported.

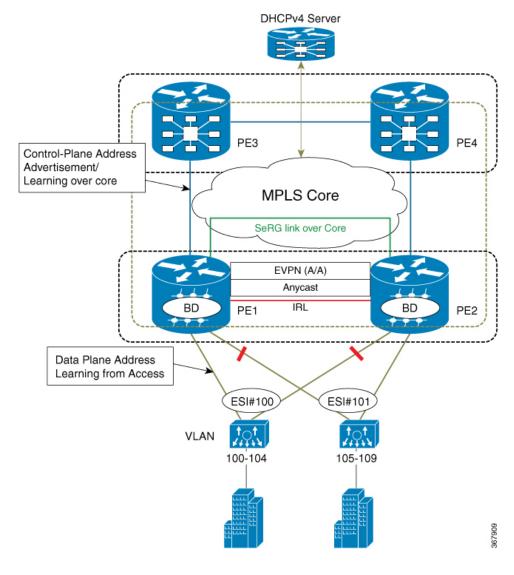
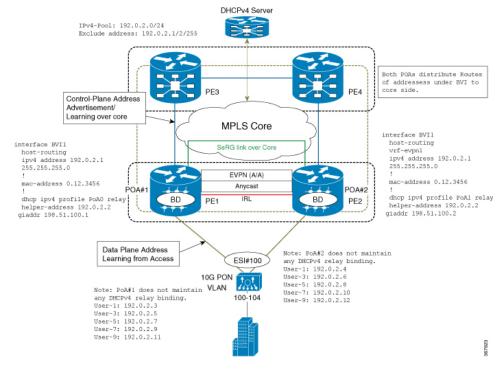



Figure 7: PON behavior in handling DHCPv4 Server for EVPN All-Active Multihoming

#### PON behavior in handling DHCPv4 Server for EVPN All-Active Multihoming


In this topology, PE1 and PE2 are edge routers for access side, which serve CEs (10G-OLT) over BVI interfaces by associating routing and bridging domains to process DHCPv4 packets. CEs (L2 OLT, PONs, any L2 domain switches) hashes the incoming control packets (DHCPv4 packets) towards port channels that are connected to respective PEs. The CEs leverage the hashing mechanism based on five tuples (src mac, dst mac, src-ip, dst-ip, L4 (tcp/udp) dst/src port) of packets that are received from the end user. Defines the forwarding mechanism by selecting the port channel on load balancing the control packets to respective PEs in dual-home active-active model.

#### DHPCv4 Relay Handling for EVPN and DHCPv4 Server in Default VRF

DHCPv4 relay over EVPN IRB and DHCPv4 servers resides in the same default VRFs. The DHCPv4 relay profiles are associated with helper-addresses of DHCPv4 address under default VRFs. In this particular scenario, PEs do not include any relay-agent information in relayed DHCPv4 packets towards DHCPv4 server.

However, DHCPv4 relay profile is defined in unique GIADDR across ToRs other than the anycast IRB address. Else, it is difficult for DHCPv4 server to perform address allocation for end user of not having link selection or subnet selection. The PEs include relay-agent information by including VPN information with VPN value as 0xFF.

Figure 8: DHPCv4 Relay Handling for EVPN and DHCPv4 Server in Default VRF



#### DHPCv4 Relay Handling for EVPN and DHCPv4 Server in Different VRF

DHCPv4 relay over EVPN IRB and DHCPv4 servers reside in different VRFs or DHCPv4 server has an unique GIADDR across ToRs which is different from the anycast IRB address. Else, it is difficult for DHCPv4 server to perform address allocation for end user of not having link selection or subnet selection. To ensure DHCPv4 server to provide address allocation from pool of subnet of related anycast IRB address of evpn, there is a way that ToRs of DHCPv4 relay agent intimate Virtual-Subnet-Selection (link-selection, server-id, vrf-id) by including Relay-Agent-Information (Option-82) in DHCPv4 relayed Discover and Request packets towards DHCPv4 Server.

In this topology, the 10G PON distributes equally the DHCP broadcast towards respective point of attachment (PoA) #1, #2, and packets are relayed to external DHCPv4 server.

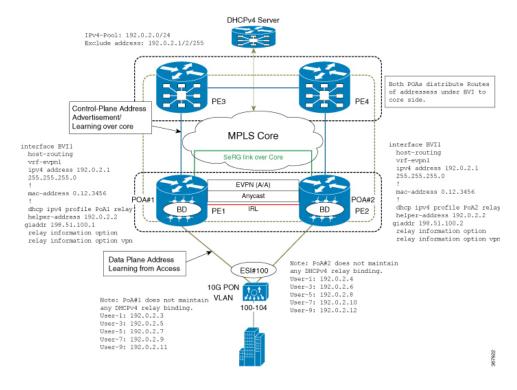



Figure 9: DHPCv4 Relay Handling for EVPN and DHCPv4 Server in Different VRF

## **Configure DHCPv4 Relay on IRB**

Perfrom these tasks to configure DHCPv4 Relay on IRB.

## **Configuration Example**

```
/* PE1 configuration */
Router# configure
Router(config) # interface BVI1
Router(config-if) # host-routing
Router(config-if)# vrf-evpn1
Router(config-if) # ipv4 address 192.0.2.1 255.255.255.0
Router(config-if) # exit
Router(config) # mac-address 0.12.3456
Router# configure
Router(config) # dhcp ipv4
Router(config-dhcpv4) # profile PoA1 relay
Router(config-dhcpv4-relay-profile) # helper-address 192.0.2.2 giaddr 198.51.100.1
Router(config-dhcpv4-relay-profile) # relay information option vpn
Router(config-dhcpv4-relay-profile) # relay information option vpn-mode rfc
Router(config-dhcpv4-relay-profile) # commit
/* PE2 configuration */
Router# configure
Router(config) # interface BVI1
```

```
Router(config-if) # host-routing
Router(config-if) # vrf-evpn1
Router(config-if) # ipv4 address 192.0.2.1 255.255.255.0
Router(config-if) # exit
Router(config) # mac-address 0.12.3456
!
Router# configure
Router(config) # dhcp ipv4
Router(config-dhcpv4) # profile PoA2 relay
Router(config-dhcpv4-relay-profile) # helper-address 192.0.2.2 giaddr 198.51.100.2
Router(config-dhcpv4-relay-profile) # relay information option vpn
Router(config-dhcpv4-relay-profile) # relay information option vpn-mode rfc
Router(config-dhcpv4-relay-profile) # relay information option vpn-mode rfc
```

The following example shows a configuration of DHCPv4 relay agent to include Relay-Agent Information with Remote-ID and Circuit-ID. The Remote-ID is configured under DHCPv4-Relay-Profile, which is associated under BVI interface. DHCPv4 is configured with L2Transport ACs with Circuit-ID.

```
Dhcp ipv4

Profile RELAY relay
Relay information option remote-id format-type asci cisco
Relay information policy encapsulate
!

interface BE1.100 relay information option circuit-id format-type hex cisco
!
 interface bvi relay RELAY
```

## **Running Configuration**

This section shows DHCPv4 relay on IRB running configuration.

```
/* PE1 Configuration */
interface BVI1
host-routing
vrf-evpn1
ipv4 address 192.0.2.1 255.255.255.0
mac-address 0.12.3456
dhcp ipv4 profile PoA1 relay
helper-address 192.0.2.2 giaddr 198.51.100.1
relay information option
relay information option vpn-mode rfc
/* PE2 Configuration */
interface BVI1
host-routing
vrf-evpn1
ipv4 address 192.0.2.1 255.255.255.0
mac-address 0.12.3456
dhcp ipv4 profile PoA2 relay
helper-address 192.0.2.2 giaddr 198.51.100.2
 relay information option
relay information option vpn-mode rfc
```

#### Verification

Verify DHCPv4 Relay on IRB configuration.

```
/* Verify DHCPv4 relay statistics
Router# show dhcp vrf default ipv4 relay statistics
```

DHCP IPv4 Relay Statistics for VRF default:

| TYPE            |   | RECEIVE |     | TRANSMIT |     | DROP |   | -    |
|-----------------|---|---------|-----|----------|-----|------|---|------|
| DISCOVER        |   | 2000    |     | 2000     |     |      | 0 | <br> |
| OFFER           | i | 2000    | i   | 2000     | ĺ   |      | 0 | İ    |
| REQUEST         |   | 5500    |     | 5500     |     |      | 0 |      |
| DECLINE         |   | 0       | - 1 | 0        |     |      | 0 |      |
| ACK             |   | 5500    | - 1 | 5500     | - 1 |      | 0 |      |
| NAK             |   | 0       | - 1 | 0        | - 1 |      | 0 |      |
| RELEASE         |   | 500     | - 1 | 500      | - 1 |      | 0 |      |
| INFORM          |   | 0       | - 1 | 0        | - 1 |      | 0 |      |
| LEASEQUERY      |   | 0       | - 1 | 0        |     |      | 0 |      |
| LEASEUNASSIGNED |   | 0       | - 1 | 0        | - 1 |      | 0 |      |
| LEASEUNKNOWN    |   | 0       | - 1 | 0        | - 1 |      | 0 |      |
| LEASEACTIVE     |   | 0       | - 1 | 0        |     |      | 0 |      |
| BOOTP-REQUEST   |   | 0       | - 1 | 0        |     |      | 0 |      |
| BOOTP-REPLY     |   | 0       | - 1 | 0        | - 1 |      | 0 |      |
| BOOTP-INVALID   |   | 0       |     | 0        | - 1 |      | 0 | - 1  |

#### **Related Topics**

• DHCPv4 Relay on IRB, on page 77

#### **Associated Commands**

- show dhep vrf default ipv4 relay statistics
- show dhep ivp4 profile name

# **DHCPv4 Relay Synchronization for All-Active Multihoming**

DHCPv4 Relay Synchronization for All-active Multihoming feature enables a transitory entity between the end user and DHCPv4 server and does not create any DHCPv4 binding. This feature supports the equal distribution of DHCP control-plane packets among end users across Point of Attachments (PoAs). All DHCP

control packets for single users exist on the same DHCPv4 relay (PoA) so that end users can lease IP address allocation without any intervention and delay.

Multiprotocol extension BGP session is established between PEs to edge routers over MPLS-SR so that the learned MAC-IP information is sent over BGP to the edge router. MP-BGP advertises the learned MAC-IP information using route type-2 for a given Ethernet Segment Identifier (ESI) and Ethernet tag. The edge router has the capability of redistributing the routes to other PEs that are learnt from PE1 or PE2, and vice-versa. This mechanism ensures that the MAC-IP routes are distributed to the edge router so that individual PEs have complete MAC-IP routing information.

This feature ensures forwarding of bidirectional traffic. For high availability, during node (PoA#1 or PoA#2) failures, access interface failures, or core link failures, the other PoA forwards data traffic.

# **DHCPv6 Relay IAPD on IRB**

The Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Relay Identity Association for Prefix Delegation (IAPD) on IRB feature allows the user to manage link, subnet, and site addressing changes. This feature automates the process of assigning prefixes to a customer for use within their network. The prefix delegation occurs between a provider edge (PE) device and customer edge (CE) device using the DHCPv6 prefix delegation option. After the delegated prefixes are assigned to a user, the user may further subnet and assign prefixes to the links in the network.

DHCPv6 relay transmits all request packets that comes over access interface towards external DHCPv6 server to request IAPD (::/64 or ::/48) allocation for the end user. DHCPv6 relay also receives response packets from DHCPv6 server and forwards the packets towards the end users over access interface. DHCPv6 relay acts as stateful for the end users by maintaining DHCPv6 PD binding and respective route entry for the allocated IAPD. DHCPv6 relay supports Internet Assigned Numbers Authority (IANA) and Identity Association for Prefix Delegation (IAPD) address allocation for the end-user. The IAPD prefix is based on prefix-pool that is configured on DHCPv6 server.

For DHCPv6 relay, access (BVI) interface is tied up with relay profile. Whenever ToRs relay the DHCPv6 packets that are received from client to DHCPv6 server, ToR discovers the best source IP address for a given defined VRF of DHCPv6 server IP address. ToRs maintain unique source IP address for each VRF to reach out DHCPv6 server. DHCPv6 relay has unique IPv4 source IP address defined under loopback interfaces for the defined VRFs of DHCPv6 helper-addresses and routable through MPLS core network.

Anycast IP address configured on the BVI interface acts as a default gateway for end users and address allocation occurs on the same subnet. ToRs maintain unique source IP address to relay DHCPv6 packets towards DHCPv6 server over IPVPN of MPLS core network. The same ToRs receive response packets from external DHCPv6 server. Unique source address on each ToR under DHCPv6 relay is required for DHCPv6 process to maintain the context of packet received over access interface and relayed packet. This mechanism helps to send reply response to end users over BVI interface.

#### DHPCv6 relay Handling for EVPN and DHCPv6 Server in Default VRF

DHCPv6 relay over EVPN IRB and DHCPv6 servers resides in the same default VRFs. The DHCPv6 relay profiles are associated with helper-addresses of DHCPv6 address under default VRFs. The PEs do not include Relay-Information option in DHPCv6-Relayed packets unlike DHCPv4.

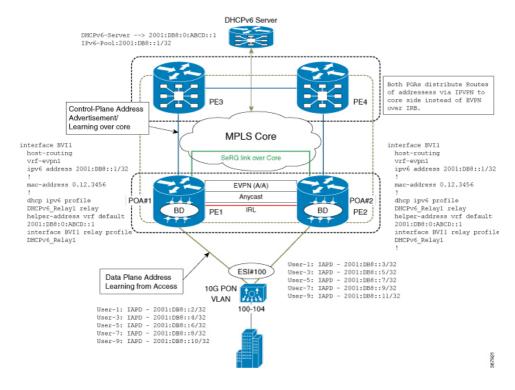



Figure 10: DHPCv6 relay Handling for EVPN and DHCPv6 Server in Default VRF

## **Configure DHCPv6 Relay IAPD on IRB**

Perfrom these tasks to configure DHCPv6 Relay IAPD on IRB.

## **Configuration Example**

```
/* PE1 configuration */
Router# configure
Router(config) # interface BVI1
Router(config-if) # host-routing
Router(config-if) # vrf-evpn1
Router(config-if) # ipv6 address 2001:DB8::1/32
Router(config-if)# exit
Router(config) # mac-address 0.12.3456
Router# configure
Router(config) # dhcp ipv6
Router(config-dhcpv6) # profile DHCPv6_Relay1 relay
Router(config-dhcpv6-relay-profile) # helper-address vrf default 2001: DB8:0:ABCD::1
Router(config-dhcpv6-relay-profile) # interface BVI1 relay profile DHCPv6 Relay
Router(config-dhcpv6-relay-profile)# commit
/* PE2 configuration */
Router# configure
Router(config) # interface BVI1
Router(config-if) # host-routing
```

```
Router(config-if)# vrf-evpn1
Router(config-if)# ipv6 address 2001:DB8::1/32
Router(config-if)# exit
Router(config)# mac-address 0.12.3456
!
Router# configure
Router(config)# dhcp ipv6
Router(config-dhcpv6)# profile DHCPv6_Relay1 relay
Router(config-dhcpv6-relay-profile)# helper-address vrf default 2001: DB8:0:ABCD::1
Router(config-dhcpv6-relay-profile)# interface BVI1 relay profile DHCPv6_Relay
Router(config-dhcpv6-relay-profile)# commit
```

## **Running Configuration**

This section shows DHCPv6 Relay IAPD on IRB running configuration.

```
/* PE1 Configuration */
interface BVI1
host-routing
vrf-evpn1
ipv6 address 2001:DB8::1/32
mac-address 0.12.3456
dhcp ipv6 profile DHCPv6 Relay1 relay
helper-address vrf default 2001: DB8:0:ABCD::1
interface BVI1 relay profile DHCPv6 Relay1
/* PE2 Configuration */interface BVI1
host-routing
vrf-evpn1
ipv6 address 2001:DB8::1/32
mac-address 0.12.3456
dhcp ipv6 profile DHCPv6 Relay1 relay
helper-address vrf default 2001: DB8:0:ABCD::1
interface BVI1 relay profile DHCPv6_Relay1
```

#### **Verification**

Verify DHCPv46 Relay IAPD on IRB configuration.

```
/* Verify DHCPv6 relay statistics
Router# show dhcp vrf default ipv6 relay statistics
```

DHCP IPv6 Relay Statistics for VRF default:

| TYPE             |          | RECEIVE      | - | TRANSMIT     | - | DROP |   | -   |
|------------------|----------|--------------|---|--------------|---|------|---|-----|
| DISCOVER         | <u> </u> | 2000         |   | 2000         |   |      | 0 |     |
| OFFER<br>REQUEST |          | 2000<br>5500 |   | 2000<br>5500 |   |      | 0 |     |
| DECLINE          |          | 0            | i | 0            | i |      | 0 | ï   |
| ACK              |          | 5500         |   | 5500         | - |      | 0 | - [ |
| NAK              | 1        | 0            |   | 0            |   |      | 0 |     |
| RELEASE          | 1        | 500          |   | 500          |   |      | 0 |     |
| INFORM           | 1        | 0            |   | 0            |   |      | 0 |     |
| LEASEQUERY       | 1        | 0            |   | 0            |   |      | 0 |     |

| LEASEUNASSIGNED | 1 | 0 | T | 0 |   | 0 |  |
|-----------------|---|---|---|---|---|---|--|
| LEASEUNKNOWN    | 1 | 0 | T | 0 |   | 0 |  |
| LEASEACTIVE     |   | 0 | 1 | 0 |   | 0 |  |
| BOOTP-REQUEST   | 1 | 0 | T | 0 |   | 0 |  |
| BOOTP-REPLY     | 1 | 0 | I | 0 |   | 0 |  |
| BOOTP-INVALID   |   | 0 | 1 | 0 | 1 | 0 |  |

#### **Related Topics**

• DHCPv6 Relay IAPD on IRB, on page 85

#### **Associated Commands**

• show dhep ipv6 relay statistics vrf default

# DHCPv6 PD Synchronization for All-Active Multihoming using Session Redundancy

DHCPv6 PD Synchronization for All-Active Multihoming using Session Redundancy feature provides load balancing for both control and data packets. This feature helps in efficient utilization of devices with respect to throughput (line rate) and processing power.

Prior to this release, Session Redundancy (SeRG) mechanism supported active-standby to address access failure, core failure, and node or chassis failures. In all these cases, one active PoA is responsible to create sessions and synchronize binding information using SeRG across the PoA. This mechanism did not serve the purpose of EVPN all-active multihoming as PoAs are in primary-secondary mode for a given access-link in SeRG group. This restricts only one node that acts as primary to process control packets, create bindings, and forward data path.

With DHCPv6 PD Synchronization for All-active Multihoming feature using SeRG group configuration, you can define both POAs to be active unlike in primary-secondary mode. Also, there is no need to exchange or negotiate the roles of respective PoAs.

SeRG does not distribute IAPD prefix routes over BGP in any of the route types. The routed BVI interface is configured with DHCPv6 relay to provide PD allocation for the end user.

Each individual multihoming peer SeRG role is ACTIVE only. SeRG does not support any roles other than NONE and ACTIVE. Define interface-list under SeRG as BVI interface, typically use one or more BVI interfaces. However, it is not recommended to define L2 transport ACs under SeRG interface list because the L2 transport ACs are defined under L2VPN BD, and SeRG-client DHCPv6 is unaware of these AC information.

In SeRG active-active mode, IPv6-ND synchronization is supressed across POAs.

#### Restrictions

- SeRG does not support core link failures.
- SeRG does not support core and access tracking mechanism.
- Ensure that there are no bindings while configuring ACTIVE-ACTIVE mode.
- Ensure that you have the same configuration on all PoAs. The Bundle-Ether L2transport ACs configuration has to be same on both the sides along with BD and BVI configuration.

- clear session-redundancy command is not supported in any mode to avoid system inconsistency.
- In SeRG active-active mode, ensure that both PoAs are reachable over core links always. It is recommended to configure EVPN Core Isolation feature, which maps core links to access link. This mechanism ensures to eliminate respective access links whenever core links are down.

## **Configure DHCPv6 PD Synchronization**

Perfrom these tasks to configure DHCPv6 PD synchronization using SeRG.

## **Configuration Example**

```
/* PoA1 configuration */
Router# configure
Router(config) # session redundancy
Router(config-session-red) # source-interface Loopback0
Router(config-session-red)# group 1
Router(config-session-red-group) # peer 192.0.2.1
Router(config-session-red-group) # mode active-active
Router(config-session-red-group)# interface-list
Router(config-session-red-group-inft) # interface BVI1 id 1
Router(config-session-red-group-intf) # commit
/* PoA2 configuration */
Router# configure
Router(config) # session redundancy
Router(config-session-red) # source-interface Loopback0
Router(config-session-red) # group 1
Router(config-session-red-group) # peer 198.51.100.1
Router(config-session-red-group) # mode active-active
Router(config-session-red-group)# interface-list
Router(config-session-red-group-intf)# interface BVI1 id 1
Router(config-session-red-group-intf)# commit
```

## **Running Configuration**

This section shows DHCPv6 PD synchronization running configuration.

```
/* PoA1 Configuration */
session-redundancy
source-interface Loopback0
group 1
 peer 192.0.2.1
  mode active-active
  interface-list
   interface BVI1 id 1
!
/* PoA2 Configuration */
session-redundancy
source-interface Loopback0
aroup 1
 peer 198.51.100.1
  mode active-active
  interface-list
```

```
interface BVI1 id 1
!
!
!
```

#### Verification

Verify DHCPv6 PD synchronization configuration.

| Node Name<br>  SS Count | Group ID   Role  <br>  Sync Pending | Flags | Peer Address | P/S   I/F-P | Count |
|-------------------------|-------------------------------------|-------|--------------|-------------|-------|
| 0/RP0/CPU0              | 1 Active                            | E-H-  | 120.1.1.1    | E           | 1     |
| 1                       | 0                                   |       |              |             |       |
| 0/RP0/CPU0              | 2 Active                            | E-H-  | 120.1.1.1    | E           | 1     |
| 0                       | 0                                   |       |              |             |       |
| 0/RP0/CPU0              | 3 Active                            | E-H-  | 120.1.1.1    | E           | 1     |
| 0                       | 0                                   |       |              |             |       |
| 0/RP0/CPU0              | 4 Active                            | E-H-  | 120.1.1.1    | E           | 1     |
| 0                       | 0                                   |       |              |             |       |
| 0/RP0/CPU0              | 5 Active                            | E-H-  | 120.1.1.1    | E           | 1     |
| 0                       | 0                                   |       |              |             |       |

```
Session Summary Count (Master/Slave/Active/Total): 0/0/1/1
```

```
/* Verify IPv6 relay binding */
```

```
Router# show dhcp ipv6 relay binding
```

```
Summary:
Total number of clients: 1

IPv6 Prefix: 60:1:1:1::/64 (BVI1)
    Client DUID: 000100015bfeb921001094000000
    IAID: 0x0
    VRF: default
    Lifetime: 120 secs (00:02:00)
    Expiration: 91 secs (00:01:31)
    L2Intf AC: Bundle-Ether1.1
    SERG State: SERG-ACTIVE
    SERG Intf State: SERG-ACTIVE
```

#### **Related Topics**

DHCPv6 PD Synchronization for All-Active Multihoming using Session Redundancy, on page 88

#### **Associated Commands**

- show session-redundancy group
- show dhep ipv6 relay binding

# IAPD Route Distribution and Withdrawal in DHCPv6 Relay

If there is an EVPN Multi-Homing Active-Active scenario, DHCPv6 relay agent is supported over L2VPN bridge domain associated with Attachment Circuits (ACs) and BVI interface with allocation of Identity Association for Prefix Delegation (IAPD) routes. Also, DHCPv6 relay agent performs route distribution using iBGP over the MPLS core network. During core-to-subscriber traffic, few ACs can be down, but BVI is still up because not all ACs are down. This scenario can result in unreported traffic drop for subscribers in ACs that are down. The cause being the IAPD routes that are still intact with the MPLS core network though the ACs are down.

To prevent unreported traffic drop, the DHCPv6 relay agent is enabled to perform IAPD route withdrawal from the MPLS core network over iBGP for sessions. The route withdrawals occur whenever the L2VPN bridge domain ACs are down. Also, whenever the ACs return to the up state, the DHCPv6 relay agent can distribute IAPD routes to the MPLS core network over iBGP.

IAPD Route Distribution and Withdrawal in DHCPv6 Relay